1 // SPDX-License-Identifier: GPL-2.0
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
27 #include "util/debug.h"
28 #include "util/event.h"
30 #include <linux/kernel.h>
31 #include <linux/log2.h>
32 #include <linux/zalloc.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
38 #include <semaphore.h>
41 #include <api/fs/fs.h>
42 #include <perf/cpumap.h>
43 #include <linux/time64.h>
44 #include <linux/err.h>
46 #include <linux/ctype.h>
48 #define PR_SET_NAME 15 /* Set process name */
52 #define MAX_PID 1024000
54 static const char *cpu_list
;
55 static DECLARE_BITMAP(cpu_bitmap
, MAX_NR_CPUS
);
64 unsigned long nr_events
;
65 unsigned long curr_event
;
66 struct sched_atom
**atoms
;
77 enum sched_event_type
{
81 SCHED_EVENT_MIGRATION
,
85 enum sched_event_type type
;
91 struct task_desc
*wakee
;
94 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
96 /* task state bitmask, copied from include/linux/sched.h */
97 #define TASK_RUNNING 0
98 #define TASK_INTERRUPTIBLE 1
99 #define TASK_UNINTERRUPTIBLE 2
100 #define __TASK_STOPPED 4
101 #define __TASK_TRACED 8
102 /* in tsk->exit_state */
104 #define EXIT_ZOMBIE 32
105 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
106 /* in tsk->state again */
108 #define TASK_WAKEKILL 128
109 #define TASK_WAKING 256
110 #define TASK_PARKED 512
120 struct list_head list
;
121 enum thread_state state
;
129 struct list_head work_list
;
130 struct thread
*thread
;
140 typedef int (*sort_fn_t
)(struct work_atoms
*, struct work_atoms
*);
144 struct trace_sched_handler
{
145 int (*switch_event
)(struct perf_sched
*sched
, struct evsel
*evsel
,
146 struct perf_sample
*sample
, struct machine
*machine
);
148 int (*runtime_event
)(struct perf_sched
*sched
, struct evsel
*evsel
,
149 struct perf_sample
*sample
, struct machine
*machine
);
151 int (*wakeup_event
)(struct perf_sched
*sched
, struct evsel
*evsel
,
152 struct perf_sample
*sample
, struct machine
*machine
);
154 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
155 int (*fork_event
)(struct perf_sched
*sched
, union perf_event
*event
,
156 struct machine
*machine
);
158 int (*migrate_task_event
)(struct perf_sched
*sched
,
160 struct perf_sample
*sample
,
161 struct machine
*machine
);
164 #define COLOR_PIDS PERF_COLOR_BLUE
165 #define COLOR_CPUS PERF_COLOR_BG_RED
167 struct perf_sched_map
{
168 DECLARE_BITMAP(comp_cpus_mask
, MAX_CPUS
);
171 struct perf_thread_map
*color_pids
;
172 const char *color_pids_str
;
173 struct perf_cpu_map
*color_cpus
;
174 const char *color_cpus_str
;
175 struct perf_cpu_map
*cpus
;
176 const char *cpus_str
;
180 struct perf_tool tool
;
181 const char *sort_order
;
182 unsigned long nr_tasks
;
183 struct task_desc
**pid_to_task
;
184 struct task_desc
**tasks
;
185 const struct trace_sched_handler
*tp_handler
;
186 pthread_mutex_t start_work_mutex
;
187 pthread_mutex_t work_done_wait_mutex
;
190 * Track the current task - that way we can know whether there's any
191 * weird events, such as a task being switched away that is not current.
194 u32 curr_pid
[MAX_CPUS
];
195 struct thread
*curr_thread
[MAX_CPUS
];
196 char next_shortname1
;
197 char next_shortname2
;
198 unsigned int replay_repeat
;
199 unsigned long nr_run_events
;
200 unsigned long nr_sleep_events
;
201 unsigned long nr_wakeup_events
;
202 unsigned long nr_sleep_corrections
;
203 unsigned long nr_run_events_optimized
;
204 unsigned long targetless_wakeups
;
205 unsigned long multitarget_wakeups
;
206 unsigned long nr_runs
;
207 unsigned long nr_timestamps
;
208 unsigned long nr_unordered_timestamps
;
209 unsigned long nr_context_switch_bugs
;
210 unsigned long nr_events
;
211 unsigned long nr_lost_chunks
;
212 unsigned long nr_lost_events
;
213 u64 run_measurement_overhead
;
214 u64 sleep_measurement_overhead
;
217 u64 runavg_cpu_usage
;
218 u64 parent_cpu_usage
;
219 u64 runavg_parent_cpu_usage
;
225 u64 cpu_last_switched
[MAX_CPUS
];
226 struct rb_root_cached atom_root
, sorted_atom_root
, merged_atom_root
;
227 struct list_head sort_list
, cmp_pid
;
230 struct perf_sched_map map
;
232 /* options for timehist command */
237 unsigned int max_stack
;
238 bool show_cpu_visual
;
241 bool show_migrations
;
244 const char *time_str
;
245 struct perf_time_interval ptime
;
246 struct perf_time_interval hist_time
;
249 /* per thread run time data */
250 struct thread_runtime
{
251 u64 last_time
; /* time of previous sched in/out event */
252 u64 dt_run
; /* run time */
253 u64 dt_sleep
; /* time between CPU access by sleep (off cpu) */
254 u64 dt_iowait
; /* time between CPU access by iowait (off cpu) */
255 u64 dt_preempt
; /* time between CPU access by preempt (off cpu) */
256 u64 dt_delay
; /* time between wakeup and sched-in */
257 u64 ready_to_run
; /* time of wakeup */
259 struct stats run_stats
;
261 u64 total_sleep_time
;
262 u64 total_iowait_time
;
263 u64 total_preempt_time
;
264 u64 total_delay_time
;
274 /* per event run time data */
275 struct evsel_runtime
{
276 u64
*last_time
; /* time this event was last seen per cpu */
277 u32 ncpu
; /* highest cpu slot allocated */
280 /* per cpu idle time data */
281 struct idle_thread_runtime
{
282 struct thread_runtime tr
;
283 struct thread
*last_thread
;
284 struct rb_root_cached sorted_root
;
285 struct callchain_root callchain
;
286 struct callchain_cursor cursor
;
289 /* track idle times per cpu */
290 static struct thread
**idle_threads
;
291 static int idle_max_cpu
;
292 static char idle_comm
[] = "<idle>";
294 static u64
get_nsecs(void)
298 clock_gettime(CLOCK_MONOTONIC
, &ts
);
300 return ts
.tv_sec
* NSEC_PER_SEC
+ ts
.tv_nsec
;
303 static void burn_nsecs(struct perf_sched
*sched
, u64 nsecs
)
305 u64 T0
= get_nsecs(), T1
;
309 } while (T1
+ sched
->run_measurement_overhead
< T0
+ nsecs
);
312 static void sleep_nsecs(u64 nsecs
)
316 ts
.tv_nsec
= nsecs
% 999999999;
317 ts
.tv_sec
= nsecs
/ 999999999;
319 nanosleep(&ts
, NULL
);
322 static void calibrate_run_measurement_overhead(struct perf_sched
*sched
)
324 u64 T0
, T1
, delta
, min_delta
= NSEC_PER_SEC
;
327 for (i
= 0; i
< 10; i
++) {
329 burn_nsecs(sched
, 0);
332 min_delta
= min(min_delta
, delta
);
334 sched
->run_measurement_overhead
= min_delta
;
336 printf("run measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
339 static void calibrate_sleep_measurement_overhead(struct perf_sched
*sched
)
341 u64 T0
, T1
, delta
, min_delta
= NSEC_PER_SEC
;
344 for (i
= 0; i
< 10; i
++) {
349 min_delta
= min(min_delta
, delta
);
352 sched
->sleep_measurement_overhead
= min_delta
;
354 printf("sleep measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
357 static struct sched_atom
*
358 get_new_event(struct task_desc
*task
, u64 timestamp
)
360 struct sched_atom
*event
= zalloc(sizeof(*event
));
361 unsigned long idx
= task
->nr_events
;
364 event
->timestamp
= timestamp
;
368 size
= sizeof(struct sched_atom
*) * task
->nr_events
;
369 task
->atoms
= realloc(task
->atoms
, size
);
370 BUG_ON(!task
->atoms
);
372 task
->atoms
[idx
] = event
;
377 static struct sched_atom
*last_event(struct task_desc
*task
)
379 if (!task
->nr_events
)
382 return task
->atoms
[task
->nr_events
- 1];
385 static void add_sched_event_run(struct perf_sched
*sched
, struct task_desc
*task
,
386 u64 timestamp
, u64 duration
)
388 struct sched_atom
*event
, *curr_event
= last_event(task
);
391 * optimize an existing RUN event by merging this one
394 if (curr_event
&& curr_event
->type
== SCHED_EVENT_RUN
) {
395 sched
->nr_run_events_optimized
++;
396 curr_event
->duration
+= duration
;
400 event
= get_new_event(task
, timestamp
);
402 event
->type
= SCHED_EVENT_RUN
;
403 event
->duration
= duration
;
405 sched
->nr_run_events
++;
408 static void add_sched_event_wakeup(struct perf_sched
*sched
, struct task_desc
*task
,
409 u64 timestamp
, struct task_desc
*wakee
)
411 struct sched_atom
*event
, *wakee_event
;
413 event
= get_new_event(task
, timestamp
);
414 event
->type
= SCHED_EVENT_WAKEUP
;
415 event
->wakee
= wakee
;
417 wakee_event
= last_event(wakee
);
418 if (!wakee_event
|| wakee_event
->type
!= SCHED_EVENT_SLEEP
) {
419 sched
->targetless_wakeups
++;
422 if (wakee_event
->wait_sem
) {
423 sched
->multitarget_wakeups
++;
427 wakee_event
->wait_sem
= zalloc(sizeof(*wakee_event
->wait_sem
));
428 sem_init(wakee_event
->wait_sem
, 0, 0);
429 wakee_event
->specific_wait
= 1;
430 event
->wait_sem
= wakee_event
->wait_sem
;
432 sched
->nr_wakeup_events
++;
435 static void add_sched_event_sleep(struct perf_sched
*sched
, struct task_desc
*task
,
436 u64 timestamp
, u64 task_state __maybe_unused
)
438 struct sched_atom
*event
= get_new_event(task
, timestamp
);
440 event
->type
= SCHED_EVENT_SLEEP
;
442 sched
->nr_sleep_events
++;
445 static struct task_desc
*register_pid(struct perf_sched
*sched
,
446 unsigned long pid
, const char *comm
)
448 struct task_desc
*task
;
451 if (sched
->pid_to_task
== NULL
) {
452 if (sysctl__read_int("kernel/pid_max", &pid_max
) < 0)
454 BUG_ON((sched
->pid_to_task
= calloc(pid_max
, sizeof(struct task_desc
*))) == NULL
);
456 if (pid
>= (unsigned long)pid_max
) {
457 BUG_ON((sched
->pid_to_task
= realloc(sched
->pid_to_task
, (pid
+ 1) *
458 sizeof(struct task_desc
*))) == NULL
);
459 while (pid
>= (unsigned long)pid_max
)
460 sched
->pid_to_task
[pid_max
++] = NULL
;
463 task
= sched
->pid_to_task
[pid
];
468 task
= zalloc(sizeof(*task
));
470 task
->nr
= sched
->nr_tasks
;
471 strcpy(task
->comm
, comm
);
473 * every task starts in sleeping state - this gets ignored
474 * if there's no wakeup pointing to this sleep state:
476 add_sched_event_sleep(sched
, task
, 0, 0);
478 sched
->pid_to_task
[pid
] = task
;
480 sched
->tasks
= realloc(sched
->tasks
, sched
->nr_tasks
* sizeof(struct task_desc
*));
481 BUG_ON(!sched
->tasks
);
482 sched
->tasks
[task
->nr
] = task
;
485 printf("registered task #%ld, PID %ld (%s)\n", sched
->nr_tasks
, pid
, comm
);
491 static void print_task_traces(struct perf_sched
*sched
)
493 struct task_desc
*task
;
496 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
497 task
= sched
->tasks
[i
];
498 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
499 task
->nr
, task
->comm
, task
->pid
, task
->nr_events
);
503 static void add_cross_task_wakeups(struct perf_sched
*sched
)
505 struct task_desc
*task1
, *task2
;
508 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
509 task1
= sched
->tasks
[i
];
511 if (j
== sched
->nr_tasks
)
513 task2
= sched
->tasks
[j
];
514 add_sched_event_wakeup(sched
, task1
, 0, task2
);
518 static void perf_sched__process_event(struct perf_sched
*sched
,
519 struct sched_atom
*atom
)
523 switch (atom
->type
) {
524 case SCHED_EVENT_RUN
:
525 burn_nsecs(sched
, atom
->duration
);
527 case SCHED_EVENT_SLEEP
:
529 ret
= sem_wait(atom
->wait_sem
);
532 case SCHED_EVENT_WAKEUP
:
534 ret
= sem_post(atom
->wait_sem
);
537 case SCHED_EVENT_MIGRATION
:
544 static u64
get_cpu_usage_nsec_parent(void)
550 err
= getrusage(RUSAGE_SELF
, &ru
);
553 sum
= ru
.ru_utime
.tv_sec
* NSEC_PER_SEC
+ ru
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
554 sum
+= ru
.ru_stime
.tv_sec
* NSEC_PER_SEC
+ ru
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
559 static int self_open_counters(struct perf_sched
*sched
, unsigned long cur_task
)
561 struct perf_event_attr attr
;
562 char sbuf
[STRERR_BUFSIZE
], info
[STRERR_BUFSIZE
];
565 bool need_privilege
= false;
567 memset(&attr
, 0, sizeof(attr
));
569 attr
.type
