2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/slab.h>
32 #include <asm/processor.h>
33 #include <linux/atomic.h>
34 #include <asm/hardirq.h>
35 #include <asm/hazards.h>
37 #include <asm/mmu_context.h>
38 #include <asm/mipsregs.h>
39 #include <asm/cacheflush.h>
41 #include <asm/addrspace.h>
43 #include <asm/smtc_proc.h>
46 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
47 * in do_IRQ. These are passed in setup_irq_smtc() and stored
50 unsigned long irq_hwmask
[NR_IRQS
];
52 #define LOCK_MT_PRA() \
53 local_irq_save(flags); \
56 #define UNLOCK_MT_PRA() \
58 local_irq_restore(flags)
60 #define LOCK_CORE_PRA() \
61 local_irq_save(flags); \
64 #define UNLOCK_CORE_PRA() \
66 local_irq_restore(flags)
69 * Data structures purely associated with SMTC parallelism
74 * Table for tracking ASIDs whose lifetime is prolonged.
77 asiduse smtc_live_asid
[MAX_SMTC_TLBS
][MAX_SMTC_ASIDS
];
80 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
83 #define IPIBUF_PER_CPU 4
85 struct smtc_ipi_q IPIQ
[NR_CPUS
];
86 static struct smtc_ipi_q freeIPIq
;
90 * Number of FPU contexts for each VPE
93 static int smtc_nconf1
[MAX_SMTC_VPES
];
96 /* Forward declarations */
98 void ipi_decode(struct smtc_ipi
*);
99 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
);
100 static void setup_cross_vpe_interrupts(unsigned int nvpe
);
101 void init_smtc_stats(void);
103 /* Global SMTC Status */
105 unsigned int smtc_status
;
107 /* Boot command line configuration overrides */
109 static int vpe0limit
;
110 static int ipibuffers
;
113 unsigned long smtc_asid_mask
= 0xff;
115 static int __init
vpe0tcs(char *str
)
117 get_option(&str
, &vpe0limit
);
122 static int __init
ipibufs(char *str
)
124 get_option(&str
, &ipibuffers
);
128 static int __init
stlb_disable(char *s
)
134 static int __init
asidmask_set(char *str
)
136 get_option(&str
, &asidmask
);
146 smtc_asid_mask
= (unsigned long)asidmask
;
149 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask
);
154 __setup("vpe0tcs=", vpe0tcs
);
155 __setup("ipibufs=", ipibufs
);
156 __setup("nostlb", stlb_disable
);
157 __setup("asidmask=", asidmask_set
);
159 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
161 static int hang_trig
;
163 static int __init
hangtrig_enable(char *s
)
170 __setup("hangtrig", hangtrig_enable
);
172 #define DEFAULT_BLOCKED_IPI_LIMIT 32
174 static int timerq_limit
= DEFAULT_BLOCKED_IPI_LIMIT
;
176 static int __init
tintq(char *str
)
178 get_option(&str
, &timerq_limit
);
182 __setup("tintq=", tintq
);
184 static int imstuckcount
[MAX_SMTC_VPES
][8];
185 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
186 static int vpemask
[MAX_SMTC_VPES
][8] = {
187 {0, 0, 1, 0, 0, 0, 0, 1},
188 {0, 0, 0, 0, 0, 0, 0, 1}
190 int tcnoprog
[NR_CPUS
];
191 static atomic_t idle_hook_initialized
= ATOMIC_INIT(0);
192 static int clock_hang_reported
[NR_CPUS
];
194 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
197 * Configure shared TLB - VPC configuration bit must be set by caller
200 static void smtc_configure_tlb(void)
203 unsigned long mvpconf0
;
204 unsigned long config1val
;
206 /* Set up ASID preservation table */
207 for (vpes
=0; vpes
<MAX_SMTC_TLBS
; vpes
++) {
208 for(i
= 0; i
< MAX_SMTC_ASIDS
; i
++) {
209 smtc_live_asid
[vpes
][i
] = 0;
212 mvpconf0
= read_c0_mvpconf0();
214 if ((vpes
= ((mvpconf0
& MVPCONF0_PVPE
)
215 >> MVPCONF0_PVPE_SHIFT
) + 1) > 1) {
216 /* If we have multiple VPEs, try to share the TLB */
217 if ((mvpconf0
& MVPCONF0_TLBS
) && !nostlb
) {
219 * If TLB sizing is programmable, shared TLB
220 * size is the total available complement.
221 * Otherwise, we have to take the sum of all
222 * static VPE TLB entries.
224 if ((tlbsiz
= ((mvpconf0
& MVPCONF0_PTLBE
)
225 >> MVPCONF0_PTLBE_SHIFT
)) == 0) {
227 * If there's more than one VPE, there had better
228 * be more than one TC, because we need one to bind
229 * to each VPE in turn to be able to read
230 * its configuration state!
233 /* Stop the TC from doing anything foolish */
234 write_tc_c0_tchalt(TCHALT_H
);
236 /* No need to un-Halt - that happens later anyway */
237 for (i
=0; i
< vpes
; i
++) {
238 write_tc_c0_tcbind(i
);
240 * To be 100% sure we're really getting the right
241 * information, we exit the configuration state
242 * and do an IHB after each rebinding.
