1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
23 #include <linux/msi.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
50 static u32 lpi_id_bits
;
53 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54 * deal with (one configuration byte per interrupt). PENDBASE has to
55 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57 #define LPI_NRBITS lpi_id_bits
58 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
59 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
64 * Collection structure - just an ID, and a redistributor address to
65 * ping. We use one per CPU as a bag of interrupts assigned to this
68 struct its_collection
{
74 * The ITS_BASER structure - contains memory information, cached
75 * value of BASER register configuration and ITS page size.
87 * The ITS structure - contains most of the infrastructure, with the
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
91 * dev_alloc_lock has to be taken for device allocations, while the
92 * spinlock must be taken to parse data structures such as the device
97 struct mutex dev_alloc_lock
;
98 struct list_head entry
;
100 void __iomem
*sgir_base
;
101 phys_addr_t phys_base
;
102 struct its_cmd_block
*cmd_base
;
103 struct its_cmd_block
*cmd_write
;
104 struct its_baser tables
[GITS_BASER_NR_REGS
];
105 struct its_collection
*collections
;
106 struct fwnode_handle
*fwnode_handle
;
107 u64 (*get_msi_base
)(struct its_device
*its_dev
);
112 struct list_head its_device_list
;
114 unsigned long list_nr
;
116 unsigned int msi_domain_flags
;
117 u32 pre_its_base
; /* for Socionext Synquacer */
118 int vlpi_redist_offset
;
121 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
122 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
123 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 #define ITS_ITT_ALIGN SZ_256
127 /* The maximum number of VPEID bits supported by VLPI commands */
128 #define ITS_MAX_VPEID_BITS \
131 if (gic_rdists->has_rvpeid && \
132 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
133 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
138 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
140 /* Convert page order to size in bytes */
141 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
143 struct event_lpi_map
{
144 unsigned long *lpi_map
;
146 irq_hw_number_t lpi_base
;
148 raw_spinlock_t vlpi_lock
;
150 struct its_vlpi_map
*vlpi_maps
;
155 * The ITS view of a device - belongs to an ITS, owns an interrupt
156 * translation table, and a list of interrupts. If it some of its
157 * LPIs are injected into a guest (GICv4), the event_map.vm field
158 * indicates which one.
161 struct list_head entry
;
162 struct its_node
*its
;
163 struct event_lpi_map event_map
;
172 struct its_device
*dev
;
173 struct its_vpe
**vpes
;
177 struct cpu_lpi_count
{
182 static DEFINE_PER_CPU(struct cpu_lpi_count
, cpu_lpi_count
);
184 static LIST_HEAD(its_nodes
);
185 static DEFINE_RAW_SPINLOCK(its_lock
);
186 static struct rdists
*gic_rdists
;
187 static struct irq_domain
*its_parent
;
189 static unsigned long its_list_map
;
190 static u16 vmovp_seq_num
;
191 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
193 static DEFINE_IDA(its_vpeid_ida
);
195 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
196 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
197 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
198 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
201 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202 * always have vSGIs mapped.
204 static bool require_its_list_vmovp(struct its_vm
*vm
, struct its_node
*its
)
206 return (gic_rdists
->has_rvpeid
|| vm
->vlpi_count
[its
->list_nr
]);
209 static u16
get_its_list(struct its_vm
*vm
)
211 struct its_node
*its
;
212 unsigned long its_list
= 0;
214 list_for_each_entry(its
, &its_nodes
, entry
) {
218 if (require_its_list_vmovp(vm
, its
))
219 __set_bit(its
->list_nr
, &its_list
);
222 return (u16
)its_list
;
225 static inline u32
its_get_event_id(struct irq_data
*d
)
227 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
228 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
231 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
234 struct its_node
*its
= its_dev
->its
;
236 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
239 static struct its_vlpi_map
*dev_event_to_vlpi_map(struct its_device
*its_dev
,
242 if (WARN_ON_ONCE(event
>= its_dev
->event_map
.nr_lpis
))
245 return &its_dev
->event_map
.vlpi_maps
[event
];
248 static struct its_vlpi_map
*get_vlpi_map(struct irq_data
*d
)
250 if (irqd_is_forwarded_to_vcpu(d
)) {
251 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
252 u32 event
= its_get_event_id(d
);
254 return dev_event_to_vlpi_map(its_dev
, event
);
260 static int vpe_to_cpuid_lock(struct its_vpe
*vpe
, unsigned long *flags
)
262 raw_spin_lock_irqsave(&vpe
->vpe_lock
, *flags
);
266 static void vpe_to_cpuid_unlock(struct its_vpe
*vpe
, unsigned long flags
)
268 raw_spin_unlock_irqrestore(&vpe
->vpe_lock
, flags
);
271 static int irq_to_cpuid_lock(struct irq_data
*d
, unsigned long *flags
)
273 struct its_vlpi_map
*map
= get_vlpi_map(d
);
277 cpu
= vpe_to_cpuid_lock(map
->vpe
, flags
);
279 /* Physical LPIs are already locked via the irq_desc lock */
280 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
281 cpu
= its_dev
->event_map
.col_map
[its_get_event_id(d
)];
282 /* Keep GCC quiet... */
289 static void irq_to_cpuid_unlock(struct irq_data
*d
, unsigned long flags
)
291 struct its_vlpi_map
*map
= get_vlpi_map(d
);
294 vpe_to_cpuid_unlock(map
->vpe
, flags
);
297 static struct its_collection
*valid_col(struct its_collection
*col
)
299 if (WARN_ON_ONCE(col
->target_address
& GENMASK_ULL(15, 0)))
305 static struct its_vpe
*valid_vpe(struct its_node
*its
, struct its_vpe
*vpe
)
307 if (valid_col(its
->collections
+ vpe
->col_idx
))
314 * ITS command descriptors - parameters to be encoded in a command
317 struct its_cmd_desc
{
320 struct its_device
*dev
;
325 struct its_device
*dev
;
330 struct its_device
*dev
;
335 struct its_device
*dev
;
340 struct its_collection
*col
;
345 struct its_device
*dev
;
351 struct its_device
*dev
;
352 struct its_collection
*col
;
357 struct its_device
*dev
;
362 struct its_collection
*col
;
371 struct its_collection
*col
;
377 struct its_device
*dev
;
385 struct its_device
*dev
;
392 struct its_collection
*col
;
413 * The ITS command block, which is what the ITS actually parses.
415 struct its_cmd_block
{
418 __le64 raw_cmd_le
[4];
422 #define ITS_CMD_QUEUE_SZ SZ_64K
423 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
425 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_node
*,
426 struct its_cmd_block
*,
427 struct its_cmd_desc
*);
429 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_node
*,
430 struct its_cmd_block
*,
431 struct its_cmd_desc
*);
433 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
435 u64 mask
= GENMASK_ULL(h
, l
);
437 *raw_cmd
|= (val
<< l
) & mask
;
440 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
442 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
445 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
447 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
450 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
452 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
455 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
457 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
460 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
462 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
465 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
467 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 51, 8);
470 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
472 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
475 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
477 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 51, 16);
480 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
482 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
485 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
487 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
490 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
492 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
495 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
497 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
500 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
502 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
505 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
507 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
510 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
512 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
515 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
517 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 51, 16);
520 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
522 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
525 static void its_encode_vconf_addr(struct its_cmd_block
*cmd
, u64 vconf_pa
)
527 its_mask_encode(&cmd
->raw_cmd
[0], vconf_pa
>> 16, 51, 16);
530 static void its_encode_alloc(struct its_cmd_block
*cmd
, bool alloc
)
532 its_mask_encode(&cmd
->raw_cmd
[0], alloc
, 8, 8);
535 static void its_encode_ptz(struct its_cmd_block
*cmd
, bool ptz
)
537 its_mask_encode(&cmd
->raw_cmd
[0], ptz
, 9, 9);
540 static void its_encode_vmapp_default_db(struct its_cmd_block
*cmd
,
543 its_mask_encode(&cmd
->raw_cmd
[1], vpe_db_lpi
, 31, 0);
546 static void its_encode_vmovp_default_db(struct its_cmd_block
*cmd
,
549 its_mask_encode(&cmd
->raw_cmd
[3], vpe_db_lpi
, 31, 0);
552 static void its_encode_db(struct its_cmd_block
*cmd
, bool db
)
554 its_mask_encode(&cmd
->raw_cmd
[2], db
, 63, 63);
557 static void its_encode_sgi_intid(struct its_cmd_block
*cmd
, u8 sgi
)
559 its_mask_encode(&cmd
->raw_cmd
[0], sgi
, 35, 32);
562 static void its_encode_sgi_priority(struct its_cmd_block
*cmd
, u8 prio
)
564 its_mask_encode(&cmd
->raw_cmd
[0], prio
>> 4, 23, 20);
567 static void its_encode_sgi_group(struct its_cmd_block
*cmd
, bool grp
)
569 its_mask_encode(&cmd
->raw_cmd
[0], grp
, 10, 10);
572 static void its_encode_sgi_clear(struct its_cmd_block
*cmd
, bool clr
)
574 its_mask_encode(&cmd
->raw_cmd
[0], clr
, 9, 9);
577 static void its_encode_sgi_enable(struct its_cmd_block
*cmd
, bool en
)
579 its_mask_encode(&cmd
->raw_cmd
[0], en
, 8, 8);
582 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
584 /* Let's fixup BE commands */
585 cmd
->raw_cmd_le
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
586 cmd
->raw_cmd_le
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
587 cmd
->raw_cmd_le
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
588 cmd
->raw_cmd_le
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
591 static struct its_collection
*its_build_mapd_cmd(struct its_node
*its
,
592 struct its_cmd_block
*cmd
,
593 struct its_cmd_desc
*desc
)
595 unsigned long itt_addr
;
596 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
598 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
599 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
601 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
602 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
603 its_encode_size(cmd
, size
- 1);
604 its_encode_itt(cmd
, itt_addr
);
605 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
612 static struct its_collection
*its_build_mapc_cmd(struct its_node
*its
,
613 struct its_cmd_block
*cmd
,
614 struct its_cmd_desc
*desc
)
616 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
617 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
618 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
619 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
623 return desc
->its_mapc_cmd
.col
;
626 static struct its_collection
*its_build_mapti_cmd(struct its_node
*its
,
627 struct its_cmd_block
*cmd
,
628 struct its_cmd_desc
*desc
)
630 struct its_collection
*col
;
632 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
633 desc
->its_mapti_cmd
.event_id
);
635 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
636 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
637 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
638 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
639 its_encode_collection(cmd
, col
->col_id
);
643 return valid_col(col
);
646 static struct its_collection
*its_build_movi_cmd(struct its_node
*its
,
647 struct its_cmd_block
*cmd
,
648 struct its_cmd_desc
*desc
)
650 struct its_collection
*col
;
652 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
653 desc
->its_movi_cmd
.event_id
);
655 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
656 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
657 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
658 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
662 return valid_col(col
);
665 static struct its_collection
*its_build_discard_cmd(struct its_node
*its
,
666 struct its_cmd_block
*cmd
,
667 struct its_cmd_desc
*desc
)
669 struct its_collection
*col
;
671 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
672 desc
->its_discard_cmd
.event_id
);
674 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
675 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
676 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
680 return valid_col(col
);
683 static struct its_collection
*its_build_inv_cmd(struct its_node
*its
,
684 struct its_cmd_block
*cmd
,
685 struct its_cmd_desc
*desc
)
687 struct its_collection
*col
;
689 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
690 desc
->its_inv_cmd
.event_id
);
692 its_encode_cmd(cmd
, GITS_CMD_INV
);
693 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
694 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
698 return valid_col(col
);
701 static struct its_collection
*its_build_int_cmd(struct its_node
*its
,
702 struct its_cmd_block
*cmd
,
703 struct its_cmd_desc
*desc
)
705 struct its_collection
*col
;
707 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
708 desc
->its_int_cmd
.event_id
);
710 its_encode_cmd(cmd
, GITS_CMD_INT
);
711 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
712 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
716 return valid_col(col
);
719 static struct its_collection
*its_build_clear_cmd(struct its_node
*its
,
720 struct its_cmd_block
*cmd
,
721 struct its_cmd_desc
*desc
)
723 struct its_collection
*col
;
725 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
726 desc
->its_clear_cmd
.event_id
);
728 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
729 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
730 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
734 return valid_col(col
);
737 static struct its_collection
*its_build_invall_cmd(struct its_node
*its
,
738 struct its_cmd_block
*cmd
,
739 struct its_cmd_desc
*desc
)
741 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
742 its_encode_collection(cmd
, desc
->its_invall_cmd
.col
->col_id
);
749 static struct its_vpe
*its_build_vinvall_cmd(struct its_node
*its
,
750 struct its_cmd_block
*cmd
,
751 struct its_cmd_desc
*desc
)
753 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
754 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
758 return valid_vpe(its
, desc
->its_vinvall_cmd
.vpe
);
761 static struct its_vpe
*its_build_vmapp_cmd(struct its_node
*its
,
762 struct its_cmd_block
*cmd
,
763 struct its_cmd_desc
*desc
)
765 unsigned long vpt_addr
, vconf_addr
;
769 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
770 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
771 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
773 if (!desc
->its_vmapp_cmd
.valid
) {
775 alloc
= !atomic_dec_return(&desc
->its_vmapp_cmd
.vpe
->vmapp_count
);
776 its_encode_alloc(cmd
, alloc
);
782 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
783 target
= desc
->its_vmapp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
785 its_encode_target(cmd
, target
);
786 its_encode_vpt_addr(cmd
, vpt_addr
);
787 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
792 vconf_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->its_vm
->vprop_page
));
794 alloc
= !atomic_fetch_inc(&desc
->its_vmapp_cmd
.vpe
->vmapp_count
);
796 its_encode_alloc(cmd
, alloc
);
798 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 its_encode_ptz(cmd
, alloc
);
800 its_encode_vconf_addr(cmd
, vconf_addr
);
801 its_encode_vmapp_default_db(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_db_lpi
);
806 return valid_vpe(its
, desc
->its_vmapp_cmd
.vpe
);
809 static struct its_vpe
*its_build_vmapti_cmd(struct its_node
*its
,
810 struct its_cmd_block
*cmd
,
811 struct its_cmd_desc
*desc
)
815 if (!is_v4_1(its
) && desc
->its_vmapti_cmd
.db_enabled
)
816 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
820 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
821 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
822 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
823 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
824 its_encode_db_phys_id(cmd
, db
);
825 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
829 return valid_vpe(its
, desc
->its_vmapti_cmd
.vpe
);
832 static struct its_vpe
*its_build_vmovi_cmd(struct its_node
*its
,
833 struct its_cmd_block
*cmd
,
834 struct its_cmd_desc
*desc
)
838 if (!is_v4_1(its
) && desc
->its_vmovi_cmd
.db_enabled
)
839 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
843 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
844 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
845 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
846 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
847 its_encode_db_phys_id(cmd
, db
);
848 its_encode_db_valid(cmd
, true);
852 return valid_vpe(its
, desc
->its_vmovi_cmd
.vpe
);
855 static struct its_vpe
*its_build_vmovp_cmd(struct its_node
*its
,
856 struct its_cmd_block
*cmd
,
857 struct its_cmd_desc
*desc
)
861 target
= desc
->its_vmovp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
862 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
863 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
864 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
865 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
866 its_encode_target(cmd
, target
);
869 its_encode_db(cmd
, true);
870 its_encode_vmovp_default_db(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_db_lpi
);
875 return valid_vpe(its
, desc
->its_vmovp_cmd
.vpe
);
878 static struct its_vpe
*its_build_vinv_cmd(struct its_node
*its
,
879 struct its_cmd_block
*cmd
,
880 struct its_cmd_desc
*desc
)
882 struct its_vlpi_map
*map
;
884 map
= dev_event_to_vlpi_map(desc
->its_inv_cmd
.dev
,
885 desc
->its_inv_cmd
.event_id
);
887 its_encode_cmd(cmd
, GITS_CMD_INV
);
888 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
889 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
893 return valid_vpe(its
, map
->vpe
);
896 static struct its_vpe
*its_build_vint_cmd(struct its_node
*its
,
897 struct its_cmd_block
*cmd
,
898 struct its_cmd_desc
*desc
)
900 struct its_vlpi_map
*map
;
902 map
= dev_event_to_vlpi_map(desc
->its_int_cmd
.dev
,
903 desc
->its_int_cmd
.event_id
);
905 its_encode_cmd(cmd
, GITS_CMD_INT
);
906 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
907 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
911 return valid_vpe(its
, map
->vpe
);
914 static struct its_vpe
*its_build_vclear_cmd(struct its_node
*its
,
915 struct its_cmd_block
*cmd
,
916 struct its_cmd_desc
*desc
)
918 struct its_vlpi_map
*map
;
920 map
= dev_event_to_vlpi_map(desc
->its_clear_cmd
.dev
,
921 desc
->its_clear_cmd
.event_id
);
923 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
924 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
925 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
929 return valid_vpe(its
, map
->vpe
);
932 static struct its_vpe
*its_build_invdb_cmd(struct its_node
*its
,
933 struct its_cmd_block
*cmd
,
934 struct its_cmd_desc
*desc
)
936 if (WARN_ON(!is_v4_1(its
)))
939 its_encode_cmd(cmd
, GITS_CMD_INVDB
);
940 its_encode_vpeid(cmd
, desc
->its_invdb_cmd
.vpe
->vpe_id
);
944 return valid_vpe(its
, desc
->its_invdb_cmd
.vpe
);
947 static struct its_vpe
*its_build_vsgi_cmd(struct its_node
*its
,
948 struct its_cmd_block
*cmd
,
949 struct its_cmd_desc
*desc
)
951 if (WARN_ON(!is_v4_1(its
)))
954 its_encode_cmd(cmd
, GITS_CMD_VSGI
);
955 its_encode_vpeid(cmd
, desc
->its_vsgi_cmd
.vpe
->vpe_id
);
956 its_encode_sgi_intid(cmd
, desc
->its_vsgi_cmd
.sgi
);
957 its_encode_sgi_priority(cmd
, desc
->its_vsgi_cmd
.priority
);
958 its_encode_sgi_group(cmd
, desc
->its_vsgi_cmd
.group
);
959 its_encode_sgi_clear(cmd
, desc
->its_vsgi_cmd
.clear
);
960 its_encode_sgi_enable(cmd
, desc
->its_vsgi_cmd
.enable
);
964 return valid_vpe(its
, desc
->its_vsgi_cmd
.vpe
);
967 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
968 struct its_cmd_block
*ptr
)
970 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
973 static int its_queue_full(struct its_node
*its
)
978 widx
= its
->cmd_write
- its
->cmd_base
;
979 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
981 /* This is incredibly unlikely to happen, unless the ITS locks up. */
982 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
988 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
990 struct its_cmd_block
*cmd
;
991 u32 count
= 1000000; /* 1s! */
993 while (its_queue_full(its
)) {
996 pr_err_ratelimited("ITS queue not draining\n");
1003 cmd
= its
->cmd_write
++;
1005 /* Handle queue wrapping */
1006 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
1007 its
->cmd_write
= its
->cmd_base
;
1010 cmd
->raw_cmd
[0] = 0;
1011 cmd
->raw_cmd
[1] = 0;
1012 cmd
->raw_cmd
[2] = 0;
1013 cmd
->raw_cmd
[3] = 0;
1018 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
1020 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
1022 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
1024 return its
->cmd_write
;
1027 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
1030 * Make sure the commands written to memory are observable by
1033 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
1034 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
1039 static int its_wait_for_range_completion(struct its_node
*its
,
1041 struct its_cmd_block
*to
)
1043 u64 rd_idx
, to_idx
, linear_idx
;
1044 u32 count
= 1000000; /* 1s! */
1046 /* Linearize to_idx if the command set has wrapped around */
1047 to_idx
= its_cmd_ptr_to_offset(its
, to
);
1048 if (to_idx
< prev_idx
)
1049 to_idx
+= ITS_CMD_QUEUE_SZ
;
1051 linear_idx
= prev_idx
;
1056 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
1059 * Compute the read pointer progress, taking the
1060 * potential wrap-around into account.