= PERF_TYPE_SOFTWARE
;
570 attr
.config
= PERF_COUNT_SW_TASK_CLOCK
;
573 fd
= sys_perf_event_open(&attr
, 0, -1, -1,
574 perf_event_open_cloexec_flag());
577 if (errno
== EMFILE
) {
579 BUG_ON(getrlimit(RLIMIT_NOFILE
, &limit
) == -1);
580 limit
.rlim_cur
+= sched
->nr_tasks
- cur_task
;
581 if (limit
.rlim_cur
> limit
.rlim_max
) {
582 limit
.rlim_max
= limit
.rlim_cur
;
583 need_privilege
= true;
585 if (setrlimit(RLIMIT_NOFILE
, &limit
) == -1) {
586 if (need_privilege
&& errno
== EPERM
)
587 strcpy(info
, "Need privilege\n");
591 strcpy(info
, "Have a try with -f option\n");
593 pr_err("Error: sys_perf_event_open() syscall returned "
594 "with %d (%s)\n%s", fd
,
595 str_error_r(errno
, sbuf
, sizeof(sbuf
)), info
);
601 static u64
get_cpu_usage_nsec_self(int fd
)
606 ret
= read(fd
, &runtime
, sizeof(runtime
));
607 BUG_ON(ret
!= sizeof(runtime
));
612 struct sched_thread_parms
{
613 struct task_desc
*task
;
614 struct perf_sched
*sched
;
618 static void *thread_func(void *ctx
)
620 struct sched_thread_parms
*parms
= ctx
;
621 struct task_desc
*this_task
= parms
->task
;
622 struct perf_sched
*sched
= parms
->sched
;
623 u64 cpu_usage_0
, cpu_usage_1
;
624 unsigned long i
, ret
;
630 sprintf(comm2
, ":%s", this_task
->comm
);
631 prctl(PR_SET_NAME
, comm2
);
635 ret
= sem_post(&this_task
->ready_for_work
);
637 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
639 ret
= pthread_mutex_unlock(&sched
->start_work_mutex
);
642 cpu_usage_0
= get_cpu_usage_nsec_self(fd
);
644 for (i
= 0; i
< this_task
->nr_events
; i
++) {
645 this_task
->curr_event
= i
;
646 perf_sched__process_event(sched
, this_task
->atoms
[i
]);
649 cpu_usage_1
= get_cpu_usage_nsec_self(fd
);
650 this_task
->cpu_usage
= cpu_usage_1
- cpu_usage_0
;
651 ret
= sem_post(&this_task
->work_done_sem
);
654 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
656 ret
= pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
662 static void create_tasks(struct perf_sched
*sched
)
664 struct task_desc
*task
;
669 err
= pthread_attr_init(&attr
);
671 err
= pthread_attr_setstacksize(&attr
,
672 (size_t) max(16 * 1024, PTHREAD_STACK_MIN
));
674 err
= pthread_mutex_lock(&sched
->start_work_mutex
);
676 err
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
678 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
679 struct sched_thread_parms
*parms
= malloc(sizeof(*parms
));
680 BUG_ON(parms
== NULL
);
681 parms
->task
= task
= sched
->tasks
[i
];
682 parms
->sched
= sched
;
683 parms
->fd
= self_open_counters(sched
, i
);
684 sem_init(&task
->sleep_sem
, 0, 0);
685 sem_init(&task
->ready_for_work
, 0, 0);
686 sem_init(&task
->work_done_sem
, 0, 0);
687 task
->curr_event
= 0;
688 err
= pthread_create(&task
->thread
, &attr
, thread_func
, parms
);
693 static void wait_for_tasks(struct perf_sched
*sched
)
695 u64 cpu_usage_0
, cpu_usage_1
;
696 struct task_desc
*task
;
697 unsigned long i
, ret
;
699 sched
->start_time
= get_nsecs();
700 sched
->cpu_usage
= 0;
701 pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
703 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
704 task
= sched
->tasks
[i
];
705 ret
= sem_wait(&task
->ready_for_work
);
707 sem_init(&task
->ready_for_work
, 0, 0);
709 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
712 cpu_usage_0
= get_cpu_usage_nsec_parent();
714 pthread_mutex_unlock(&sched
->start_work_mutex
);
716 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
717 task
= sched
->tasks
[i
];
718 ret
= sem_wait(&task
->work_done_sem
);
720 sem_init(&task
->work_done_sem
, 0, 0);
721 sched
->cpu_usage
+= task
->cpu_usage
;
725 cpu_usage_1
= get_cpu_usage_nsec_parent();
726 if (!sched
->runavg_cpu_usage
)
727 sched
->runavg_cpu_usage
= sched
->cpu_usage
;
728 sched
->runavg_cpu_usage
= (sched
->runavg_cpu_usage
* (sched
->replay_repeat
- 1) + sched
->cpu_usage
) / sched
->replay_repeat
;
730 sched
->parent_cpu_usage
= cpu_usage_1
- cpu_usage_0
;
731 if (!sched
->runavg_parent_cpu_usage
)
732 sched
->runavg_parent_cpu_usage
= sched
->parent_cpu_usage
;
733 sched
->runavg_parent_cpu_usage
= (sched
->runavg_parent_cpu_usage
* (sched
->replay_repeat
- 1) +
734 sched
->parent_cpu_usage
)/sched
->replay_repeat
;
736 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
739 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
740 task
= sched
->tasks
[i
];
741 sem_init(&task
->sleep_sem
, 0, 0);
742 task
->curr_event
= 0;
746 static void run_one_test(struct perf_sched
*sched
)
748 u64 T0
, T1
, delta
, avg_delta
, fluct
;
751 wait_for_tasks(sched
);
755 sched
->sum_runtime
+= delta
;
758 avg_delta
= sched
->sum_runtime
/ sched
->nr_runs
;
759 if (delta
< avg_delta
)
760 fluct
= avg_delta
- delta
;
762 fluct
= delta
- avg_delta
;
763 sched
->sum_fluct
+= fluct
;
765 sched
->run_avg
= delta
;
766 sched
->run_avg
= (sched
->run_avg
* (sched
->replay_repeat
- 1) + delta
) / sched
->replay_repeat
;
768 printf("#%-3ld: %0.3f, ", sched
->nr_runs
, (double)delta
/ NSEC_PER_MSEC
);
770 printf("ravg: %0.2f, ", (double)sched
->run_avg
/ NSEC_PER_MSEC
);
772 printf("cpu: %0.2f / %0.2f",
773 (double)sched
->cpu_usage
/ NSEC_PER_MSEC
, (double)sched
->runavg_cpu_usage
/ NSEC_PER_MSEC
);
777 * rusage statistics done by the parent, these are less
778 * accurate than the sched->sum_exec_runtime based statistics:
780 printf(" [%0.2f / %0.2f]",
781 (double)sched
->parent_cpu_usage
/ NSEC_PER_MSEC
,
782 (double)sched
->runavg_parent_cpu_usage
/ NSEC_PER_MSEC
);
787 if (sched
->nr_sleep_corrections
)
788 printf(" (%ld sleep corrections)\n", sched
->nr_sleep_corrections
);
789 sched
->nr_sleep_corrections
= 0;
792 static void test_calibrations(struct perf_sched
*sched
)
797 burn_nsecs(sched
, NSEC_PER_MSEC
);
800 printf("the run test took %" PRIu64
" nsecs\n", T1
- T0
);
803 sleep_nsecs(NSEC_PER_MSEC
);
806 printf("the sleep test took %" PRIu64
" nsecs\n", T1
- T0
);
810 replay_wakeup_event(struct perf_sched
*sched
,
811 struct evsel
*evsel
, struct perf_sample
*sample
,
812 struct machine
*machine __maybe_unused
)
814 const char *comm
= evsel__strval(evsel
, sample
, "comm");
815 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
816 struct task_desc
*waker
, *wakee
;
819 printf("sched_wakeup event %p\n", evsel
);
821 printf(" ... pid %d woke up %s/%d\n", sample
->tid
, comm
, pid
);
824 waker
= register_pid(sched
, sample
->tid
, "<unknown>");
825 wakee
= register_pid(sched
, pid
, comm
);
827 add_sched_event_wakeup(sched
, waker
, sample
->time
, wakee
);
831 static int replay_switch_event(struct perf_sched
*sched
,
833 struct perf_sample
*sample
,
834 struct machine
*machine __maybe_unused
)
836 const char *prev_comm
= evsel__strval(evsel
, sample
, "prev_comm"),
837 *next_comm
= evsel__strval(evsel
, sample
, "next_comm");
838 const u32 prev_pid
= evsel__intval(evsel
, sample
, "prev_pid"),
839 next_pid
= evsel__intval(evsel
, sample
, "next_pid");
840 const u64 prev_state
= evsel__intval(evsel
, sample
, "prev_state");
841 struct task_desc
*prev
, __maybe_unused
*next
;
842 u64 timestamp0
, timestamp
= sample
->time
;
843 int cpu
= sample
->cpu
;
847 printf("sched_switch event %p\n", evsel
);
849 if (cpu
>= MAX_CPUS
|| cpu
< 0)
852 timestamp0
= sched
->cpu_last_switched
[cpu
];
854 delta
= timestamp
- timestamp0
;
859 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
863 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64
" nsecs]\n",
864 prev_comm
, prev_pid
, next_comm
, next_pid
, delta
);
866 prev
= register_pid(sched
, prev_pid
, prev_comm
);
867 next
= register_pid(sched
, next_pid
, next_comm
);
869 sched
->cpu_last_switched
[cpu
] = timestamp
;
871 add_sched_event_run(sched
, prev
, timestamp
, delta
);
872 add_sched_event_sleep(sched
, prev
, timestamp
, prev_state
);
877 static int replay_fork_event(struct perf_sched
*sched
,
878 union perf_event
*event
,
879 struct machine
*machine
)
881 struct thread
*child
, *parent
;
883 child
= machine__findnew_thread(machine
, event
->fork
.pid
,
885 parent
= machine__findnew_thread(machine
, event
->fork
.ppid
,
888 if (child
== NULL
|| parent
== NULL
) {
889 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
895 printf("fork event\n");
896 printf("... parent: %s/%d\n", thread__comm_str(parent
), parent
->tid
);
897 printf("... child: %s/%d\n", thread__comm_str(child
), child
->tid
);
900 register_pid(sched
, parent
->tid
, thread__comm_str(parent
));
901 register_pid(sched
, child
->tid
, thread__comm_str(child
));
908 struct sort_dimension
{
911 struct list_head list
;
915 * handle runtime stats saved per thread
917 static struct thread_runtime
*thread__init_runtime(struct thread
*thread
)
919 struct thread_runtime
*r
;
921 r
= zalloc(sizeof(struct thread_runtime
));
925 init_stats(&r
->run_stats
);
926 thread__set_priv(thread
, r
);
931 static struct thread_runtime
*thread__get_runtime(struct thread
*thread
)
933 struct thread_runtime
*tr
;
935 tr
= thread__priv(thread
);
937 tr
= thread__init_runtime(thread
);
939 pr_debug("Failed to malloc memory for runtime data.\n");
946 thread_lat_cmp(struct list_head
*list
, struct work_atoms
*l
, struct work_atoms
*r
)
948 struct sort_dimension
*sort
;
951 BUG_ON(list_empty(list
));
953 list_for_each_entry(sort
, list
, list
) {
954 ret
= sort
->cmp(l
, r
);
962 static struct work_atoms
*
963 thread_atoms_search(struct rb_root_cached
*root
, struct thread
*thread
,
964 struct list_head
*sort_list
)
966 struct rb_node
*node
= root
->rb_root
.rb_node
;
967 struct work_atoms key
= { .thread
= thread
};
970 struct work_atoms
*atoms
;
973 atoms
= container_of(node
, struct work_atoms
, node
);
975 cmp
= thread_lat_cmp(sort_list
, &key
, atoms
);
977 node
= node
->rb_left
;
979 node
= node
->rb_right
;
981 BUG_ON(thread
!= atoms
->thread
);
989 __thread_latency_insert(struct rb_root_cached
*root
, struct work_atoms
*data
,
990 struct list_head
*sort_list
)
992 struct rb_node
**new = &(root
->rb_root
.rb_node
), *parent
= NULL
;
993 bool leftmost
= true;
996 struct work_atoms
*this;
999 this = container_of(*new, struct work_atoms
, node
);
1002 cmp
= thread_lat_cmp(sort_list
, data
, this);
1005 new = &((*new)->rb_left
);
1007 new = &((*new)->rb_right
);
1012 rb_link_node(&data
->node
, parent
, new);
1013 rb_insert_color_cached(&data
->node
, root
, leftmost
);
1016 static int thread_atoms_insert(struct perf_sched
*sched
, struct thread
*thread
)
1018 struct work_atoms
*atoms
= zalloc(sizeof(*atoms
));
1020 pr_err("No memory at %s\n", __func__
);
1024 atoms
->thread
= thread__get(thread
);
1025 INIT_LIST_HEAD(&atoms
->work_list
);
1026 __thread_latency_insert(&sched
->atom_root
, atoms
, &sched
->cmp_pid
);
1030 static char sched_out_state(u64 prev_state
)
1032 const char *str
= TASK_STATE_TO_CHAR_STR
;
1034 return str
[prev_state
];
1038 add_sched_out_event(struct work_atoms
*atoms
,
1042 struct work_atom
*atom
= zalloc(sizeof(*atom
));
1044 pr_err("Non memory at %s", __func__
);
1048 atom
->sched_out_time
= timestamp
;
1050 if (run_state
== 'R') {
1051 atom
->state
= THREAD_WAIT_CPU
;
1052 atom
->wake_up_time
= atom
->sched_out_time
;
1055 list_add_tail(&atom
->list
, &atoms
->work_list
);
1060 add_runtime_event(struct work_atoms
*atoms
, u64 delta
,
1061 u64 timestamp __maybe_unused
)
1063 struct work_atom
*atom
;
1065 BUG_ON(list_empty(&atoms
->work_list
));
1067 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1069 atom
->runtime
+= delta
;
1070 atoms
->total_runtime
+= delta
;
