1 // SPDX-License-Identifier: GPL-2.0
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
28 #include "util/evsel_fprintf.h"
31 #include "trace-event.h"
41 #include <api/fs/fs.h>
44 #include "time-utils.h"
46 #include "util/util.h" // perf_exe()
48 #include "bpf-event.h"
51 #include <linux/ctype.h>
52 #include <internal/lib.h>
56 * must be a numerical value to let the endianness
57 * determine the memory layout. That way we are able
58 * to detect endianness when reading the perf.data file
61 * we check for legacy (PERFFILE) format.
63 static const char *__perf_magic1
= "PERFFILE";
64 static const u64 __perf_magic2
= 0x32454c4946524550ULL
;
65 static const u64 __perf_magic2_sw
= 0x50455246494c4532ULL
;
67 #define PERF_MAGIC __perf_magic2
69 const char perf_version_string
[] = PERF_VERSION
;
71 struct perf_file_attr
{
72 struct perf_event_attr attr
;
73 struct perf_file_section ids
;
76 void perf_header__set_feat(struct perf_header
*header
, int feat
)
78 set_bit(feat
, header
->adds_features
);
81 void perf_header__clear_feat(struct perf_header
*header
, int feat
)
83 clear_bit(feat
, header
->adds_features
);
86 bool perf_header__has_feat(const struct perf_header
*header
, int feat
)
88 return test_bit(feat
, header
->adds_features
);
91 static int __do_write_fd(struct feat_fd
*ff
, const void *buf
, size_t size
)
93 ssize_t ret
= writen(ff
->fd
, buf
, size
);
95 if (ret
!= (ssize_t
)size
)
96 return ret
< 0 ? (int)ret
: -1;
100 static int __do_write_buf(struct feat_fd
*ff
, const void *buf
, size_t size
)
102 /* struct perf_event_header::size is u16 */
103 const size_t max_size
= 0xffff - sizeof(struct perf_event_header
);
104 size_t new_size
= ff
->size
;
107 if (size
+ ff
->offset
> max_size
)
110 while (size
> (new_size
- ff
->offset
))
112 new_size
= min(max_size
, new_size
);
114 if (ff
->size
< new_size
) {
115 addr
= realloc(ff
->buf
, new_size
);
122 memcpy(ff
->buf
+ ff
->offset
, buf
, size
);
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd
*ff
, const void *buf
, size_t size
)
132 return __do_write_fd(ff
, buf
, size
);
133 return __do_write_buf(ff
, buf
, size
);
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd
*ff
, unsigned long *set
, u64 size
)
139 u64
*p
= (u64
*) set
;
142 ret
= do_write(ff
, &size
, sizeof(size
));
146 for (i
= 0; (u64
) i
< BITS_TO_U64(size
); i
++) {
147 ret
= do_write(ff
, p
+ i
, sizeof(*p
));
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd
*ff
, const void *bf
,
157 size_t count
, size_t count_aligned
)
159 static const char zero_buf
[NAME_ALIGN
];
160 int err
= do_write(ff
, bf
, count
);
163 err
= do_write(ff
, zero_buf
, count_aligned
- count
);
168 #define string_size(str) \
169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd
*ff
, const char *str
)
177 olen
= strlen(str
) + 1;
178 len
= PERF_ALIGN(olen
, NAME_ALIGN
);
180 /* write len, incl. \0 */
181 ret
= do_write(ff
, &len
, sizeof(len
));
185 return write_padded(ff
, str
, olen
, len
);
188 static int __do_read_fd(struct feat_fd
*ff
, void *addr
, ssize_t size
)
190 ssize_t ret
= readn(ff
->fd
, addr
, size
);
193 return ret
< 0 ? (int)ret
: -1;
197 static int __do_read_buf(struct feat_fd
*ff
, void *addr
, ssize_t size
)
199 if (size
> (ssize_t
)ff
->size
- ff
->offset
)
202 memcpy(addr
, ff
->buf
+ ff
->offset
, size
);
209 static int __do_read(struct feat_fd
*ff
, void *addr
, ssize_t size
)
212 return __do_read_fd(ff
, addr
, size
);
213 return __do_read_buf(ff
, addr
, size
);
216 static int do_read_u32(struct feat_fd
*ff
, u32
*addr
)
220 ret
= __do_read(ff
, addr
, sizeof(*addr
));
224 if (ff
->ph
->needs_swap
)
225 *addr
= bswap_32(*addr
);
229 static int do_read_u64(struct feat_fd
*ff
, u64
*addr
)
233 ret
= __do_read(ff
, addr
, sizeof(*addr
));
237 if (ff
->ph
->needs_swap
)
238 *addr
= bswap_64(*addr
);
242 static char *do_read_string(struct feat_fd
*ff
)
247 if (do_read_u32(ff
, &len
))
254 if (!__do_read(ff
, buf
, len
)) {
256 * strings are padded by zeroes
257 * thus the actual strlen of buf
258 * may be less than len
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd
*ff
, unsigned long **pset
, u64
*psize
)
274 ret
= do_read_u64(ff
, &size
);
278 set
= bitmap_alloc(size
);
284 for (i
= 0; (u64
) i
< BITS_TO_U64(size
); i
++) {
285 ret
= do_read_u64(ff
, p
+ i
);
297 static int write_tracing_data(struct feat_fd
*ff
,
298 struct evlist
*evlist
)
300 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
303 return read_tracing_data(ff
->fd
, &evlist
->core
.entries
);
306 static int write_build_id(struct feat_fd
*ff
,
307 struct evlist
*evlist __maybe_unused
)
309 struct perf_session
*session
;
312 session
= container_of(ff
->ph
, struct perf_session
, header
);
314 if (!perf_session__read_build_ids(session
, true))
317 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
320 err
= perf_session__write_buildid_table(session
, ff
);
322 pr_debug("failed to write buildid table\n");
325 perf_session__cache_build_ids(session
);
330 static int write_hostname(struct feat_fd
*ff
,
331 struct evlist
*evlist __maybe_unused
)
340 return do_write_string(ff
, uts
.nodename
);
343 static int write_osrelease(struct feat_fd
*ff
,
344 struct evlist
*evlist __maybe_unused
)
353 return do_write_string(ff
, uts
.release
);
356 static int write_arch(struct feat_fd
*ff
,
357 struct evlist
*evlist __maybe_unused
)
366 return do_write_string(ff
, uts
.machine
);
369 static int write_version(struct feat_fd
*ff
,
370 struct evlist
*evlist __maybe_unused
)
372 return do_write_string(ff
, perf_version_string
);
375 static int __write_cpudesc(struct feat_fd
*ff
, const char *cpuinfo_proc
)
380 const char *search
= cpuinfo_proc
;
387 file
= fopen("/proc/cpuinfo", "r");
391 while (getline(&buf
, &len
, file
) > 0) {
392 ret
= strncmp(buf
, search
, strlen(search
));
404 p
= strchr(buf
, ':');
405 if (p
&& *(p
+1) == ' ' && *(p
+2))
411 /* squash extra space characters (branding string) */
416 char *q
= skip_spaces(r
);
419 while ((*r
++ = *q
++));
423 ret
= do_write_string(ff
, s
);
430 static int write_cpudesc(struct feat_fd
*ff
,
431 struct evlist
*evlist __maybe_unused
)
433 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434 #define CPUINFO_PROC { "cpu", }
435 #elif defined(__s390__)
436 #define CPUINFO_PROC { "vendor_id", }
437 #elif defined(__sh__)
438 #define CPUINFO_PROC { "cpu type", }
439 #elif defined(__alpha__) || defined(__mips__)
440 #define CPUINFO_PROC { "cpu model", }
441 #elif defined(__arm__)
442 #define CPUINFO_PROC { "model name", "Processor", }
443 #elif defined(__arc__)
444 #define CPUINFO_PROC { "Processor", }
445 #elif defined(__xtensa__)
446 #define CPUINFO_PROC { "core ID", }
448 #define CPUINFO_PROC { "model name", }
450 const char *cpuinfo_procs
[] = CPUINFO_PROC
;
454 for (i
= 0; i
< ARRAY_SIZE(cpuinfo_procs
); i
++) {
456 ret
= __write_cpudesc(ff
, cpuinfo_procs
[i
]);
464 static int write_nrcpus(struct feat_fd
*ff
,
465 struct evlist
*evlist __maybe_unused
)
471 nrc
= cpu__max_present_cpu();
473 nr
= sysconf(_SC_NPROCESSORS_ONLN
);
477 nra
= (u32
)(nr
& UINT_MAX
);
479 ret
= do_write(ff
, &nrc
, sizeof(nrc
));
483 return do_write(ff
, &nra
, sizeof(nra
));
486 static int write_event_desc(struct feat_fd
*ff
,
487 struct evlist
*evlist
)
493 nre
= evlist
->core
.nr_entries
;
496 * write number of events
498 ret
= do_write(ff
, &nre
, sizeof(nre
));
503 * size of perf_event_attr struct
505 sz
= (u32
)sizeof(evsel
->core
.attr
);
506 ret
= do_write(ff
, &sz
, sizeof(sz
));
510 evlist__for_each_entry(evlist
, evsel
) {
511 ret
= do_write(ff
, &evsel
->core
.attr
, sz
);
515 * write number of unique id per event
516 * there is one id per instance of an event
518 * copy into an nri to be independent of the
521 nri
= evsel
->core
.ids
;
522 ret
= do_write(ff
, &nri
, sizeof(nri
));
527 * write event string as passed on cmdline
529 ret
= do_write_string(ff
, evsel__name(evsel
));
533 * write unique ids for this event
535 ret
= do_write(ff
, evsel
->core
.id
, evsel
->core
.ids
* sizeof(u64
));
542 static int write_cmdline(struct feat_fd
*ff
,
543 struct evlist
*evlist __maybe_unused
)
545 char pbuf
[MAXPATHLEN
], *buf
;
548 /* actual path to perf binary */
549 buf
= perf_exe(pbuf
, MAXPATHLEN
);
551 /* account for binary path */
552 n
= perf_env
.nr_cmdline
+ 1;
554 ret
= do_write(ff
, &n
, sizeof(n
));
558 ret
= do_write_string(ff
, buf
);
562 for (i
= 0 ; i
< perf_env
.nr_cmdline
; i
++) {
563 ret
= do_write_string(ff
, perf_env
.cmdline_argv
[i
]);
571 static int write_cpu_topology(struct feat_fd
*ff
,
572 struct evlist
*evlist __maybe_unused
)
574 struct cpu_topology
*tp
;
578 tp
= cpu_topology__new();
582 ret
= do_write(ff
, &tp
->core_sib
, sizeof(tp
->core_sib
));
586 for (i
= 0; i
< tp
->core_sib
; i
++) {
587 ret
= do_write_string(ff
, tp
->core_siblings
[i
]);
591 ret
= do_write(ff
, &tp
->thread_sib
, sizeof(tp
->thread_sib
));
595 for (i
= 0; i
< tp
->thread_sib
; i
++) {
596 ret
= do_write_string(ff
, tp
->thread_siblings
[i
]);
601 ret
= perf_env__read_cpu_topology_map(&perf_env
);
605 for (j
= 0; j
< perf_env
.nr_cpus_avail
; j
++) {
606 ret
= do_write(ff
, &perf_env
.cpu
[j
].core_id
,
607 sizeof(perf_env
.cpu
[j
].core_id
));
610 ret
= do_write(ff
, &perf_env
.cpu
[j
].socket_id
,
611 sizeof(perf_env
.cpu
[j
].socket_id
));
619 ret
= do_write(ff
, &tp
->die_sib
, sizeof(tp
->die_sib
));
623 for (i
= 0; i
< tp
->die_sib
; i
++) {
624 ret
= do_write_string(ff
, tp
->die_siblings
[i
]);
629 for (j
= 0; j
< perf_env
.nr_cpus_avail
; j
++) {
630 ret
= do_write(ff
, &perf_env
.cpu
[j
].die_id
,
631 sizeof(perf_env
.cpu
[j
].die_id
));
637 cpu_topology__delete(tp
);
643 static int write_total_mem(struct feat_fd
*ff
,
644 struct evlist
*evlist __maybe_unused
)
652 fp
= fopen("/proc/meminfo", "r");
656 while (getline(&buf
, &len
, fp
) > 0) {
657 ret
= strncmp(buf
, "MemTotal:", 9);
662 n
= sscanf(buf
, "%*s %"PRIu64
, &mem
);
664 ret
= do_write(ff
, &mem
, sizeof(mem
));
672 static int write_numa_topology(struct feat_fd
*ff
,
673 struct evlist
*evlist __maybe_unused
)
675 struct numa_topology
*tp
;
679 tp
= numa_topology__new();
683 ret
= do_write(ff
, &tp
->nr
, sizeof(u32
));
687 for (i
= 0; i
< tp
->nr
; i
++) {
688 struct numa_topology_node
*n
= &tp
->nodes
[i
];
690 ret
= do_write(ff
, &n
->node
, sizeof(u32
));
694 ret
= do_write(ff
, &n
->mem_total
, sizeof(u64
));
698 ret
= do_write(ff
, &n
->mem_free
, sizeof(u64
));
702 ret
= do_write_string(ff
, n
->cpus
);
710 numa_topology__delete(tp
);
717 * struct pmu_mappings {
726 static int write_pmu_mappings(struct feat_fd
*ff
,
727 struct evlist
*evlist __maybe_unused
)
729 struct perf_pmu
*pmu
= NULL
;
734 * Do a first pass to count number of pmu to avoid lseek so this
735 * works in pipe mode as well.
