2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
32 #include "blk-mq-tag.h"
34 static DEFINE_MUTEX(all_q_mutex
);
35 static LIST_HEAD(all_q_list
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
42 return sbitmap_any_bit_set(&hctx
->ctx_map
);
46 * Mark this ctx as having pending work in this hardware queue
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
49 struct blk_mq_ctx
*ctx
)
51 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
52 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
56 struct blk_mq_ctx
*ctx
)
58 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
61 void blk_mq_freeze_queue_start(struct request_queue
*q
)
65 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
66 if (freeze_depth
== 1) {
67 percpu_ref_kill(&q
->q_usage_counter
);
68 blk_mq_run_hw_queues(q
, false);
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
73 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
75 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
82 void blk_freeze_queue(struct request_queue
*q
)
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
91 blk_mq_freeze_queue_start(q
);
92 blk_mq_freeze_queue_wait(q
);
95 void blk_mq_freeze_queue(struct request_queue
*q
)
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
105 void blk_mq_unfreeze_queue(struct request_queue
*q
)
109 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
110 WARN_ON_ONCE(freeze_depth
< 0);
112 percpu_ref_reinit(&q
->q_usage_counter
);
113 wake_up_all(&q
->mq_freeze_wq
);
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
118 void blk_mq_wake_waiters(struct request_queue
*q
)
120 struct blk_mq_hw_ctx
*hctx
;
123 queue_for_each_hw_ctx(q
, hctx
, i
)
124 if (blk_mq_hw_queue_mapped(hctx
))
125 blk_mq_tag_wakeup_all(hctx
->tags
, true);
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
132 wake_up_all(&q
->mq_freeze_wq
);
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
137 return blk_mq_has_free_tags(hctx
->tags
);
139 EXPORT_SYMBOL(blk_mq_can_queue
);
141 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
142 struct request
*rq
, int op
,
143 unsigned int op_flags
)
145 if (blk_queue_io_stat(q
))
146 op_flags
|= REQ_IO_STAT
;
148 INIT_LIST_HEAD(&rq
->queuelist
);
149 /* csd/requeue_work/fifo_time is initialized before use */
152 req_set_op_attrs(rq
, op
, op_flags
);
153 /* do not touch atomic flags, it needs atomic ops against the timer */
155 INIT_HLIST_NODE(&rq
->hash
);
156 RB_CLEAR_NODE(&rq
->rb_node
);
159 rq
->start_time
= jiffies
;
160 #ifdef CONFIG_BLK_CGROUP
162 set_start_time_ns(rq
);
163 rq
->io_start_time_ns
= 0;
165 rq
->nr_phys_segments
= 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167 rq
->nr_integrity_segments
= 0;
170 /* tag was already set */
180 INIT_LIST_HEAD(&rq
->timeout_list
);
184 rq
->end_io_data
= NULL
;
187 ctx
->rq_dispatched
[rw_is_sync(op
, op_flags
)]++;
190 static struct request
*
191 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int op
, int op_flags
)
196 tag
= blk_mq_get_tag(data
);
197 if (tag
!= BLK_MQ_TAG_FAIL
) {
198 rq
= data
->hctx
->tags
->rqs
[tag
];
200 if (blk_mq_tag_busy(data
->hctx
)) {
201 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
202 atomic_inc(&data
->hctx
->nr_active
);
206 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
, op_flags
);
213 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
216 struct blk_mq_ctx
*ctx
;
217 struct blk_mq_hw_ctx
*hctx
;
219 struct blk_mq_alloc_data alloc_data
;
222 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
226 ctx
= blk_mq_get_ctx(q
);
227 hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
228 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
229 rq
= __blk_mq_alloc_request(&alloc_data
, rw
, 0);
234 return ERR_PTR(-EWOULDBLOCK
);
238 rq
->__sector
= (sector_t
) -1;
239 rq
->bio
= rq
->biotail
= NULL
;
242 EXPORT_SYMBOL(blk_mq_alloc_request
);
244 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
245 unsigned int flags
, unsigned int hctx_idx
)
247 struct blk_mq_hw_ctx
*hctx
;
248 struct blk_mq_ctx
*ctx
;
250 struct blk_mq_alloc_data alloc_data
;
254 * If the tag allocator sleeps we could get an allocation for a
255 * different hardware context. No need to complicate the low level
256 * allocator for this for the rare use case of a command tied to
259 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
260 return ERR_PTR(-EINVAL
);
262 if (hctx_idx
>= q
->nr_hw_queues
)
263 return ERR_PTR(-EIO
);
265 ret
= blk_queue_enter(q
, true);
270 * Check if the hardware context is actually mapped to anything.
271 * If not tell the caller that it should skip this queue.
273 hctx
= q
->queue_hw_ctx
[hctx_idx
];
274 if (!blk_mq_hw_queue_mapped(hctx
)) {
278 ctx
= __blk_mq_get_ctx(q
, cpumask_first(hctx
->cpumask
));
280 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
281 rq
= __blk_mq_alloc_request(&alloc_data
, rw
, 0);
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
296 struct blk_mq_ctx
*ctx
, struct request
*rq
)
298 const int tag
= rq
->tag
;
299 struct request_queue
*q
= rq
->q
;
301 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
302 atomic_dec(&hctx
->nr_active
);
305 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
306 blk_mq_put_tag(hctx
, ctx
, tag
);
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
312 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
314 ctx
->rq_completed
[rq_is_sync(rq
)]++;
315 __blk_mq_free_request(hctx
, ctx
, rq
);
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
320 void blk_mq_free_request(struct request
*rq
)
322 blk_mq_free_hctx_request(blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
), rq
);
324 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
326 inline void __blk_mq_end_request(struct request
*rq
, int error
)
328 blk_account_io_done(rq
);
331 rq
->end_io(rq
, error
);
333 if (unlikely(blk_bidi_rq(rq
)))
334 blk_mq_free_request(rq
->next_rq
);
335 blk_mq_free_request(rq
);
338 EXPORT_SYMBOL(__blk_mq_end_request
);
340 void blk_mq_end_request(struct request
*rq
, int error
)
342 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
344 __blk_mq_end_request(rq
, error
);
346 EXPORT_SYMBOL(blk_mq_end_request
);
348 static void __blk_mq_complete_request_remote(void *data
)
350 struct request
*rq
= data
;
352 rq
->q
->softirq_done_fn(rq
);
355 static void blk_mq_ipi_complete_request(struct request
*rq
)
357 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
361 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
362 rq
->q
->softirq_done_fn(rq
);
367 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
368 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
370 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
371 rq
->csd
.func
= __blk_mq_complete_request_remote
;
374 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
376 rq
->q
->softirq_done_fn(rq
);
381 static void __blk_mq_complete_request(struct request
*rq
)
383 struct request_queue
*q
= rq
->q
;
385 if (!q
->softirq_done_fn
)
386 blk_mq_end_request(rq
, rq
->errors
);
388 blk_mq_ipi_complete_request(rq
);
392 * blk_mq_complete_request - end I/O on a request
393 * @rq: the request being processed
396 * Ends all I/O on a request. It does not handle partial completions.