1062 delta
= rd_idx
- prev_idx
;
1063 if (rd_idx
< prev_idx
)
1064 delta
+= ITS_CMD_QUEUE_SZ
;
1066 linear_idx
+= delta
;
1067 if (linear_idx
>= to_idx
)
1072 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 to_idx
, linear_idx
);
1084 /* Warning, macro hell follows */
1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1086 void name(struct its_node *its, \
1087 buildtype builder, \
1088 struct its_cmd_desc *desc) \
1090 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1091 synctype *sync_obj; \
1092 unsigned long flags; \
1095 raw_spin_lock_irqsave(&its->lock, flags); \
1097 cmd = its_allocate_entry(its); \
1098 if (!cmd) { /* We're soooooo screewed... */ \
1099 raw_spin_unlock_irqrestore(&its->lock, flags); \
1102 sync_obj = builder(its, cmd, desc); \
1103 its_flush_cmd(its, cmd); \
1106 sync_cmd = its_allocate_entry(its); \
1110 buildfn(its, sync_cmd, sync_obj); \
1111 its_flush_cmd(its, sync_cmd); \
1115 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1116 next_cmd = its_post_commands(its); \
1117 raw_spin_unlock_irqrestore(&its->lock, flags); \
1119 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1120 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1123 static void its_build_sync_cmd(struct its_node
*its
,
1124 struct its_cmd_block
*sync_cmd
,
1125 struct its_collection
*sync_col
)
1127 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
1128 its_encode_target(sync_cmd
, sync_col
->target_address
);
1130 its_fixup_cmd(sync_cmd
);
1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
1134 struct its_collection
, its_build_sync_cmd
)
1136 static void its_build_vsync_cmd(struct its_node
*its
,
1137 struct its_cmd_block
*sync_cmd
,
1138 struct its_vpe
*sync_vpe
)
1140 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
1141 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
1143 its_fixup_cmd(sync_cmd
);
1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
1147 struct its_vpe
, its_build_vsync_cmd
)
1149 static void its_send_int(struct its_device
*dev
, u32 event_id
)
1151 struct its_cmd_desc desc
;
1153 desc
.its_int_cmd
.dev
= dev
;
1154 desc
.its_int_cmd
.event_id
= event_id
;
1156 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
1159 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
1161 struct its_cmd_desc desc
;
1163 desc
.its_clear_cmd
.dev
= dev
;
1164 desc
.its_clear_cmd
.event_id
= event_id
;
1166 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
1169 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
1171 struct its_cmd_desc desc
;
1173 desc
.its_inv_cmd
.dev
= dev
;
1174 desc
.its_inv_cmd
.event_id
= event_id
;
1176 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
1179 static void its_send_mapd(struct its_device
*dev
, int valid
)
1181 struct its_cmd_desc desc
;
1183 desc
.its_mapd_cmd
.dev
= dev
;
1184 desc
.its_mapd_cmd
.valid
= !!valid
;
1186 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
1189 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
1192 struct its_cmd_desc desc
;
1194 desc
.its_mapc_cmd
.col
= col
;
1195 desc
.its_mapc_cmd
.valid
= !!valid
;
1197 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
1200 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
1202 struct its_cmd_desc desc
;
1204 desc
.its_mapti_cmd
.dev
= dev
;
1205 desc
.its_mapti_cmd
.phys_id
= irq_id
;
1206 desc
.its_mapti_cmd
.event_id
= id
;
1208 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
1211 static void its_send_movi(struct its_device
*dev
,
1212 struct its_collection
*col
, u32 id
)
1214 struct its_cmd_desc desc
;
1216 desc
.its_movi_cmd
.dev
= dev
;
1217 desc
.its_movi_cmd
.col
= col
;
1218 desc
.its_movi_cmd
.event_id
= id
;
1220 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
1223 static void its_send_discard(struct its_device
*dev
, u32 id
)
1225 struct its_cmd_desc desc
;
1227 desc
.its_discard_cmd
.dev
= dev
;
1228 desc
.its_discard_cmd
.event_id
= id
;
1230 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
1233 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
1235 struct its_cmd_desc desc
;
1237 desc
.its_invall_cmd
.col
= col
;
1239 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
1242 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
1244 struct its_vlpi_map
*map
= dev_event_to_vlpi_map(dev
, id
);
1245 struct its_cmd_desc desc
;
1247 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
1248 desc
.its_vmapti_cmd
.dev
= dev
;
1249 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
1250 desc
.its_vmapti_cmd
.event_id
= id
;
1251 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
1253 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
1256 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
1258 struct its_vlpi_map
*map
= dev_event_to_vlpi_map(dev
, id
);
1259 struct its_cmd_desc desc
;
1261 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
1262 desc
.its_vmovi_cmd
.dev
= dev
;
1263 desc
.its_vmovi_cmd
.event_id
= id
;
1264 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
1266 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
1269 static void its_send_vmapp(struct its_node
*its
,
1270 struct its_vpe
*vpe
, bool valid
)
1272 struct its_cmd_desc desc
;
1274 desc
.its_vmapp_cmd
.vpe
= vpe
;
1275 desc
.its_vmapp_cmd
.valid
= valid
;
1276 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
1278 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
1281 static void its_send_vmovp(struct its_vpe
*vpe
)
1283 struct its_cmd_desc desc
= {};
1284 struct its_node
*its
;
1285 unsigned long flags
;
1286 int col_id
= vpe
->col_idx
;
1288 desc
.its_vmovp_cmd
.vpe
= vpe
;
1290 if (!its_list_map
) {
1291 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
1292 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1293 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1298 * Yet another marvel of the architecture. If using the
1299 * its_list "feature", we need to make sure that all ITSs
1300 * receive all VMOVP commands in the same order. The only way
1301 * to guarantee this is to make vmovp a serialization point.
1305 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1307 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
1308 desc
.its_vmovp_cmd
.its_list
= get_its_list(vpe
->its_vm
);
1311 list_for_each_entry(its
, &its_nodes
, entry
) {
1315 if (!require_its_list_vmovp(vpe
->its_vm
, its
))
1318 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1319 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1322 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1325 static void its_send_vinvall(struct its_node
*its
, struct its_vpe
*vpe
)
1327 struct its_cmd_desc desc
;
1329 desc
.its_vinvall_cmd
.vpe
= vpe
;
1330 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
1333 static void its_send_vinv(struct its_device
*dev
, u32 event_id
)
1335 struct its_cmd_desc desc
;
1338 * There is no real VINV command. This is just a normal INV,
1339 * with a VSYNC instead of a SYNC.
1341 desc
.its_inv_cmd
.dev
= dev
;
1342 desc
.its_inv_cmd
.event_id
= event_id
;
1344 its_send_single_vcommand(dev
->its
, its_build_vinv_cmd
, &desc
);
1347 static void its_send_vint(struct its_device
*dev
, u32 event_id
)
1349 struct its_cmd_desc desc
;
1352 * There is no real VINT command. This is just a normal INT,
1353 * with a VSYNC instead of a SYNC.
1355 desc
.its_int_cmd
.dev
= dev
;
1356 desc
.its_int_cmd
.event_id
= event_id
;
1358 its_send_single_vcommand(dev
->its
, its_build_vint_cmd
, &desc
);
1361 static void its_send_vclear(struct its_device
*dev
, u32 event_id
)
1363 struct its_cmd_desc desc
;
1366 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 * with a VSYNC instead of a SYNC.
1369 desc
.its_clear_cmd
.dev
= dev
;
1370 desc
.its_clear_cmd
.event_id
= event_id
;
1372 its_send_single_vcommand(dev
->its
, its_build_vclear_cmd
, &desc
);
1375 static void its_send_invdb(struct its_node
*its
, struct its_vpe
*vpe
)
1377 struct its_cmd_desc desc
;
1379 desc
.its_invdb_cmd
.vpe
= vpe
;
1380 its_send_single_vcommand(its
, its_build_invdb_cmd
, &desc
);
1384 * irqchip functions - assumes MSI, mostly.
1386 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
1388 struct its_vlpi_map
*map
= get_vlpi_map(d
);
1389 irq_hw_number_t hwirq
;
1394 va
= page_address(map
->vm
->vprop_page
);
1395 hwirq
= map
->vintid
;
1397 /* Remember the updated property */
1398 map
->properties
&= ~clr
;
1399 map
->properties
|= set
| LPI_PROP_GROUP1
;
1401 va
= gic_rdists
->prop_table_va
;
1405 cfg
= va
+ hwirq
- 8192;
1407 *cfg
|= set
| LPI_PROP_GROUP1
;
1410 * Make the above write visible to the redistributors.
1411 * And yes, we're flushing exactly: One. Single. Byte.
1414 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1415 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1420 static void wait_for_syncr(void __iomem
*rdbase
)
1422 while (readl_relaxed(rdbase
+ GICR_SYNCR
) & 1)
1426 static void direct_lpi_inv(struct irq_data
*d
)
1428 struct its_vlpi_map
*map
= get_vlpi_map(d
);
1429 void __iomem
*rdbase
;
1430 unsigned long flags
;
1435 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1437 WARN_ON(!is_v4_1(its_dev
->its
));
1439 val
= GICR_INVLPIR_V
;
1440 val
|= FIELD_PREP(GICR_INVLPIR_VPEID
, map
->vpe
->vpe_id
);
1441 val
|= FIELD_PREP(GICR_INVLPIR_INTID
, map
->vintid
);
1446 /* Target the redistributor this LPI is currently routed to */
1447 cpu
= irq_to_cpuid_lock(d
, &flags
);
1448 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
1449 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, cpu
)->rd_base
;
1450 gic_write_lpir(val
, rdbase
+ GICR_INVLPIR
);
1452 wait_for_syncr(rdbase
);
1453 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
1454 irq_to_cpuid_unlock(d
, flags
);
1457 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1459 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1461 lpi_write_config(d
, clr
, set
);
1462 if (gic_rdists
->has_direct_lpi
&&
1463 (is_v4_1(its_dev
->its
) || !irqd_is_forwarded_to_vcpu(d
)))
1465 else if (!irqd_is_forwarded_to_vcpu(d
))
1466 its_send_inv(its_dev
, its_get_event_id(d
));
1468 its_send_vinv(its_dev
, its_get_event_id(d
));
1471 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1473 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1474 u32 event
= its_get_event_id(d
);
1475 struct its_vlpi_map
*map
;
1478 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1481 if (is_v4_1(its_dev
->its
))
1484 map
= dev_event_to_vlpi_map(its_dev
, event
);
1486 if (map
->db_enabled
== enable
)
1489 map
->db_enabled
= enable
;
1492 * More fun with the architecture:
1494 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 * value or to 1023, depending on the enable bit. But that
1496 * would be issueing a mapping for an /existing/ DevID+EventID
1497 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 * to the /same/ vPE, using this opportunity to adjust the
1499 * doorbell. Mouahahahaha. We loves it, Precious.