737 while ((pmu
= perf_pmu__scan(pmu
))) {
743 ret
= do_write(ff
, &pmu_num
, sizeof(pmu_num
));
747 while ((pmu
= perf_pmu__scan(pmu
))) {
751 ret
= do_write(ff
, &pmu
->type
, sizeof(pmu
->type
));
755 ret
= do_write_string(ff
, pmu
->name
);
766 * struct group_descs {
768 * struct group_desc {
775 static int write_group_desc(struct feat_fd
*ff
,
776 struct evlist
*evlist
)
778 u32 nr_groups
= evlist
->nr_groups
;
782 ret
= do_write(ff
, &nr_groups
, sizeof(nr_groups
));
786 evlist__for_each_entry(evlist
, evsel
) {
787 if (evsel__is_group_leader(evsel
) && evsel
->core
.nr_members
> 1) {
788 const char *name
= evsel
->group_name
?: "{anon_group}";
789 u32 leader_idx
= evsel
->idx
;
790 u32 nr_members
= evsel
->core
.nr_members
;
792 ret
= do_write_string(ff
, name
);
796 ret
= do_write(ff
, &leader_idx
, sizeof(leader_idx
));
800 ret
= do_write(ff
, &nr_members
, sizeof(nr_members
));
809 * Return the CPU id as a raw string.
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
814 char * __weak
get_cpuid_str(struct perf_pmu
*pmu __maybe_unused
)
819 /* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
823 int __weak
strcmp_cpuid_str(const char *mapcpuid
, const char *cpuid
)
826 regmatch_t pmatch
[1];
829 if (regcomp(&re
, mapcpuid
, REG_EXTENDED
) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid
);
835 match
= !regexec(&re
, cpuid
, 1, pmatch
, 0);
838 size_t match_len
= (pmatch
[0].rm_eo
- pmatch
[0].rm_so
);
840 /* Verify the entire string matched. */
841 if (match_len
== strlen(cpuid
))
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
851 int __weak
get_cpuid(char *buffer __maybe_unused
, size_t sz __maybe_unused
)
853 return ENOSYS
; /* Not implemented */
856 static int write_cpuid(struct feat_fd
*ff
,
857 struct evlist
*evlist __maybe_unused
)
862 ret
= get_cpuid(buffer
, sizeof(buffer
));
866 return do_write_string(ff
, buffer
);
869 static int write_branch_stack(struct feat_fd
*ff __maybe_unused
,
870 struct evlist
*evlist __maybe_unused
)
875 static int write_auxtrace(struct feat_fd
*ff
,
876 struct evlist
*evlist __maybe_unused
)
878 struct perf_session
*session
;
881 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
884 session
= container_of(ff
->ph
, struct perf_session
, header
);
886 err
= auxtrace_index__write(ff
->fd
, &session
->auxtrace_index
);
888 pr_err("Failed to write auxtrace index\n");
892 static int write_clockid(struct feat_fd
*ff
,
893 struct evlist
*evlist __maybe_unused
)
895 return do_write(ff
, &ff
->ph
->env
.clock
.clockid_res_ns
,
896 sizeof(ff
->ph
->env
.clock
.clockid_res_ns
));
899 static int write_clock_data(struct feat_fd
*ff
,
900 struct evlist
*evlist __maybe_unused
)
909 ret
= do_write(ff
, &data32
, sizeof(data32
));
914 data32
= ff
->ph
->env
.clock
.clockid
;
916 ret
= do_write(ff
, &data32
, sizeof(data32
));
921 data64
= &ff
->ph
->env
.clock
.tod_ns
;
923 ret
= do_write(ff
, data64
, sizeof(*data64
));
927 /* clockid ref time */
928 data64
= &ff
->ph
->env
.clock
.clockid_ns
;
930 return do_write(ff
, data64
, sizeof(*data64
));
933 static int write_dir_format(struct feat_fd
*ff
,
934 struct evlist
*evlist __maybe_unused
)
936 struct perf_session
*session
;
937 struct perf_data
*data
;
939 session
= container_of(ff
->ph
, struct perf_session
, header
);
940 data
= session
->data
;
942 if (WARN_ON(!perf_data__is_dir(data
)))
945 return do_write(ff
, &data
->dir
.version
, sizeof(data
->dir
.version
));
948 #ifdef HAVE_LIBBPF_SUPPORT
949 static int write_bpf_prog_info(struct feat_fd
*ff
,
950 struct evlist
*evlist __maybe_unused
)
952 struct perf_env
*env
= &ff
->ph
->env
;
953 struct rb_root
*root
;
954 struct rb_node
*next
;
957 down_read(&env
->bpf_progs
.lock
);
959 ret
= do_write(ff
, &env
->bpf_progs
.infos_cnt
,
960 sizeof(env
->bpf_progs
.infos_cnt
));
964 root
= &env
->bpf_progs
.infos
;
965 next
= rb_first(root
);
967 struct bpf_prog_info_node
*node
;
970 node
= rb_entry(next
, struct bpf_prog_info_node
, rb_node
);
971 next
= rb_next(&node
->rb_node
);
972 len
= sizeof(struct bpf_prog_info_linear
) +
973 node
->info_linear
->data_len
;
975 /* before writing to file, translate address to offset */
976 bpf_program__bpil_addr_to_offs(node
->info_linear
);
977 ret
= do_write(ff
, node
->info_linear
, len
);
979 * translate back to address even when do_write() fails,
980 * so that this function never changes the data.
982 bpf_program__bpil_offs_to_addr(node
->info_linear
);
987 up_read(&env
->bpf_progs
.lock
);
990 #else // HAVE_LIBBPF_SUPPORT
991 static int write_bpf_prog_info(struct feat_fd
*ff __maybe_unused
,
992 struct evlist
*evlist __maybe_unused
)
996 #endif // HAVE_LIBBPF_SUPPORT
998 static int write_bpf_btf(struct feat_fd
*ff
,
999 struct evlist
*evlist __maybe_unused
)
1001 struct perf_env
*env
= &ff
->ph
->env
;
1002 struct rb_root
*root
;
1003 struct rb_node
*next
;
1006 down_read(&env
->bpf_progs
.lock
);
1008 ret
= do_write(ff
, &env
->bpf_progs
.btfs_cnt
,
1009 sizeof(env
->bpf_progs
.btfs_cnt
));
1014 root
= &env
->bpf_progs
.btfs
;
1015 next
= rb_first(root
);
1017 struct btf_node
*node
;
1019 node
= rb_entry(next
, struct btf_node
, rb_node
);
1020 next
= rb_next(&node
->rb_node
);
1021 ret
= do_write(ff
, &node
->id
,
1022 sizeof(u32
) * 2 + node
->data_size
);
1027 up_read(&env
->bpf_progs
.lock
);
1031 static int cpu_cache_level__sort(const void *a
, const void *b
)
1033 struct cpu_cache_level
*cache_a
= (struct cpu_cache_level
*)a
;
1034 struct cpu_cache_level
*cache_b
= (struct cpu_cache_level
*)b
;
1036 return cache_a
->level
- cache_b
->level
;
1039 static bool cpu_cache_level__cmp(struct cpu_cache_level
*a
, struct cpu_cache_level
*b
)
1041 if (a
->level
!= b
->level
)
1044 if (a
->line_size
!= b
->line_size
)
1047 if (a
->sets
!= b
->sets
)
1050 if (a
->ways
!= b
->ways
)
1053 if (strcmp(a
->type
, b
->type
))
1056 if (strcmp(a
->size
, b
->size
))
1059 if (strcmp(a
->map
, b
->map
))
1065 static int cpu_cache_level__read(struct cpu_cache_level
*cache
, u32 cpu
, u16 level
)
1067 char path
[PATH_MAX
], file
[PATH_MAX
];
1071 scnprintf(path
, PATH_MAX
, "devices/system/cpu/cpu%d/cache/index%d/", cpu
, level
);
1072 scnprintf(file
, PATH_MAX
, "%s/%s", sysfs__mountpoint(), path
);
1074 if (stat(file
, &st
))
1077 scnprintf(file
, PATH_MAX
, "%s/level", path
);
1078 if (sysfs__read_int(file
, (int *) &cache
->level
))
1081 scnprintf(file
, PATH_MAX
, "%s/coherency_line_size", path
);
1082 if (sysfs__read_int(file
, (int *) &cache
->line_size
))
1085 scnprintf(file
, PATH_MAX
, "%s/number_of_sets", path
);
1086 if (sysfs__read_int(file
, (int *) &cache
->sets
))
1089 scnprintf(file
, PATH_MAX
, "%s/ways_of_associativity", path
);
1090 if (sysfs__read_int(file
, (int *) &cache
->ways
))
1093 scnprintf(file
, PATH_MAX
, "%s/type", path
);
1094 if (sysfs__read_str(file
, &cache
->type
, &len
))
1097 cache
->type
[len
] = 0;
1098 cache
->type
= strim(cache
->type
);
1100 scnprintf(file
, PATH_MAX
, "%s/size", path
);
1101 if (sysfs__read_str(file
, &cache
->size
, &len
)) {
1102 zfree(&cache
->type
);
1106 cache
->size
[len
] = 0;
1107 cache
->size
= strim(cache
->size
);
1109 scnprintf(file
, PATH_MAX
, "%s/shared_cpu_list", path
);
1110 if (sysfs__read_str(file
, &cache
->map
, &len
)) {
1111 zfree(&cache
->size
);
1112 zfree(&cache
->type
);
1116 cache
->map
[len
] = 0;
1117 cache
->map
= strim(cache
->map
);
1121 static void cpu_cache_level__fprintf(FILE *out
, struct cpu_cache_level
*c
)
1123 fprintf(out
, "L%d %-15s %8s [%s]\n", c
->level
, c
->type
, c
->size
, c
->map
);
1126 #define MAX_CACHE_LVL 4
1128 static int build_caches(struct cpu_cache_level caches
[], u32
*cntp
)
1134 nr
= cpu__max_cpu();
1136 for (cpu
= 0; cpu
< nr
; cpu
++) {
1137 for (level
= 0; level
< MAX_CACHE_LVL
; level
++) {
1138 struct cpu_cache_level c
;
1141 err
= cpu_cache_level__read(&c
, cpu
, level
);
1148 for (i
= 0; i
< cnt
; i
++) {
1149 if (cpu_cache_level__cmp(&c
, &caches
[i
]))
1156 cpu_cache_level__free(&c
);
1163 static int write_cache(struct feat_fd
*ff
,
1164 struct evlist
*evlist __maybe_unused
)
1166 u32 max_caches
= cpu__max_cpu() * MAX_CACHE_LVL
;
1167 struct cpu_cache_level caches
[max_caches
];
1168 u32 cnt
= 0, i
, version
= 1;
1171 ret
= build_caches(caches
, &cnt
);
1175 qsort(&caches
, cnt
, sizeof(struct cpu_cache_level
), cpu_cache_level__sort
);
1177 ret
= do_write(ff
, &version
, sizeof(u32
));
1181 ret
= do_write(ff
, &cnt
, sizeof(u32
));
1185 for (i
= 0; i
< cnt
; i
++) {
1186 struct cpu_cache_level
*c
= &caches
[i
];
1189 ret = do_write(ff, &c->v, sizeof(u32)); \
1200 ret = do_write_string(ff, (const char *) c->v); \
1211 for (i
= 0; i
< cnt
; i
++)
1212 cpu_cache_level__free(&caches
[i
]);
1216 static int write_stat(struct feat_fd
*ff __maybe_unused
,
1217 struct evlist
*evlist __maybe_unused
)
1222 static int write_sample_time(struct feat_fd
*ff
,
1223 struct evlist
*evlist
)
1227 ret
= do_write(ff
, &evlist
->first_sample_time
,
1228 sizeof(evlist
->first_sample_time
));
1232 return do_write(ff
, &evlist
->last_sample_time
,
1233 sizeof(evlist
->last_sample_time
));
1237 static int memory_node__read(struct memory_node
*n
, unsigned long idx
)
1239 unsigned int phys
, size
= 0;
1240 char path
[PATH_MAX
];
1244 #define for_each_memory(mem, dir) \
1245 while ((ent = readdir(dir))) \
1246 if (strcmp(ent->d_name, ".") && \
1247 strcmp(ent->d_name, "..") && \
1248 sscanf(ent->d_name, "memory%u", &mem) == 1)
1250 scnprintf(path
, PATH_MAX
,
1251 "%s/devices/system/node/node%lu",
1252 sysfs__mountpoint(), idx
);
1254 dir
= opendir(path
);
1256 pr_warning("failed: cant' open memory sysfs data\n");
1260 for_each_memory(phys
, dir
) {
1261 size
= max(phys
, size
);
1266 n
->set
= bitmap_alloc(size
);
1277 for_each_memory(phys
, dir
) {
1278 set_bit(phys
, n
->set
);
1285 static int memory_node__sort(const void *a
, const void *b
)
1287 const struct memory_node
*na
= a
;
1288 const struct memory_node
*nb
= b
;
1290 return na
->node
- nb
->node
;
1293 static int build_mem_topology(struct memory_node
*nodes
, u64 size
, u64
*cntp
)
1295 char path
[PATH_MAX
];
1301 scnprintf(path
, PATH_MAX
, "%s/devices/system/node/",
1302 sysfs__mountpoint());
1304 dir
= opendir(path
);
1306 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1311 while (!ret
&& (ent
= readdir(dir
))) {
1315 if (!strcmp(ent
->d_name
, ".") ||
1316 !strcmp(ent
->d_name
, ".."))
