Merge tag 'block-5.9-2020-08-14' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / tools / perf / util / ordered-events.c
blob48c8f609441b4c16b85f14645a8fef917d1a9ca3
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <linux/list.h>
5 #include <linux/compiler.h>
6 #include <linux/string.h>
7 #include "ordered-events.h"
8 #include "session.h"
9 #include "asm/bug.h"
10 #include "debug.h"
11 #include "ui/progress.h"
13 #define pr_N(n, fmt, ...) \
14 eprintf(n, debug_ordered_events, fmt, ##__VA_ARGS__)
16 #define pr(fmt, ...) pr_N(1, pr_fmt(fmt), ##__VA_ARGS__)
18 static void queue_event(struct ordered_events *oe, struct ordered_event *new)
20 struct ordered_event *last = oe->last;
21 u64 timestamp = new->timestamp;
22 struct list_head *p;
24 ++oe->nr_events;
25 oe->last = new;
27 pr_oe_time2(timestamp, "queue_event nr_events %u\n", oe->nr_events);
29 if (!last) {
30 list_add(&new->list, &oe->events);
31 oe->max_timestamp = timestamp;
32 return;
36 * last event might point to some random place in the list as it's
37 * the last queued event. We expect that the new event is close to
38 * this.
40 if (last->timestamp <= timestamp) {
41 while (last->timestamp <= timestamp) {
42 p = last->list.next;
43 if (p == &oe->events) {
44 list_add_tail(&new->list, &oe->events);
45 oe->max_timestamp = timestamp;
46 return;
48 last = list_entry(p, struct ordered_event, list);
50 list_add_tail(&new->list, &last->list);
51 } else {
52 while (last->timestamp > timestamp) {
53 p = last->list.prev;
54 if (p == &oe->events) {
55 list_add(&new->list, &oe->events);
56 return;
58 last = list_entry(p, struct ordered_event, list);
60 list_add(&new->list, &last->list);
64 static union perf_event *__dup_event(struct ordered_events *oe,
65 union perf_event *event)
67 union perf_event *new_event = NULL;
69 if (oe->cur_alloc_size < oe->max_alloc_size) {
70 new_event = memdup(event, event->header.size);
71 if (new_event)
72 oe->cur_alloc_size += event->header.size;
75 return new_event;
78 static union perf_event *dup_event(struct ordered_events *oe,
79 union perf_event *event)
81 return oe->copy_on_queue ? __dup_event(oe, event) : event;
84 static void __free_dup_event(struct ordered_events *oe, union perf_event *event)
86 if (event) {
87 oe->cur_alloc_size -= event->header.size;
88 free(event);
92 static void free_dup_event(struct ordered_events *oe, union perf_event *event)
94 if (oe->copy_on_queue)
95 __free_dup_event(oe, event);
98 #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct ordered_event))
99 static struct ordered_event *alloc_event(struct ordered_events *oe,
100 union perf_event *event)
102 struct list_head *cache = &oe->cache;
103 struct ordered_event *new = NULL;
104 union perf_event *new_event;
105 size_t size;
107 new_event = dup_event(oe, event);
108 if (!new_event)
109 return NULL;
112 * We maintain the following scheme of buffers for ordered
113 * event allocation:
115 * to_free list -> buffer1 (64K)
116 * buffer2 (64K)
117 * ...
119 * Each buffer keeps an array of ordered events objects:
120 * buffer -> event[0]
121 * event[1]
122 * ...
124 * Each allocated ordered event is linked to one of
125 * following lists:
126 * - time ordered list 'events'
127 * - list of currently removed events 'cache'
129 * Allocation of the ordered event uses the following order
130 * to get the memory:
131 * - use recently removed object from 'cache' list
132 * - use available object in current allocation buffer
133 * - allocate new buffer if the current buffer is full
135 * Removal of ordered event object moves it from events to
136 * the cache list.