245 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
248 * Only count if the MMU Type indicated is TLB
250 if (((read_vpe_c0_config() & MIPS_CONF_MT
) >> 7) == 1) {
251 config1val
= read_vpe_c0_config1();
252 tlbsiz
+= ((config1val
>> 25) & 0x3f) + 1;
255 /* Put core back in configuration state */
257 read_c0_mvpcontrol() | MVPCONTROL_VPC
);
261 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB
);
265 * Setup kernel data structures to use software total,
266 * rather than read the per-VPE Config1 value. The values
267 * for "CPU 0" gets copied to all the other CPUs as part
268 * of their initialization in smtc_cpu_setup().
271 /* MIPS32 limits TLB indices to 64 */
274 cpu_data
[0].tlbsize
= current_cpu_data
.tlbsize
= tlbsiz
;
275 smtc_status
|= SMTC_TLB_SHARED
;
276 local_flush_tlb_all();
278 printk("TLB of %d entry pairs shared by %d VPEs\n",
281 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
288 * Incrementally build the CPU map out of constituent MIPS MT cores,
289 * using the specified available VPEs and TCs. Plaform code needs
290 * to ensure that each MIPS MT core invokes this routine on reset,
293 * This version of the build_cpu_map and prepare_cpus routines assumes
294 * that *all* TCs of a MIPS MT core will be used for Linux, and that
295 * they will be spread across *all* available VPEs (to minimise the
296 * loss of efficiency due to exception service serialization).
297 * An improved version would pick up configuration information and
298 * possibly leave some TCs/VPEs as "slave" processors.
300 * Use c0_MVPConf0 to find out how many TCs are available, setting up
301 * cpu_possible_mask and the logical/physical mappings.
304 int __init
smtc_build_cpu_map(int start_cpu_slot
)
309 * The CPU map isn't actually used for anything at this point,
310 * so it's not clear what else we should do apart from set
311 * everything up so that "logical" = "physical".
313 ntcs
= ((read_c0_mvpconf0() & MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
314 for (i
=start_cpu_slot
; i
<NR_CPUS
&& i
<ntcs
; i
++) {
315 set_cpu_possible(i
, true);
316 __cpu_number_map
[i
] = i
;
317 __cpu_logical_map
[i
] = i
;
319 #ifdef CONFIG_MIPS_MT_FPAFF
320 /* Initialize map of CPUs with FPUs */
321 cpus_clear(mt_fpu_cpumask
);
324 /* One of those TC's is the one booting, and not a secondary... */
325 printk("%i available secondary CPU TC(s)\n", i
- 1);
331 * Common setup before any secondaries are started
332 * Make sure all CPUs are in a sensible state before we boot any of the
335 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
336 * as possible across the available VPEs.
339 static void smtc_tc_setup(int vpe
, int tc
, int cpu
)
341 static int cp1contexts
[MAX_SMTC_VPES
];
344 * Make a local copy of the available FPU contexts in order
345 * to keep track of TCs that can have one.
350 * FIXME: Multi-core SMTC hasn't been tested and the
351 * maximum number of VPEs may change.
353 cp1contexts
[0] = smtc_nconf1
[0] - 1;
354 cp1contexts
[1] = smtc_nconf1
[1];
358 write_tc_c0_tchalt(TCHALT_H
);
360 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
361 & ~(TCSTATUS_TKSU
| TCSTATUS_DA
| TCSTATUS_IXMT
))
364 * TCContext gets an offset from the base of the IPIQ array
365 * to be used in low-level code to detect the presence of
366 * an active IPI queue.
368 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q
) * cpu
) << 16);
370 /* Bind TC to VPE. */
371 write_tc_c0_tcbind(vpe
);
373 /* In general, all TCs should have the same cpu_data indications. */
374 memcpy(&cpu_data
[cpu
], &cpu_data
[0], sizeof(struct cpuinfo_mips
));
376 /* Check to see if there is a FPU context available for this TC. */
377 if (!cp1contexts
[vpe
])
378 cpu_data
[cpu
].options
&= ~MIPS_CPU_FPU
;
382 /* Store the TC and VPE into the cpu_data structure. */
383 cpu_data
[cpu
].vpe_id
= vpe
;
384 cpu_data
[cpu
].tc_id
= tc
;
386 /* FIXME: Multi-core SMTC hasn't been tested, but be prepared. */
387 cpu_data
[cpu
].core
= (read_vpe_c0_ebase() >> 1) & 0xff;
391 * Tweak to get Count registers synced as closely as possible. The
392 * value seems good for 34K-class cores.
397 void smtc_prepare_cpus(int cpus
)
399 int i
, vpe
, tc
, ntc
, nvpe
, tcpervpe
[NR_CPUS
], slop
, cpu
;
403 struct smtc_ipi
*pipi
;
405 /* disable interrupts so we can disable MT */
406 local_irq_save(flags
);
407 /* disable MT so we can configure */
411 spin_lock_init(&freeIPIq
.lock
);
414 * We probably don't have as many VPEs as we do SMP "CPUs",
415 * but it's possible - and in any case we'll never use more!