1319 r
= sscanf(ent
->d_name
, "node%u", &idx
);
1323 if (WARN_ONCE(cnt
>= size
,
1324 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1329 ret
= memory_node__read(&nodes
[cnt
++], idx
);
1336 qsort(nodes
, cnt
, sizeof(nodes
[0]), memory_node__sort
);
1341 #define MAX_MEMORY_NODES 2000
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1347 * 0 - version | for future changes
1348 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count | number of nodes
1351 * For each node we store map of physical indexes for
1354 * 32 - node id | node index
1355 * 40 - size | size of bitmap
1356 * 48 - bitmap | bitmap of memory indexes that belongs to node
1358 static int write_mem_topology(struct feat_fd
*ff __maybe_unused
,
1359 struct evlist
*evlist __maybe_unused
)
1361 static struct memory_node nodes
[MAX_MEMORY_NODES
];
1362 u64 bsize
, version
= 1, i
, nr
;
1365 ret
= sysfs__read_xll("devices/system/memory/block_size_bytes",
1366 (unsigned long long *) &bsize
);
1370 ret
= build_mem_topology(&nodes
[0], MAX_MEMORY_NODES
, &nr
);
1374 ret
= do_write(ff
, &version
, sizeof(version
));
1378 ret
= do_write(ff
, &bsize
, sizeof(bsize
));
1382 ret
= do_write(ff
, &nr
, sizeof(nr
));
1386 for (i
= 0; i
< nr
; i
++) {
1387 struct memory_node
*n
= &nodes
[i
];
1390 ret = do_write(ff, &n->v, sizeof(n->v)); \
1399 ret
= do_write_bitmap(ff
, n
->set
, n
->size
);
1408 static int write_compressed(struct feat_fd
*ff __maybe_unused
,
1409 struct evlist
*evlist __maybe_unused
)
1413 ret
= do_write(ff
, &(ff
->ph
->env
.comp_ver
), sizeof(ff
->ph
->env
.comp_ver
));
1417 ret
= do_write(ff
, &(ff
->ph
->env
.comp_type
), sizeof(ff
->ph
->env
.comp_type
));
1421 ret
= do_write(ff
, &(ff
->ph
->env
.comp_level
), sizeof(ff
->ph
->env
.comp_level
));
1425 ret
= do_write(ff
, &(ff
->ph
->env
.comp_ratio
), sizeof(ff
->ph
->env
.comp_ratio
));
1429 return do_write(ff
, &(ff
->ph
->env
.comp_mmap_len
), sizeof(ff
->ph
->env
.comp_mmap_len
));
1432 static int write_cpu_pmu_caps(struct feat_fd
*ff
,
1433 struct evlist
*evlist __maybe_unused
)
1435 struct perf_pmu
*cpu_pmu
= perf_pmu__find("cpu");
1436 struct perf_pmu_caps
*caps
= NULL
;
1443 nr_caps
= perf_pmu__caps_parse(cpu_pmu
);
1447 ret
= do_write(ff
, &nr_caps
, sizeof(nr_caps
));
1451 list_for_each_entry(caps
, &cpu_pmu
->caps
, list
) {
1452 ret
= do_write_string(ff
, caps
->name
);
1456 ret
= do_write_string(ff
, caps
->value
);
1464 static void print_hostname(struct feat_fd
*ff
, FILE *fp
)
1466 fprintf(fp
, "# hostname : %s\n", ff
->ph
->env
.hostname
);
1469 static void print_osrelease(struct feat_fd
*ff
, FILE *fp
)
1471 fprintf(fp
, "# os release : %s\n", ff
->ph
->env
.os_release
);
1474 static void print_arch(struct feat_fd
*ff
, FILE *fp
)
1476 fprintf(fp
, "# arch : %s\n", ff
->ph
->env
.arch
);
1479 static void print_cpudesc(struct feat_fd
*ff
, FILE *fp
)
1481 fprintf(fp
, "# cpudesc : %s\n", ff
->ph
->env
.cpu_desc
);
1484 static void print_nrcpus(struct feat_fd
*ff
, FILE *fp
)
1486 fprintf(fp
, "# nrcpus online : %u\n", ff
->ph
->env
.nr_cpus_online
);
1487 fprintf(fp
, "# nrcpus avail : %u\n", ff
->ph
->env
.nr_cpus_avail
);
1490 static void print_version(struct feat_fd
*ff
, FILE *fp
)
1492 fprintf(fp
, "# perf version : %s\n", ff
->ph
->env
.version
);
1495 static void print_cmdline(struct feat_fd
*ff
, FILE *fp
)
1499 nr
= ff
->ph
->env
.nr_cmdline
;
1501 fprintf(fp
, "# cmdline : ");
1503 for (i
= 0; i
< nr
; i
++) {
1504 char *argv_i
= strdup(ff
->ph
->env
.cmdline_argv
[i
]);
1506 fprintf(fp
, "%s ", ff
->ph
->env
.cmdline_argv
[i
]);
1510 char *quote
= strchr(argv_i
, '\'');
1514 fprintf(fp
, "%s\\\'", argv_i
);
1517 fprintf(fp
, "%s ", argv_i
);
1524 static void print_cpu_topology(struct feat_fd
*ff
, FILE *fp
)
1526 struct perf_header
*ph
= ff
->ph
;
1527 int cpu_nr
= ph
->env
.nr_cpus_avail
;
1531 nr
= ph
->env
.nr_sibling_cores
;
1532 str
= ph
->env
.sibling_cores
;
1534 for (i
= 0; i
< nr
; i
++) {
1535 fprintf(fp
, "# sibling sockets : %s\n", str
);
1536 str
+= strlen(str
) + 1;
1539 if (ph
->env
.nr_sibling_dies
) {
1540 nr
= ph
->env
.nr_sibling_dies
;
1541 str
= ph
->env
.sibling_dies
;
1543 for (i
= 0; i
< nr
; i
++) {
1544 fprintf(fp
, "# sibling dies : %s\n", str
);
1545 str
+= strlen(str
) + 1;
1549 nr
= ph
->env
.nr_sibling_threads
;
1550 str
= ph
->env
.sibling_threads
;
1552 for (i
= 0; i
< nr
; i
++) {
1553 fprintf(fp
, "# sibling threads : %s\n", str
);
1554 str
+= strlen(str
) + 1;
1557 if (ph
->env
.nr_sibling_dies
) {
1558 if (ph
->env
.cpu
!= NULL
) {
1559 for (i
= 0; i
< cpu_nr
; i
++)
1560 fprintf(fp
, "# CPU %d: Core ID %d, "
1561 "Die ID %d, Socket ID %d\n",
1562 i
, ph
->env
.cpu
[i
].core_id
,
1563 ph
->env
.cpu
[i
].die_id
,
1564 ph
->env
.cpu
[i
].socket_id
);
1566 fprintf(fp
, "# Core ID, Die ID and Socket ID "
1567 "information is not available\n");
1569 if (ph
->env
.cpu
!= NULL
) {
1570 for (i
= 0; i
< cpu_nr
; i
++)
1571 fprintf(fp
, "# CPU %d: Core ID %d, "
1573 i
, ph
->env
.cpu
[i
].core_id
,
1574 ph
->env
.cpu
[i
].socket_id
);
1576 fprintf(fp
, "# Core ID and Socket ID "
1577 "information is not available\n");
1581 static void print_clockid(struct feat_fd
*ff
, FILE *fp
)
1583 fprintf(fp
, "# clockid frequency: %"PRIu64
" MHz\n",
1584 ff
->ph
->env
.clock
.clockid_res_ns
* 1000);
1587 static void print_clock_data(struct feat_fd
*ff
, FILE *fp
)
1589 struct timespec clockid_ns
;
1590 char tstr
[64], date
[64];
1591 struct timeval tod_ns
;
1596 if (!ff
->ph
->env
.clock
.enabled
) {
1597 fprintf(fp
, "# reference time disabled\n");
1601 /* Compute TOD time. */
1602 ref
= ff
->ph
->env
.clock
.tod_ns
;
1603 tod_ns
.tv_sec
= ref
/ NSEC_PER_SEC
;
1604 ref
-= tod_ns
.tv_sec
* NSEC_PER_SEC
;
1605 tod_ns
.tv_usec
= ref
/ NSEC_PER_USEC
;
1607 /* Compute clockid time. */
1608 ref
= ff
->ph
->env
.clock
.clockid_ns
;
1609 clockid_ns
.tv_sec
= ref
/ NSEC_PER_SEC
;
1610 ref
-= clockid_ns
.tv_sec
* NSEC_PER_SEC
;
1611 clockid_ns
.tv_nsec
= ref
;
1613 clockid
= ff
->ph
->env
.clock
.clockid
;
1615 if (localtime_r(&tod_ns
.tv_sec
, <ime
) == NULL
)
1616 snprintf(tstr
, sizeof(tstr
), "<error>");
1618 strftime(date
, sizeof(date
), "%F %T", <ime
);
1619 scnprintf(tstr
, sizeof(tstr
), "%s.%06d",
1620 date
, (int) tod_ns
.tv_usec
);
1623 fprintf(fp
, "# clockid: %s (%u)\n", clockid_name(clockid
), clockid
);
1624 fprintf(fp
, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625 tstr
, tod_ns
.tv_sec
, (int) tod_ns
.tv_usec
,
1626 clockid_ns
.tv_sec
, clockid_ns
.tv_nsec
,
1627 clockid_name(clockid
));
1630 static void print_dir_format(struct feat_fd
*ff
, FILE *fp
)
1632 struct perf_session
*session
;
1633 struct perf_data
*data
;
1635 session
= container_of(ff
->ph
, struct perf_session
, header
);
1636 data
= session
->data
;
1638 fprintf(fp
, "# directory data version : %"PRIu64
"\n", data
->dir
.version
);
1641 static void print_bpf_prog_info(struct feat_fd
*ff
, FILE *fp
)
1643 struct perf_env
*env
= &ff
->ph
->env
;
1644 struct rb_root
*root
;
1645 struct rb_node
*next
;
1647 down_read(&env
->bpf_progs
.lock
);
1649 root
= &env
->bpf_progs
.infos
;
1650 next
= rb_first(root
);
1653 struct bpf_prog_info_node
*node
;
1655 node
= rb_entry(next
, struct bpf_prog_info_node
, rb_node
);
1656 next
= rb_next(&node
->rb_node
);
1658 bpf_event__print_bpf_prog_info(&node
->info_linear
->info
,
1662 up_read(&env
->bpf_progs
.lock
);
1665 static void print_bpf_btf(struct feat_fd
*ff
, FILE *fp
)
1667 struct perf_env
*env
= &ff
->ph
->env
;
1668 struct rb_root
*root
;
1669 struct rb_node
*next
;
1671 down_read(&env
->bpf_progs
.lock
);
1673 root
= &env
->bpf_progs
.btfs
;
1674 next
= rb_first(root
);
1677 struct btf_node
*node
;
1679 node
= rb_entry(next
, struct btf_node
, rb_node
);
1680 next
= rb_next(&node
->rb_node
);
1681 fprintf(fp
, "# btf info of id %u\n", node
->id
);
1684 up_read(&env
->bpf_progs
.lock
);
1687 static void free_event_desc(struct evsel
*events
)
1689 struct evsel
*evsel
;
1694 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++) {
1695 zfree(&evsel
->name
);
1696 zfree(&evsel
->core
.id
);
1702 static bool perf_attr_check(struct perf_event_attr
*attr
)
1704 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
) {
1705 pr_warning("Reserved bits are set unexpectedly. "
1706 "Please update perf tool.\n");
1710 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1)) {
1711 pr_warning("Unknown sample type (0x%llx) is detected. "
1712 "Please update perf tool.\n",
1717 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1)) {
1718 pr_warning("Unknown read format (0x%llx) is detected. "
1719 "Please update perf tool.\n",
1724 if ((attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) &&
1725 (attr
->branch_sample_type
& ~(PERF_SAMPLE_BRANCH_MAX
-1))) {
1726 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727 "Please update perf tool.\n",
1728 attr
->branch_sample_type
);
1736 static struct evsel
*read_event_desc(struct feat_fd
*ff
)
1738 struct evsel
*evsel
, *events
= NULL
;
1741 u32 nre
, sz
, nr
, i
, j
;
1744 /* number of events */
1745 if (do_read_u32(ff
, &nre
))
1748 if (do_read_u32(ff
, &sz
))
1751 /* buffer to hold on file attr struct */
1756 /* the last event terminates with evsel->core.attr.size == 0: */
1757 events
= calloc(nre
+ 1, sizeof(*events
));
1761 msz
= sizeof(evsel
->core
.attr
);
1765 for (i
= 0, evsel
= events
; i
< nre
; evsel
++, i
++) {
1769 * must read entire on-file attr struct to
1770 * sync up with layout.
