2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
42 static char *rds_ib_wc_status_strings
[] = {
43 #define RDS_IB_WC_STATUS_STR(foo) \
44 [IB_WC_##foo] = __stringify(IB_WC_##foo)
45 RDS_IB_WC_STATUS_STR(SUCCESS
),
46 RDS_IB_WC_STATUS_STR(LOC_LEN_ERR
),
47 RDS_IB_WC_STATUS_STR(LOC_QP_OP_ERR
),
48 RDS_IB_WC_STATUS_STR(LOC_EEC_OP_ERR
),
49 RDS_IB_WC_STATUS_STR(LOC_PROT_ERR
),
50 RDS_IB_WC_STATUS_STR(WR_FLUSH_ERR
),
51 RDS_IB_WC_STATUS_STR(MW_BIND_ERR
),
52 RDS_IB_WC_STATUS_STR(BAD_RESP_ERR
),
53 RDS_IB_WC_STATUS_STR(LOC_ACCESS_ERR
),
54 RDS_IB_WC_STATUS_STR(REM_INV_REQ_ERR
),
55 RDS_IB_WC_STATUS_STR(REM_ACCESS_ERR
),
56 RDS_IB_WC_STATUS_STR(REM_OP_ERR
),
57 RDS_IB_WC_STATUS_STR(RETRY_EXC_ERR
),
58 RDS_IB_WC_STATUS_STR(RNR_RETRY_EXC_ERR
),
59 RDS_IB_WC_STATUS_STR(LOC_RDD_VIOL_ERR
),
60 RDS_IB_WC_STATUS_STR(REM_INV_RD_REQ_ERR
),
61 RDS_IB_WC_STATUS_STR(REM_ABORT_ERR
),
62 RDS_IB_WC_STATUS_STR(INV_EECN_ERR
),
63 RDS_IB_WC_STATUS_STR(INV_EEC_STATE_ERR
),
64 RDS_IB_WC_STATUS_STR(FATAL_ERR
),
65 RDS_IB_WC_STATUS_STR(RESP_TIMEOUT_ERR
),
66 RDS_IB_WC_STATUS_STR(GENERAL_ERR
),
67 #undef RDS_IB_WC_STATUS_STR
70 char *rds_ib_wc_status_str(enum ib_wc_status status
)
72 return rds_str_array(rds_ib_wc_status_strings
,
73 ARRAY_SIZE(rds_ib_wc_status_strings
), status
);
77 * Convert IB-specific error message to RDS error message and call core
80 static void rds_ib_send_complete(struct rds_message
*rm
,
82 void (*complete
)(struct rds_message
*rm
, int status
))
87 case IB_WC_WR_FLUSH_ERR
:
91 notify_status
= RDS_RDMA_SUCCESS
;
94 case IB_WC_REM_ACCESS_ERR
:
95 notify_status
= RDS_RDMA_REMOTE_ERROR
;
99 notify_status
= RDS_RDMA_OTHER_ERROR
;
102 complete(rm
, notify_status
);
105 static void rds_ib_send_unmap_data(struct rds_ib_connection
*ic
,
106 struct rm_data_op
*op
,
110 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
111 op
->op_sg
, op
->op_nents
,
115 static void rds_ib_send_unmap_rdma(struct rds_ib_connection
*ic
,
116 struct rm_rdma_op
*op
,
120 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
121 op
->op_sg
, op
->op_nents
,
122 op
->op_write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
126 /* If the user asked for a completion notification on this
127 * message, we can implement three different semantics:
128 * 1. Notify when we received the ACK on the RDS message
129 * that was queued with the RDMA. This provides reliable
130 * notification of RDMA status at the expense of a one-way
132 * 2. Notify when the IB stack gives us the completion event for
133 * the RDMA operation.
134 * 3. Notify when the IB stack gives us the completion event for
135 * the accompanying RDS messages.
136 * Here, we implement approach #3. To implement approach #2,
137 * we would need to take an event for the rdma WR. To implement #1,
138 * don't call rds_rdma_send_complete at all, and fall back to the notify
139 * handling in the ACK processing code.