397 * The actual completion happens out-of-order, through a IPI handler.
399 void blk_mq_complete_request(struct request
*rq
, int error
)
401 struct request_queue
*q
= rq
->q
;
403 if (unlikely(blk_should_fake_timeout(q
)))
405 if (!blk_mark_rq_complete(rq
)) {
407 __blk_mq_complete_request(rq
);
410 EXPORT_SYMBOL(blk_mq_complete_request
);
412 int blk_mq_request_started(struct request
*rq
)
414 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
416 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
418 void blk_mq_start_request(struct request
*rq
)
420 struct request_queue
*q
= rq
->q
;
422 trace_block_rq_issue(q
, rq
);
424 rq
->resid_len
= blk_rq_bytes(rq
);
425 if (unlikely(blk_bidi_rq(rq
)))
426 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
431 * Ensure that ->deadline is visible before set the started
432 * flag and clear the completed flag.
434 smp_mb__before_atomic();
437 * Mark us as started and clear complete. Complete might have been
438 * set if requeue raced with timeout, which then marked it as
439 * complete. So be sure to clear complete again when we start
440 * the request, otherwise we'll ignore the completion event.
442 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
443 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
444 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
445 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
447 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
449 * Make sure space for the drain appears. We know we can do
450 * this because max_hw_segments has been adjusted to be one
451 * fewer than the device can handle.
453 rq
->nr_phys_segments
++;
456 EXPORT_SYMBOL(blk_mq_start_request
);
458 static void __blk_mq_requeue_request(struct request
*rq
)
460 struct request_queue
*q
= rq
->q
;
462 trace_block_rq_requeue(q
, rq
);
464 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
465 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
466 rq
->nr_phys_segments
--;
470 void blk_mq_requeue_request(struct request
*rq
)
472 __blk_mq_requeue_request(rq
);
474 BUG_ON(blk_queued_rq(rq
));
475 blk_mq_add_to_requeue_list(rq
, true);
477 EXPORT_SYMBOL(blk_mq_requeue_request
);
479 static void blk_mq_requeue_work(struct work_struct
*work
)
481 struct request_queue
*q
=
482 container_of(work
, struct request_queue
, requeue_work
.work
);
484 struct request
*rq
, *next
;
487 spin_lock_irqsave(&q
->requeue_lock
, flags
);
488 list_splice_init(&q
->requeue_list
, &rq_list
);
489 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
491 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
492 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
495 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
496 list_del_init(&rq
->queuelist
);
497 blk_mq_insert_request(rq
, true, false, false);
500 while (!list_empty(&rq_list
)) {
501 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
502 list_del_init(&rq
->queuelist
);
503 blk_mq_insert_request(rq
, false, false, false);
507 * Use the start variant of queue running here, so that running
508 * the requeue work will kick stopped queues.
510 blk_mq_start_hw_queues(q
);
513 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
515 struct request_queue
*q
= rq
->q
;
519 * We abuse this flag that is otherwise used by the I/O scheduler to
520 * request head insertation from the workqueue.
522 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
524 spin_lock_irqsave(&q
->requeue_lock
, flags
);
526 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
527 list_add(&rq
->queuelist
, &q
->requeue_list
);
529 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
531 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
533 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
535 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
537 cancel_delayed_work_sync(&q
->requeue_work
);
539 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
541 void blk_mq_kick_requeue_list(struct request_queue
*q
)
543 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
545 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
547 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
550 kblockd_schedule_delayed_work(&q
->requeue_work
,
551 msecs_to_jiffies(msecs
));
553 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
555 void blk_mq_abort_requeue_list(struct request_queue
*q
)
560 spin_lock_irqsave(&q
->requeue_lock
, flags
);
561 list_splice_init(&q
->requeue_list
, &rq_list
);
562 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
564 while (!list_empty(&rq_list
)) {
567 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
568 list_del_init(&rq
->queuelist
);
570 blk_mq_end_request(rq
, rq
->errors
);
573 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
575 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
577 if (tag
< tags
->nr_tags
) {
578 prefetch(tags
->rqs
[tag
]);
579 return tags
->rqs
[tag
];
584 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
586 struct blk_mq_timeout_data
{
588 unsigned int next_set
;
591 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
593 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
594 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
605 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
609 ret
= ops
->timeout(req
, reserved
);
613 __blk_mq_complete_request(req
);
615 case BLK_EH_RESET_TIMER
:
617 blk_clear_rq_complete(req
);
619 case BLK_EH_NOT_HANDLED
:
622 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
628 struct request
*rq
, void *priv
, bool reserved
)
630 struct blk_mq_timeout_data
*data
= priv
;
632 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
635 if (time_after_eq(jiffies
, rq
->deadline
)) {
636 if (!blk_mark_rq_complete(rq
))
637 blk_mq_rq_timed_out(rq
, reserved
);
638 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
639 data
->next
= rq
->deadline
;
644 static void blk_mq_timeout_work(struct work_struct
*work
)
646 struct request_queue
*q
=
647 container_of(work
, struct request_queue
, timeout_work
);
648 struct blk_mq_timeout_data data
= {
654 /* A deadlock might occur if a request is stuck requiring a
655 * timeout at the same time a queue freeze is waiting
656 * completion, since the timeout code would not be able to
657 * acquire the queue reference here.
