2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see dm_deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
104 static void build_data_key(struct dm_thin_device
*td
,
105 dm_block_t b
, struct dm_cell_key
*key
)
108 key
->dev
= dm_thin_dev_id(td
);
112 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
113 struct dm_cell_key
*key
)
116 key
->dev
= dm_thin_dev_id(td
);
120 /*----------------------------------------------------------------*/
123 * A pool device ties together a metadata device and a data device. It
124 * also provides the interface for creating and destroying internal
127 struct dm_thin_new_mapping
;
130 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
133 PM_WRITE
, /* metadata may be changed */
134 PM_READ_ONLY
, /* metadata may not be changed */
135 PM_FAIL
, /* all I/O fails */
138 struct pool_features
{
141 bool zero_new_blocks
:1;
142 bool discard_enabled
:1;
143 bool discard_passdown
:1;
147 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
148 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
151 struct list_head list
;
152 struct dm_target
*ti
; /* Only set if a pool target is bound */
154 struct mapped_device
*pool_md
;
155 struct block_device
*md_dev
;
156 struct dm_pool_metadata
*pmd
;
158 dm_block_t low_water_blocks
;
159 uint32_t sectors_per_block
;
160 int sectors_per_block_shift
;
162 struct pool_features pf
;
163 unsigned low_water_triggered
:1; /* A dm event has been sent */
164 unsigned no_free_space
:1; /* A -ENOSPC warning has been issued */
166 struct dm_bio_prison
*prison
;
167 struct dm_kcopyd_client
*copier
;
169 struct workqueue_struct
*wq
;
170 struct work_struct worker
;
171 struct delayed_work waker
;
173 unsigned long last_commit_jiffies
;
177 struct bio_list deferred_bios
;
178 struct bio_list deferred_flush_bios
;
179 struct list_head prepared_mappings
;
180 struct list_head prepared_discards
;
182 struct bio_list retry_on_resume_list
;
184 struct dm_deferred_set
*shared_read_ds
;
185 struct dm_deferred_set
*all_io_ds
;
187 struct dm_thin_new_mapping
*next_mapping
;
188 mempool_t
*mapping_pool
;
189 mempool_t
*endio_hook_pool
;
191 process_bio_fn process_bio
;
192 process_bio_fn process_discard
;
194 process_mapping_fn process_prepared_mapping
;
195 process_mapping_fn process_prepared_discard
;
198 static enum pool_mode
get_pool_mode(struct pool
*pool
);
199 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
);
202 * Target context for a pool.
205 struct dm_target
*ti
;
207 struct dm_dev
*data_dev
;
208 struct dm_dev
*metadata_dev
;
209 struct dm_target_callbacks callbacks
;
211 dm_block_t low_water_blocks
;
212 struct pool_features requested_pf
; /* Features requested during table load */
213 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
217 * Target context for a thin.
220 struct dm_dev
*pool_dev
;
221 struct dm_dev
*origin_dev
;
225 struct dm_thin_device
*td
;
228 /*----------------------------------------------------------------*/
231 * A global list of pools that uses a struct mapped_device as a key.
233 static struct dm_thin_pool_table
{
235 struct list_head pools
;
236 } dm_thin_pool_table
;
238 static void pool_table_init(void)
240 mutex_init(&dm_thin_pool_table
.mutex
);
241 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
244 static void __pool_table_insert(struct pool
*pool
)
246 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
247 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
250 static void __pool_table_remove(struct pool
*pool
)
252 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
253 list_del(&pool
->list
);
256 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
258 struct pool
*pool
= NULL
, *tmp
;
260 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
262 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
263 if (tmp
->pool_md
== md
) {
272 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
274 struct pool
*pool
= NULL
, *tmp
;
276 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
278 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
279 if (tmp
->md_dev
== md_dev
) {
288 /*----------------------------------------------------------------*/
290 struct dm_thin_endio_hook
{
292 struct dm_deferred_entry
*shared_read_entry
;
293 struct dm_deferred_entry
*all_io_entry
;
294 struct dm_thin_new_mapping
*overwrite_mapping
;
297 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
300 struct bio_list bios
;
302 bio_list_init(&bios
);
303 bio_list_merge(&bios
, master
);
304 bio_list_init(master
);
306 while ((bio
= bio_list_pop(&bios
))) {
307 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
310 bio_endio(bio
, DM_ENDIO_REQUEUE
);
312 bio_list_add(master
, bio
);
316 static void requeue_io(struct thin_c
*tc
)
318 struct pool
*pool
= tc
->pool
;
321 spin_lock_irqsave(&pool
->lock
, flags
);
322 __requeue_bio_list(tc
, &pool
->deferred_bios
);
323 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
324 spin_unlock_irqrestore(&pool
->lock
, flags
);
328 * This section of code contains the logic for processing a thin device's IO.