141 * Note: There's no need to explicitly sync any RDMA buffers using
142 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
143 * operation itself unmapped the RDMA buffers, which takes care
146 rds_ib_send_complete(container_of(op
, struct rds_message
, rdma
),
147 wc_status
, rds_rdma_send_complete
);
150 rds_stats_add(s_send_rdma_bytes
, op
->op_bytes
);
152 rds_stats_add(s_recv_rdma_bytes
, op
->op_bytes
);
155 static void rds_ib_send_unmap_atomic(struct rds_ib_connection
*ic
,
156 struct rm_atomic_op
*op
,
159 /* unmap atomic recvbuf */
161 ib_dma_unmap_sg(ic
->i_cm_id
->device
, op
->op_sg
, 1,
166 rds_ib_send_complete(container_of(op
, struct rds_message
, atomic
),
167 wc_status
, rds_atomic_send_complete
);
169 if (op
->op_type
== RDS_ATOMIC_TYPE_CSWP
)
170 rds_ib_stats_inc(s_ib_atomic_cswp
);
172 rds_ib_stats_inc(s_ib_atomic_fadd
);
176 * Unmap the resources associated with a struct send_work.
178 * Returns the rm for no good reason other than it is unobtainable
179 * other than by switching on wr.opcode, currently, and the caller,
180 * the event handler, needs it.
182 static struct rds_message
*rds_ib_send_unmap_op(struct rds_ib_connection
*ic
,
183 struct rds_ib_send_work
*send
,
186 struct rds_message
*rm
= NULL
;
188 /* In the error case, wc.opcode sometimes contains garbage */
189 switch (send
->s_wr
.opcode
) {
192 rm
= container_of(send
->s_op
, struct rds_message
, data
);
193 rds_ib_send_unmap_data(ic
, send
->s_op
, wc_status
);
196 case IB_WR_RDMA_WRITE
:
197 case IB_WR_RDMA_READ
:
199 rm
= container_of(send
->s_op
, struct rds_message
, rdma
);
200 rds_ib_send_unmap_rdma(ic
, send
->s_op
, wc_status
);
203 case IB_WR_ATOMIC_FETCH_AND_ADD
:
204 case IB_WR_ATOMIC_CMP_AND_SWP
:
206 rm
= container_of(send
->s_op
, struct rds_message
, atomic
);
207 rds_ib_send_unmap_atomic(ic
, send
->s_op
, wc_status
);
211 printk_ratelimited(KERN_NOTICE
212 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
213 __func__
, send
->s_wr
.opcode
);
217 send
->s_wr
.opcode
= 0xdead;
222 void rds_ib_send_init_ring(struct rds_ib_connection
*ic
)
224 struct rds_ib_send_work
*send
;
227 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
232 send
->s_wr
.wr_id
= i
;
233 send
->s_wr
.sg_list
= send
->s_sge
;
234 send
->s_wr
.ex
.imm_data
= 0;
236 sge
= &send
->s_sge
[0];
237 sge
->addr
= ic
->i_send_hdrs_dma
+ (i
* sizeof(struct rds_header
));
238 sge
->length
= sizeof(struct rds_header
);
239 sge
->lkey
= ic
->i_mr
->lkey
;
241 send
->s_sge
[1].lkey
= ic
->i_mr
->lkey
;
245 void rds_ib_send_clear_ring(struct rds_ib_connection
*ic
)
247 struct rds_ib_send_work
*send
;
250 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
251 if (send
->s_op
&& send
->s_wr
.opcode
!= 0xdead)
252 rds_ib_send_unmap_op(ic
, send
, IB_WC_WR_FLUSH_ERR
);
257 * The only fast path caller always has a non-zero nr, so we don't
258 * bother testing nr before performing the atomic sub.
260 static void rds_ib_sub_signaled(struct rds_ib_connection
*ic
, int nr
)
262 if ((atomic_sub_return(nr
, &ic
->i_signaled_sends
) == 0) &&
263 waitqueue_active(&rds_ib_ring_empty_wait
))
264 wake_up(&rds_ib_ring_empty_wait
);
265 BUG_ON(atomic_read(&ic
->i_signaled_sends
) < 0);
269 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
270 * operations performed in the send path. As the sender allocs and potentially
271 * unallocs the next free entry in the ring it doesn't alter which is
272 * the next to be freed, which is what this is concerned with.