1501 its_send_vmovi(its_dev
, event
);
1504 static void its_mask_irq(struct irq_data
*d
)
1506 if (irqd_is_forwarded_to_vcpu(d
))
1507 its_vlpi_set_doorbell(d
, false);
1509 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1512 static void its_unmask_irq(struct irq_data
*d
)
1514 if (irqd_is_forwarded_to_vcpu(d
))
1515 its_vlpi_set_doorbell(d
, true);
1517 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1520 static __maybe_unused u32
its_read_lpi_count(struct irq_data
*d
, int cpu
)
1522 if (irqd_affinity_is_managed(d
))
1523 return atomic_read(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1525 return atomic_read(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1528 static void its_inc_lpi_count(struct irq_data
*d
, int cpu
)
1530 if (irqd_affinity_is_managed(d
))
1531 atomic_inc(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1533 atomic_inc(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1536 static void its_dec_lpi_count(struct irq_data
*d
, int cpu
)
1538 if (irqd_affinity_is_managed(d
))
1539 atomic_dec(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1541 atomic_dec(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1544 static unsigned int cpumask_pick_least_loaded(struct irq_data
*d
,
1545 const struct cpumask
*cpu_mask
)
1547 unsigned int cpu
= nr_cpu_ids
, tmp
;
1548 int count
= S32_MAX
;
1550 for_each_cpu(tmp
, cpu_mask
) {
1551 int this_count
= its_read_lpi_count(d
, tmp
);
1552 if (this_count
< count
) {
1562 * As suggested by Thomas Gleixner in:
1563 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1565 static int its_select_cpu(struct irq_data
*d
,
1566 const struct cpumask
*aff_mask
)
1568 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1569 cpumask_var_t tmpmask
;
1572 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
1575 node
= its_dev
->its
->numa_node
;
1577 if (!irqd_affinity_is_managed(d
)) {
1578 /* First try the NUMA node */
1579 if (node
!= NUMA_NO_NODE
) {
1581 * Try the intersection of the affinity mask and the
1582 * node mask (and the online mask, just to be safe).
1584 cpumask_and(tmpmask
, cpumask_of_node(node
), aff_mask
);
1585 cpumask_and(tmpmask
, tmpmask
, cpu_online_mask
);
1588 * Ideally, we would check if the mask is empty, and
1589 * try again on the full node here.
1591 * But it turns out that the way ACPI describes the
1592 * affinity for ITSs only deals about memory, and
1593 * not target CPUs, so it cannot describe a single
1594 * ITS placed next to two NUMA nodes.
1596 * Instead, just fallback on the online mask. This
1597 * diverges from Thomas' suggestion above.
1599 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1600 if (cpu
< nr_cpu_ids
)
1603 /* If we can't cross sockets, give up */
1604 if ((its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
))
1607 /* If the above failed, expand the search */
1610 /* Try the intersection of the affinity and online masks */
1611 cpumask_and(tmpmask
, aff_mask
, cpu_online_mask
);
1613 /* If that doesn't fly, the online mask is the last resort */
1614 if (cpumask_empty(tmpmask
))
1615 cpumask_copy(tmpmask
, cpu_online_mask
);
1617 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1619 cpumask_and(tmpmask
, irq_data_get_affinity_mask(d
), cpu_online_mask
);
1621 /* If we cannot cross sockets, limit the search to that node */
1622 if ((its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) &&
1623 node
!= NUMA_NO_NODE
)
1624 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(node
));
1626 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1629 free_cpumask_var(tmpmask
);
1631 pr_debug("IRQ%d -> %*pbl CPU%d\n", d
->irq
, cpumask_pr_args(aff_mask
), cpu
);
1635 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1638 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1639 struct its_collection
*target_col
;
1640 u32 id
= its_get_event_id(d
);
1643 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 if (irqd_is_forwarded_to_vcpu(d
))
1647 prev_cpu
= its_dev
->event_map
.col_map
[id
];
1648 its_dec_lpi_count(d
, prev_cpu
);
1651 cpu
= its_select_cpu(d
, mask_val
);
1653 cpu
= cpumask_pick_least_loaded(d
, mask_val
);
1655 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
1658 /* don't set the affinity when the target cpu is same as current one */
1659 if (cpu
!= prev_cpu
) {
1660 target_col
= &its_dev
->its
->collections
[cpu
];
1661 its_send_movi(its_dev
, target_col
, id
);
1662 its_dev
->event_map
.col_map
[id
] = cpu
;
1663 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1666 its_inc_lpi_count(d
, cpu
);
1668 return IRQ_SET_MASK_OK_DONE
;
1671 its_inc_lpi_count(d
, prev_cpu
);
1675 static u64
its_irq_get_msi_base(struct its_device
*its_dev
)
1677 struct its_node
*its
= its_dev
->its
;
1679 return its
->phys_base
+ GITS_TRANSLATER
;
1682 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1684 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1685 struct its_node
*its
;
1689 addr
= its
->get_msi_base(its_dev
);
1691 msg
->address_lo
= lower_32_bits(addr
);
1692 msg
->address_hi
= upper_32_bits(addr
);
1693 msg
->data
= its_get_event_id(d
);
1695 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d
), msg
);
1698 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1699 enum irqchip_irq_state which
,
1702 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1703 u32 event
= its_get_event_id(d
);
1705 if (which
!= IRQCHIP_STATE_PENDING
)
1708 if (irqd_is_forwarded_to_vcpu(d
)) {
1710 its_send_vint(its_dev
, event
);
1712 its_send_vclear(its_dev
, event
);
1715 its_send_int(its_dev
, event
);
1717 its_send_clear(its_dev
, event
);
1724 * Two favourable cases:
1726 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1729 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1730 * and we're better off mapping all VPEs always
1732 * If neither (a) nor (b) is true, then we map vPEs on demand.
1735 static bool gic_requires_eager_mapping(void)
1737 if (!its_list_map
|| gic_rdists
->has_rvpeid
)
1743 static void its_map_vm(struct its_node
*its
, struct its_vm
*vm
)
1745 unsigned long flags
;
1747 if (gic_requires_eager_mapping())
1750 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1753 * If the VM wasn't mapped yet, iterate over the vpes and get
1756 vm
->vlpi_count
[its
->list_nr
]++;
1758 if (vm
->vlpi_count
[its
->list_nr
] == 1) {
1761 for (i
= 0; i
< vm
->nr_vpes
; i
++) {
1762 struct its_vpe
*vpe
= vm
->vpes
[i
];
1763 struct irq_data
*d
= irq_get_irq_data(vpe
->irq
);
1765 /* Map the VPE to the first possible CPU */
1766 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
1767 its_send_vmapp(its
, vpe
, true);
1768 its_send_vinvall(its
, vpe
);
1769 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
1773 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1776 static void its_unmap_vm(struct its_node
*its
, struct its_vm
*vm
)
1778 unsigned long flags
;
1780 /* Not using the ITS list? Everything is always mapped. */
1781 if (gic_requires_eager_mapping())
1784 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1786 if (!--vm
->vlpi_count
[its
->list_nr
]) {
1789 for (i
= 0; i
< vm
->nr_vpes
; i
++)
1790 its_send_vmapp(its
, vm
->vpes
[i
], false);
1793 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1796 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1798 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1799 u32 event
= its_get_event_id(d
);
1805 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1807 if (!its_dev
->event_map
.vm
) {
1808 struct its_vlpi_map
*maps
;
1810 maps
= kcalloc(its_dev
->event_map
.nr_lpis
, sizeof(*maps
),
1817 its_dev
->event_map
.vm
= info
->map
->vm
;
1818 its_dev
->event_map
.vlpi_maps
= maps
;
1819 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1824 /* Get our private copy of the mapping information */
1825 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1827 if (irqd_is_forwarded_to_vcpu(d
)) {
1828 /* Already mapped, move it around */
1829 its_send_vmovi(its_dev
, event
);
1831 /* Ensure all the VPEs are mapped on this ITS */
1832 its_map_vm(its_dev
->its
, info
->map
->vm
);
1835 * Flag the interrupt as forwarded so that we can
1836 * start poking the virtual property table.
1838 irqd_set_forwarded_to_vcpu(d
);
1840 /* Write out the property to the prop table */
1841 lpi_write_config(d
, 0xff, info
->map
->properties
);
1843 /* Drop the physical mapping */
1844 its_send_discard(its_dev
, event
);
1846 /* and install the virtual one */
1847 its_send_vmapti(its_dev
, event
);
1849 /* Increment the number of VLPIs */
1850 its_dev
->event_map
.nr_vlpis
++;
1854 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1858 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1860 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1861 struct its_vlpi_map
*map
;
1864 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1866 map
= get_vlpi_map(d
);
1868 if (!its_dev
->event_map
.vm
|| !map
) {
1873 /* Copy our mapping information to the incoming request */
1877 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1881 static int its_vlpi_unmap(struct irq_data
*d
)
1883 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1884 u32 event
= its_get_event_id(d
);
1887 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1889 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1894 /* Drop the virtual mapping */
1895 its_send_discard(its_dev
, event
);
1897 /* and restore the physical one */
1898 irqd_clr_forwarded_to_vcpu(d
);
1899 its_send_mapti(its_dev
, d
->hwirq
, event
);
1900 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1904 /* Potentially unmap the VM from this ITS */
1905 its_unmap_vm(its_dev
->its
, its_dev
->event_map
.vm
);
1908 * Drop the refcount and make the device available again if
1909 * this was the last VLPI.
1911 if (!--its_dev
->event_map
.nr_vlpis
) {
1912 its_dev
->event_map
.vm
= NULL
;
1913 kfree(its_dev
->event_map
.vlpi_maps
);
1917 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1921 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1923 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1925 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1928 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1929 lpi_update_config(d
, 0xff, info
->config
);
1931 lpi_write_config(d
, 0xff, info
->config
);
1932 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1937 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1939 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1940 struct its_cmd_info
*info
= vcpu_info
;
1943 if (!is_v4(its_dev
->its
))
1946 /* Unmap request? */
1948 return its_vlpi_unmap(d
);
1950 switch (info
->cmd_type
) {
1952 return its_vlpi_map(d
, info
);
1955 return its_vlpi_get(d
, info
);
1957 case PROP_UPDATE_VLPI
:
1958 case PROP_UPDATE_AND_INV_VLPI
:
1959 return its_vlpi_prop_update(d
, info
);
1966 static struct irq_chip its_irq_chip
= {
1968 .irq_mask
= its_mask_irq
,
1969 .irq_unmask
= its_unmask_irq
,
1970 .irq_eoi
= irq_chip_eoi_parent
,
1971 .irq_set_affinity
= its_set_affinity
,
1972 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1973 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1974 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1979 * How we allocate LPIs:
1981 * lpi_range_list contains ranges of LPIs that are to available to
1982 * allocate from. To allocate LPIs, just pick the first range that
1983 * fits the required allocation, and reduce it by the required
1984 * amount. Once empty, remove the range from the list.
1986 * To free a range of LPIs, add a free range to the list, sort it and
1987 * merge the result if the new range happens to be adjacent to an
1988 * already free block.
1990 * The consequence of the above is that allocation is cost is low, but
1991 * freeing is expensive. We assumes that freeing rarely occurs.
1993 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1995 static DEFINE_MUTEX(lpi_range_lock
);
1996 static LIST_HEAD(lpi_range_list
);
1999 struct list_head entry
;
2004 static struct lpi_range
*mk_lpi_range(u32 base
, u32 span
)
2006 struct lpi_range
*range
;
2008 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2010 range
->base_id
= base
;
2017 static int alloc_lpi_range(u32 nr_lpis
, u32
*base
)
2019 struct lpi_range
*range
, *tmp
;
2022 mutex_lock(&lpi_range_lock
);
2024 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
2025 if (range
->span
>= nr_lpis
) {
2026 *base
= range
->base_id
;
2027 range
->base_id
+= nr_lpis
;
2028 range
->span
-= nr_lpis
;
2030 if (range
->span
== 0) {
2031 list_del(&range
->entry
);
2040 mutex_unlock(&lpi_range_lock
);
2042 pr_debug("ITS: alloc %u:%u\n", *base
, nr_lpis
);
2046 static void merge_lpi_ranges(struct lpi_range
*a
, struct lpi_range
*b
)
2048 if (&a
->entry
== &lpi_range_list
|| &b
->entry
== &lpi_range_list
)
2050 if (a
->base_id
+ a
->span
!= b
->base_id
)
2052 b
->base_id
= a
->base_id
;
2054 list_del(&a
->entry
);
2058 static int free_lpi_range(u32 base
, u32 nr_lpis
)
2060 struct lpi_range
*new, *old
;
2062 new = mk_lpi_range(base
, nr_lpis
);
2066 mutex_lock(&lpi_range_lock
);
2068 list_for_each_entry_reverse(old
, &lpi_range_list
, entry
) {
2069 if (old
->base_id
< base
)
2073 * old is the last element with ->base_id smaller than base,
2074 * so new goes right after it. If there are no elements with
2075 * ->base_id smaller than base, &old->entry ends up pointing
2076 * at the head of the list, and inserting new it the start of
2077 * the list is the right thing to do in that case as well.
2079 list_add(&new->entry
, &old
->entry
);
2081 * Now check if we can merge with the preceding and/or
2084 merge_lpi_ranges(old
, new);
2085 merge_lpi_ranges(new, list_next_entry(new, entry
));
2087 mutex_unlock(&lpi_range_lock
);
2091 static int __init
its_lpi_init(u32 id_bits
)
2093 u32 lpis
= (1UL << id_bits
) - 8192;
2097 numlpis
= 1UL << GICD_TYPER_NUM_LPIS(gic_rdists
->gicd_typer
);
2099 if (numlpis
> 2 && !WARN_ON(numlpis
> lpis
)) {
2101 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2106 * Initializing the allocator is just the same as freeing the
2107 * full range of LPIs.