1074 add_sched_in_event(struct work_atoms
*atoms
, u64 timestamp
)
1076 struct work_atom
*atom
;
1079 if (list_empty(&atoms
->work_list
))
1082 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1084 if (atom
->state
!= THREAD_WAIT_CPU
)
1087 if (timestamp
< atom
->wake_up_time
) {
1088 atom
->state
= THREAD_IGNORE
;
1092 atom
->state
= THREAD_SCHED_IN
;
1093 atom
->sched_in_time
= timestamp
;
1095 delta
= atom
->sched_in_time
- atom
->wake_up_time
;
1096 atoms
->total_lat
+= delta
;
1097 if (delta
> atoms
->max_lat
) {
1098 atoms
->max_lat
= delta
;
1099 atoms
->max_lat_at
= timestamp
;
1104 static int latency_switch_event(struct perf_sched
*sched
,
1105 struct evsel
*evsel
,
1106 struct perf_sample
*sample
,
1107 struct machine
*machine
)
1109 const u32 prev_pid
= evsel__intval(evsel
, sample
, "prev_pid"),
1110 next_pid
= evsel__intval(evsel
, sample
, "next_pid");
1111 const u64 prev_state
= evsel__intval(evsel
, sample
, "prev_state");
1112 struct work_atoms
*out_events
, *in_events
;
1113 struct thread
*sched_out
, *sched_in
;
1114 u64 timestamp0
, timestamp
= sample
->time
;
1115 int cpu
= sample
->cpu
, err
= -1;
1118 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
1120 timestamp0
= sched
->cpu_last_switched
[cpu
];
1121 sched
->cpu_last_switched
[cpu
] = timestamp
;
1123 delta
= timestamp
- timestamp0
;
1128 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1132 sched_out
= machine__findnew_thread(machine
, -1, prev_pid
);
1133 sched_in
= machine__findnew_thread(machine
, -1, next_pid
);
1134 if (sched_out
== NULL
|| sched_in
== NULL
)
1137 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
1139 if (thread_atoms_insert(sched
, sched_out
))
1141 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
1143 pr_err("out-event: Internal tree error");
1147 if (add_sched_out_event(out_events
, sched_out_state(prev_state
), timestamp
))
1150 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
1152 if (thread_atoms_insert(sched
, sched_in
))
1154 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
1156 pr_err("in-event: Internal tree error");
1160 * Take came in we have not heard about yet,
1161 * add in an initial atom in runnable state:
1163 if (add_sched_out_event(in_events
, 'R', timestamp
))
1166 add_sched_in_event(in_events
, timestamp
);
1169 thread__put(sched_out
);
1170 thread__put(sched_in
);
1174 static int latency_runtime_event(struct perf_sched
*sched
,
1175 struct evsel
*evsel
,
1176 struct perf_sample
*sample
,
1177 struct machine
*machine
)
1179 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
1180 const u64 runtime
= evsel__intval(evsel
, sample
, "runtime");
1181 struct thread
*thread
= machine__findnew_thread(machine
, -1, pid
);
1182 struct work_atoms
*atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
1183 u64 timestamp
= sample
->time
;
1184 int cpu
= sample
->cpu
, err
= -1;
1189 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
1191 if (thread_atoms_insert(sched
, thread
))
1193 atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
1195 pr_err("in-event: Internal tree error");
1198 if (add_sched_out_event(atoms
, 'R', timestamp
))
1202 add_runtime_event(atoms
, runtime
, timestamp
);
1205 thread__put(thread
);
1209 static int latency_wakeup_event(struct perf_sched
*sched
,
1210 struct evsel
*evsel
,
1211 struct perf_sample
*sample
,
1212 struct machine
*machine
)
1214 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
1215 struct work_atoms
*atoms
;
1216 struct work_atom
*atom
;
1217 struct thread
*wakee
;
1218 u64 timestamp
= sample
->time
;
1221 wakee
= machine__findnew_thread(machine
, -1, pid
);
1224 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1226 if (thread_atoms_insert(sched
, wakee
))
1228 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1230 pr_err("wakeup-event: Internal tree error");
1233 if (add_sched_out_event(atoms
, 'S', timestamp
))
1237 BUG_ON(list_empty(&atoms
->work_list
));
1239 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1242 * As we do not guarantee the wakeup event happens when
1243 * task is out of run queue, also may happen when task is
1244 * on run queue and wakeup only change ->state to TASK_RUNNING,
1245 * then we should not set the ->wake_up_time when wake up a
1246 * task which is on run queue.
1248 * You WILL be missing events if you've recorded only
1249 * one CPU, or are only looking at only one, so don't
1250 * skip in this case.
1252 if (sched
->profile_cpu
== -1 && atom
->state
!= THREAD_SLEEPING
)
1255 sched
->nr_timestamps
++;
1256 if (atom
->sched_out_time
> timestamp
) {
1257 sched
->nr_unordered_timestamps
++;
1261 atom
->state
= THREAD_WAIT_CPU
;
1262 atom
->wake_up_time
= timestamp
;
1270 static int latency_migrate_task_event(struct perf_sched
*sched
,
1271 struct evsel
*evsel
,
1272 struct perf_sample
*sample
,
1273 struct machine
*machine
)
1275 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
1276 u64 timestamp
= sample
->time
;
1277 struct work_atoms
*atoms
;
1278 struct work_atom
*atom
;
1279 struct thread
*migrant
;
1283 * Only need to worry about migration when profiling one CPU.
1285 if (sched
->profile_cpu
== -1)
1288 migrant
= machine__findnew_thread(machine
, -1, pid
);
1289 if (migrant
== NULL
)
1291 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1293 if (thread_atoms_insert(sched
, migrant
))
1295 register_pid(sched
, migrant
->tid
, thread__comm_str(migrant
));
1296 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1298 pr_err("migration-event: Internal tree error");
1301 if (add_sched_out_event(atoms
, 'R', timestamp
))
1305 BUG_ON(list_empty(&atoms
->work_list
));
1307 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1308 atom
->sched_in_time
= atom
->sched_out_time
= atom
->wake_up_time
= timestamp
;
1310 sched
->nr_timestamps
++;
1312 if (atom
->sched_out_time
> timestamp
)
1313 sched
->nr_unordered_timestamps
++;
1316 thread__put(migrant
);
1320 static void output_lat_thread(struct perf_sched
*sched
, struct work_atoms
*work_list
)
1325 char max_lat_at
[32];
1327 if (!work_list
->nb_atoms
)
1330 * Ignore idle threads:
1332 if (!strcmp(thread__comm_str(work_list
->thread
), "swapper"))
1335 sched
->all_runtime
+= work_list
->total_runtime
;
1336 sched
->all_count
+= work_list
->nb_atoms
;
1338 if (work_list
->num_merged
> 1)
1339 ret
= printf(" %s:(%d) ", thread__comm_str(work_list
->thread
), work_list
->num_merged
);
1341 ret
= printf(" %s:%d ", thread__comm_str(work_list
->thread
), work_list
->thread
->tid
);
1343 for (i
= 0; i
< 24 - ret
; i
++)
1346 avg
= work_list
->total_lat
/ work_list
->nb_atoms
;
1347 timestamp__scnprintf_usec(work_list
->max_lat_at
, max_lat_at
, sizeof(max_lat_at
));
1349 printf("|%11.3f ms |%9" PRIu64
" | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1350 (double)work_list
->total_runtime
/ NSEC_PER_MSEC
,
1351 work_list
->nb_atoms
, (double)avg
/ NSEC_PER_MSEC
,
1352 (double)work_list
->max_lat
/ NSEC_PER_MSEC
,
1356 static int pid_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1358 if (l
->thread
== r
->thread
)
1360 if (l
->thread
->tid
< r
->thread
->tid
)
1362 if (l
->thread
->tid
> r
->thread
->tid
)
1364 return (int)(l
->thread
- r
->thread
);
1367 static int avg_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1377 avgl
= l
->total_lat
/ l
->nb_atoms
;
1378 avgr
= r
->total_lat
/ r
->nb_atoms
;
1388 static int max_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1390 if (l
->max_lat
< r
->max_lat
)
1392 if (l
->max_lat
> r
->max_lat
)
1398 static int switch_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1400 if (l
->nb_atoms
< r
->nb_atoms
)
1402 if (l
->nb_atoms
> r
->nb_atoms
)
1408 static int runtime_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1410 if (l
->total_runtime
< r
->total_runtime
)
1412 if (l
->total_runtime
> r
->total_runtime
)
1418 static int sort_dimension__add(const char *tok
, struct list_head
*list
)
1421 static struct sort_dimension avg_sort_dimension
= {
1425 static struct sort_dimension max_sort_dimension
= {
1429 static struct sort_dimension pid_sort_dimension
= {
1433 static struct sort_dimension runtime_sort_dimension
= {
1437 static struct sort_dimension switch_sort_dimension
= {
1441 struct sort_dimension
*available_sorts
[] = {
1442 &pid_sort_dimension
,
1443 &avg_sort_dimension
,
1444 &max_sort_dimension
,
1445 &switch_sort_dimension
,
1446 &runtime_sort_dimension
,
1449 for (i
= 0; i
< ARRAY_SIZE(available_sorts
); i
++) {
1450 if (!strcmp(available_sorts
[i
]->name
, tok
)) {
1451 list_add_tail(&available_sorts
[i
]->list
, list
);
1460 static void perf_sched__sort_lat(struct perf_sched
*sched
)
1462 struct rb_node
*node
;
1463 struct rb_root_cached
*root
= &sched
->atom_root
;
1466 struct work_atoms
*data
;
1467 node
= rb_first_cached(root
);
1471 rb_erase_cached(node
, root
);
1472 data
= rb_entry(node
, struct work_atoms
, node
);
1473 __thread_latency_insert(&sched
->sorted_atom_root
, data
, &sched
->sort_list
);
1475 if (root
== &sched
->atom_root
) {
1476 root
= &sched
->merged_atom_root
;
1481 static int process_sched_wakeup_event(struct perf_tool
*tool
,
1482 struct evsel
*evsel
,
1483 struct perf_sample
*sample
,
1484 struct machine
*machine
)
1486 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1488 if (sched
->tp_handler
->wakeup_event
)
1489 return sched
->tp_handler
->wakeup_event(sched
, evsel
, sample
, machine
);
1499 static bool thread__has_color(struct thread
*thread
)
1501 union map_priv priv
= {
1502 .ptr
= thread__priv(thread
),
1508 static struct thread
*
1509 map__findnew_thread(struct perf_sched
*sched
, struct machine
*machine
, pid_t pid
, pid_t tid
)
1511 struct thread
*thread
= machine__findnew_thread(machine
, pid
, tid
);
1512 union map_priv priv
= {
1516 if (!sched
->map
.color_pids
|| !thread
|| thread__priv(thread
))
1519 if (thread_map__has(sched
->map
.color_pids
, tid
))
1522 thread__set_priv(thread
, priv
.ptr
);
1526 static int map_switch_event(struct perf_sched
*sched
, struct evsel
*evsel
,
1527 struct perf_sample
*sample
, struct machine
*machine
)
1529 const u32 next_pid
= evsel__intval(evsel
, sample
, "next_pid");
1530 struct thread
*sched_in
;
1531 struct thread_runtime
*tr
;
1533 u64 timestamp0
, timestamp
= sample
->time
;
1535 int i
, this_cpu
= sample
->cpu
;
1537 bool new_cpu
= false;
1538 const char *color
= PERF_COLOR_NORMAL
;
1539 char stimestamp
[32];
1541 BUG_ON(this_cpu
>= MAX_CPUS
|| this_cpu
< 0);
1543 if (this_cpu
> sched
->max_cpu
)
1544 sched
->max_cpu
= this_cpu
;
1546 if (sched
->map
.comp
) {
1547 cpus_nr
= bitmap_weight(sched
->map
.comp_cpus_mask
, MAX_CPUS
);
1548 if (!test_and_set_bit(this_cpu
, sched
->map
.comp_cpus_mask
)) {
1549 sched
->map
.comp_cpus
[cpus_nr
++] = this_cpu
;
1553 cpus_nr
= sched
->max_cpu
;
1555 timestamp0
= sched
->cpu_last_switched
[this_cpu
];
1556 sched
->cpu_last_switched
[this_cpu
] = timestamp
;
1558 delta
= timestamp
- timestamp0
;
1563 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1567 sched_in
= map__findnew_thread(sched
, machine
, -1, next_pid
);
1568 if (sched_in
== NULL
)
1571 tr
= thread__get_runtime(sched_in
);
1573 thread__put(sched_in
);
1577 sched
->curr_thread
[this_cpu
] = thread__get(sched_in
);
1582 if (!tr
->shortname
[0]) {
1583 if (!strcmp(thread__comm_str(sched_in
), "swapper")) {
1585 * Don't allocate a letter-number for swapper:0
1586 * as a shortname. Instead, we use '.' for it.