138 size = sizeof(*oe->buffer) + MAX_SAMPLE_BUFFER * sizeof(*new);
140 if (!list_empty(cache)) {
141 new = list_entry(cache->next, struct ordered_event, list);
142 list_del_init(&new->list);
143 } else if (oe->buffer) {
144 new = &oe->buffer->event[oe->buffer_idx];
145 if (++oe->buffer_idx == MAX_SAMPLE_BUFFER)
146 oe->buffer = NULL;
147 } else if ((oe->cur_alloc_size + size) < oe->max_alloc_size) {
148 oe->buffer = malloc(size);
149 if (!oe->buffer) {
150 free_dup_event(oe, new_event);
151 return NULL;
154 pr("alloc size %" PRIu64 "B (+%zu), max %" PRIu64 "B\n",
155 oe->cur_alloc_size, size, oe->max_alloc_size);
157 oe->cur_alloc_size += size;
158 list_add(&oe->buffer->list, &oe->to_free);
160 oe->buffer_idx = 1;
161 new = &oe->buffer->event[0];
162 } else {
163 pr("allocation limit reached %" PRIu64 "B\n", oe->max_alloc_size);
164 return NULL;
167 new->event = new_event;
168 return new;
171 static struct ordered_event *
172 ordered_events__new_event(struct ordered_events *oe, u64 timestamp,
173 union perf_event *event)
175 struct ordered_event *new;
177 new = alloc_event(oe, event);
178 if (new) {
179 new->timestamp = timestamp;
180 queue_event(oe, new);
183 return new;
186 void ordered_events__delete(struct ordered_events *oe, struct ordered_event *event)
188 list_move(&event->list, &oe->cache);
189 oe->nr_events--;
190 free_dup_event(oe, event->event);
191 event->event = NULL;
194 int ordered_events__queue(struct ordered_events *oe, union perf_event *event,
195 u64 timestamp, u64 file_offset)
197 struct ordered_event *oevent;
199 if (!timestamp || timestamp == ~0ULL)
200 return -ETIME;
202 if (timestamp < oe->last_flush) {
203 pr_oe_time(timestamp, "out of order event\n");
204 pr_oe_time(oe->last_flush, "last flush, last_flush_type %d\n",
205 oe->last_flush_type);
207 oe->nr_unordered_events++;
210 oevent = ordered_events__new_event(oe, timestamp, event);
211 if (!oevent) {
212 ordered_events__flush(oe, OE_FLUSH__HALF);
213 oevent = ordered_events__new_event(oe, timestamp, event);
216 if (!oevent)
217 return -ENOMEM;
219 oevent->file_offset = file_offset;
220 return 0;
223 static int do_flush(struct ordered_events *oe, bool show_progress)
225 struct list_head *head = &oe->events;
226 struct ordered_event *tmp, *iter;
227 u64 limit = oe->next_flush;
228 u64 last_ts = oe->last ? oe->last->timestamp : 0ULL;
229 struct ui_progress prog;
230 int ret;
232 if (!limit)
233 return 0;
235 if (show_progress)
236 ui_progress__init(&prog, oe->nr_events, "Processing time ordered events...");
238 list_for_each_entry_safe(iter, tmp, head, list) {
239 if (session_done())
240 return 0;
242 if (iter->timestamp > limit)
243 break;
244 ret = oe->deliver(oe, iter);
245 if (ret)
246 return ret;
248 ordered_events__delete(oe, iter);
249 oe->last_flush = iter->timestamp;
251 if (show_progress)
252 ui_progress__update(&prog, 1);
255 if (list_empty(head))
256 oe->last = NULL;
257 else if (last_ts <= limit)
258 oe->last = list_entry(head->prev, struct ordered_event, list);
260 if (show_progress)
261 ui_progress__finish();
263 return 0;
266 static int __ordered_events__flush(struct ordered_events *oe, enum oe_flush how,
267 u64 timestamp)
269 static const char * const str[] = {
270 "NONE",
271 "FINAL",
272 "ROUND",
273 "HALF ",
274 "TOP ",
275 "TIME ",
277 int err;