1772 if (__do_read(ff
, buf
, sz
))
1775 if (ff
->ph
->needs_swap
)
1776 perf_event__attr_swap(buf
);
1778 memcpy(&evsel
->core
.attr
, buf
, msz
);
1780 if (!perf_attr_check(&evsel
->core
.attr
))
1783 if (do_read_u32(ff
, &nr
))
1786 if (ff
->ph
->needs_swap
)
1787 evsel
->needs_swap
= true;
1789 evsel
->name
= do_read_string(ff
);
1796 id
= calloc(nr
, sizeof(*id
));
1799 evsel
->core
.ids
= nr
;
1800 evsel
->core
.id
= id
;
1802 for (j
= 0 ; j
< nr
; j
++) {
1803 if (do_read_u64(ff
, id
))
1812 free_event_desc(events
);
1817 static int __desc_attr__fprintf(FILE *fp
, const char *name
, const char *val
,
1818 void *priv __maybe_unused
)
1820 return fprintf(fp
, ", %s = %s", name
, val
);
1823 static void print_event_desc(struct feat_fd
*ff
, FILE *fp
)
1825 struct evsel
*evsel
, *events
;
1830 events
= ff
->events
;
1832 events
= read_event_desc(ff
);
1835 fprintf(fp
, "# event desc: not available or unable to read\n");
1839 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++) {
1840 fprintf(fp
, "# event : name = %s, ", evsel
->name
);
1842 if (evsel
->core
.ids
) {
1843 fprintf(fp
, ", id = {");
1844 for (j
= 0, id
= evsel
->core
.id
; j
< evsel
->core
.ids
; j
++, id
++) {
1847 fprintf(fp
, " %"PRIu64
, *id
);
1852 perf_event_attr__fprintf(fp
, &evsel
->core
.attr
, __desc_attr__fprintf
, NULL
);
1857 free_event_desc(events
);
1861 static void print_total_mem(struct feat_fd
*ff
, FILE *fp
)
1863 fprintf(fp
, "# total memory : %llu kB\n", ff
->ph
->env
.total_mem
);
1866 static void print_numa_topology(struct feat_fd
*ff
, FILE *fp
)
1869 struct numa_node
*n
;
1871 for (i
= 0; i
< ff
->ph
->env
.nr_numa_nodes
; i
++) {
1872 n
= &ff
->ph
->env
.numa_nodes
[i
];
1874 fprintf(fp
, "# node%u meminfo : total = %"PRIu64
" kB,"
1875 " free = %"PRIu64
" kB\n",
1876 n
->node
, n
->mem_total
, n
->mem_free
);
1878 fprintf(fp
, "# node%u cpu list : ", n
->node
);
1879 cpu_map__fprintf(n
->map
, fp
);
1883 static void print_cpuid(struct feat_fd
*ff
, FILE *fp
)
1885 fprintf(fp
, "# cpuid : %s\n", ff
->ph
->env
.cpuid
);
1888 static void print_branch_stack(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
1890 fprintf(fp
, "# contains samples with branch stack\n");
1893 static void print_auxtrace(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
1895 fprintf(fp
, "# contains AUX area data (e.g. instruction trace)\n");
1898 static void print_stat(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
1900 fprintf(fp
, "# contains stat data\n");
1903 static void print_cache(struct feat_fd
*ff
, FILE *fp __maybe_unused
)
1907 fprintf(fp
, "# CPU cache info:\n");
1908 for (i
= 0; i
< ff
->ph
->env
.caches_cnt
; i
++) {
1910 cpu_cache_level__fprintf(fp
, &ff
->ph
->env
.caches
[i
]);
1914 static void print_compressed(struct feat_fd
*ff
, FILE *fp
)
1916 fprintf(fp
, "# compressed : %s, level = %d, ratio = %d\n",
1917 ff
->ph
->env
.comp_type
== PERF_COMP_ZSTD
? "Zstd" : "Unknown",
1918 ff
->ph
->env
.comp_level
, ff
->ph
->env
.comp_ratio
);
1921 static void print_cpu_pmu_caps(struct feat_fd
*ff
, FILE *fp
)
1923 const char *delimiter
= "# cpu pmu capabilities: ";
1924 u32 nr_caps
= ff
->ph
->env
.nr_cpu_pmu_caps
;
1928 fprintf(fp
, "# cpu pmu capabilities: not available\n");
1932 str
= ff
->ph
->env
.cpu_pmu_caps
;
1934 fprintf(fp
, "%s%s", delimiter
, str
);
1936 str
+= strlen(str
) + 1;
1942 static void print_pmu_mappings(struct feat_fd
*ff
, FILE *fp
)
1944 const char *delimiter
= "# pmu mappings: ";
1949 pmu_num
= ff
->ph
->env
.nr_pmu_mappings
;
1951 fprintf(fp
, "# pmu mappings: not available\n");
1955 str
= ff
->ph
->env
.pmu_mappings
;
1958 type
= strtoul(str
, &tmp
, 0);
1963 fprintf(fp
, "%s%s = %" PRIu32
, delimiter
, str
, type
);
1966 str
+= strlen(str
) + 1;
1975 fprintf(fp
, "# pmu mappings: unable to read\n");
1978 static void print_group_desc(struct feat_fd
*ff
, FILE *fp
)
1980 struct perf_session
*session
;
1981 struct evsel
*evsel
;
1984 session
= container_of(ff
->ph
, struct perf_session
, header
);
1986 evlist__for_each_entry(session
->evlist
, evsel
) {
1987 if (evsel__is_group_leader(evsel
) && evsel
->core
.nr_members
> 1) {
1988 fprintf(fp
, "# group: %s{%s", evsel
->group_name
?: "", evsel__name(evsel
));
1990 nr
= evsel
->core
.nr_members
- 1;
1992 fprintf(fp
, ",%s", evsel__name(evsel
));
2000 static void print_sample_time(struct feat_fd
*ff
, FILE *fp
)
2002 struct perf_session
*session
;
2006 session
= container_of(ff
->ph
, struct perf_session
, header
);
2008 timestamp__scnprintf_usec(session
->evlist
->first_sample_time
,
2009 time_buf
, sizeof(time_buf
));
2010 fprintf(fp
, "# time of first sample : %s\n", time_buf
);
2012 timestamp__scnprintf_usec(session
->evlist
->last_sample_time
,
2013 time_buf
, sizeof(time_buf
));
2014 fprintf(fp
, "# time of last sample : %s\n", time_buf
);
2016 d
= (double)(session
->evlist
->last_sample_time
-
2017 session
->evlist
->first_sample_time
) / NSEC_PER_MSEC
;
2019 fprintf(fp
, "# sample duration : %10.3f ms\n", d
);
2022 static void memory_node__fprintf(struct memory_node
*n
,
2023 unsigned long long bsize
, FILE *fp
)
2025 char buf_map
[100], buf_size
[50];
2026 unsigned long long size
;
2028 size
= bsize
* bitmap_weight(n
->set
, n
->size
);
2029 unit_number__scnprintf(buf_size
, 50, size
);
2031 bitmap_scnprintf(n
->set
, n
->size
, buf_map
, 100);
2032 fprintf(fp
, "# %3" PRIu64
" [%s]: %s\n", n
->node
, buf_size
, buf_map
);
2035 static void print_mem_topology(struct feat_fd
*ff
, FILE *fp
)
2037 struct memory_node
*nodes
;
2040 nodes
= ff
->ph
->env
.memory_nodes
;
2041 nr
= ff
->ph
->env
.nr_memory_nodes
;
2043 fprintf(fp
, "# memory nodes (nr %d, block size 0x%llx):\n",
2044 nr
, ff
->ph
->env
.memory_bsize
);
2046 for (i
= 0; i
< nr
; i
++) {
2047 memory_node__fprintf(&nodes
[i
], ff
->ph
->env
.memory_bsize
, fp
);
2051 static int __event_process_build_id(struct perf_record_header_build_id
*bev
,
2053 struct perf_session
*session
)
2056 struct machine
*machine
;
2059 enum dso_space_type dso_space
;
2061 machine
= perf_session__findnew_machine(session
, bev
->pid
);
2065 cpumode
= bev
->header
.misc
& PERF_RECORD_MISC_CPUMODE_MASK
;
2068 case PERF_RECORD_MISC_KERNEL
:
2069 dso_space
= DSO_SPACE__KERNEL
;
2071 case PERF_RECORD_MISC_GUEST_KERNEL
:
2072 dso_space
= DSO_SPACE__KERNEL_GUEST
;
2074 case PERF_RECORD_MISC_USER
:
2075 case PERF_RECORD_MISC_GUEST_USER
:
2076 dso_space
= DSO_SPACE__USER
;
2082 dso
= machine__findnew_dso(machine
, filename
);
2084 char sbuild_id
[SBUILD_ID_SIZE
];
2086 dso__set_build_id(dso
, &bev
->build_id
);
2088 if (dso_space
!= DSO_SPACE__USER
) {
2089 struct kmod_path m
= { .name
= NULL
, };
2091 if (!kmod_path__parse_name(&m
, filename
) && m
.kmod
)
2092 dso__set_module_info(dso
, &m
, machine
);
2094 dso
->kernel
= dso_space
;
2098 build_id__sprintf(dso
->build_id
, sizeof(dso
->build_id
),
2100 pr_debug("build id event received for %s: %s\n",
2101 dso
->long_name
, sbuild_id
);
2110 static int perf_header__read_build_ids_abi_quirk(struct perf_header
*header
,
2111 int input
, u64 offset
, u64 size
)
2113 struct perf_session
*session
= container_of(header
, struct perf_session
, header
);
2115 struct perf_event_header header
;
2116 u8 build_id
[PERF_ALIGN(BUILD_ID_SIZE
, sizeof(u64
))];
2119 struct perf_record_header_build_id bev
;
2120 char filename
[PATH_MAX
];
2121 u64 limit
= offset
+ size
;
2123 while (offset
< limit
) {
2126 if (readn(input
, &old_bev
, sizeof(old_bev
)) != sizeof(old_bev
))
2129 if (header
->needs_swap
)
2130 perf_event_header__bswap(&old_bev
.header
);
2132 len
= old_bev
.header
.size
- sizeof(old_bev
);
2133 if (readn(input
, filename
, len
) != len
)
2136 bev
.header
= old_bev
.header
;
2139 * As the pid is the missing value, we need to fill
2140 * it properly. The header.misc value give us nice hint.
2142 bev
.pid
= HOST_KERNEL_ID
;
2143 if (bev
.header
.misc
== PERF_RECORD_MISC_GUEST_USER
||
2144 bev
.header
.misc
== PERF_RECORD_MISC_GUEST_KERNEL
)
2145 bev
.pid
= DEFAULT_GUEST_KERNEL_ID
;
2147 memcpy(bev
.build_id
, old_bev
.build_id
, sizeof(bev
.build_id
));
2148 __event_process_build_id(&bev
, filename
, session
);
2150 offset
+= bev
.header
.size
;
2156 static int perf_header__read_build_ids(struct perf_header
*header
,
2157 int input
, u64 offset
, u64 size
)
2159 struct perf_session
*session
= container_of(header
, struct perf_session
, header
);
2160 struct perf_record_header_build_id bev
;
2161 char filename
[PATH_MAX
];
2162 u64 limit
= offset
+ size
, orig_offset
= offset
;
2165 while (offset
< limit
) {
2168 if (readn(input
, &bev
, sizeof(bev
)) != sizeof(bev
))
2171 if (header
->needs_swap
)
2172 perf_event_header__bswap(&bev
.header
);
2174 len
= bev
.header
.size
- sizeof(bev
);
2175 if (readn(input
, filename
, len
) != len
)
2178 * The a1645ce1 changeset:
2180 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2182 * Added a field to struct perf_record_header_build_id that broke the file
2185 * Since the kernel build-id is the first entry, process the
2186 * table using the old format if the well known
2187 * '[kernel.kallsyms]' string for the kernel build-id has the
2188 * first 4 characters chopped off (where the pid_t sits).