659 * That's why we don't use blk_queue_enter here; instead, we use
660 * percpu_ref_tryget directly, because we need to be able to
661 * obtain a reference even in the short window between the queue
662 * starting to freeze, by dropping the first reference in
663 * blk_mq_freeze_queue_start, and the moment the last request is
664 * consumed, marked by the instant q_usage_counter reaches
667 if (!percpu_ref_tryget(&q
->q_usage_counter
))
670 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
673 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
674 mod_timer(&q
->timeout
, data
.next
);
676 struct blk_mq_hw_ctx
*hctx
;
678 queue_for_each_hw_ctx(q
, hctx
, i
) {
679 /* the hctx may be unmapped, so check it here */
680 if (blk_mq_hw_queue_mapped(hctx
))
681 blk_mq_tag_idle(hctx
);
688 * Reverse check our software queue for entries that we could potentially
689 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
690 * too much time checking for merges.
692 static bool blk_mq_attempt_merge(struct request_queue
*q
,
693 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
698 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
704 if (!blk_rq_merge_ok(rq
, bio
))
707 el_ret
= blk_try_merge(rq
, bio
);
708 if (el_ret
== ELEVATOR_BACK_MERGE
) {
709 if (bio_attempt_back_merge(q
, rq
, bio
)) {
714 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
715 if (bio_attempt_front_merge(q
, rq
, bio
)) {
726 struct flush_busy_ctx_data
{
727 struct blk_mq_hw_ctx
*hctx
;
728 struct list_head
*list
;
731 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
733 struct flush_busy_ctx_data
*flush_data
= data
;
734 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
735 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
737 sbitmap_clear_bit(sb
, bitnr
);
738 spin_lock(&ctx
->lock
);
739 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
740 spin_unlock(&ctx
->lock
);
745 * Process software queues that have been marked busy, splicing them
746 * to the for-dispatch
748 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
750 struct flush_busy_ctx_data data
= {
755 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
758 static inline unsigned int queued_to_index(unsigned int queued
)
763 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
767 * Run this hardware queue, pulling any software queues mapped to it in.
768 * Note that this function currently has various problems around ordering
769 * of IO. In particular, we'd like FIFO behaviour on handling existing
770 * items on the hctx->dispatch list. Ignore that for now.
772 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
774 struct request_queue
*q
= hctx
->queue
;
777 LIST_HEAD(driver_list
);
778 struct list_head
*dptr
;
781 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
784 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
785 cpu_online(hctx
->next_cpu
));
790 * Touch any software queue that has pending entries.
792 flush_busy_ctxs(hctx
, &rq_list
);
795 * If we have previous entries on our dispatch list, grab them
796 * and stuff them at the front for more fair dispatch.
798 if (!list_empty_careful(&hctx
->dispatch
)) {
799 spin_lock(&hctx
->lock
);
800 if (!list_empty(&hctx
->dispatch
))
801 list_splice_init(&hctx
->dispatch
, &rq_list
);
802 spin_unlock(&hctx
->lock
);
806 * Start off with dptr being NULL, so we start the first request
807 * immediately, even if we have more pending.
812 * Now process all the entries, sending them to the driver.
815 while (!list_empty(&rq_list
)) {
816 struct blk_mq_queue_data bd
;
819 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
820 list_del_init(&rq
->queuelist
);
824 bd
.last
= list_empty(&rq_list
);
826 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
828 case BLK_MQ_RQ_QUEUE_OK
:
831 case BLK_MQ_RQ_QUEUE_BUSY
:
832 list_add(&rq
->queuelist
, &rq_list
);
833 __blk_mq_requeue_request(rq
);
836 pr_err("blk-mq: bad return on queue: %d\n", ret
);
837 case BLK_MQ_RQ_QUEUE_ERROR
:
839 blk_mq_end_request(rq
, rq
->errors
);
843 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
847 * We've done the first request. If we have more than 1
848 * left in the list, set dptr to defer issue.
850 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
854 hctx
->dispatched
[queued_to_index(queued
)]++;
857 * Any items that need requeuing? Stuff them into hctx->dispatch,
858 * that is where we will continue on next queue run.
860 if (!list_empty(&rq_list
)) {
861 spin_lock(&hctx
->lock
);
862 list_splice(&rq_list
, &hctx
->dispatch
);
863 spin_unlock(&hctx
->lock
);
865 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
866 * it's possible the queue is stopped and restarted again
867 * before this. Queue restart will dispatch requests. And since
868 * requests in rq_list aren't added into hctx->dispatch yet,
869 * the requests in rq_list might get lost.
871 * blk_mq_run_hw_queue() already checks the STOPPED bit
873 blk_mq_run_hw_queue(hctx
, true);
878 * It'd be great if the workqueue API had a way to pass
879 * in a mask and had some smarts for more clever placement.
880 * For now we just round-robin here, switching for every
881 * BLK_MQ_CPU_WORK_BATCH queued items.