1588 tr
->shortname
[0] = '.';
1589 tr
->shortname
[1] = ' ';
1591 tr
->shortname
[0] = sched
->next_shortname1
;
1592 tr
->shortname
[1] = sched
->next_shortname2
;
1594 if (sched
->next_shortname1
< 'Z') {
1595 sched
->next_shortname1
++;
1597 sched
->next_shortname1
= 'A';
1598 if (sched
->next_shortname2
< '9')
1599 sched
->next_shortname2
++;
1601 sched
->next_shortname2
= '0';
1607 for (i
= 0; i
< cpus_nr
; i
++) {
1608 int cpu
= sched
->map
.comp
? sched
->map
.comp_cpus
[i
] : i
;
1609 struct thread
*curr_thread
= sched
->curr_thread
[cpu
];
1610 struct thread_runtime
*curr_tr
;
1611 const char *pid_color
= color
;
1612 const char *cpu_color
= color
;
1614 if (curr_thread
&& thread__has_color(curr_thread
))
1615 pid_color
= COLOR_PIDS
;
1617 if (sched
->map
.cpus
&& !cpu_map__has(sched
->map
.cpus
, cpu
))
1620 if (sched
->map
.color_cpus
&& cpu_map__has(sched
->map
.color_cpus
, cpu
))
1621 cpu_color
= COLOR_CPUS
;
1623 if (cpu
!= this_cpu
)
1624 color_fprintf(stdout
, color
, " ");
1626 color_fprintf(stdout
, cpu_color
, "*");
1628 if (sched
->curr_thread
[cpu
]) {
1629 curr_tr
= thread__get_runtime(sched
->curr_thread
[cpu
]);
1630 if (curr_tr
== NULL
) {
1631 thread__put(sched_in
);
1634 color_fprintf(stdout
, pid_color
, "%2s ", curr_tr
->shortname
);
1636 color_fprintf(stdout
, color
, " ");
1639 if (sched
->map
.cpus
&& !cpu_map__has(sched
->map
.cpus
, this_cpu
))
1642 timestamp__scnprintf_usec(timestamp
, stimestamp
, sizeof(stimestamp
));
1643 color_fprintf(stdout
, color
, " %12s secs ", stimestamp
);
1644 if (new_shortname
|| tr
->comm_changed
|| (verbose
> 0 && sched_in
->tid
)) {
1645 const char *pid_color
= color
;
1647 if (thread__has_color(sched_in
))
1648 pid_color
= COLOR_PIDS
;
1650 color_fprintf(stdout
, pid_color
, "%s => %s:%d",
1651 tr
->shortname
, thread__comm_str(sched_in
), sched_in
->tid
);
1652 tr
->comm_changed
= false;
1655 if (sched
->map
.comp
&& new_cpu
)
1656 color_fprintf(stdout
, color
, " (CPU %d)", this_cpu
);
1659 color_fprintf(stdout
, color
, "\n");
1661 thread__put(sched_in
);
1666 static int process_sched_switch_event(struct perf_tool
*tool
,
1667 struct evsel
*evsel
,
1668 struct perf_sample
*sample
,
1669 struct machine
*machine
)
1671 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1672 int this_cpu
= sample
->cpu
, err
= 0;
1673 u32 prev_pid
= evsel__intval(evsel
, sample
, "prev_pid"),
1674 next_pid
= evsel__intval(evsel
, sample
, "next_pid");
1676 if (sched
->curr_pid
[this_cpu
] != (u32
)-1) {
1678 * Are we trying to switch away a PID that is
1681 if (sched
->curr_pid
[this_cpu
] != prev_pid
)
1682 sched
->nr_context_switch_bugs
++;
1685 if (sched
->tp_handler
->switch_event
)
1686 err
= sched
->tp_handler
->switch_event(sched
, evsel
, sample
, machine
);
1688 sched
->curr_pid
[this_cpu
] = next_pid
;
1692 static int process_sched_runtime_event(struct perf_tool
*tool
,
1693 struct evsel
*evsel
,
1694 struct perf_sample
*sample
,
1695 struct machine
*machine
)
1697 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1699 if (sched
->tp_handler
->runtime_event
)
1700 return sched
->tp_handler
->runtime_event(sched
, evsel
, sample
, machine
);
1705 static int perf_sched__process_fork_event(struct perf_tool
*tool
,
1706 union perf_event
*event
,
1707 struct perf_sample
*sample
,
1708 struct machine
*machine
)
1710 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1712 /* run the fork event through the perf machineruy */
1713 perf_event__process_fork(tool
, event
, sample
, machine
);
1715 /* and then run additional processing needed for this command */
1716 if (sched
->tp_handler
->fork_event
)
1717 return sched
->tp_handler
->fork_event(sched
, event
, machine
);
1722 static int process_sched_migrate_task_event(struct perf_tool
*tool
,
1723 struct evsel
*evsel
,
1724 struct perf_sample
*sample
,
1725 struct machine
*machine
)
1727 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1729 if (sched
->tp_handler
->migrate_task_event
)
1730 return sched
->tp_handler
->migrate_task_event(sched
, evsel
, sample
, machine
);
1735 typedef int (*tracepoint_handler
)(struct perf_tool
*tool
,
1736 struct evsel
*evsel
,
1737 struct perf_sample
*sample
,
1738 struct machine
*machine
);
1740 static int perf_sched__process_tracepoint_sample(struct perf_tool
*tool __maybe_unused
,
1741 union perf_event
*event __maybe_unused
,
1742 struct perf_sample
*sample
,
1743 struct evsel
*evsel
,
1744 struct machine
*machine
)
1748 if (evsel
->handler
!= NULL
) {
1749 tracepoint_handler f
= evsel
->handler
;
1750 err
= f(tool
, evsel
, sample
, machine
);
1756 static int perf_sched__process_comm(struct perf_tool
*tool __maybe_unused
,
1757 union perf_event
*event
,
1758 struct perf_sample
*sample
,
1759 struct machine
*machine
)
1761 struct thread
*thread
;
1762 struct thread_runtime
*tr
;
1765 err
= perf_event__process_comm(tool
, event
, sample
, machine
);
1769 thread
= machine__find_thread(machine
, sample
->pid
, sample
->tid
);
1771 pr_err("Internal error: can't find thread\n");
1775 tr
= thread__get_runtime(thread
);
1777 thread__put(thread
);
1781 tr
->comm_changed
= true;
1782 thread__put(thread
);
1787 static int perf_sched__read_events(struct perf_sched
*sched
)
1789 const struct evsel_str_handler handlers
[] = {
1790 { "sched:sched_switch", process_sched_switch_event
, },
1791 { "sched:sched_stat_runtime", process_sched_runtime_event
, },
1792 { "sched:sched_wakeup", process_sched_wakeup_event
, },
1793 { "sched:sched_wakeup_new", process_sched_wakeup_event
, },
1794 { "sched:sched_migrate_task", process_sched_migrate_task_event
, },
1796 struct perf_session
*session
;
1797 struct perf_data data
= {
1799 .mode
= PERF_DATA_MODE_READ
,
1800 .force
= sched
->force
,
1804 session
= perf_session__new(&data
, false, &sched
->tool
);
1805 if (IS_ERR(session
)) {
1806 pr_debug("Error creating perf session");
1807 return PTR_ERR(session
);
1810 symbol__init(&session
->header
.env
);
1812 if (perf_session__set_tracepoints_handlers(session
, handlers
))
1815 if (perf_session__has_traces(session
, "record -R")) {
1816 int err
= perf_session__process_events(session
);
1818 pr_err("Failed to process events, error %d", err
);
1822 sched
->nr_events
= session
->evlist
->stats
.nr_events
[0];
1823 sched
->nr_lost_events
= session
->evlist
->stats
.total_lost
;
1824 sched
->nr_lost_chunks
= session
->evlist
->stats
.nr_events
[PERF_RECORD_LOST
];
1829 perf_session__delete(session
);
1834 * scheduling times are printed as msec.usec
1836 static inline void print_sched_time(unsigned long long nsecs
, int width
)
1838 unsigned long msecs
;
1839 unsigned long usecs
;
1841 msecs
= nsecs
/ NSEC_PER_MSEC
;
1842 nsecs
-= msecs
* NSEC_PER_MSEC
;
1843 usecs
= nsecs
/ NSEC_PER_USEC
;
1844 printf("%*lu.%03lu ", width
, msecs
, usecs
);
1848 * returns runtime data for event, allocating memory for it the
1849 * first time it is used.