2109 err
= free_lpi_range(8192, lpis
);
2110 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis
);
2114 static unsigned long *its_lpi_alloc(int nr_irqs
, u32
*base
, int *nr_ids
)
2116 unsigned long *bitmap
= NULL
;
2120 err
= alloc_lpi_range(nr_irqs
, base
);
2125 } while (nr_irqs
> 0);
2133 bitmap
= kcalloc(BITS_TO_LONGS(nr_irqs
), sizeof (long), GFP_ATOMIC
);
2141 *base
= *nr_ids
= 0;
2146 static void its_lpi_free(unsigned long *bitmap
, u32 base
, u32 nr_ids
)
2148 WARN_ON(free_lpi_range(base
, nr_ids
));
2152 static void gic_reset_prop_table(void *va
)
2154 /* Priority 0xa0, Group-1, disabled */
2155 memset(va
, LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
, LPI_PROPBASE_SZ
);
2157 /* Make sure the GIC will observe the written configuration */
2158 gic_flush_dcache_to_poc(va
, LPI_PROPBASE_SZ
);
2161 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
2163 struct page
*prop_page
;
2165 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
2169 gic_reset_prop_table(page_address(prop_page
));
2174 static void its_free_prop_table(struct page
*prop_page
)
2176 free_pages((unsigned long)page_address(prop_page
),
2177 get_order(LPI_PROPBASE_SZ
));
2180 static bool gic_check_reserved_range(phys_addr_t addr
, unsigned long size
)
2182 phys_addr_t start
, end
, addr_end
;
2186 * We don't bother checking for a kdump kernel as by
2187 * construction, the LPI tables are out of this kernel's
2190 if (is_kdump_kernel())
2193 addr_end
= addr
+ size
- 1;
2195 for_each_reserved_mem_region(i
, &start
, &end
) {
2196 if (addr
>= start
&& addr_end
<= end
)
2200 /* Not found, not a good sign... */
2201 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2203 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
2207 static int gic_reserve_range(phys_addr_t addr
, unsigned long size
)
2209 if (efi_enabled(EFI_CONFIG_TABLES
))
2210 return efi_mem_reserve_persistent(addr
, size
);
2215 static int __init
its_setup_lpi_prop_table(void)
2217 if (gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
) {
2220 val
= gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER
);
2221 lpi_id_bits
= (val
& GICR_PROPBASER_IDBITS_MASK
) + 1;
2223 gic_rdists
->prop_table_pa
= val
& GENMASK_ULL(51, 12);
2224 gic_rdists
->prop_table_va
= memremap(gic_rdists
->prop_table_pa
,
2227 gic_reset_prop_table(gic_rdists
->prop_table_va
);
2231 lpi_id_bits
= min_t(u32
,
2232 GICD_TYPER_ID_BITS(gic_rdists
->gicd_typer
),
2233 ITS_MAX_LPI_NRBITS
);
2234 page
= its_allocate_prop_table(GFP_NOWAIT
);
2236 pr_err("Failed to allocate PROPBASE\n");
2240 gic_rdists
->prop_table_pa
= page_to_phys(page
);
2241 gic_rdists
->prop_table_va
= page_address(page
);
2242 WARN_ON(gic_reserve_range(gic_rdists
->prop_table_pa
,
2246 pr_info("GICv3: using LPI property table @%pa\n",
2247 &gic_rdists
->prop_table_pa
);
2249 return its_lpi_init(lpi_id_bits
);
2252 static const char *its_base_type_string
[] = {
2253 [GITS_BASER_TYPE_DEVICE
] = "Devices",
2254 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
2255 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
2256 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
2257 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
2258 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
2259 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
2262 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
2264 u32 idx
= baser
- its
->tables
;
2266 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
2269 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
2272 u32 idx
= baser
- its
->tables
;
2274 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
2275 baser
->val
= its_read_baser(its
, baser
);
2278 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
2279 u64 cache
, u64 shr
, u32 order
, bool indirect
)
2281 u64 val
= its_read_baser(its
, baser
);
2282 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
2283 u64 type
= GITS_BASER_TYPE(val
);
2284 u64 baser_phys
, tmp
;
2285 u32 alloc_pages
, psz
;
2290 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
2291 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
2292 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2293 &its
->phys_base
, its_base_type_string
[type
],
2294 alloc_pages
, GITS_BASER_PAGES_MAX
);
2295 alloc_pages
= GITS_BASER_PAGES_MAX
;
2296 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
2299 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
, order
);
2303 base
= (void *)page_address(page
);
2304 baser_phys
= virt_to_phys(base
);
2306 /* Check if the physical address of the memory is above 48bits */
2307 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES
) && (baser_phys
>> 48)) {
2309 /* 52bit PA is supported only when PageSize=64K */
2310 if (psz
!= SZ_64K
) {
2311 pr_err("ITS: no 52bit PA support when psz=%d\n", psz
);
2312 free_pages((unsigned long)base
, order
);
2316 /* Convert 52bit PA to 48bit field */
2317 baser_phys
= GITS_BASER_PHYS_52_to_48(baser_phys
);
2322 (type
<< GITS_BASER_TYPE_SHIFT
) |
2323 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
2324 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
2329 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
2333 val
|= GITS_BASER_PAGE_SIZE_4K
;
2336 val
|= GITS_BASER_PAGE_SIZE_16K
;
2339 val
|= GITS_BASER_PAGE_SIZE_64K
;
2343 its_write_baser(its
, baser
, val
);
2346 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
2348 * Shareability didn't stick. Just use
2349 * whatever the read reported, which is likely
2350 * to be the only thing this redistributor
2351 * supports. If that's zero, make it
2352 * non-cacheable as well.
2354 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
2356 cache
= GITS_BASER_nC
;
2357 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
2363 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2364 &its
->phys_base
, its_base_type_string
[type
],
2366 free_pages((unsigned long)base
, order
);
2370 baser
->order
= order
;
2373 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
2375 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2376 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
2377 its_base_type_string
[type
],
2378 (unsigned long)virt_to_phys(base
),
2379 indirect
? "indirect" : "flat", (int)esz
,
2380 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
2385 static bool its_parse_indirect_baser(struct its_node
*its
,
2386 struct its_baser
*baser
,
2387 u32
*order
, u32 ids
)
2389 u64 tmp
= its_read_baser(its
, baser
);
2390 u64 type
= GITS_BASER_TYPE(tmp
);
2391 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
2392 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
2393 u32 new_order
= *order
;
2394 u32 psz
= baser
->psz
;
2395 bool indirect
= false;
2397 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2398 if ((esz
<< ids
) > (psz
* 2)) {
2400 * Find out whether hw supports a single or two-level table by
2401 * table by reading bit at offset '62' after writing '1' to it.
2403 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
2404 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
2408 * The size of the lvl2 table is equal to ITS page size
2409 * which is 'psz'. For computing lvl1 table size,
2410 * subtract ID bits that sparse lvl2 table from 'ids'
2411 * which is reported by ITS hardware times lvl1 table
2414 ids
-= ilog2(psz
/ (int)esz
);
2415 esz
= GITS_LVL1_ENTRY_SIZE
;
2420 * Allocate as many entries as required to fit the
2421 * range of device IDs that the ITS can grok... The ID
2422 * space being incredibly sparse, this results in a
2423 * massive waste of memory if two-level device table
2424 * feature is not supported by hardware.
2426 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
2427 if (new_order
>= MAX_ORDER
) {
2428 new_order
= MAX_ORDER
- 1;
2429 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
2430 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2431 &its
->phys_base
, its_base_type_string
[type
],
2432 device_ids(its
), ids
);
2440 static u32
compute_common_aff(u64 val
)
2444 aff
= FIELD_GET(GICR_TYPER_AFFINITY
, val
);
2445 clpiaff
= FIELD_GET(GICR_TYPER_COMMON_LPI_AFF
, val
);
2447 return aff
& ~(GENMASK(31, 0) >> (clpiaff
* 8));
2450 static u32
compute_its_aff(struct its_node
*its
)
2456 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2457 * the resulting affinity. We then use that to see if this match
2460 svpet
= FIELD_GET(GITS_TYPER_SVPET
, its
->typer
);
2461 val
= FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF
, svpet
);
2462 val
|= FIELD_PREP(GICR_TYPER_AFFINITY
, its
->mpidr
);
2463 return compute_common_aff(val
);
2466 static struct its_node
*find_sibling_its(struct its_node
*cur_its
)
2468 struct its_node
*its
;
2471 if (!FIELD_GET(GITS_TYPER_SVPET
, cur_its
->typer
))
2474 aff
= compute_its_aff(cur_its
);
2476 list_for_each_entry(its
, &its_nodes
, entry
) {
2479 if (!is_v4_1(its
) || its
== cur_its
)
2482 if (!FIELD_GET(GITS_TYPER_SVPET
, its
->typer
))
2485 if (aff
!= compute_its_aff(its
))
2488 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2489 baser
= its
->tables
[2].val
;
2490 if (!(baser
& GITS_BASER_VALID
))
2499 static void its_free_tables(struct its_node
*its
)
2503 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2504 if (its
->tables
[i
].base
) {
2505 free_pages((unsigned long)its
->tables
[i
].base
,
2506 its
->tables
[i
].order
);
2507 its
->tables
[i
].base
= NULL
;
2512 static int its_probe_baser_psz(struct its_node
*its
, struct its_baser
*baser
)
2519 val
= its_read_baser(its
, baser
);
2520 val
&= ~GITS_BASER_PAGE_SIZE_MASK
;
2524 gpsz
= GITS_BASER_PAGE_SIZE_64K
;
2527 gpsz
= GITS_BASER_PAGE_SIZE_16K
;
2531 gpsz
= GITS_BASER_PAGE_SIZE_4K
;
2535 gpsz
>>= GITS_BASER_PAGE_SIZE_SHIFT
;
2537 val
|= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK
, gpsz
);
2538 its_write_baser(its
, baser
, val
);
2540 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
->val
) == gpsz
)
2560 static int its_alloc_tables(struct its_node
*its
)
2562 u64 shr
= GITS_BASER_InnerShareable
;
2563 u64 cache
= GITS_BASER_RaWaWb
;
2566 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
)
2567 /* erratum 24313: ignore memory access type */
2568 cache
= GITS_BASER_nCnB
;
2570 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2571 struct its_baser
*baser
= its
->tables
+ i
;
2572 u64 val
= its_read_baser(its
, baser
);
2573 u64 type
= GITS_BASER_TYPE(val
);
2574 bool indirect
= false;
2577 if (type
== GITS_BASER_TYPE_NONE
)
2580 if (its_probe_baser_psz(its
, baser
)) {
2581 its_free_tables(its
);
2585 order
= get_order(baser
->psz
);
2588 case GITS_BASER_TYPE_DEVICE
:
2589 indirect
= its_parse_indirect_baser(its
, baser
, &order
,
2593 case GITS_BASER_TYPE_VCPU
:
2595 struct its_node
*sibling
;
2598 if ((sibling
= find_sibling_its(its
))) {
2599 *baser
= sibling
->tables
[2];
2600 its_write_baser(its
, baser
, baser
->val
);
2605 indirect
= its_parse_indirect_baser(its
, baser
, &order
,
2606 ITS_MAX_VPEID_BITS
);
2610 err
= its_setup_baser(its
, baser
, cache
, shr
, order
, indirect
);
2612 its_free_tables(its
);
2616 /* Update settings which will be used for next BASERn */
2617 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
2618 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
2624 static u64
inherit_vpe_l1_table_from_its(void)
2626 struct its_node
*its
;
2630 val
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2631 aff
= compute_common_aff(val
);
2633 list_for_each_entry(its
, &its_nodes
, entry
) {
2639 if (!FIELD_GET(GITS_TYPER_SVPET
, its
->typer
))
2642 if (aff
!= compute_its_aff(its
))
2645 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2646 baser
= its
->tables
[2].val
;
2647 if (!(baser
& GITS_BASER_VALID
))
2650 /* We have a winner! */
2651 gic_data_rdist()->vpe_l1_base
= its
->tables
[2].base
;
2653 val
= GICR_VPROPBASER_4_1_VALID
;
2654 if (baser
& GITS_BASER_INDIRECT
)
2655 val
|= GICR_VPROPBASER_4_1_INDIRECT
;
2656 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
,
2657 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
));
2658 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
)) {
2659 case GIC_PAGE_SIZE_64K
:
2660 addr
= GITS_BASER_ADDR_48_to_52(baser
);
2663 addr
= baser
& GENMASK_ULL(47, 12);
2666 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR
, addr
>> 12);
2667 val
|= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK
,
2668 FIELD_GET(GITS_BASER_SHAREABILITY_MASK
, baser
));
2669 val
|= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK
,
2670 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK
, baser
));
2671 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE
, GITS_BASER_NR_PAGES(baser
) - 1);
2679 static u64
inherit_vpe_l1_table_from_rd(cpumask_t
**mask
)
2685 val
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2686 aff
= compute_common_aff(val
);
2688 for_each_possible_cpu(cpu
) {
2689 void __iomem
*base
= gic_data_rdist_cpu(cpu
)->rd_base
;
2691 if (!base
|| cpu
== smp_processor_id())
2694 val
= gic_read_typer(base
+ GICR_TYPER
);
2695 if (aff
!= compute_common_aff(val
))
2699 * At this point, we have a victim. This particular CPU
2700 * has already booted, and has an affinity that matches
2701 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2702 * Make sure we don't write the Z bit in that case.
2704 val
= gicr_read_vpropbaser(base
+ SZ_128K
+ GICR_VPROPBASER
);
2705 val
&= ~GICR_VPROPBASER_4_1_Z
;
2707 gic_data_rdist()->vpe_l1_base
= gic_data_rdist_cpu(cpu
)->vpe_l1_base
;
2708 *mask
= gic_data_rdist_cpu(cpu
)->vpe_table_mask
;
2716 static bool allocate_vpe_l2_table(int cpu
, u32 id
)
2718 void __iomem
*base
= gic_data_rdist_cpu(cpu
)->rd_base
;
2719 unsigned int psz
, esz
, idx
, npg
, gpsz
;
2724 if (!gic_rdists
->has_rvpeid
)
2727 /* Skip non-present CPUs */
2731 val
= gicr_read_vpropbaser(base
+ SZ_128K
+ GICR_VPROPBASER
);
2733 esz
= FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE
, val
) + 1;
2734 gpsz
= FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE
, val
);
2735 npg
= FIELD_GET(GICR_VPROPBASER_4_1_SIZE
, val
) + 1;
2741 case GIC_PAGE_SIZE_4K
:
2744 case GIC_PAGE_SIZE_16K
:
2747 case GIC_PAGE_SIZE_64K
:
2752 /* Don't allow vpe_id that exceeds single, flat table limit */
2753 if (!(val
& GICR_VPROPBASER_4_1_INDIRECT
))
2754 return (id
< (npg
* psz
/ (esz
* SZ_8
)));
2756 /* Compute 1st level table index & check if that exceeds table limit */
2757 idx
= id
>> ilog2(psz
/ (esz
* SZ_8
));
2758 if (idx
>= (npg
* psz
/ GITS_LVL1_ENTRY_SIZE
))
2761 table
= gic_data_rdist_cpu(cpu
)->vpe_l1_base
;
2763 /* Allocate memory for 2nd level table */
2765 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(psz
));
2769 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2770 if (!(val
& GICR_VPROPBASER_SHAREABILITY_MASK
))
2771 gic_flush_dcache_to_poc(page_address(page
), psz
);
2773 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
2775 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2776 if (!(val
& GICR_VPROPBASER_SHAREABILITY_MASK
))
2777 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
2779 /* Ensure updated table contents are visible to RD hardware */
2786 static int allocate_vpe_l1_table(void)
2788 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2789 u64 val
, gpsz
, npg
, pa
;
2790 unsigned int psz
= SZ_64K
;
2791 unsigned int np
, epp
, esz
;
2794 if (!gic_rdists
->has_rvpeid
)
2798 * if VPENDBASER.Valid is set, disable any previously programmed
2799 * VPE by setting PendingLast while clearing Valid. This has the
2800 * effect of making sure no doorbell will be generated and we can
2801 * then safely clear VPROPBASER.Valid.
2803 if (gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
) & GICR_VPENDBASER_Valid
)
2804 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast
,
2805 vlpi_base
+ GICR_VPENDBASER
);
2808 * If we can inherit the configuration from another RD, let's do
2809 * so. Otherwise, we have to go through the allocation process. We
2810 * assume that all RDs have the exact same requirements, as
2811 * nothing will work otherwise.
2813 val
= inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask
);
2814 if (val
& GICR_VPROPBASER_4_1_VALID
)
2817 gic_data_rdist()->vpe_table_mask
= kzalloc(sizeof(cpumask_t
), GFP_ATOMIC
);
2818 if (!gic_data_rdist()->vpe_table_mask
)
2821 val
= inherit_vpe_l1_table_from_its();
2822 if (val
& GICR_VPROPBASER_4_1_VALID
)
2825 /* First probe the page size */
2826 val
= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
, GIC_PAGE_SIZE_64K
);
2827 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2828 val
= gicr_read_vpropbaser(vlpi_base
+ GICR_VPROPBASER
);
2829 gpsz
= FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE
, val
);
2830 esz
= FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE
, val
);
2834 gpsz
= GIC_PAGE_SIZE_4K
;
2836 case GIC_PAGE_SIZE_4K
:
2839 case GIC_PAGE_SIZE_16K
:
2842 case GIC_PAGE_SIZE_64K
:
2848 * Start populating the register from scratch, including RO fields
2849 * (which we want to print in debug cases...)