2190 if (memcmp(filename
, "nel.kallsyms]", 13) == 0) {
2191 if (lseek(input
, orig_offset
, SEEK_SET
) == (off_t
)-1)
2193 return perf_header__read_build_ids_abi_quirk(header
, input
, offset
, size
);
2196 __event_process_build_id(&bev
, filename
, session
);
2198 offset
+= bev
.header
.size
;
2205 /* Macro for features that simply need to read and store a string. */
2206 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2207 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2209 ff->ph->env.__feat_env = do_read_string(ff); \
2210 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2213 FEAT_PROCESS_STR_FUN(hostname
, hostname
);
2214 FEAT_PROCESS_STR_FUN(osrelease
, os_release
);
2215 FEAT_PROCESS_STR_FUN(version
, version
);
2216 FEAT_PROCESS_STR_FUN(arch
, arch
);
2217 FEAT_PROCESS_STR_FUN(cpudesc
, cpu_desc
);
2218 FEAT_PROCESS_STR_FUN(cpuid
, cpuid
);
2220 static int process_tracing_data(struct feat_fd
*ff
, void *data
)
2222 ssize_t ret
= trace_report(ff
->fd
, data
, false);
2224 return ret
< 0 ? -1 : 0;
2227 static int process_build_id(struct feat_fd
*ff
, void *data __maybe_unused
)
2229 if (perf_header__read_build_ids(ff
->ph
, ff
->fd
, ff
->offset
, ff
->size
))
2230 pr_debug("Failed to read buildids, continuing...\n");
2234 static int process_nrcpus(struct feat_fd
*ff
, void *data __maybe_unused
)
2237 u32 nr_cpus_avail
, nr_cpus_online
;
2239 ret
= do_read_u32(ff
, &nr_cpus_avail
);
2243 ret
= do_read_u32(ff
, &nr_cpus_online
);
2246 ff
->ph
->env
.nr_cpus_avail
= (int)nr_cpus_avail
;
2247 ff
->ph
->env
.nr_cpus_online
= (int)nr_cpus_online
;
2251 static int process_total_mem(struct feat_fd
*ff
, void *data __maybe_unused
)
2256 ret
= do_read_u64(ff
, &total_mem
);
2259 ff
->ph
->env
.total_mem
= (unsigned long long)total_mem
;
2263 static struct evsel
*
2264 perf_evlist__find_by_index(struct evlist
*evlist
, int idx
)
2266 struct evsel
*evsel
;
2268 evlist__for_each_entry(evlist
, evsel
) {
2269 if (evsel
->idx
== idx
)
2277 perf_evlist__set_event_name(struct evlist
*evlist
,
2278 struct evsel
*event
)
2280 struct evsel
*evsel
;
2285 evsel
= perf_evlist__find_by_index(evlist
, event
->idx
);
2292 evsel
->name
= strdup(event
->name
);
2296 process_event_desc(struct feat_fd
*ff
, void *data __maybe_unused
)
2298 struct perf_session
*session
;
2299 struct evsel
*evsel
, *events
= read_event_desc(ff
);
2304 session
= container_of(ff
->ph
, struct perf_session
, header
);
2306 if (session
->data
->is_pipe
) {
2307 /* Save events for reading later by print_event_desc,
2308 * since they can't be read again in pipe mode. */
2309 ff
->events
= events
;
2312 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++)
2313 perf_evlist__set_event_name(session
->evlist
, evsel
);
2315 if (!session
->data
->is_pipe
)
2316 free_event_desc(events
);
2321 static int process_cmdline(struct feat_fd
*ff
, void *data __maybe_unused
)
2323 char *str
, *cmdline
= NULL
, **argv
= NULL
;
2326 if (do_read_u32(ff
, &nr
))
2329 ff
->ph
->env
.nr_cmdline
= nr
;
2331 cmdline
= zalloc(ff
->size
+ nr
+ 1);
2335 argv
= zalloc(sizeof(char *) * (nr
+ 1));
2339 for (i
= 0; i
< nr
; i
++) {
2340 str
= do_read_string(ff
);
2344 argv
[i
] = cmdline
+ len
;
2345 memcpy(argv
[i
], str
, strlen(str
) + 1);
2346 len
+= strlen(str
) + 1;
2349 ff
->ph
->env
.cmdline
= cmdline
;
2350 ff
->ph
->env
.cmdline_argv
= (const char **) argv
;
2359 static int process_cpu_topology(struct feat_fd
*ff
, void *data __maybe_unused
)
2364 int cpu_nr
= ff
->ph
->env
.nr_cpus_avail
;
2366 struct perf_header
*ph
= ff
->ph
;
2367 bool do_core_id_test
= true;
2369 ph
->env
.cpu
= calloc(cpu_nr
, sizeof(*ph
->env
.cpu
));
2373 if (do_read_u32(ff
, &nr
))
2376 ph
->env
.nr_sibling_cores
= nr
;
2377 size
+= sizeof(u32
);
2378 if (strbuf_init(&sb
, 128) < 0)
2381 for (i
= 0; i
< nr
; i
++) {
2382 str
= do_read_string(ff
);
2386 /* include a NULL character at the end */
2387 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2389 size
+= string_size(str
);
2392 ph
->env
.sibling_cores
= strbuf_detach(&sb
, NULL
);
2394 if (do_read_u32(ff
, &nr
))
2397 ph
->env
.nr_sibling_threads
= nr
;
2398 size
+= sizeof(u32
);
2400 for (i
= 0; i
< nr
; i
++) {
2401 str
= do_read_string(ff
);
2405 /* include a NULL character at the end */
2406 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2408 size
+= string_size(str
);
2411 ph
->env
.sibling_threads
= strbuf_detach(&sb
, NULL
);
2414 * The header may be from old perf,
2415 * which doesn't include core id and socket id information.
2417 if (ff
->size
<= size
) {
2418 zfree(&ph
->env
.cpu
);
2422 /* On s390 the socket_id number is not related to the numbers of cpus.
2423 * The socket_id number might be higher than the numbers of cpus.
2424 * This depends on the configuration.
2425 * AArch64 is the same.
2427 if (ph
->env
.arch
&& (!strncmp(ph
->env
.arch
, "s390", 4)
2428 || !strncmp(ph
->env
.arch
, "aarch64", 7)))
2429 do_core_id_test
= false;
2431 for (i
= 0; i
< (u32
)cpu_nr
; i
++) {
2432 if (do_read_u32(ff
, &nr
))
2435 ph
->env
.cpu
[i
].core_id
= nr
;
2436 size
+= sizeof(u32
);
2438 if (do_read_u32(ff
, &nr
))
2441 if (do_core_id_test
&& nr
!= (u32
)-1 && nr
> (u32
)cpu_nr
) {
2442 pr_debug("socket_id number is too big."
2443 "You may need to upgrade the perf tool.\n");
2447 ph
->env
.cpu
[i
].socket_id
= nr
;
2448 size
+= sizeof(u32
);
2452 * The header may be from old perf,
2453 * which doesn't include die information.
2455 if (ff
->size
<= size
)
2458 if (do_read_u32(ff
, &nr
))
2461 ph
->env
.nr_sibling_dies
= nr
;
2462 size
+= sizeof(u32
);
2464 for (i
= 0; i
< nr
; i
++) {
2465 str
= do_read_string(ff
);
2469 /* include a NULL character at the end */
2470 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2472 size
+= string_size(str
);
2475 ph
->env
.sibling_dies
= strbuf_detach(&sb
, NULL
);
2477 for (i
= 0; i
< (u32
)cpu_nr
; i
++) {
2478 if (do_read_u32(ff
, &nr
))
2481 ph
->env
.cpu
[i
].die_id
= nr
;
2487 strbuf_release(&sb
);
2489 zfree(&ph
->env
.cpu
);
2493 static int process_numa_topology(struct feat_fd
*ff
, void *data __maybe_unused
)
2495 struct numa_node
*nodes
, *n
;
2500 if (do_read_u32(ff
, &nr
))
2503 nodes
= zalloc(sizeof(*nodes
) * nr
);
2507 for (i
= 0; i
< nr
; i
++) {
2511 if (do_read_u32(ff
, &n
->node
))
2514 if (do_read_u64(ff
, &n
->mem_total
))
2517 if (do_read_u64(ff
, &n
->mem_free
))
2520 str
= do_read_string(ff
);
2524 n
->map
= perf_cpu_map__new(str
);
2530 ff
->ph
->env
.nr_numa_nodes
= nr
;
2531 ff
->ph
->env
.numa_nodes
= nodes
;
2539 static int process_pmu_mappings(struct feat_fd
*ff
, void *data __maybe_unused
)
2546 if (do_read_u32(ff
, &pmu_num
))
2550 pr_debug("pmu mappings not available\n");
2554 ff
->ph
->env
.nr_pmu_mappings
= pmu_num
;
2555 if (strbuf_init(&sb
, 128) < 0)
2559 if (do_read_u32(ff
, &type
))
2562 name
= do_read_string(ff
);
2566 if (strbuf_addf(&sb
, "%u:%s", type
, name
) < 0)
2568 /* include a NULL character at the end */
2569 if (strbuf_add(&sb
, "", 1) < 0)
2572 if (!strcmp(name
, "msr"))
2573 ff
->ph
->env
.msr_pmu_type
= type
;
2578 ff
->ph
->env
.pmu_mappings
= strbuf_detach(&sb
, NULL
);
2582 strbuf_release(&sb
);
2586 static int process_group_desc(struct feat_fd
*ff
, void *data __maybe_unused
)
2589 u32 i
, nr
, nr_groups
;
2590 struct perf_session
*session
;
2591 struct evsel
*evsel
, *leader
= NULL
;
2598 if (do_read_u32(ff
, &nr_groups
))
2601 ff
->ph
->env
.nr_groups
= nr_groups
;
2603 pr_debug("group desc not available\n");
2607 desc
= calloc(nr_groups
, sizeof(*desc
));
2611 for (i
= 0; i
< nr_groups
; i
++) {
2612 desc
[i
].name
= do_read_string(ff
);
2616 if (do_read_u32(ff
, &desc
[i
].leader_idx
))
2619 if (do_read_u32(ff
, &desc
[i
].nr_members
))
2624 * Rebuild group relationship based on the group_desc
2626 session
= container_of(ff
->ph
, struct perf_session
, header
);
2627 session
->evlist
->nr_groups
= nr_groups
;
2630 evlist__for_each_entry(session
->evlist
, evsel
) {
2631 if (evsel
->idx
== (int) desc
[i
].leader_idx
) {
2632 evsel
->leader
= evsel
;
2633 /* {anon_group} is a dummy name */
2634 if (strcmp(desc
[i
].name
, "{anon_group}")) {
2635 evsel
->group_name
= desc
[i
].name
;
2636 desc
[i
].name
= NULL
;
2638 evsel
->core
.nr_members
= desc
[i
].nr_members
;
2640 if (i
>= nr_groups
|| nr
> 0) {
2641 pr_debug("invalid group desc\n");
2646 nr
= evsel
->core
.nr_members
- 1;
2649 /* This is a group member */
2650 evsel
->leader
= leader
;
2656 if (i
!= nr_groups
|| nr
!= 0) {
2657 pr_debug("invalid group desc\n");
2663 for (i
= 0; i
< nr_groups
; i
++)
2664 zfree(&desc
[i
].name
);
2670 static int process_auxtrace(struct feat_fd
*ff
, void *data __maybe_unused
)
2672 struct perf_session
*session
;
2675 session
= container_of(ff
->ph
, struct perf_session
, header
);
2677 err
= auxtrace_index__process(ff
->fd
, ff
->size
, session
,
2678 ff
->ph
->needs_swap
);
2680 pr_err("Failed to process auxtrace index\n");
2684 static int process_cache(struct feat_fd
*ff
, void *data __maybe_unused
)
2686 struct cpu_cache_level
*caches
;
2687 u32 cnt
, i
, version
;
2689 if (do_read_u32(ff
, &version
))
2695 if (do_read_u32(ff
, &cnt
))
2698 caches
= zalloc(sizeof(*caches
) * cnt
);
2702 for (i
= 0; i
< cnt
; i
++) {
2703 struct cpu_cache_level c
;
2706 if (do_read_u32(ff, &c.v))\
2707 goto out_free_caches; \
2716 c.v = do_read_string(ff); \
2718 goto out_free_caches;
2728 ff
->ph
->env
.caches
= caches
;
2729 ff
->ph
->env
.caches_cnt
= cnt
;
2736 static int process_sample_time(struct feat_fd
*ff
, void *data __maybe_unused
)
2738 struct perf_session
*session
;
2739 u64 first_sample_time
, last_sample_time
;
2742 session
= container_of(ff
->ph
, struct perf_session
, header
);
2744 ret
= do_read_u64(ff
, &first_sample_time
);
2748 ret
= do_read_u64(ff
, &last_sample_time
);
2752 session
->evlist
->first_sample_time
= first_sample_time
;
2753 session
->evlist
->last_sample_time
= last_sample_time
;
2757 static int process_mem_topology(struct feat_fd
*ff
,
2758 void *data __maybe_unused
)
2760 struct memory_node
*nodes
;
2761 u64 version
, i
, nr
, bsize
;
2764 if (do_read_u64(ff
, &version
))
2770 if (do_read_u64(ff
, &bsize
))
2773 if (do_read_u64(ff
, &nr
))
2776 nodes
= zalloc(sizeof(*nodes
) * nr
);
2780 for (i
= 0; i
< nr
; i
++) {
2781 struct memory_node n
;
2784 if (do_read_u64(ff, &n.v)) \
2792 if (do_read_bitmap(ff
, &n
.set
, &n
.size
))
2798 ff
->ph
->env
.memory_bsize
= bsize
;
2799 ff
->ph
->env
.memory_nodes
= nodes
;
2800 ff
->ph
->env
.nr_memory_nodes
= nr
;
2809 static int process_clockid(struct feat_fd
*ff
,
2810 void *data __maybe_unused
)
2812 if (do_read_u64(ff
, &ff
->ph
->env
.clock
.clockid_res_ns
))
2818 static int process_clock_data(struct feat_fd
*ff
,
2819 void *_data __maybe_unused
)
2825 if (do_read_u32(ff
, &data32
))
