Merge tag 'block-5.9-2020-08-14' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / tools / perf / util / header.c
blob9cf4efdcbbbdb4579bc275992947e0238086e5d2
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 #include "clockid.h"
51 #include <linux/ctype.h>
52 #include <internal/lib.h>
55 * magic2 = "PERFILE2"
56 * must be a numerical value to let the endianness
57 * determine the memory layout. That way we are able
58 * to detect endianness when reading the perf.data file
59 * back.
61 * we check for legacy (PERFFILE) format.
63 static const char *__perf_magic1 = "PERFFILE";
64 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
65 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
67 #define PERF_MAGIC __perf_magic2
69 const char perf_version_string[] = PERF_VERSION;
71 struct perf_file_attr {
72 struct perf_event_attr attr;
73 struct perf_file_section ids;
76 void perf_header__set_feat(struct perf_header *header, int feat)
78 set_bit(feat, header->adds_features);
81 void perf_header__clear_feat(struct perf_header *header, int feat)
83 clear_bit(feat, header->adds_features);
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
88 return test_bit(feat, header->adds_features);
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
93 ssize_t ret = writen(ff->fd, buf, size);
95 if (ret != (ssize_t)size)
96 return ret < 0 ? (int)ret : -1;
97 return 0;
100 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
102 /* struct perf_event_header::size is u16 */
103 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 size_t new_size = ff->size;
105 void *addr;
107 if (size + ff->offset > max_size)
108 return -E2BIG;
110 while (size > (new_size - ff->offset))
111 new_size <<= 1;
112 new_size = min(max_size, new_size);
114 if (ff->size < new_size) {
115 addr = realloc(ff->buf, new_size);
116 if (!addr)
117 return -ENOMEM;
118 ff->buf = addr;
119 ff->size = new_size;
122 memcpy(ff->buf + ff->offset, buf, size);
123 ff->offset += size;
125 return 0;
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
131 if (!ff->buf)
132 return __do_write_fd(ff, buf, size);
133 return __do_write_buf(ff, buf, size);
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
139 u64 *p = (u64 *) set;
140 int i, ret;
142 ret = do_write(ff, &size, sizeof(size));
143 if (ret < 0)
144 return ret;
146 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 ret = do_write(ff, p + i, sizeof(*p));
148 if (ret < 0)
149 return ret;
152 return 0;
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 size_t count, size_t count_aligned)
159 static const char zero_buf[NAME_ALIGN];
160 int err = do_write(ff, bf, count);
162 if (!err)
163 err = do_write(ff, zero_buf, count_aligned - count);
165 return err;
168 #define string_size(str) \
169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
174 u32 len, olen;
175 int ret;
177 olen = strlen(str) + 1;
178 len = PERF_ALIGN(olen, NAME_ALIGN);
180 /* write len, incl. \0 */
181 ret = do_write(ff, &len, sizeof(len));
182 if (ret < 0)
183 return ret;
185 return write_padded(ff, str, olen, len);
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
190 ssize_t ret = readn(ff->fd, addr, size);
192 if (ret != size)
193 return ret < 0 ? (int)ret : -1;
194 return 0;
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
199 if (size > (ssize_t)ff->size - ff->offset)
200 return -1;
202 memcpy(addr, ff->buf + ff->offset, size);
203 ff->offset += size;
205 return 0;
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
211 if (!ff->buf)
212 return __do_read_fd(ff, addr, size);
213 return __do_read_buf(ff, addr, size);
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
218 int ret;
220 ret = __do_read(ff, addr, sizeof(*addr));
221 if (ret)
222 return ret;
224 if (ff->ph->needs_swap)
225 *addr = bswap_32(*addr);
226 return 0;
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
231 int ret;
233 ret = __do_read(ff, addr, sizeof(*addr));
234 if (ret)
235 return ret;
237 if (ff->ph->needs_swap)
238 *addr = bswap_64(*addr);
239 return 0;
242 static char *do_read_string(struct feat_fd *ff)
244 u32 len;
245 char *buf;
247 if (do_read_u32(ff, &len))
248 return NULL;
250 buf = malloc(len);
251 if (!buf)
252 return NULL;
254 if (!__do_read(ff, buf, len)) {
256 * strings are padded by zeroes
257 * thus the actual strlen of buf
258 * may be less than len
260 return buf;
263 free(buf);
264 return NULL;
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
270 unsigned long *set;
271 u64 size, *p;
272 int i, ret;
274 ret = do_read_u64(ff, &size);
275 if (ret)
276 return ret;
278 set = bitmap_alloc(size);
279 if (!set)
280 return -ENOMEM;
282 p = (u64 *) set;
284 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 ret = do_read_u64(ff, p + i);
286 if (ret < 0) {
287 free(set);
288 return ret;
292 *pset = set;
293 *psize = size;
294 return 0;
297 static int write_tracing_data(struct feat_fd *ff,
298 struct evlist *evlist)
300 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 return -1;
303 return read_tracing_data(ff->fd, &evlist->core.entries);
306 static int write_build_id(struct feat_fd *ff,
307 struct evlist *evlist __maybe_unused)
309 struct perf_session *session;
310 int err;
312 session = container_of(ff->ph, struct perf_session, header);
314 if (!perf_session__read_build_ids(session, true))
315 return -1;
317 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 return -1;
320 err = perf_session__write_buildid_table(session, ff);
321 if (err < 0) {
322 pr_debug("failed to write buildid table\n");
323 return err;
325 perf_session__cache_build_ids(session);
327 return 0;
330 static int write_hostname(struct feat_fd *ff,
331 struct evlist *evlist __maybe_unused)
333 struct utsname uts;
334 int ret;
336 ret = uname(&uts);
337 if (ret < 0)
338 return -1;
340 return do_write_string(ff, uts.nodename);
343 static int write_osrelease(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
346 struct utsname uts;
347 int ret;
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
353 return do_write_string(ff, uts.release);
356 static int write_arch(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
359 struct utsname uts;
360 int ret;
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
366 return do_write_string(ff, uts.machine);
369 static int write_version(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
372 return do_write_string(ff, perf_version_string);
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
377 FILE *file;
378 char *buf = NULL;
379 char *s, *p;
380 const char *search = cpuinfo_proc;
381 size_t len = 0;
382 int ret = -1;
384 if (!search)
385 return -1;
387 file = fopen("/proc/cpuinfo", "r");
388 if (!file)
389 return -1;
391 while (getline(&buf, &len, file) > 0) {
392 ret = strncmp(buf, search, strlen(search));
393 if (!ret)
394 break;
397 if (ret) {
398 ret = -1;
399 goto done;
402 s = buf;
404 p = strchr(buf, ':');
405 if (p && *(p+1) == ' ' && *(p+2))
406 s = p + 2;
407 p = strchr(s, '\n');
408 if (p)
409 *p = '\0';
411 /* squash extra space characters (branding string) */
412 p = s;
413 while (*p) {
414 if (isspace(*p)) {
415 char *r = p + 1;
416 char *q = skip_spaces(r);
417 *p = ' ';
418 if (q != (p+1))
419 while ((*r++ = *q++));
421 p++;
423 ret = do_write_string(ff, s);
424 done:
425 free(buf);
426 fclose(file);
427 return ret;
430 static int write_cpudesc(struct feat_fd *ff,
431 struct evlist *evlist __maybe_unused)
433 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434 #define CPUINFO_PROC { "cpu", }
435 #elif defined(__s390__)
436 #define CPUINFO_PROC { "vendor_id", }
437 #elif defined(__sh__)
438 #define CPUINFO_PROC { "cpu type", }
439 #elif defined(__alpha__) || defined(__mips__)
440 #define CPUINFO_PROC { "cpu model", }
441 #elif defined(__arm__)
442 #define CPUINFO_PROC { "model name", "Processor", }
443 #elif defined(__arc__)
444 #define CPUINFO_PROC { "Processor", }
445 #elif defined(__xtensa__)
446 #define CPUINFO_PROC { "core ID", }
447 #else
448 #define CPUINFO_PROC { "model name", }
449 #endif
450 const char *cpuinfo_procs[] = CPUINFO_PROC;
451 #undef CPUINFO_PROC
452 unsigned int i;
454 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455 int ret;
456 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 if (ret >= 0)
458 return ret;
460 return -1;
464 static int write_nrcpus(struct feat_fd *ff,
465 struct evlist *evlist __maybe_unused)
467 long nr;
468 u32 nrc, nra;
469 int ret;
471 nrc = cpu__max_present_cpu();
473 nr = sysconf(_SC_NPROCESSORS_ONLN);
474 if (nr < 0)
475 return -1;
477 nra = (u32)(nr & UINT_MAX);
479 ret = do_write(ff, &nrc, sizeof(nrc));
480 if (ret < 0)
481 return ret;
483 return do_write(ff, &nra, sizeof(nra));
486 static int write_event_desc(struct feat_fd *ff,
487 struct evlist *evlist)
489 struct evsel *evsel;
490 u32 nre, nri, sz;
491 int ret;
493 nre = evlist->core.nr_entries;
496 * write number of events
498 ret = do_write(ff, &nre, sizeof(nre));
499 if (ret < 0)
500 return ret;
503 * size of perf_event_attr struct
505 sz = (u32)sizeof(evsel->core.attr);
506 ret = do_write(ff, &sz, sizeof(sz));
507 if (ret < 0)
508 return ret;
510 evlist__for_each_entry(evlist, evsel) {
511 ret = do_write(ff, &evsel->core.attr, sz);
512 if (ret < 0)
513 return ret;
515 * write number of unique id per event
516 * there is one id per instance of an event
518 * copy into an nri to be independent of the
519 * type of ids,
521 nri = evsel->core.ids;
522 ret = do_write(ff, &nri, sizeof(nri));
523 if (ret < 0)
524 return ret;
527 * write event string as passed on cmdline
529 ret = do_write_string(ff, evsel__name(evsel));
530 if (ret < 0)
531 return ret;
533 * write unique ids for this event
535 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 if (ret < 0)
537 return ret;
539 return 0;
542 static int write_cmdline(struct feat_fd *ff,
543 struct evlist *evlist __maybe_unused)
545 char pbuf[MAXPATHLEN], *buf;
546 int i, ret, n;
548 /* actual path to perf binary */
549 buf = perf_exe(pbuf, MAXPATHLEN);
551 /* account for binary path */
552 n = perf_env.nr_cmdline + 1;
554 ret = do_write(ff, &n, sizeof(n));
555 if (ret < 0)
556 return ret;
558 ret = do_write_string(ff, buf);
559 if (ret < 0)
560 return ret;
562 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 if (ret < 0)
565 return ret;
567 return 0;
571 static int write_cpu_topology(struct feat_fd *ff,
572 struct evlist *evlist __maybe_unused)
574 struct cpu_topology *tp;
575 u32 i;
576 int ret, j;
578 tp = cpu_topology__new();
579 if (!tp)
580 return -1;
582 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 if (ret < 0)
584 goto done;
586 for (i = 0; i < tp->core_sib; i++) {
587 ret = do_write_string(ff, tp->core_siblings[i]);
588 if (ret < 0)
589 goto done;
591 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 if (ret < 0)
593 goto done;
595 for (i = 0; i < tp->thread_sib; i++) {
596 ret = do_write_string(ff, tp->thread_siblings[i]);
597 if (ret < 0)
598 break;
601 ret = perf_env__read_cpu_topology_map(&perf_env);
602 if (ret < 0)
603 goto done;
605 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606 ret = do_write(ff, &perf_env.cpu[j].core_id,
607 sizeof(perf_env.cpu[j].core_id));
608 if (ret < 0)
609 return ret;
610 ret = do_write(ff, &perf_env.cpu[j].socket_id,
611 sizeof(perf_env.cpu[j].socket_id));
612 if (ret < 0)
613 return ret;
616 if (!tp->die_sib)
617 goto done;
619 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620 if (ret < 0)
621 goto done;
623 for (i = 0; i < tp->die_sib; i++) {
624 ret = do_write_string(ff, tp->die_siblings[i]);
625 if (ret < 0)
626 goto done;
629 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630 ret = do_write(ff, &perf_env.cpu[j].die_id,
631 sizeof(perf_env.cpu[j].die_id));
632 if (ret < 0)
633 return ret;
636 done:
637 cpu_topology__delete(tp);
638 return ret;
643 static int write_total_mem(struct feat_fd *ff,
644 struct evlist *evlist __maybe_unused)
646 char *buf = NULL;
647 FILE *fp;
648 size_t len = 0;
649 int ret = -1, n;
650 uint64_t mem;
652 fp = fopen("/proc/meminfo", "r");
653 if (!fp)
654 return -1;
656 while (getline(&buf, &len, fp) > 0) {
657 ret = strncmp(buf, "MemTotal:", 9);
658 if (!ret)
659 break;
661 if (!ret) {
662 n = sscanf(buf, "%*s %"PRIu64, &mem);
663 if (n == 1)
664 ret = do_write(ff, &mem, sizeof(mem));
665 } else
666 ret = -1;
667 free(buf);
668 fclose(fp);
669 return ret;
672 static int write_numa_topology(struct feat_fd *ff,
673 struct evlist *evlist __maybe_unused)
675 struct numa_topology *tp;
676 int ret = -1;
677 u32 i;
679 tp = numa_topology__new();
680 if (!tp)
681 return -ENOMEM;
683 ret = do_write(ff, &tp->nr, sizeof(u32));
684 if (ret < 0)
685 goto err;
687 for (i = 0; i < tp->nr; i++) {
688 struct numa_topology_node *n = &tp->nodes[i];
690 ret = do_write(ff, &n->node, sizeof(u32));
691 if (ret < 0)
692 goto err;
694 ret = do_write(ff, &n->mem_total, sizeof(u64));
695 if (ret)
696 goto err;
698 ret = do_write(ff, &n->mem_free, sizeof(u64));
699 if (ret)
700 goto err;
702 ret = do_write_string(ff, n->cpus);
703 if (ret < 0)
704 goto err;
707 ret = 0;
709 err:
710 numa_topology__delete(tp);
711 return ret;
715 * File format:
717 * struct pmu_mappings {
718 * u32 pmu_num;
719 * struct pmu_map {
720 * u32 type;
721 * char name[];
722 * }[pmu_num];
723 * };
726 static int write_pmu_mappings(struct feat_fd *ff,
727 struct evlist *evlist __maybe_unused)
729 struct perf_pmu *pmu = NULL;
730 u32 pmu_num = 0;
731 int ret;
734 * Do a first pass to count number of pmu to avoid lseek so this
735 * works in pipe mode as well.