883 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
885 if (hctx
->queue
->nr_hw_queues
== 1)
886 return WORK_CPU_UNBOUND
;
888 if (--hctx
->next_cpu_batch
<= 0) {
891 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
892 if (next_cpu
>= nr_cpu_ids
)
893 next_cpu
= cpumask_first(hctx
->cpumask
);
895 hctx
->next_cpu
= next_cpu
;
896 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
899 return hctx
->next_cpu
;
902 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
904 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
905 !blk_mq_hw_queue_mapped(hctx
)))
908 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
910 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
911 __blk_mq_run_hw_queue(hctx
);
919 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
);
922 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
924 struct blk_mq_hw_ctx
*hctx
;
927 queue_for_each_hw_ctx(q
, hctx
, i
) {
928 if ((!blk_mq_hctx_has_pending(hctx
) &&
929 list_empty_careful(&hctx
->dispatch
)) ||
930 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
933 blk_mq_run_hw_queue(hctx
, async
);
936 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
938 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
940 cancel_work(&hctx
->run_work
);
941 cancel_delayed_work(&hctx
->delay_work
);
942 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
944 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
946 void blk_mq_stop_hw_queues(struct request_queue
*q
)
948 struct blk_mq_hw_ctx
*hctx
;
951 queue_for_each_hw_ctx(q
, hctx
, i
)
952 blk_mq_stop_hw_queue(hctx
);
954 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
956 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
958 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
960 blk_mq_run_hw_queue(hctx
, false);
962 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
964 void blk_mq_start_hw_queues(struct request_queue
*q
)
966 struct blk_mq_hw_ctx
*hctx
;
969 queue_for_each_hw_ctx(q
, hctx
, i
)
970 blk_mq_start_hw_queue(hctx
);
972 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
974 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
976 struct blk_mq_hw_ctx
*hctx
;
979 queue_for_each_hw_ctx(q
, hctx
, i
) {
980 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
983 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
984 blk_mq_run_hw_queue(hctx
, async
);
987 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
989 static void blk_mq_run_work_fn(struct work_struct
*work
)
991 struct blk_mq_hw_ctx
*hctx
;
993 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
);
995 __blk_mq_run_hw_queue(hctx
);
998 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1000 struct blk_mq_hw_ctx
*hctx
;
1002 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1004 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1005 __blk_mq_run_hw_queue(hctx
);
1008 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1010 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1013 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1014 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1016 EXPORT_SYMBOL(blk_mq_delay_queue
);
1018 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1022 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1024 trace_block_rq_insert(hctx
->queue
, rq
);
1027 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1029 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1032 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1033 struct request
*rq
, bool at_head
)
1035 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1037 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1038 blk_mq_hctx_mark_pending(hctx
, ctx
);
1041 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1044 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1045 struct request_queue
*q
= rq
->q
;
1046 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1048 spin_lock(&ctx
->lock
);
1049 __blk_mq_insert_request(hctx
, rq
, at_head
);
1050 spin_unlock(&ctx
->lock
);
1053 blk_mq_run_hw_queue(hctx
, async
);
1056 static void blk_mq_insert_requests(struct request_queue
*q
,
1057 struct blk_mq_ctx
*ctx
,
1058 struct list_head
*list
,
1063 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1065 trace_block_unplug(q
, depth
, !from_schedule
);
1068 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1071 spin_lock(&ctx
->lock
);
1072 while (!list_empty(list
)) {
1075 rq
= list_first_entry(list
, struct request
, queuelist
);
1076 BUG_ON(rq
->mq_ctx
!= ctx
);
1077 list_del_init(&rq
->queuelist
);
1078 __blk_mq_insert_req_list(hctx
, rq
, false);
1080 blk_mq_hctx_mark_pending(hctx
, ctx
);
1081 spin_unlock(&ctx
->lock
);
1083 blk_mq_run_hw_queue(hctx
, from_schedule
);
1086 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1088 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1089 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1091 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1092 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1093 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1096 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1098 struct blk_mq_ctx
*this_ctx
;
1099 struct request_queue
*this_q
;
1102 LIST_HEAD(ctx_list
);
1105 list_splice_init(&plug
->mq_list
, &list
);
1107 list_sort(NULL
, &list
, plug_ctx_cmp
);
1113 while (!list_empty(&list
)) {
1114 rq
= list_entry_rq(list
.next
);
1115 list_del_init(&rq
->queuelist
);
1117 if (rq
->mq_ctx
!= this_ctx
) {
1119 blk_mq_insert_requests(this_q
, this_ctx
,
1124 this_ctx
= rq
->mq_ctx
;
1130 list_add_tail(&rq
->queuelist
, &ctx_list
);
1134 * If 'this_ctx' is set, we know we have entries to complete
1135 * on 'ctx_list'. Do those.
1138 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1143 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1145 init_request_from_bio(rq
, bio
);
1147 blk_account_io_start(rq
, 1);
1150 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1152 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1153 !blk_queue_nomerges(hctx
->queue
);
1156 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1157 struct blk_mq_ctx
*ctx
,
1158 struct request
*rq
, struct bio
*bio
)
1160 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1161 blk_mq_bio_to_request(rq
, bio
);
1162 spin_lock(&ctx
->lock
);
1164 __blk_mq_insert_request(hctx
, rq
, false);
1165 spin_unlock(&ctx
->lock
);
1168 struct request_queue
*q
= hctx
->queue
;
1170 spin_lock(&ctx
->lock
);
1171 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1172 blk_mq_bio_to_request(rq
, bio
);
1176 spin_unlock(&ctx
->lock
);
1177 __blk_mq_free_request(hctx
, ctx
, rq
);
1182 struct blk_map_ctx
{
1183 struct blk_mq_hw_ctx
*hctx
;
1184 struct blk_mq_ctx
*ctx
;
1187 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1189 struct blk_map_ctx
*data
)
1191 struct blk_mq_hw_ctx
*hctx
;
1192 struct blk_mq_ctx
*ctx
;
1194 int op
= bio_data_dir(bio
);
1196 struct blk_mq_alloc_data alloc_data
;
1198 blk_queue_enter_live(q
);
1199 ctx
= blk_mq_get_ctx(q
);
1200 hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1202 if (rw_is_sync(bio_op(bio
), bio
->bi_opf
))
1203 op_flags
|= REQ_SYNC
;
1205 trace_block_getrq(q
, bio
, op
);
1206 blk_mq_set_alloc_data(&alloc_data
, q
, 0, ctx
, hctx
);
1207 rq
= __blk_mq_alloc_request(&alloc_data
, op
, op_flags
);
1209 data
->hctx
= alloc_data
.hctx
;
1210 data
->ctx
= alloc_data
.ctx
;
1211 data
->hctx
->queued
++;
1215 static int blk_mq_direct_issue_request(struct request
*rq
, blk_qc_t
*cookie
)
1218 struct request_queue
*q
= rq
->q
;
1219 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, rq
->mq_ctx
->cpu
);
1220 struct blk_mq_queue_data bd
= {
1225 blk_qc_t new_cookie
= blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
);
1228 * For OK queue, we are done. For error, kill it. Any other
1229 * error (busy), just add it to our list as we previously
1232 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1233 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1234 *cookie
= new_cookie
;
1238 __blk_mq_requeue_request(rq
);
1240 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1241 *cookie
= BLK_QC_T_NONE
;
1243 blk_mq_end_request(rq
, rq
->errors
);
1251 * Multiple hardware queue variant. This will not use per-process plugs,
1252 * but will attempt to bypass the hctx queueing if we can go straight to
1253 * hardware for SYNC IO.