2832 if (do_read_u32(ff
, &data32
))
2835 ff
->ph
->env
.clock
.clockid
= data32
;
2838 if (do_read_u64(ff
, &data64
))
2841 ff
->ph
->env
.clock
.tod_ns
= data64
;
2843 /* clockid ref time */
2844 if (do_read_u64(ff
, &data64
))
2847 ff
->ph
->env
.clock
.clockid_ns
= data64
;
2848 ff
->ph
->env
.clock
.enabled
= true;
2852 static int process_dir_format(struct feat_fd
*ff
,
2853 void *_data __maybe_unused
)
2855 struct perf_session
*session
;
2856 struct perf_data
*data
;
2858 session
= container_of(ff
->ph
, struct perf_session
, header
);
2859 data
= session
->data
;
2861 if (WARN_ON(!perf_data__is_dir(data
)))
2864 return do_read_u64(ff
, &data
->dir
.version
);
2867 #ifdef HAVE_LIBBPF_SUPPORT
2868 static int process_bpf_prog_info(struct feat_fd
*ff
, void *data __maybe_unused
)
2870 struct bpf_prog_info_linear
*info_linear
;
2871 struct bpf_prog_info_node
*info_node
;
2872 struct perf_env
*env
= &ff
->ph
->env
;
2876 if (ff
->ph
->needs_swap
) {
2877 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2881 if (do_read_u32(ff
, &count
))
2884 down_write(&env
->bpf_progs
.lock
);
2886 for (i
= 0; i
< count
; ++i
) {
2887 u32 info_len
, data_len
;
2891 if (do_read_u32(ff
, &info_len
))
2893 if (do_read_u32(ff
, &data_len
))
2896 if (info_len
> sizeof(struct bpf_prog_info
)) {
2897 pr_warning("detected invalid bpf_prog_info\n");
2901 info_linear
= malloc(sizeof(struct bpf_prog_info_linear
) +
2905 info_linear
->info_len
= sizeof(struct bpf_prog_info
);
2906 info_linear
->data_len
= data_len
;
2907 if (do_read_u64(ff
, (u64
*)(&info_linear
->arrays
)))
2909 if (__do_read(ff
, &info_linear
->info
, info_len
))
2911 if (info_len
< sizeof(struct bpf_prog_info
))
2912 memset(((void *)(&info_linear
->info
)) + info_len
, 0,
2913 sizeof(struct bpf_prog_info
) - info_len
);
2915 if (__do_read(ff
, info_linear
->data
, data_len
))
2918 info_node
= malloc(sizeof(struct bpf_prog_info_node
));
2922 /* after reading from file, translate offset to address */
2923 bpf_program__bpil_offs_to_addr(info_linear
);
2924 info_node
->info_linear
= info_linear
;
2925 perf_env__insert_bpf_prog_info(env
, info_node
);
2928 up_write(&env
->bpf_progs
.lock
);
2933 up_write(&env
->bpf_progs
.lock
);
2936 #else // HAVE_LIBBPF_SUPPORT
2937 static int process_bpf_prog_info(struct feat_fd
*ff __maybe_unused
, void *data __maybe_unused
)
2941 #endif // HAVE_LIBBPF_SUPPORT
2943 static int process_bpf_btf(struct feat_fd
*ff
, void *data __maybe_unused
)
2945 struct perf_env
*env
= &ff
->ph
->env
;
2946 struct btf_node
*node
= NULL
;
2950 if (ff
->ph
->needs_swap
) {
2951 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2955 if (do_read_u32(ff
, &count
))
2958 down_write(&env
->bpf_progs
.lock
);
2960 for (i
= 0; i
< count
; ++i
) {
2963 if (do_read_u32(ff
, &id
))
2965 if (do_read_u32(ff
, &data_size
))
2968 node
= malloc(sizeof(struct btf_node
) + data_size
);
2973 node
->data_size
= data_size
;
2975 if (__do_read(ff
, node
->data
, data_size
))
2978 perf_env__insert_btf(env
, node
);
2984 up_write(&env
->bpf_progs
.lock
);
2989 static int process_compressed(struct feat_fd
*ff
,
2990 void *data __maybe_unused
)
2992 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_ver
)))
2995 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_type
)))
2998 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_level
)))
3001 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_ratio
)))
3004 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_mmap_len
)))
3010 static int process_cpu_pmu_caps(struct feat_fd
*ff
,
3011 void *data __maybe_unused
)
3017 if (do_read_u32(ff
, &nr_caps
))
3021 pr_debug("cpu pmu capabilities not available\n");
3025 ff
->ph
->env
.nr_cpu_pmu_caps
= nr_caps
;
3027 if (strbuf_init(&sb
, 128) < 0)
3031 name
= do_read_string(ff
);
3035 value
= do_read_string(ff
);
3039 if (strbuf_addf(&sb
, "%s=%s", name
, value
) < 0)
3042 /* include a NULL character at the end */
3043 if (strbuf_add(&sb
, "", 1) < 0)
3046 if (!strcmp(name
, "branches"))
3047 ff
->ph
->env
.max_branches
= atoi(value
);
3052 ff
->ph
->env
.cpu_pmu_caps
= strbuf_detach(&sb
, NULL
);
3060 strbuf_release(&sb
);
3064 #define FEAT_OPR(n, func, __full_only) \
3066 .name = __stringify(n), \
3067 .write = write_##func, \
3068 .print = print_##func, \
3069 .full_only = __full_only, \
3070 .process = process_##func, \
3071 .synthesize = true \
3074 #define FEAT_OPN(n, func, __full_only) \
3076 .name = __stringify(n), \
3077 .write = write_##func, \
3078 .print = print_##func, \
3079 .full_only = __full_only, \
3080 .process = process_##func \
3083 /* feature_ops not implemented: */
3084 #define print_tracing_data NULL
3085 #define print_build_id NULL
3087 #define process_branch_stack NULL
3088 #define process_stat NULL
3090 // Only used in util/synthetic-events.c
3091 const struct perf_header_feature_ops feat_ops
[HEADER_LAST_FEATURE
];
3093 const struct perf_header_feature_ops feat_ops
[HEADER_LAST_FEATURE
] = {
3094 FEAT_OPN(TRACING_DATA
, tracing_data
, false),
3095 FEAT_OPN(BUILD_ID
, build_id
, false),
3096 FEAT_OPR(HOSTNAME
, hostname
, false),
3097 FEAT_OPR(OSRELEASE
, osrelease
, false),
3098 FEAT_OPR(VERSION
, version
, false),
3099 FEAT_OPR(ARCH
, arch
, false),
3100 FEAT_OPR(NRCPUS
, nrcpus
, false),
3101 FEAT_OPR(CPUDESC
, cpudesc
, false),
3102 FEAT_OPR(CPUID
, cpuid
, false),
3103 FEAT_OPR(TOTAL_MEM
, total_mem
, false),
3104 FEAT_OPR(EVENT_DESC
, event_desc
, false),
3105 FEAT_OPR(CMDLINE
, cmdline
, false),
3106 FEAT_OPR(CPU_TOPOLOGY
, cpu_topology
, true),
3107 FEAT_OPR(NUMA_TOPOLOGY
, numa_topology
, true),
3108 FEAT_OPN(BRANCH_STACK
, branch_stack
, false),
3109 FEAT_OPR(PMU_MAPPINGS
, pmu_mappings
, false),
3110 FEAT_OPR(GROUP_DESC
, group_desc
, false),
3111 FEAT_OPN(AUXTRACE
, auxtrace
, false),
3112 FEAT_OPN(STAT
, stat
, false),
3113 FEAT_OPN(CACHE
, cache
, true),
3114 FEAT_OPR(SAMPLE_TIME
, sample_time
, false),
3115 FEAT_OPR(MEM_TOPOLOGY
, mem_topology
, true),
3116 FEAT_OPR(CLOCKID
, clockid
, false),
3117 FEAT_OPN(DIR_FORMAT
, dir_format
, false),
3118 FEAT_OPR(BPF_PROG_INFO
, bpf_prog_info
, false),
3119 FEAT_OPR(BPF_BTF
, bpf_btf
, false),
3120 FEAT_OPR(COMPRESSED
, compressed
, false),
3121 FEAT_OPR(CPU_PMU_CAPS
, cpu_pmu_caps
, false),
3122 FEAT_OPR(CLOCK_DATA
, clock_data
, false),
3125 struct header_print_data
{
3127 bool full
; /* extended list of headers */
3130 static int perf_file_section__fprintf_info(struct perf_file_section
*section
,
3131 struct perf_header
*ph
,
3132 int feat
, int fd
, void *data
)
3134 struct header_print_data
*hd
= data
;
3137 if (lseek(fd
, section
->offset
, SEEK_SET
) == (off_t
)-1) {
3138 pr_debug("Failed to lseek to %" PRIu64
" offset for feature "
3139 "%d, continuing...\n", section
->offset
, feat
);
3142 if (feat
>= HEADER_LAST_FEATURE
) {
3143 pr_warning("unknown feature %d\n", feat
);
3146 if (!feat_ops
[feat
].print
)
3149 ff
= (struct feat_fd
) {
3154 if (!feat_ops
[feat
].full_only
|| hd
->full
)
3155 feat_ops
[feat
].print(&ff
, hd
->fp
);
3157 fprintf(hd
->fp
, "# %s info available, use -I to display\n",
3158 feat_ops
[feat
].name
);
3163 int perf_header__fprintf_info(struct perf_session
*session
, FILE *fp
, bool full
)
3165 struct header_print_data hd
;
3166 struct perf_header
*header
= &session
->header
;
3167 int fd
= perf_data__fd(session
->data
);
3175 ret
= fstat(fd
, &st
);
3179 stctime
= st
.st_mtime
;
3180 fprintf(fp
, "# captured on : %s", ctime(&stctime
));
3182 fprintf(fp
, "# header version : %u\n", header
->version
);
3183 fprintf(fp
, "# data offset : %" PRIu64
"\n", header
->data_offset
);
3184 fprintf(fp
, "# data size : %" PRIu64
"\n", header
->data_size
);
3185 fprintf(fp
, "# feat offset : %" PRIu64
"\n", header
->feat_offset
);
3187 perf_header__process_sections(header
, fd
, &hd
,
3188 perf_file_section__fprintf_info
);
3190 if (session
->data
->is_pipe
)
3193 fprintf(fp
, "# missing features: ");
3194 for_each_clear_bit(bit
, header
->adds_features
, HEADER_LAST_FEATURE
) {
3196 fprintf(fp
, "%s ", feat_ops
[bit
].name
);
3203 static int do_write_feat(struct feat_fd
*ff
, int type
,
3204 struct perf_file_section
**p
,
3205 struct evlist
*evlist
)
3210 if (perf_header__has_feat(ff
->ph
, type
)) {
3211 if (!feat_ops
[type
].write
)
3214 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
3217 (*p
)->offset
= lseek(ff
->fd
, 0, SEEK_CUR
);
3219 err
= feat_ops
[type
].write(ff
, evlist
);
3221 pr_debug("failed to write feature %s\n", feat_ops
[type
].name
);
3223 /* undo anything written */
3224 lseek(ff
->fd
, (*p
)->offset
, SEEK_SET
);
3228 (*p
)->size
= lseek(ff
->fd
, 0, SEEK_CUR
) - (*p
)->offset
;
3234 static int perf_header__adds_write(struct perf_header
*header
,
3235 struct evlist
*evlist
, int fd
)
3239 struct perf_file_section
*feat_sec
, *p
;
3245 ff
= (struct feat_fd
){
3250 nr_sections
= bitmap_weight(header
->adds_features
, HEADER_FEAT_BITS
);
3254 feat_sec
= p
= calloc(nr_sections
, sizeof(*feat_sec
));
3255 if (feat_sec
== NULL
)
3258 sec_size
= sizeof(*feat_sec
) * nr_sections
;
3260 sec_start
= header
->feat_offset
;
3261 lseek(fd
, sec_start
+ sec_size
, SEEK_SET
);
3263 for_each_set_bit(feat
, header
->adds_features
, HEADER_FEAT_BITS
) {
3264 if (do_write_feat(&ff
, feat
, &p
, evlist
))
3265 perf_header__clear_feat(header
, feat
);
3268 lseek(fd
, sec_start
, SEEK_SET
);
3270 * may write more than needed due to dropped feature, but
3271 * this is okay, reader will skip the missing entries
3273 err
= do_write(&ff
, feat_sec
, sec_size
);
3275 pr_debug("failed to write feature section\n");
3280 int perf_header__write_pipe(int fd
)
3282 struct perf_pipe_file_header f_header
;
3286 ff
= (struct feat_fd
){ .fd
= fd
};
3288 f_header
= (struct perf_pipe_file_header
){
3289 .magic
= PERF_MAGIC
,
3290 .size
= sizeof(f_header
),
3293 err
= do_write(&ff
, &f_header
, sizeof(f_header
));
3295 pr_debug("failed to write perf pipe header\n");
3302 int perf_session__write_header(struct perf_session
*session
,
3303 struct evlist
*evlist
,
3304 int fd
, bool at_exit
)
3306 struct perf_file_header f_header
;
3307 struct perf_file_attr f_attr
;
3308 struct perf_header
*header
= &session
->header
;
3309 struct evsel
*evsel
;
3314 ff
= (struct feat_fd
){ .fd
= fd
};
3315 lseek(fd
, sizeof(f_header
), SEEK_SET
);
3317 evlist__for_each_entry(session
->evlist
, evsel
) {
3318 evsel
->id_offset
= lseek(fd
, 0, SEEK_CUR
);
3319 err
= do_write(&ff
, evsel
->core
.id
, evsel
->core
.ids
* sizeof(u64
));
3321 pr_debug("failed to write perf header\n");
3326 attr_offset
= lseek(ff
.fd
, 0, SEEK_CUR
);
3328 evlist__for_each_entry(evlist
, evsel
) {
3329 f_attr
= (struct perf_file_attr
){
3330 .attr
= evsel
->core
.attr
,
3332 .offset
= evsel
->id_offset
,
3333 .size
= evsel
->core
.ids
* sizeof(u64
),
3336 err