329 * Much of the code depends on pool object resources (lists, workqueues, etc)
330 * but most is exclusively called from the thin target rather than the thin-pool
334 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
336 sector_t block_nr
= bio
->bi_sector
;
338 if (tc
->pool
->sectors_per_block_shift
< 0)
339 (void) sector_div(block_nr
, tc
->pool
->sectors_per_block
);
341 block_nr
>>= tc
->pool
->sectors_per_block_shift
;
346 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
348 struct pool
*pool
= tc
->pool
;
349 sector_t bi_sector
= bio
->bi_sector
;
351 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
352 if (tc
->pool
->sectors_per_block_shift
< 0)
353 bio
->bi_sector
= (block
* pool
->sectors_per_block
) +
354 sector_div(bi_sector
, pool
->sectors_per_block
);
356 bio
->bi_sector
= (block
<< pool
->sectors_per_block_shift
) |
357 (bi_sector
& (pool
->sectors_per_block
- 1));
360 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
362 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
365 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
367 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
368 dm_thin_changed_this_transaction(tc
->td
);
371 static void issue(struct thin_c
*tc
, struct bio
*bio
)
373 struct pool
*pool
= tc
->pool
;
376 if (!bio_triggers_commit(tc
, bio
)) {
377 generic_make_request(bio
);
382 * Complete bio with an error if earlier I/O caused changes to
383 * the metadata that can't be committed e.g, due to I/O errors
384 * on the metadata device.
386 if (dm_thin_aborted_changes(tc
->td
)) {
392 * Batch together any bios that trigger commits and then issue a
393 * single commit for them in process_deferred_bios().
395 spin_lock_irqsave(&pool
->lock
, flags
);
396 bio_list_add(&pool
->deferred_flush_bios
, bio
);
397 spin_unlock_irqrestore(&pool
->lock
, flags
);
400 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
402 remap_to_origin(tc
, bio
);
406 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
409 remap(tc
, bio
, block
);
414 * wake_worker() is used when new work is queued and when pool_resume is
415 * ready to continue deferred IO processing.
417 static void wake_worker(struct pool
*pool
)
419 queue_work(pool
->wq
, &pool
->worker
);
422 /*----------------------------------------------------------------*/
425 * Bio endio functions.
427 struct dm_thin_new_mapping
{
428 struct list_head list
;
432 unsigned pass_discard
:1;
435 dm_block_t virt_block
;
436 dm_block_t data_block
;
437 struct dm_bio_prison_cell
*cell
, *cell2
;
441 * If the bio covers the whole area of a block then we can avoid
442 * zeroing or copying. Instead this bio is hooked. The bio will
443 * still be in the cell, so care has to be taken to avoid issuing
447 bio_end_io_t
*saved_bi_end_io
;
450 static void __maybe_add_mapping(struct dm_thin_new_mapping
*m
)
452 struct pool
*pool
= m
->tc
->pool
;
454 if (m
->quiesced
&& m
->prepared
) {
455 list_add(&m
->list
, &pool
->prepared_mappings
);
460 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
463 struct dm_thin_new_mapping
*m
= context
;
464 struct pool
*pool
= m
->tc
->pool
;
466 m
->err
= read_err
|| write_err
? -EIO
: 0;
468 spin_lock_irqsave(&pool
->lock
, flags
);
470 __maybe_add_mapping(m
);
471 spin_unlock_irqrestore(&pool
->lock
, flags
);
474 static void overwrite_endio(struct bio
*bio
, int err
)
477 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
478 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
479 struct pool
*pool
= m
->tc
->pool
;
483 spin_lock_irqsave(&pool
->lock
, flags
);
485 __maybe_add_mapping(m
);
486 spin_unlock_irqrestore(&pool
->lock
, flags
);
489 /*----------------------------------------------------------------*/
496 * Prepared mapping jobs.