2852 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
, gpsz
);
2853 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE
, esz
);
2855 /* How many entries per GIC page? */
2857 epp
= psz
/ (esz
* SZ_8
);
2860 * If we need more than just a single L1 page, flag the table
2861 * as indirect and compute the number of required L1 pages.
2863 if (epp
< ITS_MAX_VPEID
) {
2866 val
|= GICR_VPROPBASER_4_1_INDIRECT
;
2868 /* Number of L2 pages required to cover the VPEID space */
2869 nl2
= DIV_ROUND_UP(ITS_MAX_VPEID
, epp
);
2871 /* Number of L1 pages to point to the L2 pages */
2872 npg
= DIV_ROUND_UP(nl2
* SZ_8
, psz
);
2877 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE
, npg
- 1);
2879 /* Right, that's the number of CPU pages we need for L1 */
2880 np
= DIV_ROUND_UP(npg
* psz
, PAGE_SIZE
);
2882 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2883 np
, npg
, psz
, epp
, esz
);
2884 page
= alloc_pages(GFP_ATOMIC
| __GFP_ZERO
, get_order(np
* PAGE_SIZE
));
2888 gic_data_rdist()->vpe_l1_base
= page_address(page
);
2889 pa
= virt_to_phys(page_address(page
));
2890 WARN_ON(!IS_ALIGNED(pa
, psz
));
2892 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR
, pa
>> 12);
2893 val
|= GICR_VPROPBASER_RaWb
;
2894 val
|= GICR_VPROPBASER_InnerShareable
;
2895 val
|= GICR_VPROPBASER_4_1_Z
;
2896 val
|= GICR_VPROPBASER_4_1_VALID
;
2899 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2900 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask
);
2902 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2903 smp_processor_id(), val
,
2904 cpumask_pr_args(gic_data_rdist()->vpe_table_mask
));
2909 static int its_alloc_collections(struct its_node
*its
)
2913 its
->collections
= kcalloc(nr_cpu_ids
, sizeof(*its
->collections
),
2915 if (!its
->collections
)
2918 for (i
= 0; i
< nr_cpu_ids
; i
++)
2919 its
->collections
[i
].target_address
= ~0ULL;
2924 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
2926 struct page
*pend_page
;
2928 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
2929 get_order(LPI_PENDBASE_SZ
));
2933 /* Make sure the GIC will observe the zero-ed page */
2934 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
2939 static void its_free_pending_table(struct page
*pt
)
2941 free_pages((unsigned long)page_address(pt
), get_order(LPI_PENDBASE_SZ
));
2945 * Booting with kdump and LPIs enabled is generally fine. Any other
2946 * case is wrong in the absence of firmware/EFI support.
2948 static bool enabled_lpis_allowed(void)
2953 /* Check whether the property table is in a reserved region */
2954 val
= gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER
);
2955 addr
= val
& GENMASK_ULL(51, 12);
2957 return gic_check_reserved_range(addr
, LPI_PROPBASE_SZ
);
2960 static int __init
allocate_lpi_tables(void)
2966 * If LPIs are enabled while we run this from the boot CPU,
2967 * flag the RD tables as pre-allocated if the stars do align.
2969 val
= readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR
);
2970 if ((val
& GICR_CTLR_ENABLE_LPIS
) && enabled_lpis_allowed()) {
2971 gic_rdists
->flags
|= (RDIST_FLAGS_RD_TABLES_PREALLOCATED
|
2972 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
);
2973 pr_info("GICv3: Using preallocated redistributor tables\n");
2976 err
= its_setup_lpi_prop_table();
2981 * We allocate all the pending tables anyway, as we may have a
2982 * mix of RDs that have had LPIs enabled, and some that
2983 * don't. We'll free the unused ones as each CPU comes online.
2985 for_each_possible_cpu(cpu
) {
2986 struct page
*pend_page
;
2988 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
2990 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu
);
2994 gic_data_rdist_cpu(cpu
)->pend_page
= pend_page
;
3000 static u64
its_clear_vpend_valid(void __iomem
*vlpi_base
, u64 clr
, u64 set
)
3002 u32 count
= 1000000; /* 1s! */
3006 val
= gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
3007 val
&= ~GICR_VPENDBASER_Valid
;
3010 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
3013 val
= gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
3014 clean
= !(val
& GICR_VPENDBASER_Dirty
);
3020 } while (!clean
&& count
);
3022 if (unlikely(val
& GICR_VPENDBASER_Dirty
)) {
3023 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3024 val
|= GICR_VPENDBASER_PendingLast
;
3030 static void its_cpu_init_lpis(void)
3032 void __iomem
*rbase
= gic_data_rdist_rd_base();
3033 struct page
*pend_page
;
3037 if (gic_data_rdist()->lpi_enabled
)
3040 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3041 if ((gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
) &&
3042 (val
& GICR_CTLR_ENABLE_LPIS
)) {
3044 * Check that we get the same property table on all
3045 * RDs. If we don't, this is hopeless.
3047 paddr
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
3048 paddr
&= GENMASK_ULL(51, 12);
3049 if (WARN_ON(gic_rdists
->prop_table_pa
!= paddr
))
3050 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
3052 paddr
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
3053 paddr
&= GENMASK_ULL(51, 16);
3055 WARN_ON(!gic_check_reserved_range(paddr
, LPI_PENDBASE_SZ
));
3056 its_free_pending_table(gic_data_rdist()->pend_page
);
3057 gic_data_rdist()->pend_page
= NULL
;
3062 pend_page
= gic_data_rdist()->pend_page
;
3063 paddr
= page_to_phys(pend_page
);
3064 WARN_ON(gic_reserve_range(paddr
, LPI_PENDBASE_SZ
));
3067 val
= (gic_rdists
->prop_table_pa
|
3068 GICR_PROPBASER_InnerShareable
|
3069 GICR_PROPBASER_RaWaWb
|
3070 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
3072 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
3073 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
3075 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
3076 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
3078 * The HW reports non-shareable, we must
3079 * remove the cacheability attributes as
3082 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
3083 GICR_PROPBASER_CACHEABILITY_MASK
);
3084 val
|= GICR_PROPBASER_nC
;
3085 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
3087 pr_info_once("GIC: using cache flushing for LPI property table\n");
3088 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
3092 val
= (page_to_phys(pend_page
) |
3093 GICR_PENDBASER_InnerShareable
|
3094 GICR_PENDBASER_RaWaWb
);
3096 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
3097 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
3099 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
3101 * The HW reports non-shareable, we must remove the
3102 * cacheability attributes as well.
3104 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
3105 GICR_PENDBASER_CACHEABILITY_MASK
);
3106 val
|= GICR_PENDBASER_nC
;
3107 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
3111 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3112 val
|= GICR_CTLR_ENABLE_LPIS
;
3113 writel_relaxed(val
, rbase
+ GICR_CTLR
);
3115 if (gic_rdists
->has_vlpis
&& !gic_rdists
->has_rvpeid
) {
3116 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3119 * It's possible for CPU to receive VLPIs before it is
3120 * sheduled as a vPE, especially for the first CPU, and the
3121 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3122 * as out of range and dropped by GIC.
3123 * So we initialize IDbits to known value to avoid VLPI drop.
3125 val
= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
3126 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3127 smp_processor_id(), val
);
3128 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
3131 * Also clear Valid bit of GICR_VPENDBASER, in case some
3132 * ancient programming gets left in and has possibility of
3133 * corrupting memory.
3135 val
= its_clear_vpend_valid(vlpi_base
, 0, 0);
3138 if (allocate_vpe_l1_table()) {
3140 * If the allocation has failed, we're in massive trouble.
3141 * Disable direct injection, and pray that no VM was
3142 * already running...
3144 gic_rdists
->has_rvpeid
= false;
3145 gic_rdists
->has_vlpis
= false;
3148 /* Make sure the GIC has seen the above */
3151 gic_data_rdist()->lpi_enabled
= true;
3152 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3154 gic_data_rdist()->pend_page
? "allocated" : "reserved",
3158 static void its_cpu_init_collection(struct its_node
*its
)
3160 int cpu
= smp_processor_id();
3163 /* avoid cross node collections and its mapping */
3164 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
3165 struct device_node
*cpu_node
;
3167 cpu_node
= of_get_cpu_node(cpu
, NULL
);
3168 if (its
->numa_node
!= NUMA_NO_NODE
&&
3169 its
->numa_node
!= of_node_to_nid(cpu_node
))
3174 * We now have to bind each collection to its target
3177 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
3179 * This ITS wants the physical address of the
3182 target
= gic_data_rdist()->phys_base
;
3184 /* This ITS wants a linear CPU number. */
3185 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
3186 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
3189 /* Perform collection mapping */
3190 its
->collections
[cpu
].target_address
= target
;
3191 its
->collections
[cpu
].col_id
= cpu
;
3193 its_send_mapc(its
, &its
->collections
[cpu
], 1);
3194 its_send_invall(its
, &its
->collections
[cpu
]);
3197 static void its_cpu_init_collections(void)
3199 struct its_node
*its
;
3201 raw_spin_lock(&its_lock
);
3203 list_for_each_entry(its
, &its_nodes
, entry
)
3204 its_cpu_init_collection(its
);
3206 raw_spin_unlock(&its_lock
);
3209 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
3211 struct its_device
*its_dev
= NULL
, *tmp
;
3212 unsigned long flags
;
3214 raw_spin_lock_irqsave(&its
->lock
, flags
);
3216 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
3217 if (tmp
->device_id
== dev_id
) {
3223 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
3228 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
3232 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
3233 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
3234 return &its
->tables
[i
];
3240 static bool its_alloc_table_entry(struct its_node
*its
,
3241 struct its_baser
*baser
, u32 id
)
3247 /* Don't allow device id that exceeds single, flat table limit */
3248 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
3249 if (!(baser
->val
& GITS_BASER_INDIRECT
))
3250 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
3252 /* Compute 1st level table index & check if that exceeds table limit */
3253 idx
= id
>> ilog2(baser
->psz
/ esz
);
3254 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
3257 table
= baser
->base
;
3259 /* Allocate memory for 2nd level table */
3261 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
,
3262 get_order(baser
->psz
));
3266 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3267 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
3268 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
3270 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
3272 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3273 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
3274 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
3276 /* Ensure updated table contents are visible to ITS hardware */
3283 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
3285 struct its_baser
*baser
;
3287 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
3289 /* Don't allow device id that exceeds ITS hardware limit */
3291 return (ilog2(dev_id
) < device_ids(its
));
3293 return its_alloc_table_entry(its
, baser
, dev_id
);
3296 static bool its_alloc_vpe_table(u32 vpe_id
)
3298 struct its_node
*its
;
3302 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3303 * could try and only do it on ITSs corresponding to devices
3304 * that have interrupts targeted at this VPE, but the
3305 * complexity becomes crazy (and you have tons of memory
3308 list_for_each_entry(its
, &its_nodes
, entry
) {
3309 struct its_baser
*baser
;
3314 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
3318 if (!its_alloc_table_entry(its
, baser
, vpe_id
))
3322 /* Non v4.1? No need to iterate RDs and go back early. */
3323 if (!gic_rdists
->has_rvpeid
)
3327 * Make sure the L2 tables are allocated for all copies of
3328 * the L1 table on *all* v4.1 RDs.
3330 for_each_possible_cpu(cpu
) {
3331 if (!allocate_vpe_l2_table(cpu
, vpe_id
))
3338 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
3339 int nvecs
, bool alloc_lpis
)
3341 struct its_device
*dev
;
3342 unsigned long *lpi_map
= NULL
;
3343 unsigned long flags
;
3344 u16
*col_map
= NULL
;
3351 if (!its_alloc_device_table(its
, dev_id
))
3354 if (WARN_ON(!is_power_of_2(nvecs
)))
3355 nvecs
= roundup_pow_of_two(nvecs
);
3357 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
3359 * Even if the device wants a single LPI, the ITT must be
3360 * sized as a power of two (and you need at least one bit...).
3362 nr_ites
= max(2, nvecs
);
3363 sz
= nr_ites
* (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE
, its
->typer
) + 1);
3364 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
3365 itt
= kzalloc_node(sz
, GFP_KERNEL
, its
->numa_node
);
3367 lpi_map
= its_lpi_alloc(nvecs
, &lpi_base
, &nr_lpis
);
3369 col_map
= kcalloc(nr_lpis
, sizeof(*col_map
),
3372 col_map
= kcalloc(nr_ites
, sizeof(*col_map
), GFP_KERNEL
);
3377 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
3385 gic_flush_dcache_to_poc(itt
, sz
);
3389 dev
->nr_ites
= nr_ites
;
3390 dev
->event_map
.lpi_map
= lpi_map
;
3391 dev
->event_map
.col_map
= col_map
;
3392 dev
->event_map
.lpi_base
= lpi_base
;
3393 dev
->event_map
.nr_lpis
= nr_lpis
;
3394 raw_spin_lock_init(&dev
->event_map
.vlpi_lock
);
3395 dev
->device_id
= dev_id
;
3396 INIT_LIST_HEAD(&dev
->entry
);
3398 raw_spin_lock_irqsave(&its
->lock
, flags
);
3399 list_add(&dev
->entry
, &its
->its_device_list
);
3400 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
3402 /* Map device to its ITT */
3403 its_send_mapd(dev
, 1);
3408 static void its_free_device(struct its_device
*its_dev
)
3410 unsigned long flags
;
3412 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
3413 list_del(&its_dev
->entry
);
3414 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
3415 kfree(its_dev
->event_map
.col_map
);
3416 kfree(its_dev
->itt
);
3420 static int its_alloc_device_irq(struct its_device
*dev
, int nvecs
, irq_hw_number_t
*hwirq
)
3424 /* Find a free LPI region in lpi_map and allocate them. */
3425 idx
= bitmap_find_free_region(dev
->event_map
.lpi_map
,
3426 dev
->event_map
.nr_lpis
,
3427 get_count_order(nvecs
));
3431 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
3436 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
3437 int nvec
, msi_alloc_info_t
*info
)
3439 struct its_node
*its
;
3440 struct its_device
*its_dev
;
3441 struct msi_domain_info
*msi_info
;
3446 * We ignore "dev" entirely, and rely on the dev_id that has
3447 * been passed via the scratchpad. This limits this domain's
3448 * usefulness to upper layers that definitely know that they
3449 * are built on top of the ITS.
3451 dev_id
= info
->scratchpad
[0].ul
;
3453 msi_info
= msi_get_domain_info(domain
);
3454 its
= msi_info
->data
;
3456 if (!gic_rdists
->has_direct_lpi
&&
3458 vpe_proxy
.dev
->its
== its
&&
3459 dev_id
== vpe_proxy
.dev
->device_id
) {
3460 /* Bad luck. Get yourself a better implementation */
3461 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3466 mutex_lock(&its
->dev_alloc_lock
);
3467 its_dev
= its_find_device(its
, dev_id
);
3470 * We already have seen this ID, probably through
3471 * another alias (PCI bridge of some sort). No need to
3472 * create the device.