274 void rds_ib_send_cq_comp_handler(struct ib_cq
*cq
, void *context
)
276 struct rds_connection
*conn
= context
;
277 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
278 struct rds_message
*rm
= NULL
;
280 struct rds_ib_send_work
*send
;
287 rdsdebug("cq %p conn %p\n", cq
, conn
);
288 rds_ib_stats_inc(s_ib_tx_cq_call
);
289 ret
= ib_req_notify_cq(cq
, IB_CQ_NEXT_COMP
);
291 rdsdebug("ib_req_notify_cq send failed: %d\n", ret
);
293 while (ib_poll_cq(cq
, 1, &wc
) > 0) {
294 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
295 (unsigned long long)wc
.wr_id
, wc
.status
,
296 rds_ib_wc_status_str(wc
.status
), wc
.byte_len
,
297 be32_to_cpu(wc
.ex
.imm_data
));
298 rds_ib_stats_inc(s_ib_tx_cq_event
);
300 if (wc
.wr_id
== RDS_IB_ACK_WR_ID
) {
301 if (ic
->i_ack_queued
+ HZ
/2 < jiffies
)
302 rds_ib_stats_inc(s_ib_tx_stalled
);
303 rds_ib_ack_send_complete(ic
);
307 oldest
= rds_ib_ring_oldest(&ic
->i_send_ring
);
309 completed
= rds_ib_ring_completed(&ic
->i_send_ring
, wc
.wr_id
, oldest
);
311 for (i
= 0; i
< completed
; i
++) {
312 send
= &ic
->i_sends
[oldest
];
313 if (send
->s_wr
.send_flags
& IB_SEND_SIGNALED
)
316 rm
= rds_ib_send_unmap_op(ic
, send
, wc
.status
);
318 if (send
->s_queued
+ HZ
/2 < jiffies
)
319 rds_ib_stats_inc(s_ib_tx_stalled
);
322 if (send
->s_op
== rm
->m_final_op
) {
323 /* If anyone waited for this message to get flushed out, wake
325 rds_message_unmapped(rm
);
331 oldest
= (oldest
+ 1) % ic
->i_send_ring
.w_nr
;
334 rds_ib_ring_free(&ic
->i_send_ring
, completed
);
335 rds_ib_sub_signaled(ic
, nr_sig
);
338 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ||
339 test_bit(0, &conn
->c_map_queued
))
340 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
342 /* We expect errors as the qp is drained during shutdown */
343 if (wc
.status
!= IB_WC_SUCCESS
&& rds_conn_up(conn
)) {
344 rds_ib_conn_error(conn
, "send completion on %pI4 had status "
345 "%u (%s), disconnecting and reconnecting\n",
346 &conn
->c_faddr
, wc
.status
,
347 rds_ib_wc_status_str(wc
.status
));
353 * This is the main function for allocating credits when sending
356 * Conceptually, we have two counters:
357 * - send credits: this tells us how many WRs we're allowed
358 * to submit without overruning the receiver's queue. For
359 * each SEND WR we post, we decrement this by one.
361 * - posted credits: this tells us how many WRs we recently
362 * posted to the receive queue. This value is transferred
363 * to the peer as a "credit update" in a RDS header field.
364 * Every time we transmit credits to the peer, we subtract
365 * the amount of transferred credits from this counter.
367 * It is essential that we avoid situations where both sides have
368 * exhausted their send credits, and are unable to send new credits
369 * to the peer. We achieve this by requiring that we send at least
370 * one credit update to the peer before exhausting our credits.
371 * When new credits arrive, we subtract one credit that is withheld
372 * until we've posted new buffers and are ready to transmit these
373 * credits (see rds_ib_send_add_credits below).
375 * The RDS send code is essentially single-threaded; rds_send_xmit
376 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
377 * However, the ACK sending code is independent and can race with
380 * In the send path, we need to update the counters for send credits
381 * and the counter of posted buffers atomically - when we use the
382 * last available credit, we cannot allow another thread to race us
383 * and grab the posted credits counter. Hence, we have to use a
384 * spinlock to protect the credit counter, or use atomics.