737 while ((pmu = perf_pmu__scan(pmu))) {
738 if (!pmu->name)
739 continue;
740 pmu_num++;
743 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 if (ret < 0)
745 return ret;
747 while ((pmu = perf_pmu__scan(pmu))) {
748 if (!pmu->name)
749 continue;
751 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 if (ret < 0)
753 return ret;
755 ret = do_write_string(ff, pmu->name);
756 if (ret < 0)
757 return ret;
760 return 0;
764 * File format:
766 * struct group_descs {
767 * u32 nr_groups;
768 * struct group_desc {
769 * char name[];
770 * u32 leader_idx;
771 * u32 nr_members;
772 * }[nr_groups];
773 * };
775 static int write_group_desc(struct feat_fd *ff,
776 struct evlist *evlist)
778 u32 nr_groups = evlist->nr_groups;
779 struct evsel *evsel;
780 int ret;
782 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 if (ret < 0)
784 return ret;
786 evlist__for_each_entry(evlist, evsel) {
787 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
805 return 0;
809 * Return the CPU id as a raw string.
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
816 return NULL;
819 /* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
844 return 1;
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
853 return ENOSYS; /* Not implemented */
856 static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
859 char buffer[64];
860 int ret;
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
866 return do_write_string(ff, buffer);
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
872 return 0;
875 static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
878 struct perf_session *session;
879 int err;
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
884 session = container_of(ff->ph, struct perf_session, header);
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
892 static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
895 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896 sizeof(ff->ph->env.clock.clockid_res_ns));
899 static int write_clock_data(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
902 u64 *data64;
903 u32 data32;
904 int ret;
906 /* version */
907 data32 = 1;
909 ret = do_write(ff, &data32, sizeof(data32));
910 if (ret < 0)
911 return ret;
913 /* clockid */
914 data32 = ff->ph->env.clock.clockid;
916 ret = do_write(ff, &data32, sizeof(data32));
917 if (ret < 0)
918 return ret;
920 /* TOD ref time */
921 data64 = &ff->ph->env.clock.tod_ns;
923 ret = do_write(ff, data64, sizeof(*data64));
924 if (ret < 0)
925 return ret;
927 /* clockid ref time */
928 data64 = &ff->ph->env.clock.clockid_ns;
930 return do_write(ff, data64, sizeof(*data64));
933 static int write_dir_format(struct feat_fd *ff,
934 struct evlist *evlist __maybe_unused)
936 struct perf_session *session;
937 struct perf_data *data;
939 session = container_of(ff->ph, struct perf_session, header);
940 data = session->data;
942 if (WARN_ON(!perf_data__is_dir(data)))
943 return -1;
945 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
948 #ifdef HAVE_LIBBPF_SUPPORT
949 static int write_bpf_prog_info(struct feat_fd *ff,
950 struct evlist *evlist __maybe_unused)
952 struct perf_env *env = &ff->ph->env;
953 struct rb_root *root;
954 struct rb_node *next;
955 int ret;
957 down_read(&env->bpf_progs.lock);
959 ret = do_write(ff, &env->bpf_progs.infos_cnt,
960 sizeof(env->bpf_progs.infos_cnt));
961 if (ret < 0)
962 goto out;
964 root = &env->bpf_progs.infos;
965 next = rb_first(root);
966 while (next) {
967 struct bpf_prog_info_node *node;
968 size_t len;
970 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971 next = rb_next(&node->rb_node);
972 len = sizeof(struct bpf_prog_info_linear) +
973 node->info_linear->data_len;
975 /* before writing to file, translate address to offset */
976 bpf_program__bpil_addr_to_offs(node->info_linear);
977 ret = do_write(ff, node->info_linear, len);
979 * translate back to address even when do_write() fails,
980 * so that this function never changes the data.
982 bpf_program__bpil_offs_to_addr(node->info_linear);
983 if (ret < 0)
984 goto out;
986 out:
987 up_read(&env->bpf_progs.lock);
988 return ret;
990 #else // HAVE_LIBBPF_SUPPORT
991 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992 struct evlist *evlist __maybe_unused)
994 return 0;
996 #endif // HAVE_LIBBPF_SUPPORT
998 static int write_bpf_btf(struct feat_fd *ff,
999 struct evlist *evlist __maybe_unused)
1001 struct perf_env *env = &ff->ph->env;
1002 struct rb_root *root;
1003 struct rb_node *next;
1004 int ret;
1006 down_read(&env->bpf_progs.lock);
1008 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009 sizeof(env->bpf_progs.btfs_cnt));
1011 if (ret < 0)
1012 goto out;
1014 root = &env->bpf_progs.btfs;
1015 next = rb_first(root);
1016 while (next) {
1017 struct btf_node *node;
1019 node = rb_entry(next, struct btf_node, rb_node);
1020 next = rb_next(&node->rb_node);
1021 ret = do_write(ff, &node->id,
1022 sizeof(u32) * 2 + node->data_size);
1023 if (ret < 0)
1024 goto out;
1026 out:
1027 up_read(&env->bpf_progs.lock);
1028 return ret;
1031 static int cpu_cache_level__sort(const void *a, const void *b)
1033 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1036 return cache_a->level - cache_b->level;
1039 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1041 if (a->level != b->level)
1042 return false;
1044 if (a->line_size != b->line_size)
1045 return false;
1047 if (a->sets != b->sets)
1048 return false;
1050 if (a->ways != b->ways)
1051 return false;
1053 if (strcmp(a->type, b->type))
1054 return false;
1056 if (strcmp(a->size, b->size))
1057 return false;
1059 if (strcmp(a->map, b->map))
1060 return false;
1062 return true;
1065 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1067 char path[PATH_MAX], file[PATH_MAX];
1068 struct stat st;
1069 size_t len;
1071 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1074 if (stat(file, &st))
1075 return 1;
1077 scnprintf(file, PATH_MAX, "%s/level", path);
1078 if (sysfs__read_int(file, (int *) &cache->level))
1079 return -1;
1081 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082 if (sysfs__read_int(file, (int *) &cache->line_size))
1083 return -1;
1085 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086 if (sysfs__read_int(file, (int *) &cache->sets))
1087 return -1;
1089 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090 if (sysfs__read_int(file, (int *) &cache->ways))
1091 return -1;
1093 scnprintf(file, PATH_MAX, "%s/type", path);
1094 if (sysfs__read_str(file, &cache->type, &len))
1095 return -1;
1097 cache->type[len] = 0;
1098 cache->type = strim(cache->type);
1100 scnprintf(file, PATH_MAX, "%s/size", path);
1101 if (sysfs__read_str(file, &cache->size, &len)) {
1102 zfree(&cache->type);
1103 return -1;
1106 cache->size[len] = 0;
1107 cache->size = strim(cache->size);
1109 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110 if (sysfs__read_str(file, &cache->map, &len)) {
1111 zfree(&cache->size);
1112 zfree(&cache->type);
1113 return -1;
1116 cache->map[len] = 0;
1117 cache->map = strim(cache->map);
1118 return 0;
1121 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1123 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1126 #define MAX_CACHE_LVL 4
1128 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1130 u32 i, cnt = 0;
1131 u32 nr, cpu;
1132 u16 level;
1134 nr = cpu__max_cpu();
1136 for (cpu = 0; cpu < nr; cpu++) {
1137 for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 struct cpu_cache_level c;
1139 int err;
1141 err = cpu_cache_level__read(&c, cpu, level);
1142 if (err < 0)
1143 return err;
1145 if (err == 1)
1146 break;
1148 for (i = 0; i < cnt; i++) {
1149 if (cpu_cache_level__cmp(&c, &caches[i]))
1150 break;
1153 if (i == cnt)
1154 caches[cnt++] = c;
1155 else
1156 cpu_cache_level__free(&c);
1159 *cntp = cnt;
1160 return 0;
1163 static int write_cache(struct feat_fd *ff,
1164 struct evlist *evlist __maybe_unused)
1166 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167 struct cpu_cache_level caches[max_caches];
1168 u32 cnt = 0, i, version = 1;
1169 int ret;
1171 ret = build_caches(caches, &cnt);
1172 if (ret)
1173 goto out;
1175 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1177 ret = do_write(ff, &version, sizeof(u32));
1178 if (ret < 0)
1179 goto out;
1181 ret = do_write(ff, &cnt, sizeof(u32));
1182 if (ret < 0)
1183 goto out;
1185 for (i = 0; i < cnt; i++) {
1186 struct cpu_cache_level *c = &caches[i];
1188 #define _W(v) \
1189 ret = do_write(ff, &c->v, sizeof(u32)); \
1190 if (ret < 0) \
1191 goto out;
1193 _W(level)
1194 _W(line_size)
1195 _W(sets)
1196 _W(ways)
1197 #undef _W
1199 #define _W(v) \
1200 ret = do_write_string(ff, (const char *) c->v); \
1201 if (ret < 0) \
1202 goto out;
1204 _W(type)
1205 _W(size)
1206 _W(map)
1207 #undef _W
1210 out:
1211 for (i = 0; i < cnt; i++)
1212 cpu_cache_level__free(&caches[i]);
1213 return ret;
1216 static int write_stat(struct feat_fd *ff __maybe_unused,
1217 struct evlist *evlist __maybe_unused)
1219 return 0;
1222 static int write_sample_time(struct feat_fd *ff,
1223 struct evlist *evlist)
1225 int ret;
1227 ret = do_write(ff, &evlist->first_sample_time,
1228 sizeof(evlist->first_sample_time));
1229 if (ret < 0)
1230 return ret;
1232 return do_write(ff, &evlist->last_sample_time,
1233 sizeof(evlist->last_sample_time));
1237 static int memory_node__read(struct memory_node *n, unsigned long idx)
1239 unsigned int phys, size = 0;
1240 char path[PATH_MAX];
1241 struct dirent *ent;
1242 DIR *dir;
1244 #define for_each_memory(mem, dir) \
1245 while ((ent = readdir(dir))) \
1246 if (strcmp(ent->d_name, ".") && \
1247 strcmp(ent->d_name, "..") && \
1248 sscanf(ent->d_name, "memory%u", &mem) == 1)
1250 scnprintf(path, PATH_MAX,
1251 "%s/devices/system/node/node%lu",
1252 sysfs__mountpoint(), idx);
1254 dir = opendir(path);
1255 if (!dir) {
1256 pr_warning("failed: cant' open memory sysfs data\n");
1257 return -1;
1260 for_each_memory(phys, dir) {
1261 size = max(phys, size);
1264 size++;
1266 n->set = bitmap_alloc(size);
1267 if (!n->set) {
1268 closedir(dir);
1269 return -ENOMEM;
1272 n->node = idx;
1273 n->size = size;
1275 rewinddir(dir);
1277 for_each_memory(phys, dir) {
1278 set_bit(phys, n->set);
1281 closedir(dir);
1282 return 0;
1285 static int memory_node__sort(const void *a, const void *b)
1287 const struct memory_node *na = a;
1288 const struct memory_node *nb = b;
1290 return na->node - nb->node;
1293 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1295 char path[PATH_MAX];
1296 struct dirent *ent;
1297 DIR *dir;
1298 u64 cnt = 0;
1299 int ret = 0;
1301 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302 sysfs__mountpoint());
1304 dir = opendir(path);
1305 if (!dir) {
1306 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307 __func__, path);
1308 return -1;
1311 while (!ret && (ent = readdir(dir))) {
1312 unsigned int idx;
1313 int r;
1315 if (!strcmp(ent->d_name, ".") ||
1316 !strcmp(ent->d_name, ".."))