278 bool show_progress = false;
280 if (oe->nr_events == 0)
281 return 0;
283 switch (how) {
284 case OE_FLUSH__FINAL:
285 show_progress = true;
286 __fallthrough;
287 case OE_FLUSH__TOP:
288 oe->next_flush = ULLONG_MAX;
289 break;
291 case OE_FLUSH__HALF:
293 struct ordered_event *first, *last;
294 struct list_head *head = &oe->events;
296 first = list_entry(head->next, struct ordered_event, list);
297 last = oe->last;
299 /* Warn if we are called before any event got allocated. */
300 if (WARN_ONCE(!last || list_empty(head), "empty queue"))
301 return 0;
303 oe->next_flush = first->timestamp;
304 oe->next_flush += (last->timestamp - first->timestamp) / 2;
305 break;
308 case OE_FLUSH__TIME:
309 oe->next_flush = timestamp;
310 show_progress = false;
311 break;
313 case OE_FLUSH__ROUND:
314 case OE_FLUSH__NONE:
315 default:
316 break;
319 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush PRE %s, nr_events %u\n",
320 str[how], oe->nr_events);
321 pr_oe_time(oe->max_timestamp, "max_timestamp\n");
323 err = do_flush(oe, show_progress);
325 if (!err) {
326 if (how == OE_FLUSH__ROUND)
327 oe->next_flush = oe->max_timestamp;
329 oe->last_flush_type = how;
332 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush POST %s, nr_events %u\n",
333 str[how], oe->nr_events);
334 pr_oe_time(oe->last_flush, "last_flush\n");
336 return err;
339 int ordered_events__flush(struct ordered_events *oe, enum oe_flush how)
341 return __ordered_events__flush(oe, how, 0);
344 int ordered_events__flush_time(struct ordered_events *oe, u64 timestamp)
346 return __ordered_events__flush(oe, OE_FLUSH__TIME, timestamp);
349 u64 ordered_events__first_time(struct ordered_events *oe)
351 struct ordered_event *event;
353 if (list_empty(&oe->events))
354 return 0;
356 event = list_first_entry(&oe->events, struct ordered_event, list);
357 return event->timestamp;
360 void ordered_events__init(struct ordered_events *oe, ordered_events__deliver_t deliver,
361 void *data)
363 INIT_LIST_HEAD(&oe->events);
364 INIT_LIST_HEAD(&oe->cache);
365 INIT_LIST_HEAD(&oe->to_free);
366 oe->max_alloc_size = (u64) -1;
367 oe->cur_alloc_size = 0;
368 oe->deliver = deliver;
369 oe->data = data;
372 static void
373 ordered_events_buffer__free(struct ordered_events_buffer *buffer,
374 unsigned int max, struct ordered_events *oe)
376 if (oe->copy_on_queue) {
377 unsigned int i;
379 for (i = 0; i < max; i++)
380 __free_dup_event(oe, buffer->event[i].event);
383 free(buffer);
386 void ordered_events__free(struct ordered_events *oe)
388 struct ordered_events_buffer *buffer, *tmp;
390 if (list_empty(&oe->to_free))
391 return;
394 * Current buffer might not have all the events allocated
395 * yet, we need to free only allocated ones ...
397 if (oe->buffer) {
398 list_del_init(&oe->buffer->list);
399 ordered_events_buffer__free(oe->buffer, oe->buffer_idx, oe);
402 /* ... and continue with the rest */
403 list_for_each_entry_safe(buffer, tmp, &oe->to_free, list) {
404 list_del_init(&buffer->list);
405 ordered_events_buffer__free(buffer, MAX_SAMPLE_BUFFER, oe);
409 void ordered_events__reinit(struct ordered_events *oe)
411 ordered_events__deliver_t old_deliver = oe->deliver;
413 ordered_events__free(oe);
414 memset(oe, '\0', sizeof(*oe));
415 ordered_events__init(oe, old_deliver, oe->data);