1255 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1257 const int is_sync
= rw_is_sync(bio_op(bio
), bio
->bi_opf
);
1258 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1259 struct blk_map_ctx data
;
1261 unsigned int request_count
= 0;
1262 struct blk_plug
*plug
;
1263 struct request
*same_queue_rq
= NULL
;
1266 blk_queue_bounce(q
, &bio
);
1268 blk_queue_split(q
, &bio
, q
->bio_split
);
1270 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1272 return BLK_QC_T_NONE
;
1275 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1276 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1277 return BLK_QC_T_NONE
;
1279 rq
= blk_mq_map_request(q
, bio
, &data
);
1281 return BLK_QC_T_NONE
;
1283 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1285 if (unlikely(is_flush_fua
)) {
1286 blk_mq_bio_to_request(rq
, bio
);
1287 blk_insert_flush(rq
);
1291 plug
= current
->plug
;
1293 * If the driver supports defer issued based on 'last', then
1294 * queue it up like normal since we can potentially save some
1297 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1298 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1299 struct request
*old_rq
= NULL
;
1301 blk_mq_bio_to_request(rq
, bio
);
1304 * We do limited pluging. If the bio can be merged, do that.
1305 * Otherwise the existing request in the plug list will be
1306 * issued. So the plug list will have one request at most
1310 * The plug list might get flushed before this. If that
1311 * happens, same_queue_rq is invalid and plug list is
1314 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1315 old_rq
= same_queue_rq
;
1316 list_del_init(&old_rq
->queuelist
);
1318 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1319 } else /* is_sync */
1321 blk_mq_put_ctx(data
.ctx
);
1324 if (test_bit(BLK_MQ_S_STOPPED
, &data
.hctx
->state
) ||
1325 blk_mq_direct_issue_request(old_rq
, &cookie
) != 0)
1326 blk_mq_insert_request(old_rq
, false, true, true);
1330 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1332 * For a SYNC request, send it to the hardware immediately. For
1333 * an ASYNC request, just ensure that we run it later on. The
1334 * latter allows for merging opportunities and more efficient
1338 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1340 blk_mq_put_ctx(data
.ctx
);
1346 * Single hardware queue variant. This will attempt to use any per-process
1347 * plug for merging and IO deferral.
1349 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1351 const int is_sync
= rw_is_sync(bio_op(bio
), bio
->bi_opf
);
1352 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1353 struct blk_plug
*plug
;
1354 unsigned int request_count
= 0;
1355 struct blk_map_ctx data
;
1359 blk_queue_bounce(q
, &bio
);
1361 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1363 return BLK_QC_T_NONE
;
1366 blk_queue_split(q
, &bio
, q
->bio_split
);
1368 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1369 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1370 return BLK_QC_T_NONE
;
1372 request_count
= blk_plug_queued_count(q
);
1374 rq
= blk_mq_map_request(q
, bio
, &data
);
1376 return BLK_QC_T_NONE
;
1378 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1380 if (unlikely(is_flush_fua
)) {
1381 blk_mq_bio_to_request(rq
, bio
);
1382 blk_insert_flush(rq
);
1387 * A task plug currently exists. Since this is completely lockless,
1388 * utilize that to temporarily store requests until the task is
1389 * either done or scheduled away.
1391 plug
= current
->plug
;
1393 blk_mq_bio_to_request(rq
, bio
);
1395 trace_block_plug(q
);
1397 blk_mq_put_ctx(data
.ctx
);
1399 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1400 blk_flush_plug_list(plug
, false);
1401 trace_block_plug(q
);
1404 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1408 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1410 * For a SYNC request, send it to the hardware immediately. For
1411 * an ASYNC request, just ensure that we run it later on. The
1412 * latter allows for merging opportunities and more efficient
1416 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1419 blk_mq_put_ctx(data
.ctx
);
1423 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1424 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1428 if (tags
->rqs
&& set
->ops
->exit_request
) {
1431 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1434 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1436 tags
->rqs
[i
] = NULL
;
1440 while (!list_empty(&tags
->page_list
)) {
1441 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1442 list_del_init(&page
->lru
);
1444 * Remove kmemleak object previously allocated in
1445 * blk_mq_init_rq_map().
1447 kmemleak_free(page_address(page
));
1448 __free_pages(page
, page
->private);
1453 blk_mq_free_tags(tags
);
1456 static size_t order_to_size(unsigned int order
)
1458 return (size_t)PAGE_SIZE
<< order
;
1461 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1462 unsigned int hctx_idx
)
1464 struct blk_mq_tags
*tags
;
1465 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1466 size_t rq_size
, left
;
1468 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1470 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1474 INIT_LIST_HEAD(&tags
->page_list
);
1476 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1477 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1480 blk_mq_free_tags(tags
);
1485 * rq_size is the size of the request plus driver payload, rounded
1486 * to the cacheline size
1488 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1490 left
= rq_size
* set
->queue_depth
;
1492 for (i
= 0; i
< set
->queue_depth
; ) {
1493 int this_order
= max_order
;
1498 while (this_order
&& left
< order_to_size(this_order
- 1))
1502 page
= alloc_pages_node(set
->numa_node
,
1503 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1509 if (order_to_size(this_order
) < rq_size
)
1516 page
->private = this_order
;
1517 list_add_tail(&page
->lru
, &tags
->page_list
);
1519 p
= page_address(page
);
1521 * Allow kmemleak to scan these pages as they contain pointers
1522 * to additional allocations like via ops->init_request().