386 * Spinlocks shared between the send and the receive path are bad,
387 * because they create unnecessary delays. An early implementation
388 * using a spinlock showed a 5% degradation in throughput at some
391 * This implementation avoids spinlocks completely, putting both
392 * counters into a single atomic, and updating that atomic using
393 * atomic_add (in the receive path, when receiving fresh credits),
394 * and using atomic_cmpxchg when updating the two counters.
396 int rds_ib_send_grab_credits(struct rds_ib_connection
*ic
,
397 u32 wanted
, u32
*adv_credits
, int need_posted
, int max_posted
)
399 unsigned int avail
, posted
, got
= 0, advertise
;
408 oldval
= newval
= atomic_read(&ic
->i_credits
);
409 posted
= IB_GET_POST_CREDITS(oldval
);
410 avail
= IB_GET_SEND_CREDITS(oldval
);
412 rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
413 wanted
, avail
, posted
);
415 /* The last credit must be used to send a credit update. */
416 if (avail
&& !posted
)
419 if (avail
< wanted
) {
420 struct rds_connection
*conn
= ic
->i_cm_id
->context
;
422 /* Oops, there aren't that many credits left! */
423 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
426 /* Sometimes you get what you want, lalala. */
429 newval
-= IB_SET_SEND_CREDITS(got
);
432 * If need_posted is non-zero, then the caller wants
433 * the posted regardless of whether any send credits are
436 if (posted
&& (got
|| need_posted
)) {
437 advertise
= min_t(unsigned int, posted
, max_posted
);
438 newval
-= IB_SET_POST_CREDITS(advertise
);
441 /* Finally bill everything */
442 if (atomic_cmpxchg(&ic
->i_credits
, oldval
, newval
) != oldval
)
445 *adv_credits
= advertise
;
449 void rds_ib_send_add_credits(struct rds_connection
*conn
, unsigned int credits
)
451 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
456 rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
458 IB_GET_SEND_CREDITS(atomic_read(&ic
->i_credits
)),
459 test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ? ", ll_send_full" : "");
461 atomic_add(IB_SET_SEND_CREDITS(credits
), &ic
->i_credits
);
462 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
463 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
465 WARN_ON(IB_GET_SEND_CREDITS(credits
) >= 16384);
467 rds_ib_stats_inc(s_ib_rx_credit_updates
);
470 void rds_ib_advertise_credits(struct rds_connection
*conn
, unsigned int posted
)
472 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
477 atomic_add(IB_SET_POST_CREDITS(posted
), &ic
->i_credits
);
479 /* Decide whether to send an update to the peer now.
480 * If we would send a credit update for every single buffer we
481 * post, we would end up with an ACK storm (ACK arrives,
482 * consumes buffer, we refill the ring, send ACK to remote
483 * advertising the newly posted buffer... ad inf)
485 * Performance pretty much depends on how often we send
486 * credit updates - too frequent updates mean lots of ACKs.
487 * Too infrequent updates, and the peer will run out of
488 * credits and has to throttle.
489 * For the time being, 16 seems to be a good compromise.
491 if (IB_GET_POST_CREDITS(atomic_read(&ic
->i_credits
)) >= 16)
492 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
495 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection
*ic
,
496 struct rds_ib_send_work
*send
,
500 * We want to delay signaling completions just enough to get
501 * the batching benefits but not so much that we create dead time
504 if (ic
->i_unsignaled_wrs
-- == 0 || notify
) {
505 ic
->i_unsignaled_wrs
= rds_ib_sysctl_max_unsig_wrs
;
506 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
;
513 * This can be called multiple times for a given message. The first time
514 * we see a message we map its scatterlist into the IB device so that
515 * we can provide that mapped address to the IB scatter gather entries
516 * in the IB work requests. We translate the scatterlist into a series
517 * of work requests that fragment the message. These work requests complete
518 * in order so we pass ownership of the message to the completion handler
519 * once we send the final fragment.
521 * The RDS core uses the c_send_lock to only enter this function once
522 * per connection. This makes sure that the tx ring alloc/unalloc pairs
523 * don't get out of sync and confuse the ring.