417 for (i
=0; i
<NR_CPUS
; i
++) {
418 IPIQ
[i
].head
= IPIQ
[i
].tail
= NULL
;
419 spin_lock_init(&IPIQ
[i
].lock
);
421 IPIQ
[i
].resched_flag
= 0; /* No reschedules queued initially */
424 /* cpu_data index starts at zero */
426 cpu_data
[cpu
].vpe_id
= 0;
427 cpu_data
[cpu
].tc_id
= 0;
428 cpu_data
[cpu
].core
= (read_c0_ebase() >> 1) & 0xff;
431 /* Report on boot-time options */
432 mips_mt_set_cpuoptions();
434 printk("Limit of %d VPEs set\n", vpelimit
);
436 printk("Limit of %d TCs set\n", tclimit
);
438 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
441 printk("ASID mask value override to 0x%x\n", asidmask
);
444 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
446 printk("Logic Analyser Trigger on suspected TC hang\n");
447 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
449 /* Put MVPE's into 'configuration state' */
450 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC
);
452 val
= read_c0_mvpconf0();
453 nvpe
= ((val
& MVPCONF0_PVPE
) >> MVPCONF0_PVPE_SHIFT
) + 1;
454 if (vpelimit
> 0 && nvpe
> vpelimit
)
456 ntc
= ((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
459 if (tclimit
> 0 && ntc
> tclimit
)
462 for (i
= 0; i
< nvpe
; i
++) {
463 tcpervpe
[i
] = ntc
/ nvpe
;
465 if((slop
- i
) > 0) tcpervpe
[i
]++;
468 /* Handle command line override for VPE0 */
469 if (vpe0limit
> ntc
) vpe0limit
= ntc
;
472 if (vpe0limit
< tcpervpe
[0]) {
473 /* Reducing TC count - distribute to others */
474 slop
= tcpervpe
[0] - vpe0limit
;
475 slopslop
= slop
% (nvpe
- 1);
476 tcpervpe
[0] = vpe0limit
;
477 for (i
= 1; i
< nvpe
; i
++) {
478 tcpervpe
[i
] += slop
/ (nvpe
- 1);
479 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
482 } else if (vpe0limit
> tcpervpe
[0]) {
483 /* Increasing TC count - steal from others */
484 slop
= vpe0limit
- tcpervpe
[0];
485 slopslop
= slop
% (nvpe
- 1);
486 tcpervpe
[0] = vpe0limit
;
487 for (i
= 1; i
< nvpe
; i
++) {
488 tcpervpe
[i
] -= slop
/ (nvpe
- 1);
489 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
495 /* Set up shared TLB */
496 smtc_configure_tlb();
498 for (tc
= 0, vpe
= 0 ; (vpe
< nvpe
) && (tc
< ntc
) ; vpe
++) {
499 /* Get number of CP1 contexts for each VPE. */
503 * Do not call settc() for TC0 or the FPU context
504 * value will be incorrect. Besides, we know that
507 smtc_nconf1
[0] = ((read_vpe_c0_vpeconf1() &
508 VPECONF1_NCP1
) >> VPECONF1_NCP1_SHIFT
);
512 smtc_nconf1
[1] = ((read_vpe_c0_vpeconf1() &
513 VPECONF1_NCP1
) >> VPECONF1_NCP1_SHIFT
);
517 if (tcpervpe
[vpe
] == 0)
521 printk("VPE %d: TC", vpe
);
522 for (i
= 0; i
< tcpervpe
[vpe
]; i
++) {
524 * TC 0 is bound to VPE 0 at reset,
525 * and is presumably executing this
526 * code. Leave it alone!
529 smtc_tc_setup(vpe
, tc
, cpu
);
532 * Set MVP bit (possibly again). Do it
533 * here to catch CPUs that have no TCs
534 * bound to the VPE at reset. In that
535 * case, a TC must be bound to the VPE
536 * before we can set VPEControl[MVP]
538 write_vpe_c0_vpeconf0(
539 read_vpe_c0_vpeconf0() |
549 * Allow this VPE to control others.
551 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
555 * Clear any stale software interrupts from VPE's Cause
557 write_vpe_c0_cause(0);
560 * Clear ERL/EXL of VPEs other than 0
561 * and set restricted interrupt enable/mask.
563 write_vpe_c0_status((read_vpe_c0_status()
564 & ~(ST0_BEV
| ST0_ERL
| ST0_EXL
| ST0_IM
))
565 | (STATUSF_IP0
| STATUSF_IP1
| STATUSF_IP7
568 * set config to be the same as vpe0,
569 * particularly kseg0 coherency alg
571 write_vpe_c0_config(read_c0_config());
572 /* Clear any pending timer interrupt */
573 write_vpe_c0_compare(0);
574 /* Propagate Config7 */
575 write_vpe_c0_config7(read_c0_config7());
576 write_vpe_c0_count(read_c0_count() + CP0_SKEW
);
579 /* enable multi-threading within VPE */
580 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE
);
582 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA
);
586 * Pull any physically present but unused TCs out of circulation.