3474 its_dev
->shared
= true;
3475 pr_debug("Reusing ITT for devID %x\n", dev_id
);
3479 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
3485 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
3487 mutex_unlock(&its
->dev_alloc_lock
);
3488 info
->scratchpad
[0].ptr
= its_dev
;
3492 static struct msi_domain_ops its_msi_domain_ops
= {
3493 .msi_prepare
= its_msi_prepare
,
3496 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
3498 irq_hw_number_t hwirq
)
3500 struct irq_fwspec fwspec
;
3502 if (irq_domain_get_of_node(domain
->parent
)) {
3503 fwspec
.fwnode
= domain
->parent
->fwnode
;
3504 fwspec
.param_count
= 3;
3505 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
3506 fwspec
.param
[1] = hwirq
;
3507 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
3508 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
3509 fwspec
.fwnode
= domain
->parent
->fwnode
;
3510 fwspec
.param_count
= 2;
3511 fwspec
.param
[0] = hwirq
;
3512 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
3517 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
3520 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
3521 unsigned int nr_irqs
, void *args
)
3523 msi_alloc_info_t
*info
= args
;
3524 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
3525 struct its_node
*its
= its_dev
->its
;
3526 struct irq_data
*irqd
;
3527 irq_hw_number_t hwirq
;
3531 err
= its_alloc_device_irq(its_dev
, nr_irqs
, &hwirq
);
3535 err
= iommu_dma_prepare_msi(info
->desc
, its
->get_msi_base(its_dev
));
3539 for (i
= 0; i
< nr_irqs
; i
++) {
3540 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
+ i
);
3544 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
3545 hwirq
+ i
, &its_irq_chip
, its_dev
);
3546 irqd
= irq_get_irq_data(virq
+ i
);
3547 irqd_set_single_target(irqd
);
3548 irqd_set_affinity_on_activate(irqd
);
3549 pr_debug("ID:%d pID:%d vID:%d\n",
3550 (int)(hwirq
+ i
- its_dev
->event_map
.lpi_base
),
3551 (int)(hwirq
+ i
), virq
+ i
);
3557 static int its_irq_domain_activate(struct irq_domain
*domain
,
3558 struct irq_data
*d
, bool reserve
)
3560 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3561 u32 event
= its_get_event_id(d
);
3564 cpu
= its_select_cpu(d
, cpu_online_mask
);
3565 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
3568 its_inc_lpi_count(d
, cpu
);
3569 its_dev
->event_map
.col_map
[event
] = cpu
;
3570 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
3572 /* Map the GIC IRQ and event to the device */
3573 its_send_mapti(its_dev
, d
->hwirq
, event
);
3577 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
3580 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3581 u32 event
= its_get_event_id(d
);
3583 its_dec_lpi_count(d
, its_dev
->event_map
.col_map
[event
]);
3584 /* Stop the delivery of interrupts */
3585 its_send_discard(its_dev
, event
);
3588 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
3589 unsigned int nr_irqs
)
3591 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
3592 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3593 struct its_node
*its
= its_dev
->its
;
3596 bitmap_release_region(its_dev
->event_map
.lpi_map
,
3597 its_get_event_id(irq_domain_get_irq_data(domain
, virq
)),
3598 get_count_order(nr_irqs
));
3600 for (i
= 0; i
< nr_irqs
; i
++) {
3601 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
3603 /* Nuke the entry in the domain */
3604 irq_domain_reset_irq_data(data
);
3607 mutex_lock(&its
->dev_alloc_lock
);
3610 * If all interrupts have been freed, start mopping the
3611 * floor. This is conditionned on the device not being shared.
3613 if (!its_dev
->shared
&&
3614 bitmap_empty(its_dev
->event_map
.lpi_map
,
3615 its_dev
->event_map
.nr_lpis
)) {
3616 its_lpi_free(its_dev
->event_map
.lpi_map
,
3617 its_dev
->event_map
.lpi_base
,
3618 its_dev
->event_map
.nr_lpis
);
3620 /* Unmap device/itt */
3621 its_send_mapd(its_dev
, 0);
3622 its_free_device(its_dev
);
3625 mutex_unlock(&its
->dev_alloc_lock
);
3627 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
3630 static const struct irq_domain_ops its_domain_ops
= {
3631 .alloc
= its_irq_domain_alloc
,
3632 .free
= its_irq_domain_free
,
3633 .activate
= its_irq_domain_activate
,
3634 .deactivate
= its_irq_domain_deactivate
,
3640 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3641 * likely), the only way to perform an invalidate is to use a fake
3642 * device to issue an INV command, implying that the LPI has first
3643 * been mapped to some event on that device. Since this is not exactly
3644 * cheap, we try to keep that mapping around as long as possible, and
3645 * only issue an UNMAP if we're short on available slots.
3647 * Broken by design(tm).
3649 * GICv4.1, on the other hand, mandates that we're able to invalidate
3650 * by writing to a MMIO register. It doesn't implement the whole of
3651 * DirectLPI, but that's good enough. And most of the time, we don't
3652 * even have to invalidate anything, as the redistributor can be told
3653 * whether to generate a doorbell or not (we thus leave it enabled,
3656 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
3658 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3659 if (gic_rdists
->has_rvpeid
)
3662 /* Already unmapped? */
3663 if (vpe
->vpe_proxy_event
== -1)
3666 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
3667 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
3670 * We don't track empty slots at all, so let's move the
3671 * next_victim pointer if we can quickly reuse that slot
3672 * instead of nuking an existing entry. Not clear that this is
3673 * always a win though, and this might just generate a ripple
3674 * effect... Let's just hope VPEs don't migrate too often.
3676 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
3677 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
3679 vpe
->vpe_proxy_event
= -1;
3682 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
3684 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3685 if (gic_rdists
->has_rvpeid
)
3688 if (!gic_rdists
->has_direct_lpi
) {
3689 unsigned long flags
;
3691 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3692 its_vpe_db_proxy_unmap_locked(vpe
);
3693 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3697 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
3699 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3700 if (gic_rdists
->has_rvpeid
)
3703 /* Already mapped? */
3704 if (vpe
->vpe_proxy_event
!= -1)
3707 /* This slot was already allocated. Kick the other VPE out. */
3708 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
3709 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
3711 /* Map the new VPE instead */
3712 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
3713 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
3714 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
3716 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
3717 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
3720 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
3722 unsigned long flags
;
3723 struct its_collection
*target_col
;
3725 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3726 if (gic_rdists
->has_rvpeid
)
3729 if (gic_rdists
->has_direct_lpi
) {
3730 void __iomem
*rdbase
;
3732 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
3733 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
3734 wait_for_syncr(rdbase
);
3739 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3741 its_vpe_db_proxy_map_locked(vpe
);
3743 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
3744 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
3745 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
3747 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3750 static int its_vpe_set_affinity(struct irq_data
*d
,
3751 const struct cpumask
*mask_val
,
3754 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3755 int from
, cpu
= cpumask_first(mask_val
);
3756 unsigned long flags
;
3759 * Changing affinity is mega expensive, so let's be as lazy as
3760 * we can and only do it if we really have to. Also, if mapped
3761 * into the proxy device, we need to move the doorbell
3762 * interrupt to its new location.
3764 * Another thing is that changing the affinity of a vPE affects
3765 * *other interrupts* such as all the vLPIs that are routed to
3766 * this vPE. This means that the irq_desc lock is not enough to
3767 * protect us, and that we must ensure nobody samples vpe->col_idx
3768 * during the update, hence the lock below which must also be
3769 * taken on any vLPI handling path that evaluates vpe->col_idx.
3771 from
= vpe_to_cpuid_lock(vpe
, &flags
);
3778 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3779 * is sharing its VPE table with the current one.
3781 if (gic_data_rdist_cpu(cpu
)->vpe_table_mask
&&
3782 cpumask_test_cpu(from
, gic_data_rdist_cpu(cpu
)->vpe_table_mask
))
3785 its_send_vmovp(vpe
);
3786 its_vpe_db_proxy_move(vpe
, from
, cpu
);
3789 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
3790 vpe_to_cpuid_unlock(vpe
, flags
);
3792 return IRQ_SET_MASK_OK_DONE
;
3795 static void its_wait_vpt_parse_complete(void)
3797 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3800 if (!gic_rdists
->has_vpend_valid_dirty
)
3803 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base
+ GICR_VPENDBASER
,
3805 !(val
& GICR_VPENDBASER_Dirty
),
3809 static void its_vpe_schedule(struct its_vpe
*vpe
)
3811 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3814 /* Schedule the VPE */
3815 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
3816 GENMASK_ULL(51, 12);
3817 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
3818 val
|= GICR_VPROPBASER_RaWb
;
3819 val
|= GICR_VPROPBASER_InnerShareable
;
3820 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
3822 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
3823 GENMASK_ULL(51, 16);
3824 val
|= GICR_VPENDBASER_RaWaWb
;
3825 val
|= GICR_VPENDBASER_InnerShareable
;
3827 * There is no good way of finding out if the pending table is
3828 * empty as we can race against the doorbell interrupt very
3829 * easily. So in the end, vpe->pending_last is only an
3830 * indication that the vcpu has something pending, not one
3831 * that the pending table is empty. A good implementation
3832 * would be able to read its coarse map pretty quickly anyway,
3833 * making this a tolerable issue.
3835 val
|= GICR_VPENDBASER_PendingLast
;
3836 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
3837 val
|= GICR_VPENDBASER_Valid
;
3838 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
3840 its_wait_vpt_parse_complete();
3843 static void its_vpe_deschedule(struct its_vpe
*vpe
)
3845 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3848 val
= its_clear_vpend_valid(vlpi_base
, 0, 0);
3850 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
3851 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
3854 static void its_vpe_invall(struct its_vpe
*vpe
)
3856 struct its_node
*its
;
3858 list_for_each_entry(its
, &its_nodes
, entry
) {
3862 if (its_list_map
&& !vpe
->its_vm
->vlpi_count
[its
->list_nr
])
3866 * Sending a VINVALL to a single ITS is enough, as all
3867 * we need is to reach the redistributors.
3869 its_send_vinvall(its
, vpe
);
3874 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
3876 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3877 struct its_cmd_info
*info
= vcpu_info
;
3879 switch (info
->cmd_type
) {
3881 its_vpe_schedule(vpe
);
3884 case DESCHEDULE_VPE
:
3885 its_vpe_deschedule(vpe
);
3889 its_vpe_invall(vpe
);
3897 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
3898 void (*cmd
)(struct its_device
*, u32
))
3900 unsigned long flags
;
3902 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3904 its_vpe_db_proxy_map_locked(vpe
);
3905 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
3907 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3910 static void its_vpe_send_inv(struct irq_data
*d
)
3912 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3914 if (gic_rdists
->has_direct_lpi
) {
3915 void __iomem
*rdbase
;
3917 /* Target the redistributor this VPE is currently known on */
3918 raw_spin_lock(&gic_data_rdist_cpu(vpe
->col_idx
)->rd_lock
);
3919 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
3920 gic_write_lpir(d
->parent_data
->hwirq
, rdbase
+ GICR_INVLPIR
);
3921 wait_for_syncr(rdbase
);
3922 raw_spin_unlock(&gic_data_rdist_cpu(vpe
->col_idx
)->rd_lock
);
3924 its_vpe_send_cmd(vpe
, its_send_inv
);
3928 static void its_vpe_mask_irq(struct irq_data
*d
)
3931 * We need to unmask the LPI, which is described by the parent
3932 * irq_data. Instead of calling into the parent (which won't
3933 * exactly do the right thing, let's simply use the
3934 * parent_data pointer. Yes, I'm naughty.
3936 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
3937 its_vpe_send_inv(d
);
3940 static void its_vpe_unmask_irq(struct irq_data
*d
)
3942 /* Same hack as above... */
3943 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
3944 its_vpe_send_inv(d
);
3947 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
3948 enum irqchip_irq_state which
,
3951 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3953 if (which
!= IRQCHIP_STATE_PENDING
)
3956 if (gic_rdists
->has_direct_lpi
) {
3957 void __iomem
*rdbase
;
3959 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
3961 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
3963 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
3964 wait_for_syncr(rdbase
);
3968 its_vpe_send_cmd(vpe
, its_send_int
);
3970 its_vpe_send_cmd(vpe
, its_send_clear
);
3976 static int its_vpe_retrigger(struct irq_data
*d
)
3978 return !its_vpe_set_irqchip_state(d
, IRQCHIP_STATE_PENDING
, true);
3981 static struct irq_chip its_vpe_irq_chip
= {
3982 .name
= "GICv4-vpe",
3983 .irq_mask
= its_vpe_mask_irq
,
3984 .irq_unmask
= its_vpe_unmask_irq
,
3985 .irq_eoi
= irq_chip_eoi_parent
,
3986 .irq_set_affinity
= its_vpe_set_affinity
,
3987 .irq_retrigger
= its_vpe_retrigger
,
3988 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
3989 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
3992 static struct its_node
*find_4_1_its(void)
3994 static struct its_node
*its
= NULL
;
3997 list_for_each_entry(its
, &its_nodes
, entry
) {
4009 static void its_vpe_4_1_send_inv(struct irq_data
*d
)
4011 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4012 struct its_node
*its
;
4015 * GICv4.1 wants doorbells to be invalidated using the
4016 * INVDB command in order to be broadcast to all RDs. Send
4017 * it to the first valid ITS, and let the HW do its magic.
4019 its
= find_4_1_its();
4021 its_send_invdb(its
, vpe
);
4024 static void its_vpe_4_1_mask_irq(struct irq_data
*d
)
4026 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
4027 its_vpe_4_1_send_inv(d
);
4030 static void its_vpe_4_1_unmask_irq(struct irq_data
*d
)
4032 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
4033 its_vpe_4_1_send_inv(d
);
4036 static void its_vpe_4_1_schedule(struct its_vpe
*vpe
,
4037 struct its_cmd_info
*info
)
4039 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
4042 /* Schedule the VPE */
4043 val
|= GICR_VPENDBASER_Valid
;
4044 val
|= info
->g0en
? GICR_VPENDBASER_4_1_VGRP0EN
: 0;
4045 val
|= info
->g1en
? GICR_VPENDBASER_4_1_VGRP1EN
: 0;
4046 val
|= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID
, vpe
->vpe_id
);
4048 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
4050 its_wait_vpt_parse_complete();
4053 static void its_vpe_4_1_deschedule(struct its_vpe
*vpe
,
4054 struct its_cmd_info
*info
)
4056 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
4060 unsigned long flags
;
4063 * vPE is going to block: make the vPE non-resident with
4064 * PendingLast clear and DB set. The GIC guarantees that if
4065 * we read-back PendingLast clear, then a doorbell will be
4066 * delivered when an interrupt comes.
4068 * Note the locking to deal with the concurrent update of
4069 * pending_last from the doorbell interrupt handler that can
4072 raw_spin_lock_irqsave(&vpe
->vpe_lock
, flags
);
4073 val
= its_clear_vpend_valid(vlpi_base
,
4074 GICR_VPENDBASER_PendingLast
,
4075 GICR_VPENDBASER_4_1_DB
);
4076 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
4077 raw_spin_unlock_irqrestore(&vpe
->vpe_lock
, flags
);
4080 * We're not blocking, so just make the vPE non-resident
4081 * with PendingLast set, indicating that we'll be back.