1851 static struct evsel_runtime
*evsel__get_runtime(struct evsel
*evsel
)
1853 struct evsel_runtime
*r
= evsel
->priv
;
1856 r
= zalloc(sizeof(struct evsel_runtime
));
1864 * save last time event was seen per cpu
1866 static void evsel__save_time(struct evsel
*evsel
, u64 timestamp
, u32 cpu
)
1868 struct evsel_runtime
*r
= evsel__get_runtime(evsel
);
1873 if ((cpu
>= r
->ncpu
) || (r
->last_time
== NULL
)) {
1874 int i
, n
= __roundup_pow_of_two(cpu
+1);
1875 void *p
= r
->last_time
;
1877 p
= realloc(r
->last_time
, n
* sizeof(u64
));
1882 for (i
= r
->ncpu
; i
< n
; ++i
)
1883 r
->last_time
[i
] = (u64
) 0;
1888 r
->last_time
[cpu
] = timestamp
;
1891 /* returns last time this event was seen on the given cpu */
1892 static u64
evsel__get_time(struct evsel
*evsel
, u32 cpu
)
1894 struct evsel_runtime
*r
= evsel__get_runtime(evsel
);
1896 if ((r
== NULL
) || (r
->last_time
== NULL
) || (cpu
>= r
->ncpu
))
1899 return r
->last_time
[cpu
];
1902 static int comm_width
= 30;
1904 static char *timehist_get_commstr(struct thread
*thread
)
1906 static char str
[32];
1907 const char *comm
= thread__comm_str(thread
);
1908 pid_t tid
= thread
->tid
;
1909 pid_t pid
= thread
->pid_
;
1913 n
= scnprintf(str
, sizeof(str
), "%s", comm
);
1915 else if (tid
!= pid
)
1916 n
= scnprintf(str
, sizeof(str
), "%s[%d/%d]", comm
, tid
, pid
);
1919 n
= scnprintf(str
, sizeof(str
), "%s[%d]", comm
, tid
);
1927 static void timehist_header(struct perf_sched
*sched
)
1929 u32 ncpus
= sched
->max_cpu
+ 1;
1932 printf("%15s %6s ", "time", "cpu");
1934 if (sched
->show_cpu_visual
) {
1936 for (i
= 0, j
= 0; i
< ncpus
; ++i
) {
1944 printf(" %-*s %9s %9s %9s", comm_width
,
1945 "task name", "wait time", "sch delay", "run time");
1947 if (sched
->show_state
)
1948 printf(" %s", "state");
1955 printf("%15s %-6s ", "", "");
1957 if (sched
->show_cpu_visual
)
1958 printf(" %*s ", ncpus
, "");
1960 printf(" %-*s %9s %9s %9s", comm_width
,
1961 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1963 if (sched
->show_state
)
1971 printf("%.15s %.6s ", graph_dotted_line
, graph_dotted_line
);
1973 if (sched
->show_cpu_visual
)
1974 printf(" %.*s ", ncpus
, graph_dotted_line
);
1976 printf(" %.*s %.9s %.9s %.9s", comm_width
,
1977 graph_dotted_line
, graph_dotted_line
, graph_dotted_line
,
1980 if (sched
->show_state
)
1981 printf(" %.5s", graph_dotted_line
);
1986 static char task_state_char(struct thread
*thread
, int state
)
1988 static const char state_to_char
[] = TASK_STATE_TO_CHAR_STR
;
1989 unsigned bit
= state
? ffs(state
) : 0;
1992 if (thread
->tid
== 0)
1995 return bit
< sizeof(state_to_char
) - 1 ? state_to_char
[bit
] : '?';
1998 static void timehist_print_sample(struct perf_sched
*sched
,
1999 struct evsel
*evsel
,
2000 struct perf_sample
*sample
,
2001 struct addr_location
*al
,
2002 struct thread
*thread
,
2005 struct thread_runtime
*tr
= thread__priv(thread
);
2006 const char *next_comm
= evsel__strval(evsel
, sample
, "next_comm");
2007 const u32 next_pid
= evsel__intval(evsel
, sample
, "next_pid");
2008 u32 max_cpus
= sched
->max_cpu
+ 1;
2013 if (cpu_list
&& !test_bit(sample
->cpu
, cpu_bitmap
))
2016 timestamp__scnprintf_usec(t
, tstr
, sizeof(tstr
));
2017 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2019 if (sched
->show_cpu_visual
) {
2024 for (i
= 0; i
< max_cpus
; ++i
) {
2025 /* flag idle times with 'i'; others are sched events */
2026 if (i
== sample
->cpu
)
2027 c
= (thread
->tid
== 0) ? 'i' : 's';
2035 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2037 wait_time
= tr
->dt_sleep
+ tr
->dt_iowait
+ tr
->dt_preempt
;
2038 print_sched_time(wait_time
, 6);
2040 print_sched_time(tr
->dt_delay
, 6);
2041 print_sched_time(tr
->dt_run
, 6);
2043 if (sched
->show_state
)
2044 printf(" %5c ", task_state_char(thread
, state
));
2046 if (sched
->show_next
) {
2047 snprintf(nstr
, sizeof(nstr
), "next: %s[%d]", next_comm
, next_pid
);
2048 printf(" %-*s", comm_width
, nstr
);
2051 if (sched
->show_wakeups
&& !sched
->show_next
)
2052 printf(" %-*s", comm_width
, "");
2054 if (thread
->tid
== 0)
2057 if (sched
->show_callchain
)
2060 sample__fprintf_sym(sample
, al
, 0,
2061 EVSEL__PRINT_SYM
| EVSEL__PRINT_ONELINE
|
2062 EVSEL__PRINT_CALLCHAIN_ARROW
|
2063 EVSEL__PRINT_SKIP_IGNORED
,
2064 &callchain_cursor
, symbol_conf
.bt_stop_list
, stdout
);
2071 * Explanation of delta-time stats:
2073 * t = time of current schedule out event
2074 * tprev = time of previous sched out event
2075 * also time of schedule-in event for current task
2076 * last_time = time of last sched change event for current task
2077 * (i.e, time process was last scheduled out)
2078 * ready_to_run = time of wakeup for current task
2080 * -----|------------|------------|------------|------
2081 * last ready tprev t
2084 * |-------- dt_wait --------|
2085 * |- dt_delay -|-- dt_run --|
2087 * dt_run = run time of current task
2088 * dt_wait = time between last schedule out event for task and tprev
2089 * represents time spent off the cpu
2090 * dt_delay = time between wakeup and schedule-in of task
2093 static void timehist_update_runtime_stats(struct thread_runtime
*r
,
2103 r
->dt_run
= t
- tprev
;
2104 if (r
->ready_to_run
) {
2105 if (r
->ready_to_run
> tprev
)
2106 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2108 r
->dt_delay
= tprev
- r
->ready_to_run
;
2111 if (r
->last_time
> tprev
)
2112 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2113 else if (r
->last_time
) {
2114 u64 dt_wait
= tprev
- r
->last_time
;
2116 if (r
->last_state
== TASK_RUNNING
)
2117 r
->dt_preempt
= dt_wait
;
2118 else if (r
->last_state
== TASK_UNINTERRUPTIBLE
)
2119 r
->dt_iowait
= dt_wait
;
2121 r
->dt_sleep
= dt_wait
;
2125 update_stats(&r
->run_stats
, r
->dt_run
);
2127 r
->total_run_time
+= r
->dt_run
;
2128 r
->total_delay_time
+= r
->dt_delay
;
2129 r
->total_sleep_time
+= r
->dt_sleep
;
2130 r
->total_iowait_time
+= r
->dt_iowait
;
2131 r
->total_preempt_time
+= r
->dt_preempt
;
2134 static bool is_idle_sample(struct perf_sample
*sample
,
2135 struct evsel
*evsel
)
2137 /* pid 0 == swapper == idle task */
2138 if (strcmp(evsel__name(evsel
), "sched:sched_switch") == 0)
2139 return evsel__intval(evsel
, sample
, "prev_pid") == 0;
2141 return sample
->pid
== 0;
2144 static void save_task_callchain(struct perf_sched
*sched
,
2145 struct perf_sample
*sample
,
2146 struct evsel
*evsel
,
2147 struct machine
*machine
)
2149 struct callchain_cursor
*cursor
= &callchain_cursor
;
2150 struct thread
*thread
;
2152 /* want main thread for process - has maps */
2153 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->pid
);
2154 if (thread
== NULL
) {
2155 pr_debug("Failed to get thread for pid %d.\n", sample
->pid
);
2159 if (!sched
->show_callchain
|| sample
->callchain
== NULL
)
2162 if (thread__resolve_callchain(thread
, cursor
, evsel
, sample
,
2163 NULL
, NULL
, sched
->max_stack
+ 2) != 0) {
2165 pr_err("Failed to resolve callchain. Skipping\n");
2170 callchain_cursor_commit(cursor
);
2173 struct callchain_cursor_node
*node
;
2176 node
= callchain_cursor_current(cursor
);
2182 if (!strcmp(sym
->name
, "schedule") ||
2183 !strcmp(sym
->name
, "__schedule") ||
2184 !strcmp(sym
->name
, "preempt_schedule"))
2188 callchain_cursor_advance(cursor
);
2192 static int init_idle_thread(struct thread
*thread
)
2194 struct idle_thread_runtime
*itr
;
2196 thread__set_comm(thread
, idle_comm
, 0);
2198 itr
= zalloc(sizeof(*itr
));
2202 init_stats(&itr
->tr
.run_stats
);
2203 callchain_init(&itr
->callchain
);
2204 callchain_cursor_reset(&itr
->cursor
);
2205 thread__set_priv(thread
, itr
);
2211 * Track idle stats per cpu by maintaining a local thread
2212 * struct for the idle task on each cpu.
2214 static int init_idle_threads(int ncpu
)
2218 idle_threads
= zalloc(ncpu
* sizeof(struct thread
*));
2222 idle_max_cpu
= ncpu
;
2224 /* allocate the actual thread struct if needed */
2225 for (i
= 0; i
< ncpu
; ++i
) {
2226 idle_threads
[i
] = thread__new(0, 0);
2227 if (idle_threads
[i
] == NULL
)
2230 ret
= init_idle_thread(idle_threads
[i
]);
2238 static void free_idle_threads(void)
2242 if (idle_threads
== NULL
)
2245 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2246 if ((idle_threads
[i
]))
2247 thread__delete(idle_threads
[i
]);
2253 static struct thread
*get_idle_thread(int cpu
)
2256 * expand/allocate array of pointers to local thread
2259 if ((cpu
>= idle_max_cpu
) || (idle_threads
== NULL
)) {
2260 int i
, j
= __roundup_pow_of_two(cpu
+1);
2263 p
= realloc(idle_threads
, j
* sizeof(struct thread
*));
2267 idle_threads
= (struct thread
**) p
;
2268 for (i
= idle_max_cpu
; i
< j
; ++i
)
2269 idle_threads
[i
] = NULL
;
2274 /* allocate a new thread struct if needed */
2275 if (idle_threads
[cpu
] == NULL
) {
2276 idle_threads
[cpu
] = thread__new(0, 0);
2278 if (idle_threads
[cpu
]) {
2279 if (init_idle_thread(idle_threads
[cpu
]) < 0)
2284 return idle_threads
[cpu
];
2287 static void save_idle_callchain(struct perf_sched
*sched
,
2288 struct idle_thread_runtime
*itr
,
2289 struct perf_sample
*sample
)
2291 if (!sched
->show_callchain
|| sample
->callchain
== NULL
)
2294 callchain_cursor__copy(&itr
->cursor
, &callchain_cursor
);
2297 static struct thread
*timehist_get_thread(struct perf_sched
*sched
,
2298 struct perf_sample
*sample
,
2299 struct machine
*machine
,
2300 struct evsel
*evsel
)
2302 struct thread
*thread
;
2304 if (is_idle_sample(sample
, evsel
)) {
2305 thread
= get_idle_thread(sample
->cpu
);
2307 pr_err("Failed to get idle thread for cpu %d.\n", sample
->cpu
);
2310 /* there were samples with tid 0 but non-zero pid */
2311 thread
= machine__findnew_thread(machine
, sample
->pid
,
2312 sample
->tid
?: sample
->pid
);
2313 if (thread
== NULL
) {
2314 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2318 save_task_callchain(sched
, sample
, evsel
, machine
);
2319 if (sched
->idle_hist
) {
2320 struct thread
*idle
;
2321 struct idle_thread_runtime
*itr
;
2323 idle
= get_idle_thread(sample
->cpu
);
2325 pr_err("Failed to get idle thread for cpu %d.\n", sample
->cpu
);
2329 itr
= thread__priv(idle
);
2333 itr
->last_thread
= thread
;
2335 /* copy task callchain when entering to idle */
2336 if (evsel__intval(evsel
, sample
, "next_pid") == 0)
2337 save_idle_callchain(sched
, itr
, sample
);
2344 static bool timehist_skip_sample(struct perf_sched
*sched
,
2345 struct thread
*thread
,
2346 struct evsel
*evsel
,
2347 struct perf_sample
*sample
)
2351 if (thread__is_filtered(thread
)) {
2353 sched
->skipped_samples
++;
2356 if (sched
->idle_hist
) {
2357 if (strcmp(evsel__name(evsel
), "sched:sched_switch"))
2359 else if (evsel__intval(evsel
, sample
, "prev_pid") != 0 &&
2360 evsel__intval(evsel