588 while (tc
< (((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1)) {
589 set_cpu_possible(tc
, false);
590 set_cpu_present(tc
, false);
594 /* release config state */
595 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
599 /* Set up coprocessor affinity CPU mask(s) */
601 #ifdef CONFIG_MIPS_MT_FPAFF
602 for (tc
= 0; tc
< ntc
; tc
++) {
603 if (cpu_data
[tc
].options
& MIPS_CPU_FPU
)
604 cpu_set(tc
, mt_fpu_cpumask
);
608 /* set up ipi interrupts... */
610 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
612 setup_cross_vpe_interrupts(nvpe
);
614 /* Set up queue of free IPI "messages". */
615 nipi
= NR_CPUS
* IPIBUF_PER_CPU
;
619 pipi
= kmalloc(nipi
*sizeof(struct smtc_ipi
), GFP_KERNEL
);
621 panic("kmalloc of IPI message buffers failed");
623 printk("IPI buffer pool of %d buffers\n", nipi
);
624 for (i
= 0; i
< nipi
; i
++) {
625 smtc_ipi_nq(&freeIPIq
, pipi
);
629 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
632 local_irq_restore(flags
);
633 /* Initialize SMTC /proc statistics/diagnostics */
639 * Setup the PC, SP, and GP of a secondary processor and start it
641 * smp_bootstrap is the place to resume from
642 * __KSTK_TOS(idle) is apparently the stack pointer
643 * (unsigned long)idle->thread_info the gp
646 void __cpuinit
smtc_boot_secondary(int cpu
, struct task_struct
*idle
)
648 extern u32 kernelsp
[NR_CPUS
];
653 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
656 settc(cpu_data
[cpu
].tc_id
);
659 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap
);
662 kernelsp
[cpu
] = __KSTK_TOS(idle
);
663 write_tc_gpr_sp(__KSTK_TOS(idle
));
666 write_tc_gpr_gp((unsigned long)task_thread_info(idle
));
668 smtc_status
|= SMTC_MTC_ACTIVE
;
669 write_tc_c0_tchalt(0);
670 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
676 void smtc_init_secondary(void)
680 void smtc_smp_finish(void)
682 int cpu
= smp_processor_id();
685 * Lowest-numbered CPU per VPE starts a clock tick.
686 * Like per_cpu_trap_init() hack, this assumes that
687 * SMTC init code assigns TCs consdecutively and
688 * in ascending order across available VPEs.
690 if (cpu
> 0 && (cpu_data
[cpu
].vpe_id
!= cpu_data
[cpu
- 1].vpe_id
))
691 write_c0_compare(read_c0_count() + mips_hpt_frequency
/HZ
);
695 printk("TC %d going on-line as CPU %d\n",
696 cpu_data
[smp_processor_id()].tc_id
, smp_processor_id());
699 void smtc_cpus_done(void)
704 * Support for SMTC-optimized driver IRQ registration
708 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
709 * in do_IRQ. These are passed in setup_irq_smtc() and stored
713 int setup_irq_smtc(unsigned int irq
, struct irqaction
* new,
714 unsigned long hwmask
)
716 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
717 unsigned int vpe
= current_cpu_data
.vpe_id
;
719 vpemask
[vpe
][irq
- MIPS_CPU_IRQ_BASE
] = 1;
721 irq_hwmask
[irq
] = hwmask
;
723 return setup_irq(irq
, new);
726 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
728 * Support for IRQ affinity to TCs
731 void smtc_set_irq_affinity(unsigned int irq
, cpumask_t affinity
)
734 * If a "fast path" cache of quickly decodable affinity state
735 * is maintained, this is where it gets done, on a call up
736 * from the platform affinity code.
740 void smtc_forward_irq(struct irq_data
*d
)
742 unsigned int irq
= d
->irq
;
746 * OK wise guy, now figure out how to get the IRQ
747 * to be serviced on an authorized "CPU".
749 * Ideally, to handle the situation where an IRQ has multiple
750 * eligible CPUS, we would maintain state per IRQ that would
751 * allow a fair distribution of service requests. Since the
752 * expected use model is any-or-only-one, for simplicity
753 * and efficiency, we just pick the easiest one to find.
756 target
= cpumask_first(d
->affinity
);
759 * We depend on the platform code to have correctly processed
760 * IRQ affinity change requests to ensure that the IRQ affinity
761 * mask has been purged of bits corresponding to nonexistent and
762 * offline "CPUs", and to TCs bound to VPEs other than the VPE
763 * connected to the physical interrupt input for the interrupt
764 * in question. Otherwise we have a nasty problem with interrupt
765 * mask management. This is best handled in non-performance-critical
766 * platform IRQ affinity setting code, to minimize interrupt-time
770 /* If no one is eligible, service locally */
771 if (target
>= NR_CPUS
)
772 do_IRQ_no_affinity(irq
);
774 smtc_send_ipi(target
, IRQ_AFFINITY_IPI
, irq
);
777 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
780 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
781 * Within a VPE one TC can interrupt another by different approaches.
782 * The easiest to get right would probably be to make all TCs except
783 * the target IXMT and set a software interrupt, but an IXMT-based
784 * scheme requires that a handler must run before a new IPI could
785 * be sent, which would break the "broadcast" loops in MIPS MT.
786 * A more gonzo approach within a VPE is to halt the TC, extract
787 * its Restart, Status, and a couple of GPRs, and program the Restart
788 * address to emulate an interrupt.