= do_write(&ff
, &f_attr
, sizeof(f_attr
));
3338 pr_debug("failed to write perf header attribute\n");
3343 if (!header
->data_offset
)
3344 header
->data_offset
= lseek(fd
, 0, SEEK_CUR
);
3345 header
->feat_offset
= header
->data_offset
+ header
->data_size
;
3348 err
= perf_header__adds_write(header
, evlist
, fd
);
3353 f_header
= (struct perf_file_header
){
3354 .magic
= PERF_MAGIC
,
3355 .size
= sizeof(f_header
),
3356 .attr_size
= sizeof(f_attr
),
3358 .offset
= attr_offset
,
3359 .size
= evlist
->core
.nr_entries
* sizeof(f_attr
),
3362 .offset
= header
->data_offset
,
3363 .size
= header
->data_size
,
3365 /* event_types is ignored, store zeros */
3368 memcpy(&f_header
.adds_features
, &header
->adds_features
, sizeof(header
->adds_features
));
3370 lseek(fd
, 0, SEEK_SET
);
3371 err
= do_write(&ff
, &f_header
, sizeof(f_header
));
3373 pr_debug("failed to write perf header\n");
3376 lseek(fd
, header
->data_offset
+ header
->data_size
, SEEK_SET
);
3381 static int perf_header__getbuffer64(struct perf_header
*header
,
3382 int fd
, void *buf
, size_t size
)
3384 if (readn(fd
, buf
, size
) <= 0)
3387 if (header
->needs_swap
)
3388 mem_bswap_64(buf
, size
);
3393 int perf_header__process_sections(struct perf_header
*header
, int fd
,
3395 int (*process
)(struct perf_file_section
*section
,
3396 struct perf_header
*ph
,
3397 int feat
, int fd
, void *data
))
3399 struct perf_file_section
*feat_sec
, *sec
;
3405 nr_sections
= bitmap_weight(header
->adds_features
, HEADER_FEAT_BITS
);
3409 feat_sec
= sec
= calloc(nr_sections
, sizeof(*feat_sec
));
3413 sec_size
= sizeof(*feat_sec
) * nr_sections
;
3415 lseek(fd
, header
->feat_offset
, SEEK_SET
);
3417 err
= perf_header__getbuffer64(header
, fd
, feat_sec
, sec_size
);
3421 for_each_set_bit(feat
, header
->adds_features
, HEADER_LAST_FEATURE
) {
3422 err
= process(sec
++, header
, feat
, fd
, data
);
3432 static const int attr_file_abi_sizes
[] = {
3433 [0] = PERF_ATTR_SIZE_VER0
,
3434 [1] = PERF_ATTR_SIZE_VER1
,
3435 [2] = PERF_ATTR_SIZE_VER2
,
3436 [3] = PERF_ATTR_SIZE_VER3
,
3437 [4] = PERF_ATTR_SIZE_VER4
,
3442 * In the legacy file format, the magic number is not used to encode endianness.
3443 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3444 * on ABI revisions, we need to try all combinations for all endianness to
3445 * detect the endianness.
3447 static int try_all_file_abis(uint64_t hdr_sz
, struct perf_header
*ph
)
3449 uint64_t ref_size
, attr_size
;
3452 for (i
= 0 ; attr_file_abi_sizes
[i
]; i
++) {
3453 ref_size
= attr_file_abi_sizes
[i
]
3454 + sizeof(struct perf_file_section
);
3455 if (hdr_sz
!= ref_size
) {
3456 attr_size
= bswap_64(hdr_sz
);
3457 if (attr_size
!= ref_size
)
3460 ph
->needs_swap
= true;
3462 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3467 /* could not determine endianness */
3471 #define PERF_PIPE_HDR_VER0 16
3473 static const size_t attr_pipe_abi_sizes
[] = {
3474 [0] = PERF_PIPE_HDR_VER0
,
3479 * In the legacy pipe format, there is an implicit assumption that endiannesss
3480 * between host recording the samples, and host parsing the samples is the
3481 * same. This is not always the case given that the pipe output may always be
3482 * redirected into a file and analyzed on a different machine with possibly a
3483 * different endianness and perf_event ABI revsions in the perf tool itself.
3485 static int try_all_pipe_abis(uint64_t hdr_sz
, struct perf_header
*ph
)
3490 for (i
= 0 ; attr_pipe_abi_sizes
[i
]; i
++) {
3491 if (hdr_sz
!= attr_pipe_abi_sizes
[i
]) {
3492 attr_size
= bswap_64(hdr_sz
);
3493 if (attr_size
!= hdr_sz
)
3496 ph
->needs_swap
= true;
3498 pr_debug("Pipe ABI%d perf.data file detected\n", i
);
3504 bool is_perf_magic(u64 magic
)
3506 if (!memcmp(&magic
, __perf_magic1
, sizeof(magic
))
3507 || magic
== __perf_magic2
3508 || magic
== __perf_magic2_sw
)
3514 static int check_magic_endian(u64 magic
, uint64_t hdr_sz
,
3515 bool is_pipe
, struct perf_header
*ph
)
3519 /* check for legacy format */
3520 ret
= memcmp(&magic
, __perf_magic1
, sizeof(magic
));
3522 ph
->version
= PERF_HEADER_VERSION_1
;
3523 pr_debug("legacy perf.data format\n");
3525 return try_all_pipe_abis(hdr_sz
, ph
);
3527 return try_all_file_abis(hdr_sz
, ph
);
3530 * the new magic number serves two purposes:
3531 * - unique number to identify actual perf.data files
3532 * - encode endianness of file
3534 ph
->version
= PERF_HEADER_VERSION_2
;
3536 /* check magic number with one endianness */
3537 if (magic
== __perf_magic2
)
3540 /* check magic number with opposite endianness */
3541 if (magic
!= __perf_magic2_sw
)
3544 ph
->needs_swap
= true;
3549 int perf_file_header__read(struct perf_file_header
*header
,
3550 struct perf_header
*ph
, int fd
)
3554 lseek(fd
, 0, SEEK_SET
);
3556 ret
= readn(fd
, header
, sizeof(*header
));
3560 if (check_magic_endian(header
->magic
,
3561 header
->attr_size
, false, ph
) < 0) {
3562 pr_debug("magic/endian check failed\n");
3566 if (ph
->needs_swap
) {
3567 mem_bswap_64(header
, offsetof(struct perf_file_header
,
3571 if (header
->size
!= sizeof(*header
)) {
3572 /* Support the previous format */
3573 if (header
->size
== offsetof(typeof(*header
), adds_features
))
3574 bitmap_zero(header
->adds_features
, HEADER_FEAT_BITS
);
3577 } else if (ph
->needs_swap
) {
3579 * feature bitmap is declared as an array of unsigned longs --
3580 * not good since its size can differ between the host that
3581 * generated the data file and the host analyzing the file.
3583 * We need to handle endianness, but we don't know the size of
3584 * the unsigned long where the file was generated. Take a best
3585 * guess at determining it: try 64-bit swap first (ie., file
3586 * created on a 64-bit host), and check if the hostname feature
3587 * bit is set (this feature bit is forced on as of fbe96f2).
3588 * If the bit is not, undo the 64-bit swap and try a 32-bit
3589 * swap. If the hostname bit is still not set (e.g., older data
3590 * file), punt and fallback to the original behavior --
3591 * clearing all feature bits and setting buildid.
3593 mem_bswap_64(&header
->adds_features
,
3594 BITS_TO_U64(HEADER_FEAT_BITS
));
3596 if (!test_bit(HEADER_HOSTNAME
, header
->adds_features
)) {
3598 mem_bswap_64(&header
->adds_features
,
3599 BITS_TO_U64(HEADER_FEAT_BITS
));
3602 mem_bswap_32(&header
->adds_features
,
3603 BITS_TO_U32(HEADER_FEAT_BITS
));
3606 if (!test_bit(HEADER_HOSTNAME
, header
->adds_features
)) {
3607 bitmap_zero(header
->adds_features
, HEADER_FEAT_BITS
);
3608 set_bit(HEADER_BUILD_ID
, header
->adds_features
);
3612 memcpy(&ph
->adds_features
, &header
->adds_features
,
3613 sizeof(ph
->adds_features
));
3615 ph
->data_offset
= header
->data
.offset
;
3616 ph
->data_size
= header
->data
.size
;
3617 ph
->feat_offset
= header
->data
.offset
+ header
->data
.size
;
3621 static int perf_file_section__process(struct perf_file_section
*section
,
3622 struct perf_header
*ph
,
3623 int feat
, int fd
, void *data
)
3625 struct feat_fd fdd
= {
3628 .size
= section
->size
,
3629 .offset
= section
->offset
,
3632 if (lseek(fd
, section
->offset
, SEEK_SET
) == (off_t
)-1) {
3633 pr_debug("Failed to lseek to %" PRIu64
" offset for feature "
3634 "%d, continuing...\n", section
->offset
, feat
);
3638 if (feat
>= HEADER_LAST_FEATURE
) {
3639 pr_debug("unknown feature %d, continuing...\n", feat
);
3643 if (!feat_ops
[feat
].process
)
3646 return feat_ops
[feat
].process(&fdd
, data
);
3649 static int perf_file_header__read_pipe(struct perf_pipe_file_header
*header
,
3650 struct perf_header
*ph
, int fd
,
3653 struct feat_fd ff
= {
3654 .fd
= STDOUT_FILENO
,
3659 ret
= readn(fd
, header
, sizeof(*header
));
3663 if (check_magic_endian(header
->magic
, header
->size
, true, ph
) < 0) {
3664 pr_debug("endian/magic failed\n");
3669 header
->size
= bswap_64(header
->size
);
3671 if (repipe
&& do_write(&ff
, header
, sizeof(*header
)) < 0)
3677 static int perf_header__read_pipe(struct perf_session
*session
)
3679 struct perf_header
*header
= &session
->header
;
3680 struct perf_pipe_file_header f_header
;
3682 if (perf_file_header__read_pipe(&f_header
, header
,
3683 perf_data__fd(session
->data
),
3684 session
->repipe
) < 0) {
3685 pr_debug("incompatible file format\n");
3689 return f_header
.size
== sizeof(f_header
) ? 0 : -1;
3692 static int read_attr(int fd
, struct perf_header
*ph
,
3693 struct perf_file_attr
*f_attr
)
3695 struct perf_event_attr
*attr
= &f_attr
->attr
;
3697 size_t our_sz
= sizeof(f_attr
->attr
);
3700 memset(f_attr
, 0, sizeof(*f_attr
));
3702 /* read minimal guaranteed structure */
3703 ret
= readn(fd
, attr
, PERF_ATTR_SIZE_VER0
);
3705 pr_debug("cannot read %d bytes of header attr\n",
3706 PERF_ATTR_SIZE_VER0
);
3710 /* on file perf_event_attr size */
3718 sz
= PERF_ATTR_SIZE_VER0
;
3719 } else if (sz
> our_sz
) {
3720 pr_debug("file uses a more recent and unsupported ABI"
3721 " (%zu bytes extra)\n", sz
- our_sz
);
3724 /* what we have not yet read and that we know about */
3725 left
= sz
- PERF_ATTR_SIZE_VER0
;
3728 ptr
+= PERF_ATTR_SIZE_VER0
;
3730 ret
= readn(fd
, ptr
, left
);
3732 /* read perf_file_section, ids are read in caller */
3733 ret
= readn(fd
, &f_attr
->ids
, sizeof(f_attr
->ids
));
3735 return ret
<= 0 ? -1 : 0;
3738 static int perf_evsel__prepare_tracepoint_event(struct evsel
*evsel
,
3739 struct tep_handle
*pevent
)
3741 struct tep_event
*event
;
3744 /* already prepared */
3745 if (evsel
->tp_format
)
3748 if (pevent
== NULL
) {
3749 pr_debug("broken or missing trace data\n");
3753 event
= tep_find_event(pevent
, evsel
->core
.attr
.config
);
3754 if (event
== NULL
) {
3755 pr_debug("cannot find event format for %d\n", (int)evsel
->core
.attr
.config
);
3760 snprintf(bf
, sizeof(bf
), "%s:%s", event
->system
, event
->name
);
3761 evsel
->name
= strdup(bf
);
3762 if (evsel
->name
== NULL
)
3766 evsel
->tp_format
= event
;
3770 static int perf_evlist__prepare_tracepoint_events(struct evlist
*evlist
,
3771 struct tep_handle
*pevent
)
3775 evlist__for_each_entry(evlist
, pos
) {
3776 if (pos
->core
.attr
.type
== PERF_TYPE_TRACEPOINT
&&
3777 perf_evsel__prepare_tracepoint_event(pos
, pevent
))
3784 int perf_session__read_header(struct perf_session
*session
)
3786 struct perf_data
*data
= session
->data
;
3787 struct perf_header
*header
= &session
->header
;
3788 struct perf_file_header f_header
;
3789 struct perf_file_attr f_attr
;
3791 int nr_attrs
, nr_ids
, i
, j
, err
;
3792 int fd
= perf_data__fd(data
);
3794 session
->evlist
= evlist__new();
3795 if (session
->evlist
== NULL
)
3798 session
->evlist
->env
= &header
->env
;
3799 session
->machines
.host
.env
= &header
->env
;
3802 * We can read 'pipe' data event from regular file,
3803 * check for the pipe header regardless of source.