1524 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1525 entries_per_page
= order_to_size(this_order
) / rq_size
;
1526 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1527 left
-= to_do
* rq_size
;
1528 for (j
= 0; j
< to_do
; j
++) {
1530 if (set
->ops
->init_request
) {
1531 if (set
->ops
->init_request(set
->driver_data
,
1532 tags
->rqs
[i
], hctx_idx
, i
,
1534 tags
->rqs
[i
] = NULL
;
1546 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1551 * 'cpu' is going away. splice any existing rq_list entries from this
1552 * software queue to the hw queue dispatch list, and ensure that it
1555 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1557 struct blk_mq_hw_ctx
*hctx
;
1558 struct blk_mq_ctx
*ctx
;
1561 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1562 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1564 spin_lock(&ctx
->lock
);
1565 if (!list_empty(&ctx
->rq_list
)) {
1566 list_splice_init(&ctx
->rq_list
, &tmp
);
1567 blk_mq_hctx_clear_pending(hctx
, ctx
);
1569 spin_unlock(&ctx
->lock
);
1571 if (list_empty(&tmp
))
1574 spin_lock(&hctx
->lock
);
1575 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1576 spin_unlock(&hctx
->lock
);
1578 blk_mq_run_hw_queue(hctx
, true);
1582 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1584 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1588 /* hctx->ctxs will be freed in queue's release handler */
1589 static void blk_mq_exit_hctx(struct request_queue
*q
,
1590 struct blk_mq_tag_set
*set
,
1591 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1593 unsigned flush_start_tag
= set
->queue_depth
;
1595 if (blk_mq_hw_queue_mapped(hctx
))
1596 blk_mq_tag_idle(hctx
);
1598 if (set
->ops
->exit_request
)
1599 set
->ops
->exit_request(set
->driver_data
,
1600 hctx
->fq
->flush_rq
, hctx_idx
,
1601 flush_start_tag
+ hctx_idx
);
1603 if (set
->ops
->exit_hctx
)
1604 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1606 blk_mq_remove_cpuhp(hctx
);
1607 blk_free_flush_queue(hctx
->fq
);
1608 sbitmap_free(&hctx
->ctx_map
);
1611 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1612 struct blk_mq_tag_set
*set
, int nr_queue
)
1614 struct blk_mq_hw_ctx
*hctx
;
1617 queue_for_each_hw_ctx(q
, hctx
, i
) {
1620 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1624 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1625 struct blk_mq_tag_set
*set
)
1627 struct blk_mq_hw_ctx
*hctx
;
1630 queue_for_each_hw_ctx(q
, hctx
, i
)
1631 free_cpumask_var(hctx
->cpumask
);
1634 static int blk_mq_init_hctx(struct request_queue
*q
,
1635 struct blk_mq_tag_set
*set
,
1636 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1639 unsigned flush_start_tag
= set
->queue_depth
;
1641 node
= hctx
->numa_node
;
1642 if (node
== NUMA_NO_NODE
)
1643 node
= hctx
->numa_node
= set
->numa_node
;
1645 INIT_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1646 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1647 spin_lock_init(&hctx
->lock
);
1648 INIT_LIST_HEAD(&hctx
->dispatch
);
1650 hctx
->queue_num
= hctx_idx
;
1651 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1653 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1655 hctx
->tags
= set
->tags
[hctx_idx
];
1658 * Allocate space for all possible cpus to avoid allocation at
1661 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1664 goto unregister_cpu_notifier
;
1666 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1672 if (set
->ops
->init_hctx
&&
1673 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1676 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1680 if (set
->ops
->init_request
&&
1681 set
->ops
->init_request(set
->driver_data
,
1682 hctx
->fq
->flush_rq
, hctx_idx
,
1683 flush_start_tag
+ hctx_idx
, node
))
1691 if (set
->ops
->exit_hctx
)
1692 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1694 sbitmap_free(&hctx
->ctx_map
);
1697 unregister_cpu_notifier
:
1698 blk_mq_remove_cpuhp(hctx
);
1702 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1703 unsigned int nr_hw_queues
)
1707 for_each_possible_cpu(i
) {
1708 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1709 struct blk_mq_hw_ctx
*hctx
;
1712 spin_lock_init(&__ctx
->lock
);
1713 INIT_LIST_HEAD(&__ctx
->rq_list
);
1716 /* If the cpu isn't online, the cpu is mapped to first hctx */
1720 hctx
= blk_mq_map_queue(q
, i
);
1723 * Set local node, IFF we have more than one hw queue. If
1724 * not, we remain on the home node of the device
1726 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1727 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1731 static void blk_mq_map_swqueue(struct request_queue
*q
,
1732 const struct cpumask
*online_mask
)
1735 struct blk_mq_hw_ctx
*hctx
;
1736 struct blk_mq_ctx
*ctx
;
1737 struct blk_mq_tag_set
*set
= q
->tag_set
;
1740 * Avoid others reading imcomplete hctx->cpumask through sysfs
1742 mutex_lock(&q
->sysfs_lock
);
1744 queue_for_each_hw_ctx(q
, hctx
, i
) {
1745 cpumask_clear(hctx
->cpumask
);
1750 * Map software to hardware queues
1752 for_each_possible_cpu(i
) {
1753 /* If the cpu isn't online, the cpu is mapped to first hctx */
1754 if (!cpumask_test_cpu(i
, online_mask
))
1757 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1758 hctx
= blk_mq_map_queue(q
, i
);
1760 cpumask_set_cpu(i
, hctx
->cpumask
);
1761 ctx
->index_hw
= hctx
->nr_ctx
;
1762 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1765 mutex_unlock(&q
->sysfs_lock
);
1767 queue_for_each_hw_ctx(q
, hctx
, i
) {
1769 * If no software queues are mapped to this hardware queue,
1770 * disable it and free the request entries.