4083 val
= its_clear_vpend_valid(vlpi_base
,
4085 GICR_VPENDBASER_PendingLast
);
4086 vpe
->pending_last
= true;
4090 static void its_vpe_4_1_invall(struct its_vpe
*vpe
)
4092 void __iomem
*rdbase
;
4093 unsigned long flags
;
4097 val
= GICR_INVALLR_V
;
4098 val
|= FIELD_PREP(GICR_INVALLR_VPEID
, vpe
->vpe_id
);
4100 /* Target the redistributor this vPE is currently known on */
4101 cpu
= vpe_to_cpuid_lock(vpe
, &flags
);
4102 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4103 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, cpu
)->rd_base
;
4104 gic_write_lpir(val
, rdbase
+ GICR_INVALLR
);
4106 wait_for_syncr(rdbase
);
4107 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4108 vpe_to_cpuid_unlock(vpe
, flags
);
4111 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
4113 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4114 struct its_cmd_info
*info
= vcpu_info
;
4116 switch (info
->cmd_type
) {
4118 its_vpe_4_1_schedule(vpe
, info
);
4121 case DESCHEDULE_VPE
:
4122 its_vpe_4_1_deschedule(vpe
, info
);
4126 its_vpe_4_1_invall(vpe
);
4134 static struct irq_chip its_vpe_4_1_irq_chip
= {
4135 .name
= "GICv4.1-vpe",
4136 .irq_mask
= its_vpe_4_1_mask_irq
,
4137 .irq_unmask
= its_vpe_4_1_unmask_irq
,
4138 .irq_eoi
= irq_chip_eoi_parent
,
4139 .irq_set_affinity
= its_vpe_set_affinity
,
4140 .irq_set_vcpu_affinity
= its_vpe_4_1_set_vcpu_affinity
,
4143 static void its_configure_sgi(struct irq_data
*d
, bool clear
)
4145 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4146 struct its_cmd_desc desc
;
4148 desc
.its_vsgi_cmd
.vpe
= vpe
;
4149 desc
.its_vsgi_cmd
.sgi
= d
->hwirq
;
4150 desc
.its_vsgi_cmd
.priority
= vpe
->sgi_config
[d
->hwirq
].priority
;
4151 desc
.its_vsgi_cmd
.enable
= vpe
->sgi_config
[d
->hwirq
].enabled
;
4152 desc
.its_vsgi_cmd
.group
= vpe
->sgi_config
[d
->hwirq
].group
;
4153 desc
.its_vsgi_cmd
.clear
= clear
;
4156 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4157 * destination VPE is mapped there. Since we map them eagerly at
4158 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4160 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd
, &desc
);
4163 static void its_sgi_mask_irq(struct irq_data
*d
)
4165 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4167 vpe
->sgi_config
[d
->hwirq
].enabled
= false;
4168 its_configure_sgi(d
, false);
4171 static void its_sgi_unmask_irq(struct irq_data
*d
)
4173 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4175 vpe
->sgi_config
[d
->hwirq
].enabled
= true;
4176 its_configure_sgi(d
, false);
4179 static int its_sgi_set_affinity(struct irq_data
*d
,
4180 const struct cpumask
*mask_val
,
4184 * There is no notion of affinity for virtual SGIs, at least
4185 * not on the host (since they can only be targetting a vPE).
4186 * Tell the kernel we've done whatever it asked for.
4188 irq_data_update_effective_affinity(d
, mask_val
);
4189 return IRQ_SET_MASK_OK
;
4192 static int its_sgi_set_irqchip_state(struct irq_data
*d
,
4193 enum irqchip_irq_state which
,
4196 if (which
!= IRQCHIP_STATE_PENDING
)
4200 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4201 struct its_node
*its
= find_4_1_its();
4204 val
= FIELD_PREP(GITS_SGIR_VPEID
, vpe
->vpe_id
);
4205 val
|= FIELD_PREP(GITS_SGIR_VINTID
, d
->hwirq
);
4206 writeq_relaxed(val
, its
->sgir_base
+ GITS_SGIR
- SZ_128K
);
4208 its_configure_sgi(d
, true);
4214 static int its_sgi_get_irqchip_state(struct irq_data
*d
,
4215 enum irqchip_irq_state which
, bool *val
)
4217 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4219 unsigned long flags
;
4220 u32 count
= 1000000; /* 1s! */
4224 if (which
!= IRQCHIP_STATE_PENDING
)
4228 * Locking galore! We can race against two different events:
4230 * - Concurent vPE affinity change: we must make sure it cannot
4231 * happen, or we'll talk to the wrong redistributor. This is
4232 * identical to what happens with vLPIs.
4234 * - Concurrent VSGIPENDR access: As it involves accessing two
4235 * MMIO registers, this must be made atomic one way or another.
4237 cpu
= vpe_to_cpuid_lock(vpe
, &flags
);
4238 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4239 base
= gic_data_rdist_cpu(cpu
)->rd_base
+ SZ_128K
;
4240 writel_relaxed(vpe
->vpe_id
, base
+ GICR_VSGIR
);
4242 status
= readl_relaxed(base
+ GICR_VSGIPENDR
);
4243 if (!(status
& GICR_VSGIPENDR_BUSY
))
4248 pr_err_ratelimited("Unable to get SGI status\n");
4256 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4257 vpe_to_cpuid_unlock(vpe
, flags
);
4262 *val
= !!(status
& (1 << d
->hwirq
));
4267 static int its_sgi_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
4269 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4270 struct its_cmd_info
*info
= vcpu_info
;
4272 switch (info
->cmd_type
) {
4273 case PROP_UPDATE_VSGI
:
4274 vpe
->sgi_config
[d
->hwirq
].priority
= info
->priority
;
4275 vpe
->sgi_config
[d
->hwirq
].group
= info
->group
;
4276 its_configure_sgi(d
, false);
4284 static struct irq_chip its_sgi_irq_chip
= {
4285 .name
= "GICv4.1-sgi",
4286 .irq_mask
= its_sgi_mask_irq
,
4287 .irq_unmask
= its_sgi_unmask_irq
,
4288 .irq_set_affinity
= its_sgi_set_affinity
,
4289 .irq_set_irqchip_state
= its_sgi_set_irqchip_state
,
4290 .irq_get_irqchip_state
= its_sgi_get_irqchip_state
,
4291 .irq_set_vcpu_affinity
= its_sgi_set_vcpu_affinity
,
4294 static int its_sgi_irq_domain_alloc(struct irq_domain
*domain
,
4295 unsigned int virq
, unsigned int nr_irqs
,
4298 struct its_vpe
*vpe
= args
;
4301 /* Yes, we do want 16 SGIs */
4302 WARN_ON(nr_irqs
!= 16);
4304 for (i
= 0; i
< 16; i
++) {
4305 vpe
->sgi_config
[i
].priority
= 0;
4306 vpe
->sgi_config
[i
].enabled
= false;
4307 vpe
->sgi_config
[i
].group
= false;
4309 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
4310 &its_sgi_irq_chip
, vpe
);
4311 irq_set_status_flags(virq
+ i
, IRQ_DISABLE_UNLAZY
);
4317 static void its_sgi_irq_domain_free(struct irq_domain
*domain
,
4319 unsigned int nr_irqs
)
4324 static int its_sgi_irq_domain_activate(struct irq_domain
*domain
,
4325 struct irq_data
*d
, bool reserve
)
4327 /* Write out the initial SGI configuration */
4328 its_configure_sgi(d
, false);
4332 static void its_sgi_irq_domain_deactivate(struct irq_domain
*domain
,
4335 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4338 * The VSGI command is awkward:
4340 * - To change the configuration, CLEAR must be set to false,
4341 * leaving the pending bit unchanged.
4342 * - To clear the pending bit, CLEAR must be set to true, leaving
4343 * the configuration unchanged.
4345 * You just can't do both at once, hence the two commands below.
4347 vpe
->sgi_config
[d
->hwirq
].enabled
= false;
4348 its_configure_sgi(d
, false);
4349 its_configure_sgi(d
, true);
4352 static const struct irq_domain_ops its_sgi_domain_ops
= {
4353 .alloc
= its_sgi_irq_domain_alloc
,
4354 .free
= its_sgi_irq_domain_free
,
4355 .activate
= its_sgi_irq_domain_activate
,
4356 .deactivate
= its_sgi_irq_domain_deactivate
,
4359 static int its_vpe_id_alloc(void)
4361 return ida_simple_get(&its_vpeid_ida
, 0, ITS_MAX_VPEID
, GFP_KERNEL
);
4364 static void its_vpe_id_free(u16 id
)
4366 ida_simple_remove(&its_vpeid_ida
, id
);
4369 static int its_vpe_init(struct its_vpe
*vpe
)
4371 struct page
*vpt_page
;
4374 /* Allocate vpe_id */
4375 vpe_id
= its_vpe_id_alloc();
4380 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
4382 its_vpe_id_free(vpe_id
);
4386 if (!its_alloc_vpe_table(vpe_id
)) {
4387 its_vpe_id_free(vpe_id
);
4388 its_free_pending_table(vpt_page
);
4392 raw_spin_lock_init(&vpe
->vpe_lock
);
4393 vpe
->vpe_id
= vpe_id
;
4394 vpe
->vpt_page
= vpt_page
;
4395 if (gic_rdists
->has_rvpeid
)
4396 atomic_set(&vpe
->vmapp_count
, 0);
4398 vpe
->vpe_proxy_event
= -1;
4403 static void its_vpe_teardown(struct its_vpe
*vpe
)
4405 its_vpe_db_proxy_unmap(vpe
);
4406 its_vpe_id_free(vpe
->vpe_id
);
4407 its_free_pending_table(vpe
->vpt_page
);
4410 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
4412 unsigned int nr_irqs
)
4414 struct its_vm
*vm
= domain
->host_data
;
4417 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
4419 for (i
= 0; i
< nr_irqs
; i
++) {
4420 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
4422 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
4424 BUG_ON(vm
!= vpe
->its_vm
);
4426 clear_bit(data
->hwirq
, vm
->db_bitmap
);
4427 its_vpe_teardown(vpe
);
4428 irq_domain_reset_irq_data(data
);
4431 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
4432 its_lpi_free(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
4433 its_free_prop_table(vm
->vprop_page
);
4437 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
4438 unsigned int nr_irqs
, void *args
)
4440 struct irq_chip
*irqchip
= &its_vpe_irq_chip
;
4441 struct its_vm
*vm
= args
;
4442 unsigned long *bitmap
;
4443 struct page
*vprop_page
;
4444 int base
, nr_ids
, i
, err
= 0;
4448 bitmap
= its_lpi_alloc(roundup_pow_of_two(nr_irqs
), &base
, &nr_ids
);
4452 if (nr_ids
< nr_irqs
) {
4453 its_lpi_free(bitmap
, base
, nr_ids
);
4457 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
4459 its_lpi_free(bitmap
, base
, nr_ids
);
4463 vm
->db_bitmap
= bitmap
;
4464 vm
->db_lpi_base
= base
;
4465 vm
->nr_db_lpis
= nr_ids
;
4466 vm
->vprop_page
= vprop_page
;
4468 if (gic_rdists
->has_rvpeid
)
4469 irqchip
= &its_vpe_4_1_irq_chip
;
4471 for (i
= 0; i
< nr_irqs
; i
++) {
4472 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
4473 err
= its_vpe_init(vm
->vpes
[i
]);
4476 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
4477 vm
->vpes
[i
]->vpe_db_lpi
);
4480 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
4481 irqchip
, vm
->vpes
[i
]);
4487 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
4489 its_lpi_free(bitmap
, base
, nr_ids
);
4490 its_free_prop_table(vprop_page
);
4496 static int its_vpe_irq_domain_activate(struct irq_domain
*domain
,
4497 struct irq_data
*d
, bool reserve
)
4499 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4500 struct its_node
*its
;
4503 * If we use the list map, we issue VMAPP on demand... Unless
4504 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4505 * so that VSGIs can work.
4507 if (!gic_requires_eager_mapping())
4510 /* Map the VPE to the first possible CPU */
4511 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
4513 list_for_each_entry(its
, &its_nodes
, entry
) {
4517 its_send_vmapp(its
, vpe
, true);
4518 its_send_vinvall(its
, vpe
);
4521 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
4526 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
4529 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4530 struct its_node
*its
;
4533 * If we use the list map on GICv4.0, we unmap the VPE once no
4534 * VLPIs are associated with the VM.
4536 if (!gic_requires_eager_mapping())
4539 list_for_each_entry(its
, &its_nodes
, entry
) {
4543 its_send_vmapp(its
, vpe
, false);
4547 static const struct irq_domain_ops its_vpe_domain_ops
= {
4548 .alloc
= its_vpe_irq_domain_alloc
,
4549 .free
= its_vpe_irq_domain_free
,
4550 .activate
= its_vpe_irq_domain_activate
,
4551 .deactivate
= its_vpe_irq_domain_deactivate
,
4554 static int its_force_quiescent(void __iomem
*base
)
4556 u32 count
= 1000000; /* 1s */
4559 val
= readl_relaxed(base
+ GITS_CTLR
);
4561 * GIC architecture specification requires the ITS to be both
4562 * disabled and quiescent for writes to GITS_BASER<n> or
4563 * GITS_CBASER to not have UNPREDICTABLE results.
4565 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
4568 /* Disable the generation of all interrupts to this ITS */
4569 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
4570 writel_relaxed(val
, base
+ GITS_CTLR
);
4572 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4574 val
= readl_relaxed(base
+ GITS_CTLR
);
4575 if (val
& GITS_CTLR_QUIESCENT
)
4587 static bool __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
4589 struct its_node
*its
= data
;
4591 /* erratum 22375: only alloc 8MB table size (20 bits) */
4592 its
->typer
&= ~GITS_TYPER_DEVBITS
;
4593 its
->typer
|= FIELD_PREP(GITS_TYPER_DEVBITS
, 20 - 1);
4594 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
4599 static bool __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
4601 struct its_node
*its
= data
;
4603 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
4608 static bool __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
4610 struct its_node
*its
= data
;
4612 /* On QDF2400, the size of the ITE is 16Bytes */
4613 its
->typer
&= ~GITS_TYPER_ITT_ENTRY_SIZE
;
4614 its
->typer
|= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE
, 16 - 1);
4619 static u64
its_irq_get_msi_base_pre_its(struct its_device
*its_dev
)
4621 struct its_node
*its
= its_dev
->its
;
4624 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4625 * which maps 32-bit writes targeted at a separate window of
4626 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4627 * with device ID taken from bits [device_id_bits + 1:2] of
4628 * the window offset.
4630 return its
->pre_its_base
+ (its_dev
->device_id
<< 2);
4633 static bool __maybe_unused
its_enable_quirk_socionext_synquacer(void *data
)
4635 struct its_node
*its
= data
;
4636 u32 pre_its_window
[2];
4639 if (!fwnode_property_read_u32_array(its
->fwnode_handle
,
4640 "socionext,synquacer-pre-its",
4642 ARRAY_SIZE(pre_its_window
))) {
4644 its
->pre_its_base
= pre_its_window
[0];
4645 its
->get_msi_base
= its_irq_get_msi_base_pre_its
;
4647 ids
= ilog2(pre_its_window
[1]) - 2;
4648 if (device_ids(its
) > ids
) {
4649 its
->typer
&= ~GITS_TYPER_DEVBITS
;
4650 its
->typer
|= FIELD_PREP(GITS_TYPER_DEVBITS
, ids
- 1);
4653 /* the pre-ITS breaks isolation, so disable MSI remapping */
4654 its
->msi_domain_flags
&= ~IRQ_DOMAIN_FLAG_MSI_REMAP
;
4660 static bool __maybe_unused
its_enable_quirk_hip07_161600802(void *data
)
4662 struct its_node
*its
= data
;
4665 * Hip07 insists on using the wrong address for the VLPI
4666 * page. Trick it into doing the right thing...
4668 its
->vlpi_redist_offset
= SZ_128K
;
4672 static const struct gic_quirk its_quirks
[] = {
4673 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4675 .desc
= "ITS: Cavium errata 22375, 24313",
4676 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
4678 .init
= its_enable_quirk_cavium_22375
,
4681 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4683 .desc
= "ITS: Cavium erratum 23144",
4684 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
4686 .init
= its_enable_quirk_cavium_23144
,
4689 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4691 .desc
= "ITS: QDF2400 erratum 0065",
4692 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
4694 .init
= its_enable_quirk_qdf2400_e0065
,
4697 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4700 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4701 * implementation, but with a 'pre-ITS' added that requires
4702 * special handling in software.