525 int rds_ib_xmit(struct rds_connection
*conn
, struct rds_message
*rm
,
526 unsigned int hdr_off
, unsigned int sg
, unsigned int off
)
528 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
529 struct ib_device
*dev
= ic
->i_cm_id
->device
;
530 struct rds_ib_send_work
*send
= NULL
;
531 struct rds_ib_send_work
*first
;
532 struct rds_ib_send_work
*prev
;
533 struct ib_send_wr
*failed_wr
;
534 struct scatterlist
*scat
;
538 u32 credit_alloc
= 0;
544 int flow_controlled
= 0;
547 BUG_ON(off
% RDS_FRAG_SIZE
);
548 BUG_ON(hdr_off
!= 0 && hdr_off
!= sizeof(struct rds_header
));
550 /* Do not send cong updates to IB loopback */
552 && rm
->m_inc
.i_hdr
.h_flags
& RDS_FLAG_CONG_BITMAP
) {
553 rds_cong_map_updated(conn
->c_fcong
, ~(u64
) 0);
554 scat
= &rm
->data
.op_sg
[sg
];
555 ret
= max_t(int, RDS_CONG_MAP_BYTES
, scat
->length
);
556 return sizeof(struct rds_header
) + ret
;
559 /* FIXME we may overallocate here */
560 if (be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
) == 0)
563 i
= ceil(be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
), RDS_FRAG_SIZE
);
565 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
566 if (work_alloc
== 0) {
567 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
568 rds_ib_stats_inc(s_ib_tx_ring_full
);
574 credit_alloc
= rds_ib_send_grab_credits(ic
, work_alloc
, &posted
, 0, RDS_MAX_ADV_CREDIT
);
575 adv_credits
+= posted
;
576 if (credit_alloc
< work_alloc
) {
577 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- credit_alloc
);
578 work_alloc
= credit_alloc
;
581 if (work_alloc
== 0) {
582 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
583 rds_ib_stats_inc(s_ib_tx_throttle
);
589 /* map the message the first time we see it */
590 if (!ic
->i_data_op
) {
591 if (rm
->data
.op_nents
) {
592 rm
->data
.op_count
= ib_dma_map_sg(dev
,
596 rdsdebug("ic %p mapping rm %p: %d\n", ic
, rm
, rm
->data
.op_count
);
597 if (rm
->data
.op_count
== 0) {
598 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
599 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
600 ret
= -ENOMEM
; /* XXX ? */
604 rm
->data
.op_count
= 0;
607 rds_message_addref(rm
);
608 ic
->i_data_op
= &rm
->data
;
610 /* Finalize the header */
611 if (test_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
))
612 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_ACK_REQUIRED
;
613 if (test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
))
614 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_RETRANSMITTED
;
616 /* If it has a RDMA op, tell the peer we did it. This is
617 * used by the peer to release use-once RDMA MRs. */
618 if (rm
->rdma
.op_active
) {
619 struct rds_ext_header_rdma ext_hdr
;
621 ext_hdr
.h_rdma_rkey
= cpu_to_be32(rm
->rdma
.op_rkey
);
622 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
623 RDS_EXTHDR_RDMA
, &ext_hdr
, sizeof(ext_hdr
));
625 if (rm
->m_rdma_cookie
) {
626 rds_message_add_rdma_dest_extension(&rm
->m_inc
.i_hdr
,
627 rds_rdma_cookie_key(rm
->m_rdma_cookie
),
628 rds_rdma_cookie_offset(rm
->m_rdma_cookie
));
631 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
632 * we should not do this unless we have a chance of at least
633 * sticking the header into the send ring. Which is why we
634 * should call rds_ib_ring_alloc first. */
635 rm
->m_inc
.i_hdr
.h_ack
= cpu_to_be64(rds_ib_piggyb_ack(ic
));
636 rds_message_make_checksum(&rm
->m_inc
.i_hdr
);
639 * Update adv_credits since we reset the ACK_REQUIRED bit.
642 rds_ib_send_grab_credits(ic
, 0, &posted
, 1, RDS_MAX_ADV_CREDIT
- adv_credits
);
643 adv_credits
+= posted
;
644 BUG_ON(adv_credits
> 255);
648 /* Sometimes you want to put a fence between an RDMA
649 * READ and the following SEND.
650 * We could either do this all the time
651 * or when requested by the user. Right now, we let
652 * the application choose.