1772 if (!hctx
->nr_ctx
) {
1774 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1775 set
->tags
[i
] = NULL
;
1781 /* unmapped hw queue can be remapped after CPU topo changed */
1783 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1784 hctx
->tags
= set
->tags
[i
];
1785 WARN_ON(!hctx
->tags
);
1788 * Set the map size to the number of mapped software queues.
1789 * This is more accurate and more efficient than looping
1790 * over all possibly mapped software queues.
1792 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
1795 * Initialize batch roundrobin counts
1797 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1798 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1802 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
1804 struct blk_mq_hw_ctx
*hctx
;
1807 queue_for_each_hw_ctx(q
, hctx
, i
) {
1809 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1811 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1815 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
1817 struct request_queue
*q
;
1819 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1820 blk_mq_freeze_queue(q
);
1821 queue_set_hctx_shared(q
, shared
);
1822 blk_mq_unfreeze_queue(q
);
1826 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1828 struct blk_mq_tag_set
*set
= q
->tag_set
;
1830 mutex_lock(&set
->tag_list_lock
);
1831 list_del_init(&q
->tag_set_list
);
1832 if (list_is_singular(&set
->tag_list
)) {
1833 /* just transitioned to unshared */
1834 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1835 /* update existing queue */
1836 blk_mq_update_tag_set_depth(set
, false);
1838 mutex_unlock(&set
->tag_list_lock
);
1841 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1842 struct request_queue
*q
)
1846 mutex_lock(&set
->tag_list_lock
);
1848 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1849 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1850 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
1851 /* update existing queue */
1852 blk_mq_update_tag_set_depth(set
, true);
1854 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
1855 queue_set_hctx_shared(q
, true);
1856 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1858 mutex_unlock(&set
->tag_list_lock
);
1862 * It is the actual release handler for mq, but we do it from
1863 * request queue's release handler for avoiding use-after-free
1864 * and headache because q->mq_kobj shouldn't have been introduced,
1865 * but we can't group ctx/kctx kobj without it.
1867 void blk_mq_release(struct request_queue
*q
)
1869 struct blk_mq_hw_ctx
*hctx
;
1872 /* hctx kobj stays in hctx */
1873 queue_for_each_hw_ctx(q
, hctx
, i
) {
1882 kfree(q
->queue_hw_ctx
);
1884 /* ctx kobj stays in queue_ctx */
1885 free_percpu(q
->queue_ctx
);
1888 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1890 struct request_queue
*uninit_q
, *q
;
1892 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1894 return ERR_PTR(-ENOMEM
);
1896 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1898 blk_cleanup_queue(uninit_q
);
1902 EXPORT_SYMBOL(blk_mq_init_queue
);
1904 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
1905 struct request_queue
*q
)
1908 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
1910 blk_mq_sysfs_unregister(q
);
1912 /* protect against switching io scheduler */
1913 mutex_lock(&q
->sysfs_lock
);
1914 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1920 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
1921 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1926 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1933 atomic_set(&hctxs
[i
]->nr_active
, 0);
1934 hctxs
[i
]->numa_node
= node
;
1935 hctxs
[i
]->queue_num
= i
;
1937 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
1938 free_cpumask_var(hctxs
[i
]->cpumask
);
1943 blk_mq_hctx_kobj_init(hctxs
[i
]);
1945 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
1946 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
1950 blk_mq_free_rq_map(set
, hctx
->tags
, j
);
1951 set
->tags
[j
] = NULL
;
1953 blk_mq_exit_hctx(q
, set
, hctx
, j
);
1954 free_cpumask_var(hctx
->cpumask
);
1955 kobject_put(&hctx
->kobj
);
1962 q
->nr_hw_queues
= i
;
1963 mutex_unlock(&q
->sysfs_lock
);
1964 blk_mq_sysfs_register(q
);
1967 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
1968 struct request_queue
*q
)
1970 /* mark the queue as mq asap */
1971 q
->mq_ops
= set
->ops
;
1973 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
1977 /* init q->mq_kobj and sw queues' kobjects */
1978 blk_mq_sysfs_init(q
);
1980 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
1981 GFP_KERNEL
, set
->numa_node
);
1982 if (!q
->queue_hw_ctx
)
1985 q
->mq_map
= set
->mq_map
;
1987 blk_mq_realloc_hw_ctxs(set
, q
);
1988 if (!q
->nr_hw_queues
)
1991 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
1992 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
1994 q
->nr_queues
= nr_cpu_ids
;
1996 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1998 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1999 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2001 q
->sg_reserved_size
= INT_MAX
;
2003 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2004 INIT_LIST_HEAD(&q
->requeue_list
);
2005 spin_lock_init(&q
->requeue_lock
);
2007 if (q
->nr_hw_queues
> 1)
2008 blk_queue_make_request(q
, blk_mq_make_request
);
2010 blk_queue_make_request(q
, blk_sq_make_request
);
2013 * Do this after blk_queue_make_request() overrides it...
2015 q
->nr_requests
= set
->queue_depth
;
2017 if (set
->ops
->complete
)
2018 blk_queue_softirq_done(q
, set
->ops
->complete
);
2020 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2023 mutex_lock(&all_q_mutex
);
2025 list_add_tail(&q
->all_q_node
, &all_q_list
);
2026 blk_mq_add_queue_tag_set(set
, q
);
2027 blk_mq_map_swqueue(q
, cpu_online_mask
);
2029 mutex_unlock(&all_q_mutex
);
2035 kfree(q
->queue_hw_ctx
);
2037 free_percpu(q
->queue_ctx
);
2040 return ERR_PTR(-ENOMEM
);
2042 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2044 void blk_mq_free_queue(struct request_queue
*q
)
2046 struct blk_mq_tag_set
*set
= q
->tag_set
;
2048 mutex_lock(&all_q_mutex
);
2049 list_del_init(&q
->all_q_node
);
2050 mutex_unlock(&all_q_mutex
);
2052 blk_mq_del_queue_tag_set(q
);
2054 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2055 blk_mq_free_hw_queues(q
, set
);
2058 /* Basically redo blk_mq_init_queue with queue frozen */
2059 static void blk_mq_queue_reinit(struct request_queue
*q
,
2060 const struct cpumask
*online_mask
)
2062 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2064 blk_mq_sysfs_unregister(q
);
2067 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2068 * we should change hctx numa_node according to new topology (this
2069 * involves free and re-allocate memory, worthy doing?)