, sample
, "next_pid") != 0)
2367 static void timehist_print_wakeup_event(struct perf_sched
*sched
,
2368 struct evsel
*evsel
,
2369 struct perf_sample
*sample
,
2370 struct machine
*machine
,
2371 struct thread
*awakened
)
2373 struct thread
*thread
;
2376 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->tid
);
2380 /* show wakeup unless both awakee and awaker are filtered */
2381 if (timehist_skip_sample(sched
, thread
, evsel
, sample
) &&
2382 timehist_skip_sample(sched
, awakened
, evsel
, sample
)) {
2386 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2387 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2388 if (sched
->show_cpu_visual
)
2389 printf(" %*s ", sched
->max_cpu
+ 1, "");
2391 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2394 printf(" %9s %9s %9s ", "", "", "");
2396 printf("awakened: %s", timehist_get_commstr(awakened
));
2401 static int timehist_sched_wakeup_ignore(struct perf_tool
*tool __maybe_unused
,
2402 union perf_event
*event __maybe_unused
,
2403 struct evsel
*evsel __maybe_unused
,
2404 struct perf_sample
*sample __maybe_unused
,
2405 struct machine
*machine __maybe_unused
)
2410 static int timehist_sched_wakeup_event(struct perf_tool
*tool
,
2411 union perf_event
*event __maybe_unused
,
2412 struct evsel
*evsel
,
2413 struct perf_sample
*sample
,
2414 struct machine
*machine
)
2416 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2417 struct thread
*thread
;
2418 struct thread_runtime
*tr
= NULL
;
2419 /* want pid of awakened task not pid in sample */
2420 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
2422 thread
= machine__findnew_thread(machine
, 0, pid
);
2426 tr
= thread__get_runtime(thread
);
2430 if (tr
->ready_to_run
== 0)
2431 tr
->ready_to_run
= sample
->time
;
2433 /* show wakeups if requested */
2434 if (sched
->show_wakeups
&&
2435 !perf_time__skip_sample(&sched
->ptime
, sample
->time
))
2436 timehist_print_wakeup_event(sched
, evsel
, sample
, machine
, thread
);
2441 static void timehist_print_migration_event(struct perf_sched
*sched
,
2442 struct evsel
*evsel
,
2443 struct perf_sample
*sample
,
2444 struct machine
*machine
,
2445 struct thread
*migrated
)
2447 struct thread
*thread
;
2449 u32 max_cpus
= sched
->max_cpu
+ 1;
2452 if (sched
->summary_only
)
2455 max_cpus
= sched
->max_cpu
+ 1;
2456 ocpu
= evsel__intval(evsel
, sample
, "orig_cpu");
2457 dcpu
= evsel__intval(evsel
, sample
, "dest_cpu");
2459 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->tid
);
2463 if (timehist_skip_sample(sched
, thread
, evsel
, sample
) &&
2464 timehist_skip_sample(sched
, migrated
, evsel
, sample
)) {
2468 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2469 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2471 if (sched
->show_cpu_visual
) {
2476 for (i
= 0; i
< max_cpus
; ++i
) {
2477 c
= (i
== sample
->cpu
) ? 'm' : ' ';
2483 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2486 printf(" %9s %9s %9s ", "", "", "");
2488 printf("migrated: %s", timehist_get_commstr(migrated
));
2489 printf(" cpu %d => %d", ocpu
, dcpu
);
2494 static int timehist_migrate_task_event(struct perf_tool
*tool
,
2495 union perf_event
*event __maybe_unused
,
2496 struct evsel
*evsel
,
2497 struct perf_sample
*sample
,
2498 struct machine
*machine
)
2500 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2501 struct thread
*thread
;
2502 struct thread_runtime
*tr
= NULL
;
2503 /* want pid of migrated task not pid in sample */
2504 const u32 pid
= evsel__intval(evsel
, sample
, "pid");
2506 thread
= machine__findnew_thread(machine
, 0, pid
);
2510 tr
= thread__get_runtime(thread
);
2516 /* show migrations if requested */
2517 timehist_print_migration_event(sched
, evsel
, sample
, machine
, thread
);
2522 static int timehist_sched_change_event(struct perf_tool
*tool
,
2523 union perf_event
*event
,
2524 struct evsel
*evsel
,
2525 struct perf_sample
*sample
,
2526 struct machine
*machine
)
2528 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2529 struct perf_time_interval
*ptime
= &sched
->ptime
;
2530 struct addr_location al
;
2531 struct thread
*thread
;
2532 struct thread_runtime
*tr
= NULL
;
2533 u64 tprev
, t
= sample
->time
;
2535 int state
= evsel__intval(evsel
, sample
, "prev_state");
2537 if (machine__resolve(machine
, &al
, sample
) < 0) {
2538 pr_err("problem processing %d event. skipping it\n",
2539 event
->header
.type
);
2544 thread
= timehist_get_thread(sched
, sample
, machine
, evsel
);
2545 if (thread
== NULL
) {
2550 if (timehist_skip_sample(sched
, thread
, evsel
, sample
))
2553 tr
= thread__get_runtime(thread
);
2559 tprev
= evsel__get_time(evsel
, sample
->cpu
);
2562 * If start time given:
2563 * - sample time is under window user cares about - skip sample
2564 * - tprev is under window user cares about - reset to start of window
2566 if (ptime
->start
&& ptime
->start
> t
)
2569 if (tprev
&& ptime
->start
> tprev
)
2570 tprev
= ptime
->start
;
2573 * If end time given:
2574 * - previous sched event is out of window - we are done
2575 * - sample time is beyond window user cares about - reset it
2576 * to close out stats for time window interest
2579 if (tprev
> ptime
->end
)
2586 if (!sched
->idle_hist
|| thread
->tid
== 0) {
2587 timehist_update_runtime_stats(tr
, t
, tprev
);
2589 if (sched
->idle_hist
) {
2590 struct idle_thread_runtime
*itr
= (void *)tr
;
2591 struct thread_runtime
*last_tr
;
2593 BUG_ON(thread
->tid
!= 0);
2595 if (itr
->last_thread
== NULL
)
2598 /* add current idle time as last thread's runtime */
2599 last_tr
= thread__get_runtime(itr
->last_thread
);
2600 if (last_tr
== NULL
)
2603 timehist_update_runtime_stats(last_tr
, t
, tprev
);
2605 * remove delta time of last thread as it's not updated
2606 * and otherwise it will show an invalid value next
2607 * time. we only care total run time and run stat.
2609 last_tr
->dt_run
= 0;
2610 last_tr
->dt_delay
= 0;
2611 last_tr
->dt_sleep
= 0;
2612 last_tr
->dt_iowait
= 0;
2613 last_tr
->dt_preempt
= 0;
2616 callchain_append(&itr
->callchain
, &itr
->cursor
, t
- tprev
);
2618 itr
->last_thread
= NULL
;
2622 if (!sched
->summary_only
)
2623 timehist_print_sample(sched
, evsel
, sample
, &al
, thread
, t
, state
);
2626 if (sched
->hist_time
.start
== 0 && t
>= ptime
->start
)
2627 sched
->hist_time
.start
= t
;
2628 if (ptime
->end
== 0 || t
<= ptime
->end
)
2629 sched
->hist_time
.end
= t
;
2632 /* time of this sched_switch event becomes last time task seen */
2633 tr
->last_time
= sample
->time
;
2635 /* last state is used to determine where to account wait time */
2636 tr
->last_state
= state
;
2638 /* sched out event for task so reset ready to run time */
2639 tr
->ready_to_run
= 0;
2642 evsel__save_time(evsel
, sample
->time
, sample
->cpu
);
2647 static int timehist_sched_switch_event(struct perf_tool
*tool
,
2648 union perf_event
*event
,
2649 struct evsel
*evsel
,
2650 struct perf_sample
*sample
,
2651 struct machine
*machine __maybe_unused
)
2653 return timehist_sched_change_event(tool
, event
, evsel
, sample
, machine
);
2656 static int process_lost(struct perf_tool
*tool __maybe_unused
,
2657 union perf_event
*event
,
2658 struct perf_sample
*sample
,
2659 struct machine
*machine __maybe_unused
)
2663 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2664 printf("%15s ", tstr
);
2665 printf("lost %" PRI_lu64
" events on cpu %d\n", event
->lost
.lost
, sample
->cpu
);
2671 static void print_thread_runtime(struct thread
*t
,
2672 struct thread_runtime
*r
)
2674 double mean
= avg_stats(&r
->run_stats
);
2677 printf("%*s %5d %9" PRIu64
" ",
2678 comm_width
, timehist_get_commstr(t
), t
->ppid
,
2679 (u64
) r
->run_stats
.n
);
2681 print_sched_time(r
->total_run_time
, 8);
2682 stddev
= rel_stddev_stats(stddev_stats(&r
->run_stats
), mean
);
2683 print_sched_time(r
->run_stats
.min
, 6);
2685 print_sched_time((u64
) mean
, 6);
2687 print_sched_time(r
->run_stats
.max
, 6);
2689 printf("%5.2f", stddev
);
2690 printf(" %5" PRIu64
, r
->migrations
);
2694 static void print_thread_waittime(struct thread
*t
,
2695 struct thread_runtime
*r
)
2697 printf("%*s %5d %9" PRIu64
" ",
2698 comm_width
, timehist_get_commstr(t
), t
->ppid
,
2699 (u64
) r
->run_stats
.n
);
2701 print_sched_time(r
->total_run_time
, 8);
2702 print_sched_time(r
->total_sleep_time
, 6);
2704 print_sched_time(r
->total_iowait_time
, 6);
2706 print_sched_time(r
->total_preempt_time
, 6);
2708 print_sched_time(r
->total_delay_time
, 6);
2712 struct total_run_stats
{
2713 struct perf_sched
*sched
;
2719 static int __show_thread_runtime(struct thread
*t
, void *priv
)
2721 struct total_run_stats
*stats
= priv
;
2722 struct thread_runtime
*r
;
2724 if (thread__is_filtered(t
))
2727 r
= thread__priv(t
);
2728 if (r
&& r
->run_stats
.n
) {
2729 stats
->task_count
++;
2730 stats
->sched_count
+= r
->run_stats
.n
;
2731 stats
->total_run_time
+= r
->total_run_time
;
2733 if (stats
->sched
->show_state
)
2734 print_thread_waittime(t
, r
);
2736 print_thread_runtime(t
, r
);
2742 static int show_thread_runtime(struct thread
*t
, void *priv
)
2747 return __show_thread_runtime(t
, priv
);
2750 static int show_deadthread_runtime(struct thread
*t
, void *priv
)
2755 return __show_thread_runtime(t
, priv
);
2758 static size_t callchain__fprintf_folded(FILE *fp
, struct callchain_node
*node
)
2760 const char *sep
= " <- ";
2761 struct callchain_list
*chain
;
2769 ret
= callchain__fprintf_folded(fp
, node
->parent
);
2772 list_for_each_entry(chain
, &node
->val
, list
) {
2773 if (chain
->ip
>= PERF_CONTEXT_MAX
)
2775 if (chain
->ms
.sym
&& chain
->ms
.sym
->ignore
)
2777 ret
+= fprintf(fp
, "%s%s", first
? "" : sep
,
2778 callchain_list__sym_name(chain
, bf
, sizeof(bf
),
2786 static size_t timehist_print_idlehist_callchain(struct rb_root_cached
*root
)
2790 struct callchain_node
*chain
;
2791 struct rb_node
*rb_node
= rb_first_cached(root
);
2793 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2794 printf(" %.16s %.8s %.50s\n", graph_dotted_line
, graph_dotted_line
,
2798 chain
= rb_entry(rb_node
, struct callchain_node
, rb_node
);
2799 rb_node
= rb_next(rb_node
);
2801 ret
+= fprintf(fp
, " ");
2802 print_sched_time(chain
->hit
, 12);
2803 ret
+= 16; /* print_sched_time returns 2nd arg + 4 */
2804 ret
+= fprintf(fp
, " %8d ", chain
->count
);
2805 ret
+= callchain__fprintf_folded(fp
, chain
);
2806 ret
+= fprintf(fp
, "\n");
2812 static void timehist_print_summary(struct perf_sched
*sched
,
2813 struct perf_session
*session
)
2815 struct machine
*m
= &session
->machines
.host
;
2816 struct total_run_stats totals
;
2819 struct thread_runtime
*r
;
2821 u64 hist_time
= sched
->hist_time
.end
- sched
->hist_time
.start
;
2823 memset(&totals