1317 continue;
1319 r = sscanf(ent->d_name, "node%u", &idx);
1320 if (r != 1)
1321 continue;
1323 if (WARN_ONCE(cnt >= size,
1324 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325 closedir(dir);
1326 return -1;
1329 ret = memory_node__read(&nodes[cnt++], idx);
1332 *cntp = cnt;
1333 closedir(dir);
1335 if (!ret)
1336 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1338 return ret;
1341 #define MAX_MEMORY_NODES 2000
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1347 * 0 - version | for future changes
1348 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count | number of nodes
1351 * For each node we store map of physical indexes for
1352 * each node:
1354 * 32 - node id | node index
1355 * 40 - size | size of bitmap
1356 * 48 - bitmap | bitmap of memory indexes that belongs to node
1358 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359 struct evlist *evlist __maybe_unused)
1361 static struct memory_node nodes[MAX_MEMORY_NODES];
1362 u64 bsize, version = 1, i, nr;
1363 int ret;
1365 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366 (unsigned long long *) &bsize);
1367 if (ret)
1368 return ret;
1370 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371 if (ret)
1372 return ret;
1374 ret = do_write(ff, &version, sizeof(version));
1375 if (ret < 0)
1376 goto out;
1378 ret = do_write(ff, &bsize, sizeof(bsize));
1379 if (ret < 0)
1380 goto out;
1382 ret = do_write(ff, &nr, sizeof(nr));
1383 if (ret < 0)
1384 goto out;
1386 for (i = 0; i < nr; i++) {
1387 struct memory_node *n = &nodes[i];
1389 #define _W(v) \
1390 ret = do_write(ff, &n->v, sizeof(n->v)); \
1391 if (ret < 0) \
1392 goto out;
1394 _W(node)
1395 _W(size)
1397 #undef _W
1399 ret = do_write_bitmap(ff, n->set, n->size);
1400 if (ret < 0)
1401 goto out;
1404 out:
1405 return ret;
1408 static int write_compressed(struct feat_fd *ff __maybe_unused,
1409 struct evlist *evlist __maybe_unused)
1411 int ret;
1413 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414 if (ret)
1415 return ret;
1417 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418 if (ret)
1419 return ret;
1421 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422 if (ret)
1423 return ret;
1425 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426 if (ret)
1427 return ret;
1429 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1432 static int write_cpu_pmu_caps(struct feat_fd *ff,
1433 struct evlist *evlist __maybe_unused)
1435 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436 struct perf_pmu_caps *caps = NULL;
1437 int nr_caps;
1438 int ret;
1440 if (!cpu_pmu)
1441 return -ENOENT;
1443 nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444 if (nr_caps < 0)
1445 return nr_caps;
1447 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448 if (ret < 0)
1449 return ret;
1451 list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452 ret = do_write_string(ff, caps->name);
1453 if (ret < 0)
1454 return ret;
1456 ret = do_write_string(ff, caps->value);
1457 if (ret < 0)
1458 return ret;
1461 return ret;
1464 static void print_hostname(struct feat_fd *ff, FILE *fp)
1466 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1469 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1471 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1474 static void print_arch(struct feat_fd *ff, FILE *fp)
1476 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1479 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1481 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1484 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1486 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1490 static void print_version(struct feat_fd *ff, FILE *fp)
1492 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1495 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1497 int nr, i;
1499 nr = ff->ph->env.nr_cmdline;
1501 fprintf(fp, "# cmdline : ");
1503 for (i = 0; i < nr; i++) {
1504 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505 if (!argv_i) {
1506 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507 } else {
1508 char *mem = argv_i;
1509 do {
1510 char *quote = strchr(argv_i, '\'');
1511 if (!quote)
1512 break;
1513 *quote++ = '\0';
1514 fprintf(fp, "%s\\\'", argv_i);
1515 argv_i = quote;
1516 } while (1);
1517 fprintf(fp, "%s ", argv_i);
1518 free(mem);
1521 fputc('\n', fp);
1524 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1526 struct perf_header *ph = ff->ph;
1527 int cpu_nr = ph->env.nr_cpus_avail;
1528 int nr, i;
1529 char *str;
1531 nr = ph->env.nr_sibling_cores;
1532 str = ph->env.sibling_cores;
1534 for (i = 0; i < nr; i++) {
1535 fprintf(fp, "# sibling sockets : %s\n", str);
1536 str += strlen(str) + 1;
1539 if (ph->env.nr_sibling_dies) {
1540 nr = ph->env.nr_sibling_dies;
1541 str = ph->env.sibling_dies;
1543 for (i = 0; i < nr; i++) {
1544 fprintf(fp, "# sibling dies : %s\n", str);
1545 str += strlen(str) + 1;
1549 nr = ph->env.nr_sibling_threads;
1550 str = ph->env.sibling_threads;
1552 for (i = 0; i < nr; i++) {
1553 fprintf(fp, "# sibling threads : %s\n", str);
1554 str += strlen(str) + 1;
1557 if (ph->env.nr_sibling_dies) {
1558 if (ph->env.cpu != NULL) {
1559 for (i = 0; i < cpu_nr; i++)
1560 fprintf(fp, "# CPU %d: Core ID %d, "
1561 "Die ID %d, Socket ID %d\n",
1562 i, ph->env.cpu[i].core_id,
1563 ph->env.cpu[i].die_id,
1564 ph->env.cpu[i].socket_id);
1565 } else
1566 fprintf(fp, "# Core ID, Die ID and Socket ID "
1567 "information is not available\n");
1568 } else {
1569 if (ph->env.cpu != NULL) {
1570 for (i = 0; i < cpu_nr; i++)
1571 fprintf(fp, "# CPU %d: Core ID %d, "
1572 "Socket ID %d\n",
1573 i, ph->env.cpu[i].core_id,
1574 ph->env.cpu[i].socket_id);
1575 } else
1576 fprintf(fp, "# Core ID and Socket ID "
1577 "information is not available\n");
1581 static void print_clockid(struct feat_fd *ff, FILE *fp)
1583 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584 ff->ph->env.clock.clockid_res_ns * 1000);
1587 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1589 struct timespec clockid_ns;
1590 char tstr[64], date[64];
1591 struct timeval tod_ns;
1592 clockid_t clockid;
1593 struct tm ltime;
1594 u64 ref;
1596 if (!ff->ph->env.clock.enabled) {
1597 fprintf(fp, "# reference time disabled\n");
1598 return;
1601 /* Compute TOD time. */
1602 ref = ff->ph->env.clock.tod_ns;
1603 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1607 /* Compute clockid time. */
1608 ref = ff->ph->env.clock.clockid_ns;
1609 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611 clockid_ns.tv_nsec = ref;
1613 clockid = ff->ph->env.clock.clockid;
1615 if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616 snprintf(tstr, sizeof(tstr), "<error>");
1617 else {
1618 strftime(date, sizeof(date), "%F %T", &ltime);
1619 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620 date, (int) tod_ns.tv_usec);
1623 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625 tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626 clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627 clockid_name(clockid));
1630 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1632 struct perf_session *session;
1633 struct perf_data *data;
1635 session = container_of(ff->ph, struct perf_session, header);
1636 data = session->data;
1638 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1641 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1643 struct perf_env *env = &ff->ph->env;
1644 struct rb_root *root;
1645 struct rb_node *next;
1647 down_read(&env->bpf_progs.lock);
1649 root = &env->bpf_progs.infos;
1650 next = rb_first(root);
1652 while (next) {
1653 struct bpf_prog_info_node *node;
1655 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656 next = rb_next(&node->rb_node);
1658 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659 env, fp);
1662 up_read(&env->bpf_progs.lock);
1665 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1667 struct perf_env *env = &ff->ph->env;
1668 struct rb_root *root;
1669 struct rb_node *next;
1671 down_read(&env->bpf_progs.lock);
1673 root = &env->bpf_progs.btfs;
1674 next = rb_first(root);
1676 while (next) {
1677 struct btf_node *node;
1679 node = rb_entry(next, struct btf_node, rb_node);
1680 next = rb_next(&node->rb_node);
1681 fprintf(fp, "# btf info of id %u\n", node->id);
1684 up_read(&env->bpf_progs.lock);
1687 static void free_event_desc(struct evsel *events)
1689 struct evsel *evsel;
1691 if (!events)
1692 return;
1694 for (evsel = events; evsel->core.attr.size; evsel++) {
1695 zfree(&evsel->name);
1696 zfree(&evsel->core.id);
1699 free(events);
1702 static bool perf_attr_check(struct perf_event_attr *attr)
1704 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705 pr_warning("Reserved bits are set unexpectedly. "
1706 "Please update perf tool.\n");
1707 return false;
1710 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711 pr_warning("Unknown sample type (0x%llx) is detected. "
1712 "Please update perf tool.\n",
1713 attr->sample_type);
1714 return false;
1717 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718 pr_warning("Unknown read format (0x%llx) is detected. "
1719 "Please update perf tool.\n",
1720 attr->read_format);
1721 return false;
1724 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727 "Please update perf tool.\n",
1728 attr->branch_sample_type);
1730 return false;
1733 return true;
1736 static struct evsel *read_event_desc(struct feat_fd *ff)
1738 struct evsel *evsel, *events = NULL;
1739 u64 *id;
1740 void *buf = NULL;
1741 u32 nre, sz, nr, i, j;
1742 size_t msz;
1744 /* number of events */
1745 if (do_read_u32(ff, &nre))
1746 goto error;
1748 if (do_read_u32(ff, &sz))
1749 goto error;
1751 /* buffer to hold on file attr struct */
1752 buf = malloc(sz);
1753 if (!buf)
1754 goto error;
1756 /* the last event terminates with evsel->core.attr.size == 0: */
1757 events = calloc(nre + 1, sizeof(*events));
1758 if (!events)
1759 goto error;
1761 msz = sizeof(evsel->core.attr);
1762 if (sz < msz)
1763 msz = sz;
1765 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766 evsel->idx = i;
1769 * must read entire on-file attr struct to
1770 * sync up with layout.