500 * This sends the bios in the cell back to the deferred_bios list.
502 static void cell_defer(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
,
503 dm_block_t data_block
)
505 struct pool
*pool
= tc
->pool
;
508 spin_lock_irqsave(&pool
->lock
, flags
);
509 dm_cell_release(cell
, &pool
->deferred_bios
);
510 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
516 * Same as cell_defer above, except it omits one particular detainee,
517 * a write bio that covers the block and has already been processed.
519 static void cell_defer_except(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
521 struct bio_list bios
;
522 struct pool
*pool
= tc
->pool
;
525 bio_list_init(&bios
);
527 spin_lock_irqsave(&pool
->lock
, flags
);
528 dm_cell_release_no_holder(cell
, &pool
->deferred_bios
);
529 spin_unlock_irqrestore(&pool
->lock
, flags
);
534 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
537 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
538 dm_cell_error(m
->cell
);
540 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
542 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
544 struct thin_c
*tc
= m
->tc
;
550 bio
->bi_end_io
= m
->saved_bi_end_io
;
553 dm_cell_error(m
->cell
);
558 * Commit the prepared block into the mapping btree.
559 * Any I/O for this block arriving after this point will get
560 * remapped to it directly.
562 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
564 DMERR("dm_thin_insert_block() failed");
565 dm_cell_error(m
->cell
);
570 * Release any bios held while the block was being provisioned.
571 * If we are processing a write bio that completely covers the block,
572 * we already processed it so can ignore it now when processing
573 * the bios in the cell.
576 cell_defer_except(tc
, m
->cell
);
579 cell_defer(tc
, m
->cell
, m
->data_block
);
583 mempool_free(m
, tc
->pool
->mapping_pool
);
586 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
588 struct thin_c
*tc
= m
->tc
;
590 bio_io_error(m
->bio
);
591 cell_defer_except(tc
, m
->cell
);
592 cell_defer_except(tc
, m
->cell2
);
593 mempool_free(m
, tc
->pool
->mapping_pool
);
596 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
598 struct thin_c
*tc
= m
->tc
;
601 remap_and_issue(tc
, m
->bio
, m
->data_block
);
603 bio_endio(m
->bio
, 0);
605 cell_defer_except(tc
, m
->cell
);
606 cell_defer_except(tc
, m
->cell2
);
607 mempool_free(m
, tc
->pool
->mapping_pool
);
610 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
613 struct thin_c
*tc
= m
->tc
;
615 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
617 DMERR("dm_thin_remove_block() failed");
619 process_prepared_discard_passdown(m
);
622 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
623 process_mapping_fn
*fn
)
626 struct list_head maps
;
627 struct dm_thin_new_mapping
*m
, *tmp
;
629 INIT_LIST_HEAD(&maps
);
630 spin_lock_irqsave(&pool
->lock
, flags
);
631 list_splice_init(head
, &maps
);
632 spin_unlock_irqrestore(&pool
->lock
, flags
);
634 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
641 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
643 return bio
->bi_size
== (pool
->sectors_per_block
<< SECTOR_SHIFT
);
646 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
648 return (bio_data_dir(bio
) == WRITE
) &&
649 io_overlaps_block(pool
, bio
);
652 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
655 *save
= bio
->bi_end_io
;
659 static int ensure_next_mapping(struct pool
*pool
)
661 if (pool
->next_mapping
)
664 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
666 return pool
->next_mapping
? 0 : -ENOMEM
;
669 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
671 struct dm_thin_new_mapping
*r
= pool
->next_mapping
;
673 BUG_ON(!pool
->next_mapping
);
675 pool
->next_mapping
= NULL
;
680 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
681 struct dm_dev
*origin
, dm_block_t data_origin
,
682 dm_block_t data_dest
,
683 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
686 struct pool
*pool
= tc
->pool
;
687 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
689 INIT_LIST_HEAD(&m
->list
);
693 m
->virt_block
= virt_block
;
694 m
->data_block
= data_dest
;
699 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
703 * IO to pool_dev remaps to the pool target's data_dev.