654 if (rm
->rdma
.op_active
&& rm
->rdma
.op_fence
)
655 send_flags
= IB_SEND_FENCE
;
657 /* Each frag gets a header. Msgs may be 0 bytes */
658 send
= &ic
->i_sends
[pos
];
661 scat
= &ic
->i_data_op
->op_sg
[sg
];
664 unsigned int len
= 0;
666 /* Set up the header */
667 send
->s_wr
.send_flags
= send_flags
;
668 send
->s_wr
.opcode
= IB_WR_SEND
;
669 send
->s_wr
.num_sge
= 1;
670 send
->s_wr
.next
= NULL
;
671 send
->s_queued
= jiffies
;
674 send
->s_sge
[0].addr
= ic
->i_send_hdrs_dma
675 + (pos
* sizeof(struct rds_header
));
676 send
->s_sge
[0].length
= sizeof(struct rds_header
);
678 memcpy(&ic
->i_send_hdrs
[pos
], &rm
->m_inc
.i_hdr
, sizeof(struct rds_header
));
680 /* Set up the data, if present */
682 && scat
!= &rm
->data
.op_sg
[rm
->data
.op_count
]) {
683 len
= min(RDS_FRAG_SIZE
, ib_sg_dma_len(dev
, scat
) - off
);
684 send
->s_wr
.num_sge
= 2;
686 send
->s_sge
[1].addr
= ib_sg_dma_address(dev
, scat
) + off
;
687 send
->s_sge
[1].length
= len
;
691 if (off
== ib_sg_dma_len(dev
, scat
)) {
697 rds_ib_set_wr_signal_state(ic
, send
, 0);
700 * Always signal the last one if we're stopping due to flow control.
702 if (ic
->i_flowctl
&& flow_controlled
&& i
== (work_alloc
-1))
703 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
705 if (send
->s_wr
.send_flags
& IB_SEND_SIGNALED
)
708 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
709 &send
->s_wr
, send
->s_wr
.num_sge
, send
->s_wr
.next
);
711 if (ic
->i_flowctl
&& adv_credits
) {
712 struct rds_header
*hdr
= &ic
->i_send_hdrs
[pos
];
714 /* add credit and redo the header checksum */
715 hdr
->h_credit
= adv_credits
;
716 rds_message_make_checksum(hdr
);
718 rds_ib_stats_inc(s_ib_tx_credit_updates
);
722 prev
->s_wr
.next
= &send
->s_wr
;
725 pos
= (pos
+ 1) % ic
->i_send_ring
.w_nr
;
726 send
= &ic
->i_sends
[pos
];
729 } while (i
< work_alloc
730 && scat
!= &rm
->data
.op_sg
[rm
->data
.op_count
]);
732 /* Account the RDS header in the number of bytes we sent, but just once.
733 * The caller has no concept of fragmentation. */
735 bytes_sent
+= sizeof(struct rds_header
);
737 /* if we finished the message then send completion owns it */
738 if (scat
== &rm
->data
.op_sg
[rm
->data
.op_count
]) {
739 prev
->s_op
= ic
->i_data_op
;
740 prev
->s_wr
.send_flags
|= IB_SEND_SOLICITED
;
741 ic
->i_data_op
= NULL
;
744 /* Put back wrs & credits we didn't use */
745 if (i
< work_alloc
) {
746 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
749 if (ic
->i_flowctl
&& i
< credit_alloc
)
750 rds_ib_send_add_credits(conn
, credit_alloc
- i
);
753 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
755 /* XXX need to worry about failed_wr and partial sends. */
756 failed_wr
= &first
->s_wr
;
757 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_wr
, &failed_wr
);
758 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
759 first
, &first
->s_wr
, ret
, failed_wr
);
760 BUG_ON(failed_wr
!= &first
->s_wr
);
762 printk(KERN_WARNING
"RDS/IB: ib_post_send to %pI4 "
763 "returned %d\n", &conn
->c_faddr
, ret
);
764 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
765 rds_ib_sub_signaled(ic
, nr_sig
);
767 ic
->i_data_op
= prev
->s_op
;
771 rds_ib_conn_error(ic
->conn
, "ib_post_send failed\n");
782 * Issue atomic operation.
783 * A simplified version of the rdma case, we always map 1 SG, and
784 * only 8 bytes, for the return value from the atomic operation.