3805 err
= perf_header__read_pipe(session
);
3806 if (!err
|| (err
&& perf_data__is_pipe(data
))) {
3807 data
->is_pipe
= true;
3811 if (perf_file_header__read(&f_header
, header
, fd
) < 0)
3815 * Sanity check that perf.data was written cleanly; data size is
3816 * initialized to 0 and updated only if the on_exit function is run.
3817 * If data size is still 0 then the file contains only partial
3818 * information. Just warn user and process it as much as it can.
3820 if (f_header
.data
.size
== 0) {
3821 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3822 "Was the 'perf record' command properly terminated?\n",
3826 if (f_header
.attr_size
== 0) {
3827 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3828 "Was the 'perf record' command properly terminated?\n",
3833 nr_attrs
= f_header
.attrs
.size
/ f_header
.attr_size
;
3834 lseek(fd
, f_header
.attrs
.offset
, SEEK_SET
);
3836 for (i
= 0; i
< nr_attrs
; i
++) {
3837 struct evsel
*evsel
;
3840 if (read_attr(fd
, header
, &f_attr
) < 0)
3843 if (header
->needs_swap
) {
3844 f_attr
.ids
.size
= bswap_64(f_attr
.ids
.size
);
3845 f_attr
.ids
.offset
= bswap_64(f_attr
.ids
.offset
);
3846 perf_event__attr_swap(&f_attr
.attr
);
3849 tmp
= lseek(fd
, 0, SEEK_CUR
);
3850 evsel
= evsel__new(&f_attr
.attr
);
3853 goto out_delete_evlist
;
3855 evsel
->needs_swap
= header
->needs_swap
;
3857 * Do it before so that if perf_evsel__alloc_id fails, this
3858 * entry gets purged too at evlist__delete().
3860 evlist__add(session
->evlist
, evsel
);
3862 nr_ids
= f_attr
.ids
.size
/ sizeof(u64
);
3864 * We don't have the cpu and thread maps on the header, so
3865 * for allocating the perf_sample_id table we fake 1 cpu and
3866 * hattr->ids threads.
3868 if (perf_evsel__alloc_id(&evsel
->core
, 1, nr_ids
))
3869 goto out_delete_evlist
;
3871 lseek(fd
, f_attr
.ids
.offset
, SEEK_SET
);
3873 for (j
= 0; j
< nr_ids
; j
++) {
3874 if (perf_header__getbuffer64(header
, fd
, &f_id
, sizeof(f_id
)))
3877 perf_evlist__id_add(&session
->evlist
->core
, &evsel
->core
, 0, j
, f_id
);
3880 lseek(fd
, tmp
, SEEK_SET
);
3883 perf_header__process_sections(header
, fd
, &session
->tevent
,
3884 perf_file_section__process
);
3886 if (perf_evlist__prepare_tracepoint_events(session
->evlist
,
3887 session
->tevent
.pevent
))
3888 goto out_delete_evlist
;
3895 evlist__delete(session
->evlist
);
3896 session
->evlist
= NULL
;
3900 int perf_event__process_feature(struct perf_session
*session
,
3901 union perf_event
*event
)
3903 struct perf_tool
*tool
= session
->tool
;
3904 struct feat_fd ff
= { .fd
= 0 };
3905 struct perf_record_header_feature
*fe
= (struct perf_record_header_feature
*)event
;
3906 int type
= fe
->header
.type
;
3907 u64 feat
= fe
->feat_id
;
3909 if (type
< 0 || type
>= PERF_RECORD_HEADER_MAX
) {
3910 pr_warning("invalid record type %d in pipe-mode\n", type
);
3913 if (feat
== HEADER_RESERVED
|| feat
>= HEADER_LAST_FEATURE
) {
3914 pr_warning("invalid record type %d in pipe-mode\n", type
);
3918 if (!feat_ops
[feat
].process
)
3921 ff
.buf
= (void *)fe
->data
;
3922 ff
.size
= event
->header
.size
- sizeof(*fe
);
3923 ff
.ph
= &session
->header
;
3925 if (feat_ops
[feat
].process(&ff
, NULL
))
3928 if (!feat_ops
[feat
].print
|| !tool
->show_feat_hdr
)
3931 if (!feat_ops
[feat
].full_only
||
3932 tool
->show_feat_hdr
>= SHOW_FEAT_HEADER_FULL_INFO
) {
3933 feat_ops
[feat
].print(&ff
, stdout
);
3935 fprintf(stdout
, "# %s info available, use -I to display\n",
3936 feat_ops
[feat
].name
);
3942 size_t perf_event__fprintf_event_update(union perf_event
*event
, FILE *fp
)
3944 struct perf_record_event_update
*ev
= &event
->event_update
;
3945 struct perf_record_event_update_scale
*ev_scale
;
3946 struct perf_record_event_update_cpus
*ev_cpus
;
3947 struct perf_cpu_map
*map
;
3950 ret
= fprintf(fp
, "\n... id: %" PRI_lu64
"\n", ev
->id
);
3953 case PERF_EVENT_UPDATE__SCALE
:
3954 ev_scale
= (struct perf_record_event_update_scale
*)ev
->data
;
3955 ret
+= fprintf(fp
, "... scale: %f\n", ev_scale
->scale
);
3957 case PERF_EVENT_UPDATE__UNIT
:
3958 ret
+= fprintf(fp
, "... unit: %s\n", ev
->data
);
3960 case PERF_EVENT_UPDATE__NAME
:
3961 ret
+= fprintf(fp
, "... name: %s\n", ev
->data
);
3963 case PERF_EVENT_UPDATE__CPUS
:
3964 ev_cpus
= (struct perf_record_event_update_cpus
*)ev
->data
;
3965 ret
+= fprintf(fp
, "... ");
3967 map
= cpu_map__new_data(&ev_cpus
->cpus
);
3969 ret
+= cpu_map__fprintf(map
, fp
);
3971 ret
+= fprintf(fp
, "failed to get cpus\n");
3974 ret
+= fprintf(fp
, "... unknown type\n");
3981 int perf_event__process_attr(struct perf_tool
*tool __maybe_unused
,
3982 union perf_event
*event
,
3983 struct evlist
**pevlist
)
3986 struct evsel
*evsel
;
3987 struct evlist
*evlist
= *pevlist
;
3989 if (evlist
== NULL
) {
3990 *pevlist
= evlist
= evlist__new();
3995 evsel
= evsel__new(&event
->attr
.attr
);
3999 evlist__add(evlist
, evsel
);
4001 ids
= event
->header
.size
;
4002 ids
-= (void *)&event
->attr
.id
- (void *)event
;
4003 n_ids
= ids
/ sizeof(u64
);
4005 * We don't have the cpu and thread maps on the header, so
4006 * for allocating the perf_sample_id table we fake 1 cpu and
4007 * hattr->ids threads.
4009 if (perf_evsel__alloc_id(&evsel
->core
, 1, n_ids
))
4012 for (i
= 0; i
< n_ids
; i
++) {
4013 perf_evlist__id_add(&evlist
->core
, &evsel
->core
, 0, i
, event
->attr
.id
[i
]);
4019 int perf_event__process_event_update(struct perf_tool
*tool __maybe_unused
,
4020 union perf_event
*event
,
4021 struct evlist
**pevlist
)
4023 struct perf_record_event_update
*ev
= &event
->event_update
;
4024 struct perf_record_event_update_scale
*ev_scale
;
4025 struct perf_record_event_update_cpus
*ev_cpus
;
4026 struct evlist
*evlist
;
4027 struct evsel
*evsel
;
4028 struct perf_cpu_map
*map
;
4030 if (!pevlist
|| *pevlist
== NULL
)
4035 evsel
= perf_evlist__id2evsel(evlist
, ev
->id
);
4040 case PERF_EVENT_UPDATE__UNIT
:
4041 evsel
->unit
= strdup(ev
->data
);
4043 case PERF_EVENT_UPDATE__NAME
:
4044 evsel
->name
= strdup(ev
->data
);
4046 case PERF_EVENT_UPDATE__SCALE
:
4047 ev_scale
= (struct perf_record_event_update_scale
*)ev
->data
;
4048 evsel
->scale
= ev_scale
->scale
;
4050 case PERF_EVENT_UPDATE__CPUS
:
4051 ev_cpus
= (struct perf_record_event_update_cpus
*)ev
->data
;
4053 map
= cpu_map__new_data(&ev_cpus
->cpus
);
4055 evsel
->core
.own_cpus
= map
;
4057 pr_err("failed to get event_update cpus\n");
4065 int perf_event__process_tracing_data(struct perf_session
*session
,
4066 union perf_event
*event
)
4068 ssize_t size_read
, padding
, size
= event
->tracing_data
.size
;
4069 int fd
= perf_data__fd(session
->data
);
4073 * The pipe fd is already in proper place and in any case
4074 * we can't move it, and we'd screw the case where we read
4075 * 'pipe' data from regular file. The trace_report reads
4076 * data from 'fd' so we need to set it directly behind the
4077 * event, where the tracing data starts.
4079 if (!perf_data__is_pipe(session
->data
)) {
4080 off_t offset
= lseek(fd
, 0, SEEK_CUR
);
4082 /* setup for reading amidst mmap */
4083 lseek(fd
, offset
+ sizeof(struct perf_record_header_tracing_data
),
4087 size_read
= trace_report(fd
, &session
->tevent
,
4089 padding
= PERF_ALIGN(size_read
, sizeof(u64
)) - size_read
;
4091 if (readn(fd
, buf
, padding
) < 0) {
4092 pr_err("%s: reading input file", __func__
);
4095 if (session
->repipe
) {
4096 int retw
= write(STDOUT_FILENO
, buf
, padding
);
4097 if (retw
<= 0 || retw
!= padding
) {
4098 pr_err("%s: repiping tracing data padding", __func__
);
4103 if (size_read
+ padding
!= size
) {
4104 pr_err("%s: tracing data size mismatch", __func__
);
4108 perf_evlist__prepare_tracepoint_events(session
->evlist
,
4109 session
->tevent
.pevent
);
4111 return size_read
+ padding
;
4114 int perf_event__process_build_id(struct perf_session
*session
,
4115 union perf_event
*event
)
4117 __event_process_build_id(&event
->build_id
,
4118 event
->build_id
.filename
,