, 0, sizeof(totals
));
2824 totals
.sched
= sched
;
2826 if (sched
->idle_hist
) {
2827 printf("\nIdle-time summary\n");
2828 printf("%*s parent sched-out ", comm_width
, "comm");
2829 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2830 } else if (sched
->show_state
) {
2831 printf("\nWait-time summary\n");
2832 printf("%*s parent sched-in ", comm_width
, "comm");
2833 printf(" run-time sleep iowait preempt delay\n");
2835 printf("\nRuntime summary\n");
2836 printf("%*s parent sched-in ", comm_width
, "comm");
2837 printf(" run-time min-run avg-run max-run stddev migrations\n");
2839 printf("%*s (count) ", comm_width
, "");
2840 printf(" (msec) (msec) (msec) (msec) %s\n",
2841 sched
->show_state
? "(msec)" : "%");
2842 printf("%.117s\n", graph_dotted_line
);
2844 machine__for_each_thread(m
, show_thread_runtime
, &totals
);
2845 task_count
= totals
.task_count
;
2847 printf("<no still running tasks>\n");
2849 printf("\nTerminated tasks:\n");
2850 machine__for_each_thread(m
, show_deadthread_runtime
, &totals
);
2851 if (task_count
== totals
.task_count
)
2852 printf("<no terminated tasks>\n");
2854 /* CPU idle stats not tracked when samples were skipped */
2855 if (sched
->skipped_samples
&& !sched
->idle_hist
)
2858 printf("\nIdle stats:\n");
2859 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2860 t
= idle_threads
[i
];
2864 r
= thread__priv(t
);
2865 if (r
&& r
->run_stats
.n
) {
2866 totals
.sched_count
+= r
->run_stats
.n
;
2867 printf(" CPU %2d idle for ", i
);
2868 print_sched_time(r
->total_run_time
, 6);
2869 printf(" msec (%6.2f%%)\n", 100.0 * r
->total_run_time
/ hist_time
);
2871 printf(" CPU %2d idle entire time window\n", i
);
2874 if (sched
->idle_hist
&& sched
->show_callchain
) {
2875 callchain_param
.mode
= CHAIN_FOLDED
;
2876 callchain_param
.value
= CCVAL_PERIOD
;
2878 callchain_register_param(&callchain_param
);
2880 printf("\nIdle stats by callchain:\n");
2881 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2882 struct idle_thread_runtime
*itr
;
2884 t
= idle_threads
[i
];
2888 itr
= thread__priv(t
);
2892 callchain_param
.sort(&itr
->sorted_root
.rb_root
, &itr
->callchain
,
2893 0, &callchain_param
);
2895 printf(" CPU %2d:", i
);
2896 print_sched_time(itr
->tr
.total_run_time
, 6);
2898 timehist_print_idlehist_callchain(&itr
->sorted_root
);
2904 " Total number of unique tasks: %" PRIu64
"\n"
2905 "Total number of context switches: %" PRIu64
"\n",
2906 totals
.task_count
, totals
.sched_count
);
2908 printf(" Total run time (msec): ");
2909 print_sched_time(totals
.total_run_time
, 2);
2912 printf(" Total scheduling time (msec): ");
2913 print_sched_time(hist_time
, 2);
2914 printf(" (x %d)\n", sched
->max_cpu
);
2917 typedef int (*sched_handler
)(struct perf_tool
*tool
,
2918 union perf_event
*event
,
2919 struct evsel
*evsel
,
2920 struct perf_sample
*sample
,
2921 struct machine
*machine
);
2923 static int perf_timehist__process_sample(struct perf_tool
*tool
,
2924 union perf_event
*event
,
2925 struct perf_sample
*sample
,
2926 struct evsel
*evsel
,
2927 struct machine
*machine
)
2929 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2931 int this_cpu
= sample
->cpu
;
2933 if (this_cpu
> sched
->max_cpu
)
2934 sched
->max_cpu
= this_cpu
;
2936 if (evsel
->handler
!= NULL
) {
2937 sched_handler f
= evsel
->handler
;
2939 err
= f(tool
, event
, evsel
, sample
, machine
);
2945 static int timehist_check_attr(struct perf_sched
*sched
,
2946 struct evlist
*evlist
)
2948 struct evsel
*evsel
;
2949 struct evsel_runtime
*er
;
2951 list_for_each_entry(evsel
, &evlist
->core
.entries
, core
.node
) {
2952 er
= evsel__get_runtime(evsel
);
2954 pr_err("Failed to allocate memory for evsel runtime data\n");
2958 if (sched
->show_callchain
&& !evsel__has_callchain(evsel
)) {
2959 pr_info("Samples do not have callchains.\n");
2960 sched
->show_callchain
= 0;
2961 symbol_conf
.use_callchain
= 0;
2968 static int perf_sched__timehist(struct perf_sched
*sched
)
2970 struct evsel_str_handler handlers
[] = {
2971 { "sched:sched_switch", timehist_sched_switch_event
, },
2972 { "sched:sched_wakeup", timehist_sched_wakeup_event
, },
2973 { "sched:sched_waking", timehist_sched_wakeup_event
, },
2974 { "sched:sched_wakeup_new", timehist_sched_wakeup_event
, },
2976 const struct evsel_str_handler migrate_handlers
[] = {
2977 { "sched:sched_migrate_task", timehist_migrate_task_event
, },
2979 struct perf_data data
= {
2981 .mode
= PERF_DATA_MODE_READ
,
2982 .force
= sched
->force
,
2985 struct perf_session
*session
;
2986 struct evlist
*evlist
;
2990 * event handlers for timehist option
2992 sched
->tool
.sample
= perf_timehist__process_sample
;
2993 sched
->tool
.mmap
= perf_event__process_mmap
;
2994 sched
->tool
.comm
= perf_event__process_comm
;
2995 sched
->tool
.exit
= perf_event__process_exit
;
2996 sched
->tool
.fork
= perf_event__process_fork
;
2997 sched
->tool
.lost
= process_lost
;
2998 sched
->tool
.attr
= perf_event__process_attr
;
2999 sched
->tool
.tracing_data
= perf_event__process_tracing_data
;
3000 sched
->tool
.build_id
= perf_event__process_build_id
;
3002 sched
->tool
.ordered_events
= true;
3003 sched
->tool
.ordering_requires_timestamps
= true;
3005 symbol_conf
.use_callchain
= sched
->show_callchain
;
3007 session
= perf_session__new(&data
, false, &sched
->tool
);
3008 if (IS_ERR(session
))
3009 return PTR_ERR(session
);
3012 err
= perf_session__cpu_bitmap(session
, cpu_list
, cpu_bitmap
);
3017 evlist
= session
->evlist
;
3019 symbol__init(&session
->header
.env
);
3021 if (perf_time__parse_str(&sched
->ptime
, sched
->time_str
) != 0) {
3022 pr_err("Invalid time string\n");
3026 if (timehist_check_attr(sched
, evlist
) != 0)
3031 /* prefer sched_waking if it is captured */
3032 if (perf_evlist__find_tracepoint_by_name(session
->evlist
,
3033 "sched:sched_waking"))
3034 handlers
[1].handler
= timehist_sched_wakeup_ignore
;
3036 /* setup per-evsel handlers */
3037 if (perf_session__set_tracepoints_handlers(session
, handlers
))
3040 /* sched_switch event at a minimum needs to exist */
3041 if (!perf_evlist__find_tracepoint_by_name(session
->evlist
,
3042 "sched:sched_switch")) {
3043 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3047 if (sched
->show_migrations
&&
3048 perf_session__set_tracepoints_handlers(session
, migrate_handlers
))
3051 /* pre-allocate struct for per-CPU idle stats */
3052 sched
->max_cpu
= session
->header
.env
.nr_cpus_online
;
3053 if (sched
->max_cpu
== 0)
3055 if (init_idle_threads(sched
->max_cpu
))
3058 /* summary_only implies summary option, but don't overwrite summary if set */
3059 if (sched
->summary_only
)
3060 sched
->summary
= sched
->summary_only
;
3062 if (!sched
->summary_only
)
3063 timehist_header(sched
);
3065 err
= perf_session__process_events(session
);
3067 pr_err("Failed to process events, error %d", err
);
3071 sched
->nr_events
= evlist
->stats
.nr_events
[0];
3072 sched
->nr_lost_events
= evlist
->stats
.total_lost
;
3073 sched
->nr_lost_chunks
= evlist
->stats
.nr_events
[PERF_RECORD_LOST
];
3076 timehist_print_summary(sched
, session
);
3079 free_idle_threads();
3080 perf_session__delete(session
);
3086 static void print_bad_events(struct perf_sched
*sched
)
3088 if (sched
->nr_unordered_timestamps
&& sched
->nr_timestamps
) {
3089 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3090 (double)sched
->nr_unordered_timestamps
/(double)sched
->nr_timestamps
*100.0,
3091 sched
->nr_unordered_timestamps
, sched
->nr_timestamps
);
3093 if (sched
->nr_lost_events
&& sched
->nr_events
) {
3094 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3095 (double)sched
->nr_lost_events
/(double)sched
->nr_events
* 100.0,
3096 sched
->nr_lost_events
, sched
->nr_events
, sched
->nr_lost_chunks
);
3098 if (sched
->nr_context_switch_bugs
&& sched
->nr_timestamps
) {
3099 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3100 (double)sched
->nr_context_switch_bugs
/(double)sched
->nr_timestamps
*100.0,
3101 sched
->nr_context_switch_bugs
, sched
->nr_timestamps
);
3102 if (sched
->nr_lost_events
)
3103 printf(" (due to lost events?)");
3108 static void __merge_work_atoms(struct rb_root_cached
*root
, struct work_atoms
*data
)
3110 struct rb_node
**new = &(root
->rb_root
.rb_node
), *parent
= NULL
;
3111 struct work_atoms
*this;
3112 const char *comm
= thread__comm_str(data
->thread
), *this_comm
;
3113 bool leftmost
= true;
3118 this = container_of(*new, struct work_atoms
, node
);
3121 this_comm
= thread__comm_str(this->thread
);
3122 cmp
= strcmp(comm
, this_comm
);
3124 new = &((*new)->rb_left
);
3125 } else if (cmp
< 0) {
3126 new = &((*new)->rb_right
);
3130 this->total_runtime
+= data
->total_runtime
;
3131 this->nb_atoms
+= data
->nb_atoms
;
3132 this->total_lat
+= data
->total_lat
;
3133 list_splice(&data
->work_list
, &this->work_list
);
3134 if (this->max_lat
< data
->max_lat
) {
3135 this->max_lat
= data
->max_lat
;
3136 this->max_lat_at
= data
->max_lat_at
;
3144 rb_link_node(&data
->node
, parent
, new);
3145 rb_insert_color_cached(&data
->node
, root
, leftmost
);
3148 static void perf_sched__merge_lat(struct perf_sched
*sched
)
3150 struct work_atoms
*data
;
3151 struct rb_node
*node
;
3153 if (sched
->skip_merge
)
3156 while ((node
= rb_first_cached(&sched
->atom_root
))) {
3157 rb_erase_cached(node
, &sched
->atom_root
);
3158 data
= rb_entry(node
, struct work_atoms
, node
);
3159 __merge_work_atoms(&sched
->merged_atom_root
, data
);
3163 static int perf_sched__lat(struct perf_sched
*sched
)
3165 struct rb_node
*next
;
3169 if (perf_sched__read_events(sched
))
3172 perf_sched__merge_lat(sched
);
3173 perf_sched__sort_lat(sched
);
3175 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3176 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3177 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3179 next
= rb_first_cached(&sched
->sorted_atom_root
);
3182 struct work_atoms
*work_list
;
3184 work_list
= rb_entry(next
, struct work_atoms
, node
);
3185 output_lat_thread(sched
, work_list
);
3186 next
= rb_next(next
);
3187 thread__zput(work_list
->thread
);
3190 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3191 printf(" TOTAL: |%11.3f ms |%9" PRIu64
" |\n",
3192 (double)sched
->all_runtime
/ NSEC_PER_MSEC
, sched
->all_count
);
3194 printf(" ---------------------------------------------------\n");
3196 print_bad_events(sched
);
3202 static int setup_map_cpus(struct perf_sched
*sched
)
3204 struct perf_cpu_map
*map
;
3206 sched
->max_cpu
= sysconf(_SC_NPROCESSORS_CONF
);
3208 if (sched
->map
.comp
) {
3209 sched
->map
.comp_cpus
= zalloc(sched
->max_cpu
* sizeof(int));
3210 if (!sched
->map
.comp_cpus
)
3214 if (!sched
->map
.cpus_str
)
3217 map