790 * Within a VPE, one can be confident that the target TC isn't in
791 * a critical EXL state when halted, since the write to the Halt
792 * register could not have issued on the writing thread if the
793 * halting thread had EXL set. So k0 and k1 of the target TC
794 * can be used by the injection code. Across VPEs, one can't
795 * be certain that the target TC isn't in a critical exception
796 * state. So we try a two-step process of sending a software
797 * interrupt to the target VPE, which either handles the event
798 * itself (if it was the target) or injects the event within
802 static void smtc_ipi_qdump(void)
805 struct smtc_ipi
*temp
;
807 for (i
= 0; i
< NR_CPUS
;i
++) {
808 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
809 i
, (unsigned)IPIQ
[i
].head
, (unsigned)IPIQ
[i
].tail
,
813 while (temp
!= IPIQ
[i
].tail
) {
814 pr_debug("%d %d %d: ", temp
->type
, temp
->dest
,
816 #ifdef SMTC_IPI_DEBUG
817 pr_debug("%u %lu\n", temp
->sender
, temp
->stamp
);
827 * The standard atomic.h primitives don't quite do what we want
828 * here: We need an atomic add-and-return-previous-value (which
829 * could be done with atomic_add_return and a decrement) and an
830 * atomic set/zero-and-return-previous-value (which can't really
831 * be done with the atomic.h primitives). And since this is
832 * MIPS MT, we can assume that we have LL/SC.
834 static inline int atomic_postincrement(atomic_t
*v
)
836 unsigned long result
;
840 __asm__
__volatile__(
846 : "=&r" (result
), "=&r" (temp
), "=m" (v
->counter
)
853 void smtc_send_ipi(int cpu
, int type
, unsigned int action
)
856 struct smtc_ipi
*pipi
;
859 unsigned long tcrestart
;
860 extern void r4k_wait_irqoff(void), __pastwait(void);
861 int set_resched_flag
= (type
== LINUX_SMP_IPI
&&
862 action
== SMP_RESCHEDULE_YOURSELF
);
864 if (cpu
== smp_processor_id()) {
865 printk("Cannot Send IPI to self!\n");
868 if (set_resched_flag
&& IPIQ
[cpu
].resched_flag
!= 0)
869 return; /* There is a reschedule queued already */
871 /* Set up a descriptor, to be delivered either promptly or queued */
872 pipi
= smtc_ipi_dq(&freeIPIq
);
875 mips_mt_regdump(dvpe());
876 panic("IPI Msg. Buffers Depleted");
879 pipi
->arg
= (void *)action
;
881 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
882 /* If not on same VPE, enqueue and send cross-VPE interrupt */
883 IPIQ
[cpu
].resched_flag
|= set_resched_flag
;
884 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
886 settc(cpu_data
[cpu
].tc_id
);
887 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1
);
891 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
892 * since ASID shootdown on the other VPE may
893 * collide with this operation.
896 settc(cpu_data
[cpu
].tc_id
);
897 /* Halt the targeted TC */
898 write_tc_c0_tchalt(TCHALT_H
);
902 * Inspect TCStatus - if IXMT is set, we have to queue
903 * a message. Otherwise, we set up the "interrupt"
906 tcstatus
= read_tc_c0_tcstatus();
908 if ((tcstatus
& TCSTATUS_IXMT
) != 0) {
910 * If we're in the the irq-off version of the wait
911 * loop, we need to force exit from the wait and
912 * do a direct post of the IPI.
914 if (cpu_wait
== r4k_wait_irqoff
) {
915 tcrestart
= read_tc_c0_tcrestart();
916 if (tcrestart
>= (unsigned long)r4k_wait_irqoff
917 && tcrestart
< (unsigned long)__pastwait
) {
918 write_tc_c0_tcrestart(__pastwait
);
919 tcstatus
&= ~TCSTATUS_IXMT
;
920 write_tc_c0_tcstatus(tcstatus
);
925 * Otherwise we queue the message for the target TC
926 * to pick up when he does a local_irq_restore()
928 write_tc_c0_tchalt(0);
930 IPIQ
[cpu
].resched_flag
|= set_resched_flag
;
931 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
934 post_direct_ipi(cpu
, pipi
);
935 write_tc_c0_tchalt(0);
942 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
944 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
)
946 struct pt_regs
*kstack
;
947 unsigned long tcstatus
;
948 unsigned long tcrestart
;
949 extern u32 kernelsp
[NR_CPUS
];
950 extern void __smtc_ipi_vector(void);
951 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
953 /* Extract Status, EPC from halted TC */
954 tcstatus
= read_tc_c0_tcstatus();
955 tcrestart
= read_tc_c0_tcrestart();
956 /* If TCRestart indicates a WAIT instruction, advance the PC */
957 if ((tcrestart
& 0x80000000)
958 && ((*(unsigned int *)tcrestart
& 0xfe00003f) == 0x42000020)) {
962 * Save on TC's future kernel stack
964 * CU bit of Status is indicator that TC was
965 * already running on a kernel stack...