1772 if (__do_read(ff, buf, sz))
1773 goto error;
1775 if (ff->ph->needs_swap)
1776 perf_event__attr_swap(buf);
1778 memcpy(&evsel->core.attr, buf, msz);
1780 if (!perf_attr_check(&evsel->core.attr))
1781 goto error;
1783 if (do_read_u32(ff, &nr))
1784 goto error;
1786 if (ff->ph->needs_swap)
1787 evsel->needs_swap = true;
1789 evsel->name = do_read_string(ff);
1790 if (!evsel->name)
1791 goto error;
1793 if (!nr)
1794 continue;
1796 id = calloc(nr, sizeof(*id));
1797 if (!id)
1798 goto error;
1799 evsel->core.ids = nr;
1800 evsel->core.id = id;
1802 for (j = 0 ; j < nr; j++) {
1803 if (do_read_u64(ff, id))
1804 goto error;
1805 id++;
1808 out:
1809 free(buf);
1810 return events;
1811 error:
1812 free_event_desc(events);
1813 events = NULL;
1814 goto out;
1817 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818 void *priv __maybe_unused)
1820 return fprintf(fp, ", %s = %s", name, val);
1823 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1825 struct evsel *evsel, *events;
1826 u32 j;
1827 u64 *id;
1829 if (ff->events)
1830 events = ff->events;
1831 else
1832 events = read_event_desc(ff);
1834 if (!events) {
1835 fprintf(fp, "# event desc: not available or unable to read\n");
1836 return;
1839 for (evsel = events; evsel->core.attr.size; evsel++) {
1840 fprintf(fp, "# event : name = %s, ", evsel->name);
1842 if (evsel->core.ids) {
1843 fprintf(fp, ", id = {");
1844 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 if (j)
1846 fputc(',', fp);
1847 fprintf(fp, " %"PRIu64, *id);
1849 fprintf(fp, " }");
1852 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1854 fputc('\n', fp);
1857 free_event_desc(events);
1858 ff->events = NULL;
1861 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1863 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1866 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1868 int i;
1869 struct numa_node *n;
1871 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872 n = &ff->ph->env.numa_nodes[i];
1874 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1875 " free = %"PRIu64" kB\n",
1876 n->node, n->mem_total, n->mem_free);
1878 fprintf(fp, "# node%u cpu list : ", n->node);
1879 cpu_map__fprintf(n->map, fp);
1883 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1885 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1888 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1890 fprintf(fp, "# contains samples with branch stack\n");
1893 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1895 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1898 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1900 fprintf(fp, "# contains stat data\n");
1903 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1905 int i;
1907 fprintf(fp, "# CPU cache info:\n");
1908 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909 fprintf(fp, "# ");
1910 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1914 static void print_compressed(struct feat_fd *ff, FILE *fp)
1916 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1921 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1923 const char *delimiter = "# cpu pmu capabilities: ";
1924 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925 char *str;
1927 if (!nr_caps) {
1928 fprintf(fp, "# cpu pmu capabilities: not available\n");
1929 return;
1932 str = ff->ph->env.cpu_pmu_caps;
1933 while (nr_caps--) {
1934 fprintf(fp, "%s%s", delimiter, str);
1935 delimiter = ", ";
1936 str += strlen(str) + 1;
1939 fprintf(fp, "\n");
1942 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1944 const char *delimiter = "# pmu mappings: ";
1945 char *str, *tmp;
1946 u32 pmu_num;
1947 u32 type;
1949 pmu_num = ff->ph->env.nr_pmu_mappings;
1950 if (!pmu_num) {
1951 fprintf(fp, "# pmu mappings: not available\n");
1952 return;
1955 str = ff->ph->env.pmu_mappings;
1957 while (pmu_num) {
1958 type = strtoul(str, &tmp, 0);
1959 if (*tmp != ':')
1960 goto error;
1962 str = tmp + 1;
1963 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1965 delimiter = ", ";
1966 str += strlen(str) + 1;
1967 pmu_num--;
1970 fprintf(fp, "\n");
1972 if (!pmu_num)
1973 return;
1974 error:
1975 fprintf(fp, "# pmu mappings: unable to read\n");
1978 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1980 struct perf_session *session;
1981 struct evsel *evsel;
1982 u32 nr = 0;
1984 session = container_of(ff->ph, struct perf_session, header);
1986 evlist__for_each_entry(session->evlist, evsel) {
1987 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1990 nr = evsel->core.nr_members - 1;
1991 } else if (nr) {
1992 fprintf(fp, ",%s", evsel__name(evsel));
1994 if (--nr == 0)
1995 fprintf(fp, "}\n");
2000 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2002 struct perf_session *session;
2003 char time_buf[32];
2004 double d;
2006 session = container_of(ff->ph, struct perf_session, header);
2008 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009 time_buf, sizeof(time_buf));
2010 fprintf(fp, "# time of first sample : %s\n", time_buf);
2012 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013 time_buf, sizeof(time_buf));
2014 fprintf(fp, "# time of last sample : %s\n", time_buf);
2016 d = (double)(session->evlist->last_sample_time -
2017 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2019 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2022 static void memory_node__fprintf(struct memory_node *n,
2023 unsigned long long bsize, FILE *fp)
2025 char buf_map[100], buf_size[50];
2026 unsigned long long size;
2028 size = bsize * bitmap_weight(n->set, n->size);
2029 unit_number__scnprintf(buf_size, 50, size);
2031 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2035 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2037 struct memory_node *nodes;
2038 int i, nr;
2040 nodes = ff->ph->env.memory_nodes;
2041 nr = ff->ph->env.nr_memory_nodes;
2043 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044 nr, ff->ph->env.memory_bsize);
2046 for (i = 0; i < nr; i++) {
2047 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2051 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 char *filename,
2053 struct perf_session *session)
2055 int err = -1;
2056 struct machine *machine;
2057 u16 cpumode;
2058 struct dso *dso;
2059 enum dso_space_type dso_space;
2061 machine = perf_session__findnew_machine(session, bev->pid);
2062 if (!machine)
2063 goto out;
2065 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2067 switch (cpumode) {
2068 case PERF_RECORD_MISC_KERNEL:
2069 dso_space = DSO_SPACE__KERNEL;
2070 break;
2071 case PERF_RECORD_MISC_GUEST_KERNEL:
2072 dso_space = DSO_SPACE__KERNEL_GUEST;
2073 break;
2074 case PERF_RECORD_MISC_USER:
2075 case PERF_RECORD_MISC_GUEST_USER:
2076 dso_space = DSO_SPACE__USER;
2077 break;
2078 default:
2079 goto out;
2082 dso = machine__findnew_dso(machine, filename);
2083 if (dso != NULL) {
2084 char sbuild_id[SBUILD_ID_SIZE];
2086 dso__set_build_id(dso, &bev->build_id);
2088 if (dso_space != DSO_SPACE__USER) {
2089 struct kmod_path m = { .name = NULL, };
2091 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2092 dso__set_module_info(dso, &m, machine);
2094 dso->kernel = dso_space;
2095 free(m.name);
2098 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2099 sbuild_id);
2100 pr_debug("build id event received for %s: %s\n",
2101 dso->long_name, sbuild_id);
2102 dso__put(dso);
2105 err = 0;
2106 out:
2107 return err;
2110 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2111 int input, u64 offset, u64 size)
2113 struct perf_session *session = container_of(header, struct perf_session, header);
2114 struct {
2115 struct perf_event_header header;
2116 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2117 char filename[0];
2118 } old_bev;
2119 struct perf_record_header_build_id bev;
2120 char filename[PATH_MAX];
2121 u64 limit = offset + size;
2123 while (offset < limit) {
2124 ssize_t len;
2126 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2127 return -1;
2129 if (header->needs_swap)
2130 perf_event_header__bswap(&old_bev.header);
2132 len = old_bev.header.size - sizeof(old_bev);
2133 if (readn(input, filename, len) != len)
2134 return -1;
2136 bev.header = old_bev.header;
2139 * As the pid is the missing value, we need to fill
2140 * it properly. The header.misc value give us nice hint.
2142 bev.pid = HOST_KERNEL_ID;
2143 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2144 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2145 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2147 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2148 __event_process_build_id(&bev, filename, session);
2150 offset += bev.header.size;
2153 return 0;
2156 static int perf_header__read_build_ids(struct perf_header *header,
2157 int input, u64 offset, u64 size)
2159 struct perf_session *session = container_of(header, struct perf_session, header);
2160 struct perf_record_header_build_id bev;
2161 char filename[PATH_MAX];
2162 u64 limit = offset + size, orig_offset = offset;
2163 int err = -1;
2165 while (offset < limit) {
2166 ssize_t len;
2168 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2169 goto out;
2171 if (header->needs_swap)
2172 perf_event_header__bswap(&bev.header);
2174 len = bev.header.size - sizeof(bev);
2175 if (readn(input, filename, len) != len)
2176 goto out;
2178 * The a1645ce1 changeset:
2180 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2182 * Added a field to struct perf_record_header_build_id that broke the file
2183 * format.
2185 * Since the kernel build-id is the first entry, process the
2186 * table using the old format if the well known
2187 * '[kernel.kallsyms]' string for the kernel build-id has the
2188 * first 4 characters chopped off (where the pid_t sits).