705 * If the whole block of data is being overwritten, we can issue the
706 * bio immediately. Otherwise we use kcopyd to clone the data first.
708 if (io_overwrites_block(pool
, bio
)) {
709 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
711 h
->overwrite_mapping
= m
;
713 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
714 remap_and_issue(tc
, bio
, data_dest
);
716 struct dm_io_region from
, to
;
718 from
.bdev
= origin
->bdev
;
719 from
.sector
= data_origin
* pool
->sectors_per_block
;
720 from
.count
= pool
->sectors_per_block
;
722 to
.bdev
= tc
->pool_dev
->bdev
;
723 to
.sector
= data_dest
* pool
->sectors_per_block
;
724 to
.count
= pool
->sectors_per_block
;
726 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
727 0, copy_complete
, m
);
729 mempool_free(m
, pool
->mapping_pool
);
730 DMERR("dm_kcopyd_copy() failed");
736 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
737 dm_block_t data_origin
, dm_block_t data_dest
,
738 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
740 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
741 data_origin
, data_dest
, cell
, bio
);
744 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
745 dm_block_t data_dest
,
746 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
748 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
749 virt_block
, data_dest
, cell
, bio
);
752 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
753 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
756 struct pool
*pool
= tc
->pool
;
757 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
759 INIT_LIST_HEAD(&m
->list
);
763 m
->virt_block
= virt_block
;
764 m
->data_block
= data_block
;
770 * If the whole block of data is being overwritten or we are not
771 * zeroing pre-existing data, we can issue the bio immediately.
772 * Otherwise we use kcopyd to zero the data first.
774 if (!pool
->pf
.zero_new_blocks
)
775 process_prepared_mapping(m
);
777 else if (io_overwrites_block(pool
, bio
)) {
778 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
780 h
->overwrite_mapping
= m
;
782 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
783 remap_and_issue(tc
, bio
, data_block
);
786 struct dm_io_region to
;
788 to
.bdev
= tc
->pool_dev
->bdev
;
789 to
.sector
= data_block
* pool
->sectors_per_block
;
790 to
.count
= pool
->sectors_per_block
;
792 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
794 mempool_free(m
, pool
->mapping_pool
);
795 DMERR("dm_kcopyd_zero() failed");
801 static int commit(struct pool
*pool
)
805 r
= dm_pool_commit_metadata(pool
->pmd
);
807 DMERR("commit failed, error = %d", r
);
813 * A non-zero return indicates read_only or fail_io mode.
814 * Many callers don't care about the return value.
816 static int commit_or_fallback(struct pool
*pool
)
820 if (get_pool_mode(pool
) != PM_WRITE
)
825 set_pool_mode(pool
, PM_READ_ONLY
);
830 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
833 dm_block_t free_blocks
;
835 struct pool
*pool
= tc
->pool
;
837 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
841 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
842 DMWARN("%s: reached low water mark, sending event.",
843 dm_device_name(pool
->pool_md
));
844 spin_lock_irqsave(&pool
->lock
, flags
);
845 pool
->low_water_triggered
= 1;
846 spin_unlock_irqrestore(&pool
->lock
, flags
);
847 dm_table_event(pool
->ti
->table
);
851 if (pool
->no_free_space
)
855 * Try to commit to see if that will free up some
858 (void) commit_or_fallback(pool
);
860 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
865 * If we still have no space we set a flag to avoid
866 * doing all this checking and return -ENOSPC.