4704 .desc
= "ITS: Socionext Synquacer pre-ITS",
4707 .init
= its_enable_quirk_socionext_synquacer
,
4710 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4712 .desc
= "ITS: Hip07 erratum 161600802",
4715 .init
= its_enable_quirk_hip07_161600802
,
4722 static void its_enable_quirks(struct its_node
*its
)
4724 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
4726 gic_enable_quirks(iidr
, its_quirks
, its
);
4729 static int its_save_disable(void)
4731 struct its_node
*its
;
4734 raw_spin_lock(&its_lock
);
4735 list_for_each_entry(its
, &its_nodes
, entry
) {
4738 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
4742 its
->ctlr_save
= readl_relaxed(base
+ GITS_CTLR
);
4743 err
= its_force_quiescent(base
);
4745 pr_err("ITS@%pa: failed to quiesce: %d\n",
4746 &its
->phys_base
, err
);
4747 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4751 its
->cbaser_save
= gits_read_cbaser(base
+ GITS_CBASER
);
4756 list_for_each_entry_continue_reverse(its
, &its_nodes
, entry
) {
4759 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
4763 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4766 raw_spin_unlock(&its_lock
);
4771 static void its_restore_enable(void)
4773 struct its_node
*its
;
4776 raw_spin_lock(&its_lock
);
4777 list_for_each_entry(its
, &its_nodes
, entry
) {
4781 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
4787 * Make sure that the ITS is disabled. If it fails to quiesce,
4788 * don't restore it since writing to CBASER or BASER<n>
4789 * registers is undefined according to the GIC v3 ITS
4792 ret
= its_force_quiescent(base
);
4794 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4795 &its
->phys_base
, ret
);
4799 gits_write_cbaser(its
->cbaser_save
, base
+ GITS_CBASER
);
4802 * Writing CBASER resets CREADR to 0, so make CWRITER and
4803 * cmd_write line up with it.
4805 its
->cmd_write
= its
->cmd_base
;
4806 gits_write_cwriter(0, base
+ GITS_CWRITER
);
4808 /* Restore GITS_BASER from the value cache. */
4809 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
4810 struct its_baser
*baser
= &its
->tables
[i
];
4812 if (!(baser
->val
& GITS_BASER_VALID
))
4815 its_write_baser(its
, baser
, baser
->val
);
4817 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4820 * Reinit the collection if it's stored in the ITS. This is
4821 * indicated by the col_id being less than the HCC field.
4822 * CID < HCC as specified in the GIC v3 Documentation.
4824 if (its
->collections
[smp_processor_id()].col_id
<
4825 GITS_TYPER_HCC(gic_read_typer(base
+ GITS_TYPER
)))
4826 its_cpu_init_collection(its
);
4828 raw_spin_unlock(&its_lock
);
4831 static struct syscore_ops its_syscore_ops
= {
4832 .suspend
= its_save_disable
,
4833 .resume
= its_restore_enable
,
4836 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
4838 struct irq_domain
*inner_domain
;
4839 struct msi_domain_info
*info
;
4841 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
4845 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
4846 if (!inner_domain
) {
4851 inner_domain
->parent
= its_parent
;
4852 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
4853 inner_domain
->flags
|= its
->msi_domain_flags
;
4854 info
->ops
= &its_msi_domain_ops
;
4856 inner_domain
->host_data
= info
;
4861 static int its_init_vpe_domain(void)
4863 struct its_node
*its
;
4867 if (gic_rdists
->has_direct_lpi
) {
4868 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4872 /* Any ITS will do, even if not v4 */
4873 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
4875 entries
= roundup_pow_of_two(nr_cpu_ids
);
4876 vpe_proxy
.vpes
= kcalloc(entries
, sizeof(*vpe_proxy
.vpes
),
4878 if (!vpe_proxy
.vpes
) {
4879 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4883 /* Use the last possible DevID */
4884 devid
= GENMASK(device_ids(its
) - 1, 0);
4885 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
4886 if (!vpe_proxy
.dev
) {
4887 kfree(vpe_proxy
.vpes
);
4888 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4892 BUG_ON(entries
> vpe_proxy
.dev
->nr_ites
);
4894 raw_spin_lock_init(&vpe_proxy
.lock
);
4895 vpe_proxy
.next_victim
= 0;
4896 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4897 devid
, vpe_proxy
.dev
->nr_ites
);
4902 static int __init
its_compute_its_list_map(struct resource
*res
,
4903 void __iomem
*its_base
)
4909 * This is assumed to be done early enough that we're
4910 * guaranteed to be single-threaded, hence no
4911 * locking. Should this change, we should address
4914 its_number
= find_first_zero_bit(&its_list_map
, GICv4_ITS_LIST_MAX
);
4915 if (its_number
>= GICv4_ITS_LIST_MAX
) {
4916 pr_err("ITS@%pa: No ITSList entry available!\n",
4921 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
4922 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
4923 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
4924 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
4925 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
4926 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
4927 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
4928 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
4931 if (test_and_set_bit(its_number
, &its_list_map
)) {
4932 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4933 &res
->start
, its_number
);
4940 static int __init
its_probe_one(struct resource
*res
,
4941 struct fwnode_handle
*handle
, int numa_node
)
4943 struct its_node
*its
;
4944 void __iomem
*its_base
;
4946 u64 baser
, tmp
, typer
;
4950 its_base
= ioremap(res
->start
, SZ_64K
);
4952 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
4956 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
4957 if (val
!= 0x30 && val
!= 0x40) {
4958 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
4963 err
= its_force_quiescent(its_base
);
4965 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
4969 pr_info("ITS %pR\n", res
);
4971 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
4977 raw_spin_lock_init(&its
->lock
);
4978 mutex_init(&its
->dev_alloc_lock
);
4979 INIT_LIST_HEAD(&its
->entry
);
4980 INIT_LIST_HEAD(&its
->its_device_list
);
4981 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
4983 its
->base
= its_base
;
4984 its
->phys_base
= res
->start
;
4986 if (!(typer
& GITS_TYPER_VMOVP
)) {
4987 err
= its_compute_its_list_map(res
, its_base
);
4993 pr_info("ITS@%pa: Using ITS number %d\n",
4996 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
5000 u32 svpet
= FIELD_GET(GITS_TYPER_SVPET
, typer
);
5002 its
->sgir_base
= ioremap(res
->start
+ SZ_128K
, SZ_64K
);
5003 if (!its
->sgir_base
) {
5008 its
->mpidr
= readl_relaxed(its_base
+ GITS_MPIDR
);
5010 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5011 &res
->start
, its
->mpidr
, svpet
);
5015 its
->numa_node
= numa_node
;
5017 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
,
5018 get_order(ITS_CMD_QUEUE_SZ
));
5021 goto out_unmap_sgir
;
5023 its
->cmd_base
= (void *)page_address(page
);
5024 its
->cmd_write
= its
->cmd_base
;
5025 its
->fwnode_handle
= handle
;
5026 its
->get_msi_base
= its_irq_get_msi_base
;
5027 its
->msi_domain_flags
= IRQ_DOMAIN_FLAG_MSI_REMAP
;
5029 its_enable_quirks(its
);
5031 err
= its_alloc_tables(its
);
5035 err
= its_alloc_collections(its
);
5037 goto out_free_tables
;
5039 baser
= (virt_to_phys(its
->cmd_base
) |
5040 GITS_CBASER_RaWaWb
|
5041 GITS_CBASER_InnerShareable
|
5042 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
5045 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
5046 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
5048 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
5049 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
5051 * The HW reports non-shareable, we must
5052 * remove the cacheability attributes as
5055 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
5056 GITS_CBASER_CACHEABILITY_MASK
);
5057 baser
|= GITS_CBASER_nC
;
5058 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
5060 pr_info("ITS: using cache flushing for cmd queue\n");
5061 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
5064 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
5065 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
5066 ctlr
|= GITS_CTLR_ENABLE
;
5068 ctlr
|= GITS_CTLR_ImDe
;
5069 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
5071 if (GITS_TYPER_HCC(typer
))
5072 its
->flags
|= ITS_FLAGS_SAVE_SUSPEND_STATE
;
5074 err
= its_init_domain(handle
, its
);
5076 goto out_free_tables
;
5078 raw_spin_lock(&its_lock
);
5079 list_add(&its
->entry
, &its_nodes
);
5080 raw_spin_unlock(&its_lock
);
5085 its_free_tables(its
);
5087 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
5090 iounmap(its
->sgir_base
);
5095 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
5099 static bool gic_rdists_supports_plpis(void)
5101 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
5104 static int redist_disable_lpis(void)
5106 void __iomem
*rbase
= gic_data_rdist_rd_base();
5107 u64 timeout
= USEC_PER_SEC
;
5110 if (!gic_rdists_supports_plpis()) {
5111 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5115 val
= readl_relaxed(rbase
+ GICR_CTLR
);
5116 if (!(val
& GICR_CTLR_ENABLE_LPIS
))
5120 * If coming via a CPU hotplug event, we don't need to disable
5121 * LPIs before trying to re-enable them. They are already
5122 * configured and all is well in the world.
5124 * If running with preallocated tables, there is nothing to do.
5126 if (gic_data_rdist()->lpi_enabled
||
5127 (gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
))
5131 * From that point on, we only try to do some damage control.
5133 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5134 smp_processor_id());
5135 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
5138 val
&= ~GICR_CTLR_ENABLE_LPIS
;
5139 writel_relaxed(val
, rbase
+ GICR_CTLR
);
5141 /* Make sure any change to GICR_CTLR is observable by the GIC */
5145 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5146 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5147 * Error out if we time out waiting for RWP to clear.
5149 while (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_RWP
) {
5151 pr_err("CPU%d: Timeout while disabling LPIs\n",
5152 smp_processor_id());
5160 * After it has been written to 1, it is IMPLEMENTATION
5161 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5162 * cleared to 0. Error out if clearing the bit failed.
5164 if (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_ENABLE_LPIS
) {
5165 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5172 int its_cpu_init(void)
5174 if (!list_empty(&its_nodes
)) {
5177 ret
= redist_disable_lpis();
5181 its_cpu_init_lpis();
5182 its_cpu_init_collections();
5188 static const struct of_device_id its_device_id
[] = {
5189 { .compatible
= "arm,gic-v3-its", },
5193 static int __init
its_of_probe(struct device_node
*node
)
5195 struct device_node
*np
;
5196 struct resource res
;
5198 for (np
= of_find_matching_node(node
, its_device_id
); np
;
5199 np
= of_find_matching_node(np
, its_device_id
)) {
5200 if (!of_device_is_available(np
))
5202 if (!of_property_read_bool(np
, "msi-controller")) {
5203 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5208 if (of_address_to_resource(np
, 0, &res
)) {
5209 pr_warn("%pOF: no regs?\n", np
);
5213 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
5220 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5222 #ifdef CONFIG_ACPI_NUMA
5223 struct its_srat_map
{
5230 static struct its_srat_map
*its_srat_maps __initdata
;
5231 static int its_in_srat __initdata
;
5233 static int __init
acpi_get_its_numa_node(u32 its_id
)
5237 for (i
= 0; i
< its_in_srat
; i
++) {
5238 if (its_id
== its_srat_maps
[i
].its_id
)
5239 return its_srat_maps
[i
].numa_node
;
5241 return NUMA_NO_NODE
;
5244 static int __init
gic_acpi_match_srat_its(union acpi_subtable_headers
*header
,
5245 const unsigned long end
)
5250 static int __init
gic_acpi_parse_srat_its(union acpi_subtable_headers
*header
,
5251 const unsigned long end
)
5254 struct acpi_srat_gic_its_affinity
*its_affinity
;
5256 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
5260 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
5261 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5262 its_affinity
->header
.length
);
5266 node
= acpi_map_pxm_to_node(its_affinity
->proximity_domain
);
5268 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
5269 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
5273 its_srat_maps
[its_in_srat
].numa_node
= node
;
5274 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
5276 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5277 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
5282 static void __init
acpi_table_parse_srat_its(void)
5286 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
5287 sizeof(struct acpi_table_srat
),
5288 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
5289 gic_acpi_match_srat_its
, 0);
5293 its_srat_maps
= kmalloc_array(count
, sizeof(struct its_srat_map
),
5295 if (!its_srat_maps
) {
5296 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5300 acpi_table_parse_entries(ACPI_SIG_SRAT
,
5301 sizeof(struct acpi_table_srat
),
5302 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
5303 gic_acpi_parse_srat_its
, 0);
5306 /* free the its_srat_maps after ITS probing */
5307 static void __init
acpi_its_srat_maps_free(void)
5309 kfree(its_srat_maps
);
5312 static void __init
acpi_table_parse_srat_its(void) { }
5313 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
5314 static void __init
acpi_its_srat_maps_free(void) { }
5317 static int __init
gic_acpi_parse_madt_its(union acpi_subtable_headers
*header
,
5318 const unsigned long end
)
5320 struct acpi_madt_generic_translator
*its_entry
;
5321 struct fwnode_handle
*dom_handle
;
5322 struct resource res
;
5325 its_entry
= (struct acpi_madt_generic_translator
*)header
;
5326 memset(&res
, 0, sizeof(res
));
5327 res
.start
= its_entry
->base_address
;
5328 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
5329 res
.flags
= IORESOURCE_MEM
;
5331 dom_handle
= irq_domain_alloc_fwnode(&res
.start
);
5333 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5338 err
= iort_register_domain_token(its_entry
->translation_id
, res
.start
,
5341 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5342 &res
.start
, its_entry
->translation_id
);
5346 err
= its_probe_one(&res
, dom_handle
,
5347 acpi_get_its_numa_node(its_entry
->translation_id
));
5351 iort_deregister_domain_token(its_entry
->translation_id
);
5353 irq_domain_free_fwnode(dom_handle
);
5357 static void __init
its_acpi_probe(void)
5359 acpi_table_parse_srat_its();
5360 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
5361 gic_acpi_parse_madt_its
, 0);
5362 acpi_its_srat_maps_free();
5365 static void __init
its_acpi_probe(void) { }
5368 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
5369 struct irq_domain
*parent_domain
)
5371 struct device_node
*of_node
;
5372 struct its_node
*its
;
5373 bool has_v4
= false;
5374 bool has_v4_1
= false;
5377 gic_rdists
= rdists
;
5379 its_parent
= parent_domain
;
5380 of_node
= to_of_node(handle
);
5382 its_of_probe(of_node
);
5386 if (list_empty(&its_nodes
)) {
5387 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5391 err
= allocate_lpi_tables();
5395 list_for_each_entry(its
, &its_nodes
, entry
) {
5396 has_v4
|= is_v4(its
);
5397 has_v4_1
|= is_v4_1(its
);
5400 /* Don't bother with inconsistent systems */
5401 if (WARN_ON(!has_v4_1
&& rdists
->has_rvpeid
))
5402 rdists
->has_rvpeid
= false;
5404 if (has_v4
& rdists
->has_vlpis
) {
5405 const struct irq_domain_ops
*sgi_ops
;
5408 sgi_ops
= &its_sgi_domain_ops
;
5412 if (its_init_vpe_domain() ||
5413 its_init_v4(parent_domain
, &its_vpe_domain_ops
, sgi_ops
)) {
5414 rdists
->has_vlpis
= false;
5415 pr_err("ITS: Disabling GICv4 support\n");
5419 register_syscore_ops(&its_syscore_ops
);