967 if (tcstatus
& ST0_CU0
) {
968 /* Note that this "- 1" is pointer arithmetic */
969 kstack
= ((struct pt_regs
*)read_tc_gpr_sp()) - 1;
971 kstack
= ((struct pt_regs
*)kernelsp
[cpu
]) - 1;
974 kstack
->cp0_epc
= (long)tcrestart
;
976 kstack
->cp0_tcstatus
= tcstatus
;
977 /* Pass token of operation to be performed kernel stack pad area */
978 kstack
->pad0
[4] = (unsigned long)pipi
;
979 /* Pass address of function to be called likewise */
980 kstack
->pad0
[5] = (unsigned long)&ipi_decode
;
981 /* Set interrupt exempt and kernel mode */
982 tcstatus
|= TCSTATUS_IXMT
;
983 tcstatus
&= ~TCSTATUS_TKSU
;
984 write_tc_c0_tcstatus(tcstatus
);
986 /* Set TC Restart address to be SMTC IPI vector */
987 write_tc_c0_tcrestart(__smtc_ipi_vector
);
990 static void ipi_resched_interrupt(void)
995 static void ipi_call_interrupt(void)
997 /* Invoke generic function invocation code in smp.c */
998 smp_call_function_interrupt();
1001 DECLARE_PER_CPU(struct clock_event_device
, mips_clockevent_device
);
1003 static void __irq_entry
smtc_clock_tick_interrupt(void)
1005 unsigned int cpu
= smp_processor_id();
1006 struct clock_event_device
*cd
;
1007 int irq
= MIPS_CPU_IRQ_BASE
+ 1;
1010 kstat_incr_irqs_this_cpu(irq
, irq_to_desc(irq
));
1011 cd
= &per_cpu(mips_clockevent_device
, cpu
);
1012 cd
->event_handler(cd
);
1016 void ipi_decode(struct smtc_ipi
*pipi
)
1018 void *arg_copy
= pipi
->arg
;
1019 int type_copy
= pipi
->type
;
1021 smtc_ipi_nq(&freeIPIq
, pipi
);
1023 switch (type_copy
) {
1024 case SMTC_CLOCK_TICK
:
1025 smtc_clock_tick_interrupt();
1029 switch ((int)arg_copy
) {
1030 case SMP_RESCHEDULE_YOURSELF
:
1031 ipi_resched_interrupt();
1033 case SMP_CALL_FUNCTION
:
1034 ipi_call_interrupt();
1037 printk("Impossible SMTC IPI Argument %p\n", arg_copy
);
1041 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1042 case IRQ_AFFINITY_IPI
:
1044 * Accept a "forwarded" interrupt that was initially
1045 * taken by a TC who doesn't have affinity for the IRQ.
1047 do_IRQ_no_affinity((int)arg_copy
);
1049 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1051 printk("Impossible SMTC IPI Type 0x%x\n", type_copy
);
1057 * Similar to smtc_ipi_replay(), but invoked from context restore,
1058 * so it reuses the current exception frame rather than set up a
1059 * new one with self_ipi.
1062 void deferred_smtc_ipi(void)
1064 int cpu
= smp_processor_id();
1067 * Test is not atomic, but much faster than a dequeue,
1068 * and the vast majority of invocations will have a null queue.
1069 * If irq_disabled when this was called, then any IPIs queued
1070 * after we test last will be taken on the next irq_enable/restore.
1071 * If interrupts were enabled, then any IPIs added after the
1072 * last test will be taken directly.
1075 while (IPIQ
[cpu
].head
!= NULL
) {
1076 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1077 struct smtc_ipi
*pipi
;
1078 unsigned long flags
;
1081 * It may be possible we'll come in with interrupts
1084 local_irq_save(flags
);
1085 spin_lock(&q
->lock
);
1086 pipi
= __smtc_ipi_dq(q
);
1087 spin_unlock(&q
->lock
);
1089 if (pipi
->type
== LINUX_SMP_IPI
&&
1090 (int)pipi
->arg
== SMP_RESCHEDULE_YOURSELF
)
1091 IPIQ
[cpu
].resched_flag
= 0;
1095 * The use of the __raw_local restore isn't
1096 * as obviously necessary here as in smtc_ipi_replay(),
1097 * but it's more efficient, given that we're already
1098 * running down the IPI queue.
1100 __arch_local_irq_restore(flags
);
1105 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1106 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1107 * in some regards preferable to have external logic for "doorbell" hardware
1111 static int cpu_ipi_irq
= MIPS_CPU_IRQ_BASE
+ MIPS_CPU_IPI_IRQ
;
1113 static irqreturn_t
ipi_interrupt(int irq
, void *dev_idm
)
1115 int my_vpe
= cpu_data
[smp_processor_id()].vpe_id
;
1116 int my_tc
= cpu_data
[smp_processor_id()].tc_id
;
1118 struct smtc_ipi
*pipi
;
1119 unsigned long tcstatus
;
1121 unsigned long flags
;
1122 unsigned int mtflags
;
1123 unsigned int vpflags
;
1126 * So long as cross-VPE interrupts are done via
1127 * MFTR/MTTR read-modify-writes of Cause, we need
1128 * to stop other VPEs whenever the local VPE does
1131 local_irq_save(flags
);
1133 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ
);
1134 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ
);
1135 irq_enable_hazard();
1137 local_irq_restore(flags
);
1140 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1141 * queued for TCs on this VPE other than the current one.
1142 * Return-from-interrupt should cause us to drain the queue
1143 * for the current TC, so we ought not to have to do it explicitly here.