786 int rds_ib_xmit_atomic(struct rds_connection
*conn
, struct rm_atomic_op
*op
)
788 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
789 struct rds_ib_send_work
*send
= NULL
;
790 struct ib_send_wr
*failed_wr
;
791 struct rds_ib_device
*rds_ibdev
;
797 rds_ibdev
= ib_get_client_data(ic
->i_cm_id
->device
, &rds_ib_client
);
799 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, 1, &pos
);
800 if (work_alloc
!= 1) {
801 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
802 rds_ib_stats_inc(s_ib_tx_ring_full
);
807 /* address of send request in ring */
808 send
= &ic
->i_sends
[pos
];
809 send
->s_queued
= jiffies
;
811 if (op
->op_type
== RDS_ATOMIC_TYPE_CSWP
) {
812 send
->s_wr
.opcode
= IB_WR_MASKED_ATOMIC_CMP_AND_SWP
;
813 send
->s_wr
.wr
.atomic
.compare_add
= op
->op_m_cswp
.compare
;
814 send
->s_wr
.wr
.atomic
.swap
= op
->op_m_cswp
.swap
;
815 send
->s_wr
.wr
.atomic
.compare_add_mask
= op
->op_m_cswp
.compare_mask
;
816 send
->s_wr
.wr
.atomic
.swap_mask
= op
->op_m_cswp
.swap_mask
;
818 send
->s_wr
.opcode
= IB_WR_MASKED_ATOMIC_FETCH_AND_ADD
;
819 send
->s_wr
.wr
.atomic
.compare_add
= op
->op_m_fadd
.add
;
820 send
->s_wr
.wr
.atomic
.swap
= 0;
821 send
->s_wr
.wr
.atomic
.compare_add_mask
= op
->op_m_fadd
.nocarry_mask
;
822 send
->s_wr
.wr
.atomic
.swap_mask
= 0;
824 nr_sig
= rds_ib_set_wr_signal_state(ic
, send
, op
->op_notify
);
825 send
->s_wr
.num_sge
= 1;
826 send
->s_wr
.next
= NULL
;
827 send
->s_wr
.wr
.atomic
.remote_addr
= op
->op_remote_addr
;
828 send
->s_wr
.wr
.atomic
.rkey
= op
->op_rkey
;
830 rds_message_addref(container_of(send
->s_op
, struct rds_message
, atomic
));
832 /* map 8 byte retval buffer to the device */
833 ret
= ib_dma_map_sg(ic
->i_cm_id
->device
, op
->op_sg
, 1, DMA_FROM_DEVICE
);
834 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic
, op
, ret
);
836 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
837 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
838 ret
= -ENOMEM
; /* XXX ? */
842 /* Convert our struct scatterlist to struct ib_sge */
843 send
->s_sge
[0].addr
= ib_sg_dma_address(ic
->i_cm_id
->device
, op
->op_sg
);
844 send
->s_sge
[0].length
= ib_sg_dma_len(ic
->i_cm_id
->device
, op
->op_sg
);
845 send
->s_sge
[0].lkey
= ic
->i_mr
->lkey
;
847 rdsdebug("rva %Lx rpa %Lx len %u\n", op
->op_remote_addr
,
848 send
->s_sge
[0].addr
, send
->s_sge
[0].length
);
851 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
853 failed_wr
= &send
->s_wr
;
854 ret
= ib_post_send(ic
->i_cm_id
->qp
, &send
->s_wr
, &failed_wr
);
855 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic
,
856 send
, &send
->s_wr
, ret
, failed_wr
);
857 BUG_ON(failed_wr
!= &send
->s_wr
);
859 printk(KERN_WARNING
"RDS/IB: atomic ib_post_send to %pI4 "
860 "returned %d\n", &conn
->c_faddr
, ret
);
861 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
862 rds_ib_sub_signaled(ic
, nr_sig
);
866 if (unlikely(failed_wr
!= &send
->s_wr
)) {
867 printk(KERN_WARNING
"RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret
);
868 BUG_ON(failed_wr
!= &send
->s_wr
);
875 int rds_ib_xmit_rdma(struct rds_connection
*conn
, struct rm_rdma_op
*op
)
877 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
878 struct rds_ib_send_work
*send
= NULL
;
879 struct rds_ib_send_work
*first
;
880 struct rds_ib_send_work
*prev
;
881 struct ib_send_wr
*failed_wr
;
882 struct scatterlist
*scat
;
884 u64 remote_addr
= op
->op_remote_addr
;
885 u32 max_sge
= ic
->rds_ibdev
->max_sge
;
895 /* map the op the first time we see it */
896 if (!op
->op_mapped
) {
897 op
->op_count
= ib_dma_map_sg(ic
->i_cm_id
->device
,
898 op
->op_sg
, op
->op_nents
, (op
->op_write
) ?