2190 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2191 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2192 return -1;
2193 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2196 __event_process_build_id(&bev, filename, session);
2198 offset += bev.header.size;
2200 err = 0;
2201 out:
2202 return err;
2205 /* Macro for features that simply need to read and store a string. */
2206 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2207 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2209 ff->ph->env.__feat_env = do_read_string(ff); \
2210 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2213 FEAT_PROCESS_STR_FUN(hostname, hostname);
2214 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2215 FEAT_PROCESS_STR_FUN(version, version);
2216 FEAT_PROCESS_STR_FUN(arch, arch);
2217 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2218 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2220 static int process_tracing_data(struct feat_fd *ff, void *data)
2222 ssize_t ret = trace_report(ff->fd, data, false);
2224 return ret < 0 ? -1 : 0;
2227 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2229 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2230 pr_debug("Failed to read buildids, continuing...\n");
2231 return 0;
2234 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2236 int ret;
2237 u32 nr_cpus_avail, nr_cpus_online;
2239 ret = do_read_u32(ff, &nr_cpus_avail);
2240 if (ret)
2241 return ret;
2243 ret = do_read_u32(ff, &nr_cpus_online);
2244 if (ret)
2245 return ret;
2246 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2247 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2248 return 0;
2251 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2253 u64 total_mem;
2254 int ret;
2256 ret = do_read_u64(ff, &total_mem);
2257 if (ret)
2258 return -1;
2259 ff->ph->env.total_mem = (unsigned long long)total_mem;
2260 return 0;
2263 static struct evsel *
2264 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2266 struct evsel *evsel;
2268 evlist__for_each_entry(evlist, evsel) {
2269 if (evsel->idx == idx)
2270 return evsel;
2273 return NULL;
2276 static void
2277 perf_evlist__set_event_name(struct evlist *evlist,
2278 struct evsel *event)
2280 struct evsel *evsel;
2282 if (!event->name)
2283 return;
2285 evsel = perf_evlist__find_by_index(evlist, event->idx);
2286 if (!evsel)
2287 return;
2289 if (evsel->name)
2290 return;
2292 evsel->name = strdup(event->name);
2295 static int
2296 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2298 struct perf_session *session;
2299 struct evsel *evsel, *events = read_event_desc(ff);
2301 if (!events)
2302 return 0;
2304 session = container_of(ff->ph, struct perf_session, header);
2306 if (session->data->is_pipe) {
2307 /* Save events for reading later by print_event_desc,
2308 * since they can't be read again in pipe mode. */
2309 ff->events = events;
2312 for (evsel = events; evsel->core.attr.size; evsel++)
2313 perf_evlist__set_event_name(session->evlist, evsel);
2315 if (!session->data->is_pipe)
2316 free_event_desc(events);
2318 return 0;
2321 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2323 char *str, *cmdline = NULL, **argv = NULL;
2324 u32 nr, i, len = 0;
2326 if (do_read_u32(ff, &nr))
2327 return -1;
2329 ff->ph->env.nr_cmdline = nr;
2331 cmdline = zalloc(ff->size + nr + 1);
2332 if (!cmdline)
2333 return -1;
2335 argv = zalloc(sizeof(char *) * (nr + 1));
2336 if (!argv)
2337 goto error;
2339 for (i = 0; i < nr; i++) {
2340 str = do_read_string(ff);
2341 if (!str)
2342 goto error;
2344 argv[i] = cmdline + len;
2345 memcpy(argv[i], str, strlen(str) + 1);
2346 len += strlen(str) + 1;
2347 free(str);
2349 ff->ph->env.cmdline = cmdline;
2350 ff->ph->env.cmdline_argv = (const char **) argv;
2351 return 0;
2353 error:
2354 free(argv);
2355 free(cmdline);
2356 return -1;
2359 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2361 u32 nr, i;
2362 char *str;
2363 struct strbuf sb;
2364 int cpu_nr = ff->ph->env.nr_cpus_avail;
2365 u64 size = 0;
2366 struct perf_header *ph = ff->ph;
2367 bool do_core_id_test = true;
2369 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2370 if (!ph->env.cpu)
2371 return -1;
2373 if (do_read_u32(ff, &nr))
2374 goto free_cpu;
2376 ph->env.nr_sibling_cores = nr;
2377 size += sizeof(u32);
2378 if (strbuf_init(&sb, 128) < 0)
2379 goto free_cpu;
2381 for (i = 0; i < nr; i++) {
2382 str = do_read_string(ff);
2383 if (!str)
2384 goto error;
2386 /* include a NULL character at the end */
2387 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2388 goto error;
2389 size += string_size(str);
2390 free(str);
2392 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2394 if (do_read_u32(ff, &nr))
2395 return -1;
2397 ph->env.nr_sibling_threads = nr;
2398 size += sizeof(u32);
2400 for (i = 0; i < nr; i++) {
2401 str = do_read_string(ff);
2402 if (!str)
2403 goto error;
2405 /* include a NULL character at the end */
2406 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2407 goto error;
2408 size += string_size(str);
2409 free(str);
2411 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2414 * The header may be from old perf,
2415 * which doesn't include core id and socket id information.
2417 if (ff->size <= size) {
2418 zfree(&ph->env.cpu);
2419 return 0;
2422 /* On s390 the socket_id number is not related to the numbers of cpus.
2423 * The socket_id number might be higher than the numbers of cpus.
2424 * This depends on the configuration.
2425 * AArch64 is the same.
2427 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428 || !strncmp(ph->env.arch, "aarch64", 7)))
2429 do_core_id_test = false;
2431 for (i = 0; i < (u32)cpu_nr; i++) {
2432 if (do_read_u32(ff, &nr))
2433 goto free_cpu;
2435 ph->env.cpu[i].core_id = nr;
2436 size += sizeof(u32);
2438 if (do_read_u32(ff, &nr))
2439 goto free_cpu;
2441 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442 pr_debug("socket_id number is too big."
2443 "You may need to upgrade the perf tool.\n");
2444 goto free_cpu;
2447 ph->env.cpu[i].socket_id = nr;
2448 size += sizeof(u32);
2452 * The header may be from old perf,
2453 * which doesn't include die information.
2455 if (ff->size <= size)
2456 return 0;
2458 if (do_read_u32(ff, &nr))
2459 return -1;
2461 ph->env.nr_sibling_dies = nr;
2462 size += sizeof(u32);
2464 for (i = 0; i < nr; i++) {
2465 str = do_read_string(ff);
2466 if (!str)
2467 goto error;
2469 /* include a NULL character at the end */
2470 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2471 goto error;
2472 size += string_size(str);
2473 free(str);
2475 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2477 for (i = 0; i < (u32)cpu_nr; i++) {
2478 if (do_read_u32(ff, &nr))
2479 goto free_cpu;
2481 ph->env.cpu[i].die_id = nr;
2484 return 0;
2486 error:
2487 strbuf_release(&sb);
2488 free_cpu:
2489 zfree(&ph->env.cpu);
2490 return -1;
2493 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2495 struct numa_node *nodes, *n;
2496 u32 nr, i;
2497 char *str;
2499 /* nr nodes */
2500 if (do_read_u32(ff, &nr))
2501 return -1;
2503 nodes = zalloc(sizeof(*nodes) * nr);
2504 if (!nodes)
2505 return -ENOMEM;
2507 for (i = 0; i < nr; i++) {
2508 n = &nodes[i];
2510 /* node number */
2511 if (do_read_u32(ff, &n->node))
2512 goto error;
2514 if (do_read_u64(ff, &n->mem_total))
2515 goto error;
2517 if (do_read_u64(ff, &n->mem_free))
2518 goto error;
2520 str = do_read_string(ff);
2521 if (!str)
2522 goto error;
2524 n->map = perf_cpu_map__new(str);
2525 if (!n->map)
2526 goto error;
2528 free(str);
2530 ff->ph->env.nr_numa_nodes = nr;
2531 ff->ph->env.numa_nodes = nodes;
2532 return 0;
2534 error:
2535 free(nodes);
2536 return -1;
2539 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2541 char *name;
2542 u32 pmu_num;
2543 u32 type;
2544 struct strbuf sb;
2546 if (do_read_u32(ff, &pmu_num))
2547 return -1;
2549 if (!pmu_num) {
2550 pr_debug("pmu mappings not available\n");
2551 return 0;
2554 ff->ph->env.nr_pmu_mappings = pmu_num;
2555 if (strbuf_init(&sb, 128) < 0)
2556 return -1;
2558 while (pmu_num) {
2559 if (do_read_u32(ff, &type))
2560 goto error;
2562 name = do_read_string(ff);
2563 if (!name)
2564 goto error;
2566 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2567 goto error;
2568 /* include a NULL character at the end */
2569 if (strbuf_add(&sb, "", 1) < 0)
2570 goto error;
2572 if (!strcmp(name, "msr"))
2573 ff->ph->env.msr_pmu_type = type;
2575 free(name);
2576 pmu_num--;
2578 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579 return 0;
2581 error:
2582 strbuf_release(&sb);
2583 return -1;
2586 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2588 size_t ret = -1;
2589 u32 i, nr, nr_groups;
2590 struct perf_session *session;
2591 struct evsel *evsel, *leader = NULL;
2592 struct group_desc {
2593 char *name;
2594 u32 leader_idx;
2595 u32 nr_members;
2596 } *desc;
2598 if (do_read_u32(ff, &nr_groups))
2599 return -1;
2601 ff->ph->env.nr_groups = nr_groups;
2602 if (!nr_groups) {
2603 pr_debug("group desc not available\n");
2604 return 0;
2607 desc = calloc(nr_groups, sizeof(*desc));
2608 if (!desc)
2609 return -1;
2611 for (i = 0; i < nr_groups; i++) {
2612 desc[i].name = do_read_string(ff);
2613 if (!desc[i].name)
2614 goto out_free;
2616 if (do_read_u32(ff, &desc[i].leader_idx))
2617 goto out_free;
2619 if (do_read_u32(ff, &desc[i].nr_members))
2620 goto out_free;
2624 * Rebuild group relationship based on the group_desc
2626 session = container_of(ff->ph, struct perf_session, header);
2627 session->evlist->nr_groups = nr_groups;
2629 i = nr = 0;
2630 evlist__for_each_entry(session->evlist, evsel) {
2631 if (evsel->idx == (int) desc[i].leader_idx) {
2632 evsel->leader = evsel;
2633 /* {anon_group} is a dummy name */
2634 if (strcmp(desc[i].name, "{anon_group}")) {
2635 evsel->group_name = desc[i].name;
2636 desc[i].name = NULL;
2638 evsel->core.nr_members = desc[i].nr_members;
2640 if (i >= nr_groups || nr > 0) {
2641 pr_debug("invalid group desc\n");
2642 goto out_free;
2645 leader = evsel;
2646 nr = evsel->core.nr_members - 1;
2647 i++;
2648 } else if (nr) {
2649 /* This is a group member */
2650 evsel->leader = leader;
2652 nr--;
2656 if (i != nr_groups || nr != 0) {
2657 pr_debug("invalid group desc\n");
2658 goto out_free;
2661 ret = 0;
2662 out_free:
2663 for (i = 0; i < nr_groups; i++)
2664 zfree(&desc[i].name);
2665 free(desc);
2667 return ret;
2670 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2672 struct perf_session *session;
2673 int err;
2675 session = container_of(ff->ph, struct perf_session, header);
2677 err = auxtrace_index__process(ff->fd, ff->size, session,
2678 ff->ph->needs_swap);
2679 if (err < 0)
2680 pr_err("Failed to process auxtrace index\n");
2681 return err;
2684 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2686 struct cpu_cache_level *caches;
2687 u32 cnt, i, version;