1146 for_each_online_cpu(cpu
) {
1147 if (cpu_data
[cpu
].vpe_id
!= my_vpe
)
1150 pipi
= smtc_ipi_dq(&IPIQ
[cpu
]);
1152 if (cpu_data
[cpu
].tc_id
!= my_tc
) {
1155 settc(cpu_data
[cpu
].tc_id
);
1156 write_tc_c0_tchalt(TCHALT_H
);
1158 tcstatus
= read_tc_c0_tcstatus();
1159 if ((tcstatus
& TCSTATUS_IXMT
) == 0) {
1160 post_direct_ipi(cpu
, pipi
);
1163 write_tc_c0_tchalt(0);
1166 smtc_ipi_req(&IPIQ
[cpu
], pipi
);
1170 * ipi_decode() should be called
1171 * with interrupts off
1173 local_irq_save(flags
);
1174 if (pipi
->type
== LINUX_SMP_IPI
&&
1175 (int)pipi
->arg
== SMP_RESCHEDULE_YOURSELF
)
1176 IPIQ
[cpu
].resched_flag
= 0;
1178 local_irq_restore(flags
);
1186 static void ipi_irq_dispatch(void)
1188 do_IRQ(cpu_ipi_irq
);
1191 static struct irqaction irq_ipi
= {
1192 .handler
= ipi_interrupt
,
1193 .flags
= IRQF_PERCPU
,
1197 static void setup_cross_vpe_interrupts(unsigned int nvpe
)
1203 panic("SMTC Kernel requires Vectored Interrupt support");
1205 set_vi_handler(MIPS_CPU_IPI_IRQ
, ipi_irq_dispatch
);
1207 setup_irq_smtc(cpu_ipi_irq
, &irq_ipi
, (0x100 << MIPS_CPU_IPI_IRQ
));
1209 irq_set_handler(cpu_ipi_irq
, handle_percpu_irq
);
1213 * SMTC-specific hacks invoked from elsewhere in the kernel.
1217 * smtc_ipi_replay is called from raw_local_irq_restore
1220 void smtc_ipi_replay(void)
1222 unsigned int cpu
= smp_processor_id();
1225 * To the extent that we've ever turned interrupts off,
1226 * we may have accumulated deferred IPIs. This is subtle.
1227 * we should be OK: If we pick up something and dispatch
1228 * it here, that's great. If we see nothing, but concurrent
1229 * with this operation, another TC sends us an IPI, IXMT
1230 * is clear, and we'll handle it as a real pseudo-interrupt
1231 * and not a pseudo-pseudo interrupt. The important thing
1232 * is to do the last check for queued message *after* the
1233 * re-enabling of interrupts.
1235 while (IPIQ
[cpu
].head
!= NULL
) {
1236 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1237 struct smtc_ipi
*pipi
;
1238 unsigned long flags
;
1241 * It's just possible we'll come in with interrupts
1244 local_irq_save(flags
);
1246 spin_lock(&q
->lock
);
1247 pipi
= __smtc_ipi_dq(q
);
1248 spin_unlock(&q
->lock
);
1250 ** But use a raw restore here to avoid recursion.
1252 __arch_local_irq_restore(flags
);
1256 smtc_cpu_stats
[cpu
].selfipis
++;
1261 EXPORT_SYMBOL(smtc_ipi_replay
);
1263 void smtc_idle_loop_hook(void)
1265 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1274 * printk within DMT-protected regions can deadlock,
1275 * so buffer diagnostic messages for later output.
1278 char id_ho_db_msg
[768]; /* worst-case use should be less than 700 */
1280 if (atomic_read(&idle_hook_initialized
) == 0) { /* fast test */
1281 if (atomic_add_return(1, &idle_hook_initialized
) == 1) {
1283 /* Tedious stuff to just do once */
1284 mvpconf0
= read_c0_mvpconf0();
1285 hook_ntcs
= ((mvpconf0
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
1286 if (hook_ntcs
> NR_CPUS
)
1287 hook_ntcs
= NR_CPUS
;
1288 for (tc
= 0; tc
< hook_ntcs
; tc
++) {
1290 clock_hang_reported
[tc
] = 0;
1292 for (vpe
= 0; vpe
< 2; vpe
++)
1293 for (im
= 0; im
< 8; im
++)
1294 imstuckcount
[vpe
][im
] = 0;
1295 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs
);
1296 atomic_set(&idle_hook_initialized
, 1000);
1298 /* Someone else is initializing in parallel - let 'em finish */
1299 while (atomic_read(&idle_hook_initialized
) < 1000)
1304 /* Have we stupidly left IXMT set somewhere? */
1305 if (read_c0_tcstatus() & 0x400) {
1306 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1308 printk("Dangling IXMT in cpu_idle()\n");
1311 /* Have we stupidly left an IM bit turned off? */
1312 #define IM_LIMIT 2000
1313 local_irq_save(flags
);
1315 pdb_msg
= &id_ho_db_msg
[0];
1316 im
= read_c0_status();
1317 vpe
= current_cpu_data
.vpe_id
;
1318 for (bit
= 0; bit
< 8; bit
++) {
1320 * In current prototype, I/O interrupts
1321 * are masked for VPE > 0
1323 if (vpemask
[vpe
][bit
]) {
1324 if (!(im
& (0x100 << bit
)))
1325 imstuckcount
[vpe
][bit
]++;
1327 imstuckcount
[vpe
][bit
] = 0;
1328 if (imstuckcount
[vpe
][bit
] > IM_LIMIT
) {
1329 set_c0_status(0x100 << bit
);
1331 imstuckcount
[vpe
][bit
] = 0;
1332 pdb_msg
+= sprintf(pdb_msg
,
1333 "Dangling IM %d fixed for VPE %d\n", bit
,
1340 local_irq_restore(flags
);
1341 if (pdb_msg
!= &id_ho_db_msg
[0])
1342 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg
);
1343 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1348 void smtc_soft_dump(void)
1352 printk("Counter Interrupts taken per CPU (TC)\n");
1353 for (i
=0; i
< NR_CPUS
; i
++) {
1354 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].timerints
);
1356 printk("Self-IPI invocations:\n");
1357 for (i
=0; i
< NR_CPUS
; i
++) {
1358 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].selfipis
);
1361 printk("%d Recoveries of \"stolen\" FPU\n",
1362 atomic_read(&smtc_fpu_recoveries
));
1367 * TLB management routines special to SMTC
1370 void smtc_get_new_mmu_context(struct mm_struct
*mm
, unsigned long cpu
)
1372 unsigned long flags
, mtflags
, tcstat
, prevhalt
, asid
;
1376 * It would be nice to be able to use a spinlock here,
1377 * but this is invoked from within TLB flush routines
1378 * that protect themselves with DVPE, so if a lock is
1379 * held by another TC, it'll never be freed.