869 DMWARN("%s: no free space available.",
870 dm_device_name(pool
->pool_md
));
871 spin_lock_irqsave(&pool
->lock
, flags
);
872 pool
->no_free_space
= 1;
873 spin_unlock_irqrestore(&pool
->lock
, flags
);
879 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
887 * If we have run out of space, queue bios until the device is
888 * resumed, presumably after having been reloaded with more space.
890 static void retry_on_resume(struct bio
*bio
)
892 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
893 struct thin_c
*tc
= h
->tc
;
894 struct pool
*pool
= tc
->pool
;
897 spin_lock_irqsave(&pool
->lock
, flags
);
898 bio_list_add(&pool
->retry_on_resume_list
, bio
);
899 spin_unlock_irqrestore(&pool
->lock
, flags
);
902 static void no_space(struct dm_bio_prison_cell
*cell
)
905 struct bio_list bios
;
907 bio_list_init(&bios
);
908 dm_cell_release(cell
, &bios
);
910 while ((bio
= bio_list_pop(&bios
)))
911 retry_on_resume(bio
);
914 static void process_discard(struct thin_c
*tc
, struct bio
*bio
)
918 struct pool
*pool
= tc
->pool
;
919 struct dm_bio_prison_cell
*cell
, *cell2
;
920 struct dm_cell_key key
, key2
;
921 dm_block_t block
= get_bio_block(tc
, bio
);
922 struct dm_thin_lookup_result lookup_result
;
923 struct dm_thin_new_mapping
*m
;
925 build_virtual_key(tc
->td
, block
, &key
);
926 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
929 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
933 * Check nobody is fiddling with this pool block. This can
934 * happen if someone's in the process of breaking sharing
937 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
938 if (dm_bio_detain(tc
->pool
->prison
, &key2
, bio
, &cell2
)) {
939 dm_cell_release_singleton(cell
, bio
);
943 if (io_overlaps_block(pool
, bio
)) {
945 * IO may still be going to the destination block. We must
946 * quiesce before we can do the removal.
948 m
= get_next_mapping(pool
);
950 m
->pass_discard
= (!lookup_result
.shared
) && pool
->pf
.discard_passdown
;
951 m
->virt_block
= block
;
952 m
->data_block
= lookup_result
.block
;
958 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
)) {
959 spin_lock_irqsave(&pool
->lock
, flags
);
960 list_add(&m
->list
, &pool
->prepared_discards
);
961 spin_unlock_irqrestore(&pool
->lock
, flags
);
966 * The DM core makes sure that the discard doesn't span
967 * a block boundary. So we submit the discard of a
968 * partial block appropriately.
970 dm_cell_release_singleton(cell
, bio
);
971 dm_cell_release_singleton(cell2
, bio
);
972 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
973 remap_and_issue(tc
, bio
, lookup_result
.block
);
981 * It isn't provisioned, just forget it.
983 dm_cell_release_singleton(cell
, bio
);
988 DMERR("discard: find block unexpectedly returned %d", r
);
989 dm_cell_release_singleton(cell
, bio
);
995 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
996 struct dm_cell_key
*key
,
997 struct dm_thin_lookup_result
*lookup_result
,
998 struct dm_bio_prison_cell
*cell
)
1001 dm_block_t data_block
;
1003 r
= alloc_data_block(tc
, &data_block
);
1006 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1007 data_block
, cell
, bio
);
1015 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1016 dm_cell_error(cell
);
1021 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1023 struct dm_thin_lookup_result
*lookup_result
)
1025 struct dm_bio_prison_cell
*cell
;
1026 struct pool
*pool
= tc
->pool
;
1027 struct dm_cell_key key
;
1030 * If cell is already occupied, then sharing is already in the process
1031 * of being broken so we have nothing further to do here.