2689 if (do_read_u32(ff, &version))
2690 return -1;
2692 if (version != 1)
2693 return -1;
2695 if (do_read_u32(ff, &cnt))
2696 return -1;
2698 caches = zalloc(sizeof(*caches) * cnt);
2699 if (!caches)
2700 return -1;
2702 for (i = 0; i < cnt; i++) {
2703 struct cpu_cache_level c;
2705 #define _R(v) \
2706 if (do_read_u32(ff, &c.v))\
2707 goto out_free_caches; \
2709 _R(level)
2710 _R(line_size)
2711 _R(sets)
2712 _R(ways)
2713 #undef _R
2715 #define _R(v) \
2716 c.v = do_read_string(ff); \
2717 if (!c.v) \
2718 goto out_free_caches;
2720 _R(type)
2721 _R(size)
2722 _R(map)
2723 #undef _R
2725 caches[i] = c;
2728 ff->ph->env.caches = caches;
2729 ff->ph->env.caches_cnt = cnt;
2730 return 0;
2731 out_free_caches:
2732 free(caches);
2733 return -1;
2736 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2738 struct perf_session *session;
2739 u64 first_sample_time, last_sample_time;
2740 int ret;
2742 session = container_of(ff->ph, struct perf_session, header);
2744 ret = do_read_u64(ff, &first_sample_time);
2745 if (ret)
2746 return -1;
2748 ret = do_read_u64(ff, &last_sample_time);
2749 if (ret)
2750 return -1;
2752 session->evlist->first_sample_time = first_sample_time;
2753 session->evlist->last_sample_time = last_sample_time;
2754 return 0;
2757 static int process_mem_topology(struct feat_fd *ff,
2758 void *data __maybe_unused)
2760 struct memory_node *nodes;
2761 u64 version, i, nr, bsize;
2762 int ret = -1;
2764 if (do_read_u64(ff, &version))
2765 return -1;
2767 if (version != 1)
2768 return -1;
2770 if (do_read_u64(ff, &bsize))
2771 return -1;
2773 if (do_read_u64(ff, &nr))
2774 return -1;
2776 nodes = zalloc(sizeof(*nodes) * nr);
2777 if (!nodes)
2778 return -1;
2780 for (i = 0; i < nr; i++) {
2781 struct memory_node n;
2783 #define _R(v) \
2784 if (do_read_u64(ff, &n.v)) \
2785 goto out; \
2787 _R(node)
2788 _R(size)
2790 #undef _R
2792 if (do_read_bitmap(ff, &n.set, &n.size))
2793 goto out;
2795 nodes[i] = n;
2798 ff->ph->env.memory_bsize = bsize;
2799 ff->ph->env.memory_nodes = nodes;
2800 ff->ph->env.nr_memory_nodes = nr;
2801 ret = 0;
2803 out:
2804 if (ret)
2805 free(nodes);
2806 return ret;
2809 static int process_clockid(struct feat_fd *ff,
2810 void *data __maybe_unused)
2812 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813 return -1;
2815 return 0;
2818 static int process_clock_data(struct feat_fd *ff,
2819 void *_data __maybe_unused)
2821 u32 data32;
2822 u64 data64;
2824 /* version */
2825 if (do_read_u32(ff, &data32))
2826 return -1;
2828 if (data32 != 1)
2829 return -1;
2831 /* clockid */
2832 if (do_read_u32(ff, &data32))
2833 return -1;
2835 ff->ph->env.clock.clockid = data32;
2837 /* TOD ref time */
2838 if (do_read_u64(ff, &data64))
2839 return -1;
2841 ff->ph->env.clock.tod_ns = data64;
2843 /* clockid ref time */
2844 if (do_read_u64(ff, &data64))
2845 return -1;
2847 ff->ph->env.clock.clockid_ns = data64;
2848 ff->ph->env.clock.enabled = true;
2849 return 0;
2852 static int process_dir_format(struct feat_fd *ff,
2853 void *_data __maybe_unused)
2855 struct perf_session *session;
2856 struct perf_data *data;
2858 session = container_of(ff->ph, struct perf_session, header);
2859 data = session->data;
2861 if (WARN_ON(!perf_data__is_dir(data)))
2862 return -1;
2864 return do_read_u64(ff, &data->dir.version);
2867 #ifdef HAVE_LIBBPF_SUPPORT
2868 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2870 struct bpf_prog_info_linear *info_linear;
2871 struct bpf_prog_info_node *info_node;
2872 struct perf_env *env = &ff->ph->env;
2873 u32 count, i;
2874 int err = -1;
2876 if (ff->ph->needs_swap) {
2877 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2878 return 0;
2881 if (do_read_u32(ff, &count))
2882 return -1;
2884 down_write(&env->bpf_progs.lock);
2886 for (i = 0; i < count; ++i) {
2887 u32 info_len, data_len;
2889 info_linear = NULL;
2890 info_node = NULL;
2891 if (do_read_u32(ff, &info_len))
2892 goto out;
2893 if (do_read_u32(ff, &data_len))
2894 goto out;
2896 if (info_len > sizeof(struct bpf_prog_info)) {
2897 pr_warning("detected invalid bpf_prog_info\n");
2898 goto out;
2901 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2902 data_len);
2903 if (!info_linear)
2904 goto out;
2905 info_linear->info_len = sizeof(struct bpf_prog_info);
2906 info_linear->data_len = data_len;
2907 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2908 goto out;
2909 if (__do_read(ff, &info_linear->info, info_len))
2910 goto out;
2911 if (info_len < sizeof(struct bpf_prog_info))
2912 memset(((void *)(&info_linear->info)) + info_len, 0,
2913 sizeof(struct bpf_prog_info) - info_len);
2915 if (__do_read(ff, info_linear->data, data_len))
2916 goto out;
2918 info_node = malloc(sizeof(struct bpf_prog_info_node));
2919 if (!info_node)
2920 goto out;
2922 /* after reading from file, translate offset to address */
2923 bpf_program__bpil_offs_to_addr(info_linear);
2924 info_node->info_linear = info_linear;
2925 perf_env__insert_bpf_prog_info(env, info_node);
2928 up_write(&env->bpf_progs.lock);
2929 return 0;
2930 out:
2931 free(info_linear);
2932 free(info_node);
2933 up_write(&env->bpf_progs.lock);
2934 return err;
2936 #else // HAVE_LIBBPF_SUPPORT
2937 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2939 return 0;
2941 #endif // HAVE_LIBBPF_SUPPORT
2943 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2945 struct perf_env *env = &ff->ph->env;
2946 struct btf_node *node = NULL;
2947 u32 count, i;
2948 int err = -1;
2950 if (ff->ph->needs_swap) {
2951 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2952 return 0;
2955 if (do_read_u32(ff, &count))
2956 return -1;
2958 down_write(&env->bpf_progs.lock);
2960 for (i = 0; i < count; ++i) {
2961 u32 id, data_size;
2963 if (do_read_u32(ff, &id))
2964 goto out;
2965 if (do_read_u32(ff, &data_size))
2966 goto out;
2968 node = malloc(sizeof(struct btf_node) + data_size);
2969 if (!node)
2970 goto out;
2972 node->id = id;
2973 node->data_size = data_size;
2975 if (__do_read(ff, node->data, data_size))
2976 goto out;
2978 perf_env__insert_btf(env, node);
2979 node = NULL;
2982 err = 0;
2983 out:
2984 up_write(&env->bpf_progs.lock);
2985 free(node);
2986 return err;
2989 static int process_compressed(struct feat_fd *ff,
2990 void *data __maybe_unused)
2992 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2993 return -1;
2995 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2996 return -1;
2998 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2999 return -1;
3001 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3002 return -1;
3004 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3005 return -1;
3007 return 0;
3010 static int process_cpu_pmu_caps(struct feat_fd *ff,
3011 void *data __maybe_unused)
3013 char *name, *value;
3014 struct strbuf sb;
3015 u32 nr_caps;
3017 if (do_read_u32(ff, &nr_caps))
3018 return -1;
3020 if (!nr_caps) {
3021 pr_debug("cpu pmu capabilities not available\n");
3022 return 0;
3025 ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3027 if (strbuf_init(&sb, 128) < 0)
3028 return -1;
3030 while (nr_caps--) {
3031 name = do_read_string(ff);
3032 if (!name)
3033 goto error;
3035 value = do_read_string(ff);
3036 if (!value)
3037 goto free_name;
3039 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3040 goto free_value;
3042 /* include a NULL character at the end */
3043 if (strbuf_add(&sb, "", 1) < 0)
3044 goto free_value;
3046 if (!strcmp(name, "branches"))
3047 ff->ph->env.max_branches = atoi(value);
3049 free(value);
3050 free(name);
3052 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3053 return 0;
3055 free_value:
3056 free(value);
3057 free_name:
3058 free(name);
3059 error:
3060 strbuf_release(&sb);
3061 return -1;
3064 #define FEAT_OPR(n, func, __full_only) \
3065 [HEADER_##n] = { \
3066 .name = __stringify(n), \
3067 .write = write_##func, \
3068 .print = print_##func, \
3069 .full_only = __full_only, \
3070 .process = process_##func, \
3071 .synthesize = true \
3074 #define FEAT_OPN(n, func, __full_only) \
3075 [HEADER_##n] = { \
3076 .name = __stringify(n), \
3077 .write = write_##func, \
3078 .print = print_##func, \
3079 .full_only = __full_only, \
3080 .process = process_##func \
3083 /* feature_ops not implemented: */
3084 #define print_tracing_data NULL
3085 #define print_build_id NULL
3087 #define process_branch_stack NULL
3088 #define process_stat NULL
3090 // Only used in util/synthetic-events.c
3091 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3093 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3094 FEAT_OPN(TRACING_DATA, tracing_data, false),
3095 FEAT_OPN(BUILD_ID, build_id, false),
3096 FEAT_OPR(HOSTNAME, hostname, false),
3097 FEAT_OPR(OSRELEASE, osrelease, false),
3098 FEAT_OPR(VERSION, version, false),
3099 FEAT_OPR(ARCH, arch, false),
3100 FEAT_OPR(NRCPUS, nrcpus, false),
3101 FEAT_OPR(CPUDESC, cpudesc, false),
3102 FEAT_OPR(CPUID, cpuid, false),
3103 FEAT_OPR(TOTAL_MEM, total_mem, false),
3104 FEAT_OPR(EVENT_DESC, event_desc, false),
3105 FEAT_OPR(CMDLINE, cmdline, false),
3106 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3107 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3108 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3109 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3110 FEAT_OPR(GROUP_DESC, group_desc, false),
3111 FEAT_OPN(AUXTRACE, auxtrace, false),
3112 FEAT_OPN(STAT, stat, false),
3113 FEAT_OPN(CACHE, cache, true),
3114 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3115 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3116 FEAT_OPR(CLOCKID, clockid, false),
3117 FEAT_OPN(DIR_FORMAT, dir_format, false),
3118 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3119 FEAT_OPR(BPF_BTF, bpf_btf, false),
3120 FEAT_OPR(COMPRESSED, compressed, false),
3121 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3122 FEAT_OPR(CLOCK_DATA, clock_data, false),
3125 struct header_print_data {
3126 FILE *fp;
3127 bool full; /* extended list of headers */
3130 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3131 struct perf_header *ph,
3132 int feat, int fd, void *data)
3134 struct header_print_data *hd = data;
3135 struct feat_fd ff;
3137 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3138 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3139 "%d, continuing...\n", section->offset, feat);
3140 return 0;
3142 if (feat >= HEADER_LAST_FEATURE) {
3143 pr_warning("unknown feature %d\n", feat);
3144 return 0;
3146 if (!feat_ops[feat].print)
3147 return 0;
3149 ff = (struct feat_fd) {
3150 .fd = fd,
3151 .ph = ph,
3154 if (!feat_ops[feat].full_only || hd->full)
3155 feat_ops[feat].print(&ff, hd->fp);
3156 else
3157 fprintf(hd->fp, "# %s info available, use -I to display\n",
3158 feat_ops[feat].name);
3160 return 0;
3163 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3165 struct header_print_data hd;