899 DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
900 rdsdebug("ic %p mapping op %p: %d\n", ic
, op
, op
->op_count
);
901 if (op
->op_count
== 0) {
902 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
903 ret
= -ENOMEM
; /* XXX ? */
911 * Instead of knowing how to return a partial rdma read/write we insist that there
912 * be enough work requests to send the entire message.
914 i
= ceil(op
->op_count
, max_sge
);
916 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
917 if (work_alloc
!= i
) {
918 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
919 rds_ib_stats_inc(s_ib_tx_ring_full
);
924 send
= &ic
->i_sends
[pos
];
927 scat
= &op
->op_sg
[0];
929 num_sge
= op
->op_count
;
931 for (i
= 0; i
< work_alloc
&& scat
!= &op
->op_sg
[op
->op_count
]; i
++) {
932 send
->s_wr
.send_flags
= 0;
933 send
->s_queued
= jiffies
;
936 nr_sig
+= rds_ib_set_wr_signal_state(ic
, send
, op
->op_notify
);
938 send
->s_wr
.opcode
= op
->op_write
? IB_WR_RDMA_WRITE
: IB_WR_RDMA_READ
;
939 send
->s_wr
.wr
.rdma
.remote_addr
= remote_addr
;
940 send
->s_wr
.wr
.rdma
.rkey
= op
->op_rkey
;
942 if (num_sge
> max_sge
) {
943 send
->s_wr
.num_sge
= max_sge
;
946 send
->s_wr
.num_sge
= num_sge
;
949 send
->s_wr
.next
= NULL
;
952 prev
->s_wr
.next
= &send
->s_wr
;
954 for (j
= 0; j
< send
->s_wr
.num_sge
&& scat
!= &op
->op_sg
[op
->op_count
]; j
++) {
955 len
= ib_sg_dma_len(ic
->i_cm_id
->device
, scat
);
956 send
->s_sge
[j
].addr
=
957 ib_sg_dma_address(ic
->i_cm_id
->device
, scat
);
958 send
->s_sge
[j
].length
= len
;
959 send
->s_sge
[j
].lkey
= ic
->i_mr
->lkey
;
962 rdsdebug("ic %p sent %d remote_addr %llu\n", ic
, sent
, remote_addr
);
968 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
969 &send
->s_wr
, send
->s_wr
.num_sge
, send
->s_wr
.next
);
972 if (++send
== &ic
->i_sends
[ic
->i_send_ring
.w_nr
])
976 /* give a reference to the last op */
977 if (scat
== &op
->op_sg
[op
->op_count
]) {
979 rds_message_addref(container_of(op
, struct rds_message
, rdma
));
982 if (i
< work_alloc
) {
983 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
988 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
990 failed_wr
= &first
->s_wr
;
991 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_wr
, &failed_wr
);
992 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
993 first
, &first
->s_wr
, ret
, failed_wr
);
994 BUG_ON(failed_wr
!= &first
->s_wr
);
996 printk(KERN_WARNING
"RDS/IB: rdma ib_post_send to %pI4 "
997 "returned %d\n", &conn
->c_faddr
, ret
);
998 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
999 rds_ib_sub_signaled(ic
, nr_sig
);
1003 if (unlikely(failed_wr
!= &first
->s_wr
)) {
1004 printk(KERN_WARNING
"RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret
);
1005 BUG_ON(failed_wr
!= &first
->s_wr
);
1013 void rds_ib_xmit_complete(struct rds_connection
*conn
)
1015 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
1017 /* We may have a pending ACK or window update we were unable
1018 * to send previously (due to flow control). Try again. */
1019 rds_ib_attempt_ack(ic
);