2072 blk_mq_map_swqueue(q
, online_mask
);
2074 blk_mq_sysfs_register(q
);
2078 * New online cpumask which is going to be set in this hotplug event.
2079 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2080 * one-by-one and dynamically allocating this could result in a failure.
2082 static struct cpumask cpuhp_online_new
;
2084 static void blk_mq_queue_reinit_work(void)
2086 struct request_queue
*q
;
2088 mutex_lock(&all_q_mutex
);
2090 * We need to freeze and reinit all existing queues. Freezing
2091 * involves synchronous wait for an RCU grace period and doing it
2092 * one by one may take a long time. Start freezing all queues in
2093 * one swoop and then wait for the completions so that freezing can
2094 * take place in parallel.
2096 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2097 blk_mq_freeze_queue_start(q
);
2098 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2099 blk_mq_freeze_queue_wait(q
);
2102 * timeout handler can't touch hw queue during the
2105 del_timer_sync(&q
->timeout
);
2108 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2109 blk_mq_queue_reinit(q
, &cpuhp_online_new
);
2111 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2112 blk_mq_unfreeze_queue(q
);
2114 mutex_unlock(&all_q_mutex
);
2117 static int blk_mq_queue_reinit_dead(unsigned int cpu
)
2119 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2120 blk_mq_queue_reinit_work();
2125 * Before hotadded cpu starts handling requests, new mappings must be
2126 * established. Otherwise, these requests in hw queue might never be
2129 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2130 * for CPU0, and ctx1 for CPU1).
2132 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2133 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2135 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2136 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2137 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2140 static int blk_mq_queue_reinit_prepare(unsigned int cpu
)
2142 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2143 cpumask_set_cpu(cpu
, &cpuhp_online_new
);
2144 blk_mq_queue_reinit_work();
2148 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2152 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2153 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2162 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2168 * Allocate the request maps associated with this tag_set. Note that this
2169 * may reduce the depth asked for, if memory is tight. set->queue_depth
2170 * will be updated to reflect the allocated depth.
2172 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2177 depth
= set
->queue_depth
;
2179 err
= __blk_mq_alloc_rq_maps(set
);
2183 set
->queue_depth
>>= 1;
2184 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2188 } while (set
->queue_depth
);
2190 if (!set
->queue_depth
|| err
) {
2191 pr_err("blk-mq: failed to allocate request map\n");
2195 if (depth
!= set
->queue_depth
)
2196 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2197 depth
, set
->queue_depth
);
2203 * Alloc a tag set to be associated with one or more request queues.
2204 * May fail with EINVAL for various error conditions. May adjust the
2205 * requested depth down, if if it too large. In that case, the set
2206 * value will be stored in set->queue_depth.
2208 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2212 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2214 if (!set
->nr_hw_queues
)
2216 if (!set
->queue_depth
)
2218 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2221 if (!set
->ops
->queue_rq
)
2224 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2225 pr_info("blk-mq: reduced tag depth to %u\n",
2227 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2231 * If a crashdump is active, then we are potentially in a very
2232 * memory constrained environment. Limit us to 1 queue and
2233 * 64 tags to prevent using too much memory.
2235 if (is_kdump_kernel()) {
2236 set
->nr_hw_queues
= 1;
2237 set
->queue_depth
= min(64U, set
->queue_depth
);
2240 * There is no use for more h/w queues than cpus.
2242 if (set
->nr_hw_queues
> nr_cpu_ids
)
2243 set
->nr_hw_queues
= nr_cpu_ids
;
2245 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2246 GFP_KERNEL
, set
->numa_node
);
2251 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2252 GFP_KERNEL
, set
->numa_node
);
2256 if (set
->ops
->map_queues
)
2257 ret
= set
->ops
->map_queues(set
);
2259 ret
= blk_mq_map_queues(set
);
2261 goto out_free_mq_map
;
2263 ret
= blk_mq_alloc_rq_maps(set
);
2265 goto out_free_mq_map
;
2267 mutex_init(&set
->tag_list_lock
);
2268 INIT_LIST_HEAD(&set
->tag_list
);
2280 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2282 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2286 for (i
= 0; i
< nr_cpu_ids
; i
++) {
2288 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2297 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2299 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2301 struct blk_mq_tag_set
*set
= q
->tag_set
;
2302 struct blk_mq_hw_ctx
*hctx
;
2305 if (!set
|| nr
> set
->queue_depth
)
2309 queue_for_each_hw_ctx(q
, hctx
, i
) {
2312 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2318 q
->nr_requests
= nr
;
2323 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2325 struct request_queue
*q
;
2327 if (nr_hw_queues
> nr_cpu_ids
)
2328 nr_hw_queues
= nr_cpu_ids
;
2329 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2332 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2333 blk_mq_freeze_queue(q
);
2335 set
->nr_hw_queues
= nr_hw_queues
;
2336 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2337 blk_mq_realloc_hw_ctxs(set
, q
);
2339 if (q
->nr_hw_queues
> 1)
2340 blk_queue_make_request(q
, blk_mq_make_request
);
2342 blk_queue_make_request(q
, blk_sq_make_request
);
2344 blk_mq_queue_reinit(q
, cpu_online_mask
);
2347 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2348 blk_mq_unfreeze_queue(q
);
2350 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2352 void blk_mq_disable_hotplug(void)
2354 mutex_lock(&all_q_mutex
);
2357 void blk_mq_enable_hotplug(void)
2359 mutex_unlock(&all_q_mutex
);
2362 static int __init
blk_mq_init(void)
2364 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2365 blk_mq_hctx_notify_dead
);
2367 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE
, "block/mq:prepare",
2368 blk_mq_queue_reinit_prepare
,
2369 blk_mq_queue_reinit_dead
);
2372 subsys_initcall(blk_mq_init
);