3166 struct perf_header *header = &session->header;
3167 int fd = perf_data__fd(session->data);
3168 struct stat st;
3169 time_t stctime;
3170 int ret, bit;
3172 hd.fp = fp;
3173 hd.full = full;
3175 ret = fstat(fd, &st);
3176 if (ret == -1)
3177 return -1;
3179 stctime = st.st_mtime;
3180 fprintf(fp, "# captured on : %s", ctime(&stctime));
3182 fprintf(fp, "# header version : %u\n", header->version);
3183 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3184 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3185 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3187 perf_header__process_sections(header, fd, &hd,
3188 perf_file_section__fprintf_info);
3190 if (session->data->is_pipe)
3191 return 0;
3193 fprintf(fp, "# missing features: ");
3194 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3195 if (bit)
3196 fprintf(fp, "%s ", feat_ops[bit].name);
3199 fprintf(fp, "\n");
3200 return 0;
3203 static int do_write_feat(struct feat_fd *ff, int type,
3204 struct perf_file_section **p,
3205 struct evlist *evlist)
3207 int err;
3208 int ret = 0;
3210 if (perf_header__has_feat(ff->ph, type)) {
3211 if (!feat_ops[type].write)
3212 return -1;
3214 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3215 return -1;
3217 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3219 err = feat_ops[type].write(ff, evlist);
3220 if (err < 0) {
3221 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3223 /* undo anything written */
3224 lseek(ff->fd, (*p)->offset, SEEK_SET);
3226 return -1;
3228 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3229 (*p)++;
3231 return ret;
3234 static int perf_header__adds_write(struct perf_header *header,
3235 struct evlist *evlist, int fd)
3237 int nr_sections;
3238 struct feat_fd ff;
3239 struct perf_file_section *feat_sec, *p;
3240 int sec_size;
3241 u64 sec_start;
3242 int feat;
3243 int err;
3245 ff = (struct feat_fd){
3246 .fd = fd,
3247 .ph = header,
3250 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3251 if (!nr_sections)
3252 return 0;
3254 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3255 if (feat_sec == NULL)
3256 return -ENOMEM;
3258 sec_size = sizeof(*feat_sec) * nr_sections;
3260 sec_start = header->feat_offset;
3261 lseek(fd, sec_start + sec_size, SEEK_SET);
3263 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3264 if (do_write_feat(&ff, feat, &p, evlist))
3265 perf_header__clear_feat(header, feat);
3268 lseek(fd, sec_start, SEEK_SET);
3270 * may write more than needed due to dropped feature, but
3271 * this is okay, reader will skip the missing entries
3273 err = do_write(&ff, feat_sec, sec_size);
3274 if (err < 0)
3275 pr_debug("failed to write feature section\n");
3276 free(feat_sec);
3277 return err;
3280 int perf_header__write_pipe(int fd)
3282 struct perf_pipe_file_header f_header;
3283 struct feat_fd ff;
3284 int err;
3286 ff = (struct feat_fd){ .fd = fd };
3288 f_header = (struct perf_pipe_file_header){
3289 .magic = PERF_MAGIC,
3290 .size = sizeof(f_header),
3293 err = do_write(&ff, &f_header, sizeof(f_header));
3294 if (err < 0) {
3295 pr_debug("failed to write perf pipe header\n");
3296 return err;
3299 return 0;
3302 int perf_session__write_header(struct perf_session *session,
3303 struct evlist *evlist,
3304 int fd, bool at_exit)
3306 struct perf_file_header f_header;
3307 struct perf_file_attr f_attr;
3308 struct perf_header *header = &session->header;
3309 struct evsel *evsel;
3310 struct feat_fd ff;
3311 u64 attr_offset;
3312 int err;
3314 ff = (struct feat_fd){ .fd = fd};
3315 lseek(fd, sizeof(f_header), SEEK_SET);
3317 evlist__for_each_entry(session->evlist, evsel) {
3318 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3319 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3320 if (err < 0) {
3321 pr_debug("failed to write perf header\n");
3322 return err;
3326 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3328 evlist__for_each_entry(evlist, evsel) {
3329 f_attr = (struct perf_file_attr){
3330 .attr = evsel->core.attr,
3331 .ids = {
3332 .offset = evsel->id_offset,
3333 .size = evsel->core.ids * sizeof(u64),
3336 err = do_write(&ff, &f_attr, sizeof(f_attr));
3337 if (err < 0) {
3338 pr_debug("failed to write perf header attribute\n");
3339 return err;
3343 if (!header->data_offset)
3344 header->data_offset = lseek(fd, 0, SEEK_CUR);
3345 header->feat_offset = header->data_offset + header->data_size;
3347 if (at_exit) {
3348 err = perf_header__adds_write(header, evlist, fd);
3349 if (err < 0)
3350 return err;
3353 f_header = (struct perf_file_header){
3354 .magic = PERF_MAGIC,
3355 .size = sizeof(f_header),
3356 .attr_size = sizeof(f_attr),
3357 .attrs = {
3358 .offset = attr_offset,
3359 .size = evlist->core.nr_entries * sizeof(f_attr),
3361 .data = {
3362 .offset = header->data_offset,
3363 .size = header->data_size,
3365 /* event_types is ignored, store zeros */
3368 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3370 lseek(fd, 0, SEEK_SET);
3371 err = do_write(&ff, &f_header, sizeof(f_header));
3372 if (err < 0) {
3373 pr_debug("failed to write perf header\n");
3374 return err;
3376 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3378 return 0;
3381 static int perf_header__getbuffer64(struct perf_header *header,
3382 int fd, void *buf, size_t size)
3384 if (readn(fd, buf, size) <= 0)
3385 return -1;
3387 if (header->needs_swap)
3388 mem_bswap_64(buf, size);
3390 return 0;
3393 int perf_header__process_sections(struct perf_header *header, int fd,
3394 void *data,
3395 int (*process)(struct perf_file_section *section,
3396 struct perf_header *ph,
3397 int feat, int fd, void *data))
3399 struct perf_file_section *feat_sec, *sec;
3400 int nr_sections;
3401 int sec_size;
3402 int feat;
3403 int err;
3405 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3406 if (!nr_sections)
3407 return 0;
3409 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3410 if (!feat_sec)
3411 return -1;
3413 sec_size = sizeof(*feat_sec) * nr_sections;
3415 lseek(fd, header->feat_offset, SEEK_SET);
3417 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3418 if (err < 0)
3419 goto out_free;
3421 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3422 err = process(sec++, header, feat, fd, data);
3423 if (err < 0)
3424 goto out_free;
3426 err = 0;
3427 out_free:
3428 free(feat_sec);
3429 return err;
3432 static const int attr_file_abi_sizes[] = {
3433 [0] = PERF_ATTR_SIZE_VER0,
3434 [1] = PERF_ATTR_SIZE_VER1,
3435 [2] = PERF_ATTR_SIZE_VER2,
3436 [3] = PERF_ATTR_SIZE_VER3,
3437 [4] = PERF_ATTR_SIZE_VER4,
3442 * In the legacy file format, the magic number is not used to encode endianness.
3443 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3444 * on ABI revisions, we need to try all combinations for all endianness to
3445 * detect the endianness.
3447 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3449 uint64_t ref_size, attr_size;
3450 int i;
3452 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3453 ref_size = attr_file_abi_sizes[i]
3454 + sizeof(struct perf_file_section);
3455 if (hdr_sz != ref_size) {
3456 attr_size = bswap_64(hdr_sz);
3457 if (attr_size != ref_size)
3458 continue;
3460 ph->needs_swap = true;
3462 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3464 ph->needs_swap);
3465 return 0;
3467 /* could not determine endianness */
3468 return -1;
3471 #define PERF_PIPE_HDR_VER0 16
3473 static const size_t attr_pipe_abi_sizes[] = {
3474 [0] = PERF_PIPE_HDR_VER0,
3479 * In the legacy pipe format, there is an implicit assumption that endiannesss
3480 * between host recording the samples, and host parsing the samples is the
3481 * same. This is not always the case given that the pipe output may always be
3482 * redirected into a file and analyzed on a different machine with possibly a
3483 * different endianness and perf_event ABI revsions in the perf tool itself.
3485 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3487 u64 attr_size;
3488 int i;
3490 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3491 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3492 attr_size = bswap_64(hdr_sz);
3493 if (attr_size != hdr_sz)
3494 continue;
3496 ph->needs_swap = true;
3498 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3499 return 0;
3501 return -1;
3504 bool is_perf_magic(u64 magic)
3506 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3507 || magic == __perf_magic2
3508 || magic == __perf_magic2_sw)
3509 return true;
3511 return false;
3514 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3515 bool is_pipe, struct perf_header *ph)
3517 int ret;
3519 /* check for legacy format */
3520 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3521 if (ret == 0) {
3522 ph->version = PERF_HEADER_VERSION_1;
3523 pr_debug("legacy perf.data format\n");
3524 if (is_pipe)
3525 return try_all_pipe_abis(hdr_sz, ph);
3527 return try_all_file_abis(hdr_sz, ph);
3530 * the new magic number serves two purposes:
3531 * - unique number to identify actual perf.data files
3532 * - encode endianness of file
3534 ph->version = PERF_HEADER_VERSION_2;
3536 /* check magic number with one endianness */
3537 if (magic == __perf_magic2)
3538 return 0;
3540 /* check magic number with opposite endianness */
3541 if (magic != __perf_magic2_sw)
3542 return -1;
3544 ph->needs_swap = true;
3546 return 0;
3549 int perf_file_header__read(struct perf_file_header *header,
3550 struct perf_header *ph, int fd)
3552 ssize_t ret;
3554 lseek(fd, 0, SEEK_SET);
3556 ret = readn(fd, header, sizeof(*header));
3557 if (ret <= 0)
3558 return -1;
3560 if (check_magic_endian(header->magic,
3561 header->attr_size, false, ph) < 0) {
3562 pr_debug("magic/endian check failed\n");
3563 return -1;
3566 if (ph->needs_swap) {
3567 mem_bswap_64(header, offsetof(struct perf_file_header,
3568 adds_features));
3571 if (header->size != sizeof(*header)) {
3572 /* Support the previous format */
3573 if (header->size == offsetof(typeof(*header), adds_features))
3574 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3575 else
3576 return -1;
3577 } else if (ph->needs_swap) {
3579 * feature bitmap is declared as an array of unsigned longs --
3580 * not good since its size can differ between the host that
3581 * generated the data file and the host analyzing the file.
3583 * We need to handle endianness, but we don't know the size of
3584 * the unsigned long where the file was generated. Take a best
3585 * guess at determining it: try 64-bit swap first (ie., file
3586 * created on a 64-bit host), and check if the hostname feature
3587 * bit is set (this feature bit is forced on as of fbe96f2).
3588 * If the bit is not, undo the 64-bit swap and try a 32-bit
3589 * swap. If the hostname bit is still not set (e.g., older data
3590 * file), punt and fallback to the original behavior --
3591 * clearing all feature bits and setting buildid.