= perf_cpu_map__new(sched
->map
.cpus_str
);
3219 pr_err("failed to get cpus map from %s\n", sched
->map
.cpus_str
);
3223 sched
->map
.cpus
= map
;
3227 static int setup_color_pids(struct perf_sched
*sched
)
3229 struct perf_thread_map
*map
;
3231 if (!sched
->map
.color_pids_str
)
3234 map
= thread_map__new_by_tid_str(sched
->map
.color_pids_str
);
3236 pr_err("failed to get thread map from %s\n", sched
->map
.color_pids_str
);
3240 sched
->map
.color_pids
= map
;
3244 static int setup_color_cpus(struct perf_sched
*sched
)
3246 struct perf_cpu_map
*map
;
3248 if (!sched
->map
.color_cpus_str
)
3251 map
= perf_cpu_map__new(sched
->map
.color_cpus_str
);
3253 pr_err("failed to get thread map from %s\n", sched
->map
.color_cpus_str
);
3257 sched
->map
.color_cpus
= map
;
3261 static int perf_sched__map(struct perf_sched
*sched
)
3263 if (setup_map_cpus(sched
))
3266 if (setup_color_pids(sched
))
3269 if (setup_color_cpus(sched
))
3273 if (perf_sched__read_events(sched
))
3275 print_bad_events(sched
);
3279 static int perf_sched__replay(struct perf_sched
*sched
)
3283 calibrate_run_measurement_overhead(sched
);
3284 calibrate_sleep_measurement_overhead(sched
);
3286 test_calibrations(sched
);
3288 if (perf_sched__read_events(sched
))
3291 printf("nr_run_events: %ld\n", sched
->nr_run_events
);
3292 printf("nr_sleep_events: %ld\n", sched
->nr_sleep_events
);
3293 printf("nr_wakeup_events: %ld\n", sched
->nr_wakeup_events
);
3295 if (sched
->targetless_wakeups
)
3296 printf("target-less wakeups: %ld\n", sched
->targetless_wakeups
);
3297 if (sched
->multitarget_wakeups
)
3298 printf("multi-target wakeups: %ld\n", sched
->multitarget_wakeups
);
3299 if (sched
->nr_run_events_optimized
)
3300 printf("run atoms optimized: %ld\n",
3301 sched
->nr_run_events_optimized
);
3303 print_task_traces(sched
);
3304 add_cross_task_wakeups(sched
);
3306 create_tasks(sched
);
3307 printf("------------------------------------------------------------\n");
3308 for (i
= 0; i
< sched
->replay_repeat
; i
++)
3309 run_one_test(sched
);
3314 static void setup_sorting(struct perf_sched
*sched
, const struct option
*options
,
3315 const char * const usage_msg
[])
3317 char *tmp
, *tok
, *str
= strdup(sched
->sort_order
);
3319 for (tok
= strtok_r(str
, ", ", &tmp
);
3320 tok
; tok
= strtok_r(NULL
, ", ", &tmp
)) {
3321 if (sort_dimension__add(tok
, &sched
->sort_list
) < 0) {
3322 usage_with_options_msg(usage_msg
, options
,
3323 "Unknown --sort key: `%s'", tok
);
3329 sort_dimension__add("pid", &sched
->cmp_pid
);
3332 static int __cmd_record(int argc
, const char **argv
)
3334 unsigned int rec_argc
, i
, j
;
3335 const char **rec_argv
;
3336 const char * const record_args
[] = {
3342 "-e", "sched:sched_switch",
3343 "-e", "sched:sched_stat_wait",
3344 "-e", "sched:sched_stat_sleep",
3345 "-e", "sched:sched_stat_iowait",
3346 "-e", "sched:sched_stat_runtime",
3347 "-e", "sched:sched_process_fork",
3348 "-e", "sched:sched_wakeup_new",
3349 "-e", "sched:sched_migrate_task",
3351 struct tep_event
*waking_event
;
3354 * +2 for either "-e", "sched:sched_wakeup" or
3355 * "-e", "sched:sched_waking"
3357 rec_argc
= ARRAY_SIZE(record_args
) + 2 + argc
- 1;
3358 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
3360 if (rec_argv
== NULL
)
3363 for (i
= 0; i
< ARRAY_SIZE(record_args
); i
++)
3364 rec_argv
[i
] = strdup(record_args
[i
]);
3366 rec_argv
[i
++] = "-e";
3367 waking_event
= trace_event__tp_format("sched", "sched_waking");
3368 if (!IS_ERR(waking_event
))
3369 rec_argv
[i
++] = strdup("sched:sched_waking");
3371 rec_argv
[i
++] = strdup("sched:sched_wakeup");
3373 for (j
= 1; j
< (unsigned int)argc
; j
++, i
++)
3374 rec_argv
[i
] = argv
[j
];
3376 BUG_ON(i
!= rec_argc
);
3378 return cmd_record(i
, rec_argv
);
3381 int cmd_sched(int argc
, const char **argv
)
3383 static const char default_sort_order
[] = "avg, max, switch, runtime";
3384 struct perf_sched sched
= {
3386 .sample
= perf_sched__process_tracepoint_sample
,
3387 .comm
= perf_sched__process_comm
,
3388 .namespaces
= perf_event__process_namespaces
,
3389 .lost
= perf_event__process_lost
,
3390 .fork
= perf_sched__process_fork_event
,
3391 .ordered_events
= true,
3393 .cmp_pid
= LIST_HEAD_INIT(sched
.cmp_pid
),
3394 .sort_list
= LIST_HEAD_INIT(sched
.sort_list
),
3395 .start_work_mutex
= PTHREAD_MUTEX_INITIALIZER
,
3396 .work_done_wait_mutex
= PTHREAD_MUTEX_INITIALIZER
,
3397 .sort_order
= default_sort_order
,
3398 .replay_repeat
= 10,
3400 .next_shortname1
= 'A',
3401 .next_shortname2
= '0',
3403 .show_callchain
= 1,
3406 const struct option sched_options
[] = {
3407 OPT_STRING('i', "input", &input_name
, "file",
3409 OPT_INCR('v', "verbose", &verbose
,
3410 "be more verbose (show symbol address, etc)"),
3411 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
3412 "dump raw trace in ASCII"),
3413 OPT_BOOLEAN('f', "force", &sched
.force
, "don't complain, do it"),
3416 const struct option latency_options
[] = {
3417 OPT_STRING('s', "sort", &sched
.sort_order
, "key[,key2...]",
3418 "sort by key(s): runtime, switch, avg, max"),
3419 OPT_INTEGER('C', "CPU", &sched
.profile_cpu
,
3420 "CPU to profile on"),
3421 OPT_BOOLEAN('p', "pids", &sched
.skip_merge
,
3422 "latency stats per pid instead of per comm"),
3423 OPT_PARENT(sched_options
)
3425 const struct option replay_options
[] = {
3426 OPT_UINTEGER('r', "repeat", &sched
.replay_repeat
,
3427 "repeat the workload replay N times (-1: infinite)"),
3428 OPT_PARENT(sched_options
)
3430 const struct option map_options
[] = {
3431 OPT_BOOLEAN(0, "compact", &sched
.map
.comp
,
3432 "map output in compact mode"),
3433 OPT_STRING(0, "color-pids", &sched
.map
.color_pids_str
, "pids",
3434 "highlight given pids in map"),
3435 OPT_STRING(0, "color-cpus", &sched
.map
.color_cpus_str
, "cpus",
3436 "highlight given CPUs in map"),
3437 OPT_STRING(0, "cpus", &sched
.map
.cpus_str
, "cpus",
3438 "display given CPUs in map"),
3439 OPT_PARENT(sched_options
)
3441 const struct option timehist_options
[] = {
3442 OPT_STRING('k', "vmlinux", &symbol_conf
.vmlinux_name
,
3443 "file", "vmlinux pathname"),
3444 OPT_STRING(0, "kallsyms", &symbol_conf
.kallsyms_name
,
3445 "file", "kallsyms pathname"),
3446 OPT_BOOLEAN('g', "call-graph", &sched
.show_callchain
,
3447 "Display call chains if present (default on)"),
3448 OPT_UINTEGER(0, "max-stack", &sched
.max_stack
,
3449 "Maximum number of functions to display backtrace."),
3450 OPT_STRING(0, "symfs", &symbol_conf
.symfs
, "directory",
3451 "Look for files with symbols relative to this directory"),
3452 OPT_BOOLEAN('s', "summary", &sched
.summary_only
,
3453 "Show only syscall summary with statistics"),
3454 OPT_BOOLEAN('S', "with-summary", &sched
.summary
,
3455 "Show all syscalls and summary with statistics"),
3456 OPT_BOOLEAN('w', "wakeups", &sched
.show_wakeups
, "Show wakeup events"),
3457 OPT_BOOLEAN('n', "next", &sched
.show_next
, "Show next task"),
3458 OPT_BOOLEAN('M', "migrations", &sched
.show_migrations
, "Show migration events"),
3459 OPT_BOOLEAN('V', "cpu-visual", &sched
.show_cpu_visual
, "Add CPU visual"),
3460 OPT_BOOLEAN('I', "idle-hist", &sched
.idle_hist
, "Show idle events only"),
3461 OPT_STRING(0, "time", &sched
.time_str
, "str",
3462 "Time span for analysis (start,stop)"),
3463 OPT_BOOLEAN(0, "state", &sched
.show_state
, "Show task state when sched-out"),
3464 OPT_STRING('p', "pid", &symbol_conf
.pid_list_str
, "pid[,pid...]",
3465 "analyze events only for given process id(s)"),
3466 OPT_STRING('t', "tid", &symbol_conf
.tid_list_str
, "tid[,tid...]",
3467 "analyze events only for given thread id(s)"),
3468 OPT_STRING('C', "cpu", &cpu_list
, "cpu", "list of cpus to profile"),
3469 OPT_PARENT(sched_options
)
3472 const char * const latency_usage
[] = {
3473 "perf sched latency [<options>]",
3476 const char * const replay_usage
[] = {
3477 "perf sched replay [<options>]",
3480 const char * const map_usage
[] = {
3481 "perf sched map [<options>]",
3484 const char * const timehist_usage
[] = {
3485 "perf sched timehist [<options>]",
3488 const char *const sched_subcommands
[] = { "record", "latency", "map",
3491 const char *sched_usage
[] = {
3495 struct trace_sched_handler lat_ops
= {
3496 .wakeup_event
= latency_wakeup_event
,
3497 .switch_event
= latency_switch_event
,
3498 .runtime_event
= latency_runtime_event
,
3499 .migrate_task_event
= latency_migrate_task_event
,
3501 struct trace_sched_handler map_ops
= {
3502 .switch_event
= map_switch_event
,
3504 struct trace_sched_handler replay_ops
= {
3505 .wakeup_event
= replay_wakeup_event
,
3506 .switch_event
= replay_switch_event
,
3507 .fork_event
= replay_fork_event
,
3511 for (i
= 0; i
< ARRAY_SIZE(sched
.curr_pid
); i
++)
3512 sched
.curr_pid
[i
] = -1;
3514 argc
= parse_options_subcommand(argc
, argv
, sched_options
, sched_subcommands
,
3515 sched_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
3517 usage_with_options(sched_usage
, sched_options
);
3520 * Aliased to 'perf script' for now:
3522 if (!strcmp(argv
[0], "script"))
3523 return cmd_script(argc
, argv
);
3525 if (!strncmp(argv
[0], "rec", 3)) {
3526 return __cmd_record(argc
, argv
);
3527 } else if (!strncmp(argv
[0], "lat", 3)) {
3528 sched
.tp_handler
= &lat_ops
;
3530 argc
= parse_options(argc
, argv
, latency_options
, latency_usage
, 0);
3532 usage_with_options(latency_usage
, latency_options
);
3534 setup_sorting(&sched
, latency_options
, latency_usage
);
3535 return perf_sched__lat(&sched
);
3536 } else if (!strcmp(argv
[0], "map")) {
3538 argc
= parse_options(argc
, argv
, map_options
, map_usage
, 0);
3540 usage_with_options(map_usage
, map_options
);
3542 sched
.tp_handler
= &map_ops
;
3543 setup_sorting(&sched
, latency_options
, latency_usage
);
3544 return perf_sched__map(&sched
);
3545 } else if (!strncmp(argv
[0], "rep", 3)) {
3546 sched
.tp_handler
= &replay_ops
;
3548 argc
= parse_options(argc
, argv
, replay_options
, replay_usage
, 0);
3550 usage_with_options(replay_usage
, replay_options
);
3552 return perf_sched__replay(&sched
);
3553 } else if (!strcmp(argv
[0], "timehist")) {
3555 argc
= parse_options(argc
, argv
, timehist_options
,
3558 usage_with_options(timehist_usage
, timehist_options
);
3560 if ((sched
.show_wakeups
|| sched
.show_next
) &&
3561 sched
.summary_only
) {
3562 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3563 parse_options_usage(timehist_usage
, timehist_options
, "s", true);
3564 if (sched
.show_wakeups
)
3565 parse_options_usage(NULL
, timehist_options
, "w", true);
3566 if (sched
.show_next
)
3567 parse_options_usage(NULL
, timehist_options
, "n", true);
3571 return perf_sched__timehist(&sched
);
3573 usage_with_options(sched_usage
, sched_options
);