1381 * DVPE/DMT must not be done with interrupts enabled,
1382 * so even so most callers will already have disabled
1383 * them, let's be really careful...
1386 local_irq_save(flags
);
1387 if (smtc_status
& SMTC_TLB_SHARED
) {
1392 tlb
= cpu_data
[cpu
].vpe_id
;
1394 asid
= asid_cache(cpu
);
1397 if (!((asid
+= ASID_INC
) & ASID_MASK
) ) {
1398 if (cpu_has_vtag_icache
)
1400 /* Traverse all online CPUs (hack requires contiguous range) */
1401 for_each_online_cpu(i
) {
1403 * We don't need to worry about our own CPU, nor those of
1404 * CPUs who don't share our TLB.
1406 if ((i
!= smp_processor_id()) &&
1407 ((smtc_status
& SMTC_TLB_SHARED
) ||
1408 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))) {
1409 settc(cpu_data
[i
].tc_id
);
1410 prevhalt
= read_tc_c0_tchalt() & TCHALT_H
;
1412 write_tc_c0_tchalt(TCHALT_H
);
1415 tcstat
= read_tc_c0_tcstatus();
1416 smtc_live_asid
[tlb
][(tcstat
& ASID_MASK
)] |= (asiduse
)(0x1 << i
);
1418 write_tc_c0_tchalt(0);
1421 if (!asid
) /* fix version if needed */
1422 asid
= ASID_FIRST_VERSION
;
1423 local_flush_tlb_all(); /* start new asid cycle */
1425 } while (smtc_live_asid
[tlb
][(asid
& ASID_MASK
)]);
1428 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1430 for_each_online_cpu(i
) {
1431 if ((smtc_status
& SMTC_TLB_SHARED
) ||
1432 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))
1433 cpu_context(i
, mm
) = asid_cache(i
) = asid
;
1436 if (smtc_status
& SMTC_TLB_SHARED
)
1440 local_irq_restore(flags
);
1444 * Invoked from macros defined in mmu_context.h
1445 * which must already have disabled interrupts
1446 * and done a DVPE or DMT as appropriate.
1449 void smtc_flush_tlb_asid(unsigned long asid
)
1454 entry
= read_c0_wired();
1456 /* Traverse all non-wired entries */
1457 while (entry
< current_cpu_data
.tlbsize
) {
1458 write_c0_index(entry
);
1462 ehi
= read_c0_entryhi();
1463 if ((ehi
& ASID_MASK
) == asid
) {
1465 * Invalidate only entries with specified ASID,
1466 * makiing sure all entries differ.
1468 write_c0_entryhi(CKSEG0
+ (entry
<< (PAGE_SHIFT
+ 1)));
1469 write_c0_entrylo0(0);
1470 write_c0_entrylo1(0);
1472 tlb_write_indexed();
1476 write_c0_index(PARKED_INDEX
);
1481 * Support for single-threading cache flush operations.
1484 static int halt_state_save
[NR_CPUS
];
1487 * To really, really be sure that nothing is being done
1488 * by other TCs, halt them all. This code assumes that
1489 * a DVPE has already been done, so while their Halted
1490 * state is theoretically architecturally unstable, in
1491 * practice, it's not going to change while we're looking
1495 void smtc_cflush_lockdown(void)
1499 for_each_online_cpu(cpu
) {
1500 if (cpu
!= smp_processor_id()) {
1501 settc(cpu_data
[cpu
].tc_id
);
1502 halt_state_save
[cpu
] = read_tc_c0_tchalt();
1503 write_tc_c0_tchalt(TCHALT_H
);
1509 /* It would be cheating to change the cpu_online states during a flush! */
1511 void smtc_cflush_release(void)
1516 * Start with a hazard barrier to ensure
1517 * that all CACHE ops have played through.
1521 for_each_online_cpu(cpu
) {
1522 if (cpu
!= smp_processor_id()) {
1523 settc(cpu_data
[cpu
].tc_id
);
1524 write_tc_c0_tchalt(halt_state_save
[cpu
]);