3593 mem_bswap_64(&header->adds_features,
3594 BITS_TO_U64(HEADER_FEAT_BITS));
3596 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3597 /* unswap as u64 */
3598 mem_bswap_64(&header->adds_features,
3599 BITS_TO_U64(HEADER_FEAT_BITS));
3601 /* unswap as u32 */
3602 mem_bswap_32(&header->adds_features,
3603 BITS_TO_U32(HEADER_FEAT_BITS));
3606 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3607 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3608 set_bit(HEADER_BUILD_ID, header->adds_features);
3612 memcpy(&ph->adds_features, &header->adds_features,
3613 sizeof(ph->adds_features));
3615 ph->data_offset = header->data.offset;
3616 ph->data_size = header->data.size;
3617 ph->feat_offset = header->data.offset + header->data.size;
3618 return 0;
3621 static int perf_file_section__process(struct perf_file_section *section,
3622 struct perf_header *ph,
3623 int feat, int fd, void *data)
3625 struct feat_fd fdd = {
3626 .fd = fd,
3627 .ph = ph,
3628 .size = section->size,
3629 .offset = section->offset,
3632 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3633 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3634 "%d, continuing...\n", section->offset, feat);
3635 return 0;
3638 if (feat >= HEADER_LAST_FEATURE) {
3639 pr_debug("unknown feature %d, continuing...\n", feat);
3640 return 0;
3643 if (!feat_ops[feat].process)
3644 return 0;
3646 return feat_ops[feat].process(&fdd, data);
3649 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3650 struct perf_header *ph, int fd,
3651 bool repipe)
3653 struct feat_fd ff = {
3654 .fd = STDOUT_FILENO,
3655 .ph = ph,
3657 ssize_t ret;
3659 ret = readn(fd, header, sizeof(*header));
3660 if (ret <= 0)
3661 return -1;
3663 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3664 pr_debug("endian/magic failed\n");
3665 return -1;
3668 if (ph->needs_swap)
3669 header->size = bswap_64(header->size);
3671 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3672 return -1;
3674 return 0;
3677 static int perf_header__read_pipe(struct perf_session *session)
3679 struct perf_header *header = &session->header;
3680 struct perf_pipe_file_header f_header;
3682 if (perf_file_header__read_pipe(&f_header, header,
3683 perf_data__fd(session->data),
3684 session->repipe) < 0) {
3685 pr_debug("incompatible file format\n");
3686 return -EINVAL;
3689 return f_header.size == sizeof(f_header) ? 0 : -1;
3692 static int read_attr(int fd, struct perf_header *ph,
3693 struct perf_file_attr *f_attr)
3695 struct perf_event_attr *attr = &f_attr->attr;
3696 size_t sz, left;
3697 size_t our_sz = sizeof(f_attr->attr);
3698 ssize_t ret;
3700 memset(f_attr, 0, sizeof(*f_attr));
3702 /* read minimal guaranteed structure */
3703 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3704 if (ret <= 0) {
3705 pr_debug("cannot read %d bytes of header attr\n",
3706 PERF_ATTR_SIZE_VER0);
3707 return -1;
3710 /* on file perf_event_attr size */
3711 sz = attr->size;
3713 if (ph->needs_swap)
3714 sz = bswap_32(sz);
3716 if (sz == 0) {
3717 /* assume ABI0 */
3718 sz = PERF_ATTR_SIZE_VER0;
3719 } else if (sz > our_sz) {
3720 pr_debug("file uses a more recent and unsupported ABI"
3721 " (%zu bytes extra)\n", sz - our_sz);
3722 return -1;
3724 /* what we have not yet read and that we know about */
3725 left = sz - PERF_ATTR_SIZE_VER0;
3726 if (left) {
3727 void *ptr = attr;
3728 ptr += PERF_ATTR_SIZE_VER0;
3730 ret = readn(fd, ptr, left);
3732 /* read perf_file_section, ids are read in caller */
3733 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3735 return ret <= 0 ? -1 : 0;
3738 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3739 struct tep_handle *pevent)
3741 struct tep_event *event;
3742 char bf[128];
3744 /* already prepared */
3745 if (evsel->tp_format)
3746 return 0;
3748 if (pevent == NULL) {
3749 pr_debug("broken or missing trace data\n");
3750 return -1;
3753 event = tep_find_event(pevent, evsel->core.attr.config);
3754 if (event == NULL) {
3755 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3756 return -1;
3759 if (!evsel->name) {
3760 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3761 evsel->name = strdup(bf);
3762 if (evsel->name == NULL)
3763 return -1;
3766 evsel->tp_format = event;
3767 return 0;
3770 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3771 struct tep_handle *pevent)
3773 struct evsel *pos;
3775 evlist__for_each_entry(evlist, pos) {
3776 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3777 perf_evsel__prepare_tracepoint_event(pos, pevent))
3778 return -1;
3781 return 0;
3784 int perf_session__read_header(struct perf_session *session)
3786 struct perf_data *data = session->data;
3787 struct perf_header *header = &session->header;
3788 struct perf_file_header f_header;
3789 struct perf_file_attr f_attr;
3790 u64 f_id;
3791 int nr_attrs, nr_ids, i, j, err;
3792 int fd = perf_data__fd(data);
3794 session->evlist = evlist__new();
3795 if (session->evlist == NULL)
3796 return -ENOMEM;
3798 session->evlist->env = &header->env;
3799 session->machines.host.env = &header->env;
3802 * We can read 'pipe' data event from regular file,
3803 * check for the pipe header regardless of source.
3805 err = perf_header__read_pipe(session);
3806 if (!err || (err && perf_data__is_pipe(data))) {
3807 data->is_pipe = true;
3808 return err;
3811 if (perf_file_header__read(&f_header, header, fd) < 0)
3812 return -EINVAL;
3815 * Sanity check that perf.data was written cleanly; data size is
3816 * initialized to 0 and updated only if the on_exit function is run.
3817 * If data size is still 0 then the file contains only partial
3818 * information. Just warn user and process it as much as it can.
3820 if (f_header.data.size == 0) {
3821 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3822 "Was the 'perf record' command properly terminated?\n",
3823 data->file.path);
3826 if (f_header.attr_size == 0) {
3827 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3828 "Was the 'perf record' command properly terminated?\n",
3829 data->file.path);
3830 return -EINVAL;
3833 nr_attrs = f_header.attrs.size / f_header.attr_size;
3834 lseek(fd, f_header.attrs.offset, SEEK_SET);
3836 for (i = 0; i < nr_attrs; i++) {
3837 struct evsel *evsel;
3838 off_t tmp;
3840 if (read_attr(fd, header, &f_attr) < 0)
3841 goto out_errno;
3843 if (header->needs_swap) {
3844 f_attr.ids.size = bswap_64(f_attr.ids.size);
3845 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3846 perf_event__attr_swap(&f_attr.attr);
3849 tmp = lseek(fd, 0, SEEK_CUR);
3850 evsel = evsel__new(&f_attr.attr);
3852 if (evsel == NULL)
3853 goto out_delete_evlist;
3855 evsel->needs_swap = header->needs_swap;
3857 * Do it before so that if perf_evsel__alloc_id fails, this
3858 * entry gets purged too at evlist__delete().
3860 evlist__add(session->evlist, evsel);
3862 nr_ids = f_attr.ids.size / sizeof(u64);
3864 * We don't have the cpu and thread maps on the header, so
3865 * for allocating the perf_sample_id table we fake 1 cpu and
3866 * hattr->ids threads.
3868 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3869 goto out_delete_evlist;
3871 lseek(fd, f_attr.ids.offset, SEEK_SET);
3873 for (j = 0; j < nr_ids; j++) {
3874 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3875 goto out_errno;
3877 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3880 lseek(fd, tmp, SEEK_SET);
3883 perf_header__process_sections(header, fd, &session->tevent,
3884 perf_file_section__process);
3886 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3887 session->tevent.pevent))
3888 goto out_delete_evlist;
3890 return 0;
3891 out_errno:
3892 return -errno;
3894 out_delete_evlist:
3895 evlist__delete(session->evlist);
3896 session->evlist = NULL;
3897 return -ENOMEM;
3900 int perf_event__process_feature(struct perf_session *session,
3901 union perf_event *event)
3903 struct perf_tool *tool = session->tool;
3904 struct feat_fd ff = { .fd = 0 };
3905 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3906 int type = fe->header.type;
3907 u64 feat = fe->feat_id;
3909 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3910 pr_warning("invalid record type %d in pipe-mode\n", type);
3911 return 0;
3913 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3914 pr_warning("invalid record type %d in pipe-mode\n", type);
3915 return -1;
3918 if (!feat_ops[feat].process)
3919 return 0;
3921 ff.buf = (void *)fe->data;
3922 ff.size = event->header.size - sizeof(*fe);
3923 ff.ph = &session->header;
3925 if (feat_ops[feat].process(&ff, NULL))
3926 return -1;
3928 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3929 return 0;
3931 if (!feat_ops[feat].full_only ||
3932 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3933 feat_ops[feat].print(&ff, stdout);
3934 } else {
3935 fprintf(stdout, "# %s info available, use -I to display\n",
3936 feat_ops[feat].name);
3939 return 0;
3942 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3944 struct perf_record_event_update *ev = &event->event_update;
3945 struct perf_record_event_update_scale *ev_scale;
3946 struct perf_record_event_update_cpus *ev_cpus;
3947 struct perf_cpu_map *map;
3948 size_t ret;
3950 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3952 switch (ev->type) {
3953 case PERF_EVENT_UPDATE__SCALE:
3954 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3955 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3956 break;
3957 case PERF_EVENT_UPDATE__UNIT:
3958 ret += fprintf(fp, "... unit: %s\n", ev->data);
3959 break;
3960 case PERF_EVENT_UPDATE__NAME:
3961 ret += fprintf(fp, "... name: %s\n", ev->data);
3962 break;
3963 case PERF_EVENT_UPDATE__CPUS:
3964 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3965 ret += fprintf(fp, "... ");
3967 map = cpu_map__new_data(&ev_cpus->cpus);
3968 if (map)
3969 ret += cpu_map__fprintf(map, fp);
3970 else
3971 ret += fprintf(fp, "failed to get cpus\n");
3972 break;
3973 default:
3974 ret += fprintf(fp, "... unknown type\n");
3975 break;
3978 return ret;
3981 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3982 union perf_event *event,
3983 struct evlist **pevlist)
3985 u32 i, ids, n_ids;
3986 struct evsel *evsel;
3987 struct evlist *evlist = *pevlist;
3989 if (evlist == NULL) {
3990 *pevlist = evlist = evlist__new();
3991 if (evlist == NULL)
3992 return -ENOMEM;
3995 evsel = evsel__new(&event->attr.attr);
3996 if (evsel == NULL)
3997 return -ENOMEM;
3999 evlist__add(evlist, evsel);
4001 ids = event->header.size;
4002 ids -= (void *)&event->attr.id - (void *)event;
4003 n_ids = ids / sizeof(u64);
4005 * We don't have the cpu and thread maps on the header, so
4006 * for allocating the perf_sample_id table we fake 1 cpu and
4007 * hattr->ids threads.
4009 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4010 return -ENOMEM;
4012 for (i = 0; i < n_ids; i++) {
4013 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4016 return 0;
4019 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4020 union perf_event *event,
4021 struct evlist **pevlist)
4023 struct perf_record_event_update *ev = &event->event_update;
4024 struct perf_record_event_update_scale *ev_scale;
4025 struct perf_record_event_update_cpus *ev_cpus;
4026 struct evlist *evlist;
4027 struct evsel *evsel;
4028 struct perf_cpu_map *map;
4030 if (!pevlist || *pevlist == NULL)
4031 return -EINVAL;
4033 evlist = *pevlist;
4035 evsel = perf_evlist__id2evsel(evlist, ev->id);
4036 if (evsel == NULL)
4037 return -EINVAL;
4039 switch (ev->type) {
4040 case PERF_EVENT_UPDATE__UNIT:
4041 evsel->unit = strdup(ev->data);
4042 break;
4043 case PERF_EVENT_UPDATE__NAME:
4044 evsel->name = strdup(ev->data);
4045 break;
4046 case PERF_EVENT_UPDATE__SCALE:
4047 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4048 evsel->scale = ev_scale->scale;
4049 break;
4050 case PERF_EVENT_UPDATE__CPUS:
4051 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4053 map = cpu_map__new_data(&ev_cpus->cpus);
4054 if (map)
4055 evsel->core.own_cpus = map;
4056 else
4057 pr_err("failed to get event_update cpus\n");
4058 default:
4059 break;
4062 return 0;
4065 int perf_event__process_tracing_data(struct perf_session *session,
4066 union perf_event *event)
4068 ssize_t size_read, padding, size = event->tracing_data.size;
4069 int fd = perf_data__fd(session->data);
4070 char buf[BUFSIZ];
4073 * The pipe fd is already in proper place and in any case
4074 * we can't move it, and we'd screw the case where we read
4075 * 'pipe' data from regular file. The trace_report reads
4076 * data from 'fd' so we need to set it directly behind the
4077 * event, where the tracing data starts.
4079 if (!perf_data__is_pipe(session->data)) {
4080 off_t offset = lseek(fd, 0, SEEK_CUR);
4082 /* setup for reading amidst mmap */
4083 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4084 SEEK_SET);
4087 size_read = trace_report(fd, &session->tevent,
4088 session->repipe);
4089 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4091 if (readn(fd, buf, padding) < 0) {
4092 pr_err("%s: reading input file", __func__);
4093 return -1;
4095 if (session->repipe) {
4096 int retw = write(STDOUT_FILENO, buf, padding);
4097 if (retw <= 0 || retw != padding) {
4098 pr_err("%s: repiping tracing data padding", __func__);
4099 return -1;
4103 if (size_read + padding != size) {
4104 pr_err("%s: tracing data size mismatch", __func__);
4105 return -1;
4108 perf_evlist__prepare_tracepoint_events(session->evlist,
4109 session->tevent.pevent);
4111 return size_read + padding;
4114 int perf_event__process_build_id(struct perf_session *session,
4115 union perf_event *event)
4117 __event_process_build_id(&event->build_id,
4118 event->build_id.filename,
4119 session);
4120 return 0;