1033 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1034 if (dm_bio_detain(pool
->prison
, &key
, bio
, &cell
))
1037 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_size
)
1038 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1040 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1042 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1044 dm_cell_release_singleton(cell
, bio
);
1045 remap_and_issue(tc
, bio
, lookup_result
->block
);
1049 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1050 struct dm_bio_prison_cell
*cell
)
1053 dm_block_t data_block
;
1056 * Remap empty bios (flushes) immediately, without provisioning.
1058 if (!bio
->bi_size
) {
1059 dm_cell_release_singleton(cell
, bio
);
1060 remap_and_issue(tc
, bio
, 0);
1065 * Fill read bios with zeroes and complete them immediately.
1067 if (bio_data_dir(bio
) == READ
) {
1069 dm_cell_release_singleton(cell
, bio
);
1074 r
= alloc_data_block(tc
, &data_block
);
1078 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1080 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1088 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1089 set_pool_mode(tc
->pool
, PM_READ_ONLY
);
1090 dm_cell_error(cell
);
1095 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1098 dm_block_t block
= get_bio_block(tc
, bio
);
1099 struct dm_bio_prison_cell
*cell
;
1100 struct dm_cell_key key
;
1101 struct dm_thin_lookup_result lookup_result
;
1104 * If cell is already occupied, then the block is already
1105 * being provisioned so we have nothing further to do here.
1107 build_virtual_key(tc
->td
, block
, &key
);
1108 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
1111 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1115 * We can release this cell now. This thread is the only
1116 * one that puts bios into a cell, and we know there were
1117 * no preceding bios.
1120 * TODO: this will probably have to change when discard goes
1123 dm_cell_release_singleton(cell
, bio
);
1125 if (lookup_result
.shared
)
1126 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1128 remap_and_issue(tc
, bio
, lookup_result
.block
);
1132 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1133 dm_cell_release_singleton(cell
, bio
);
1134 remap_to_origin_and_issue(tc
, bio
);
1136 provision_block(tc
, bio
, block
, cell
);
1140 DMERR("dm_thin_find_block() failed, error = %d", r
);
1141 dm_cell_release_singleton(cell
, bio
);
1147 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1150 int rw
= bio_data_dir(bio
);
1151 dm_block_t block
= get_bio_block(tc
, bio
);
1152 struct dm_thin_lookup_result lookup_result
;
1154 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1157 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_size
)
1160 remap_and_issue(tc
, bio
, lookup_result
.block
);
1169 if (tc
->origin_dev
) {
1170 remap_to_origin_and_issue(tc
, bio
);
1179 DMERR("dm_thin_find_block() failed, error = %d", r
);
1185 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1190 static int need_commit_due_to_time(struct pool
*pool
)
1192 return jiffies
< pool
->last_commit_jiffies
||
1193 jiffies
> pool
->last_commit_jiffies
+ COMMIT_PERIOD
;
1196 static void process_deferred_bios(struct pool
*pool
)
1198 unsigned long flags
;
1200 struct bio_list bios
;
1202 bio_list_init(&bios
);
1204 spin_lock_irqsave(&pool
->lock
, flags
);
1205 bio_list_merge(&bios
, &pool
->deferred_bios
);
1206 bio_list_init(&pool
->deferred_bios
);
1207 spin_unlock_irqrestore(&pool
->lock
, flags
);
1209 while ((bio
= bio_list_pop(&bios
))) {
1210 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1211 struct thin_c
*tc
= h
->tc
;
1214 * If we've got no free new_mapping structs, and processing
1215 * this bio might require one, we pause until there are some
1216 * prepared mappings to process.
1218 if (ensure_next_mapping(pool
)) {
1219 spin_lock_irqsave(&pool
->lock
, flags
);
1220 bio_list_merge(&pool
->deferred_bios
, &bios
);
1221 spin_unlock_irqrestore(&pool
->lock
, flags
);
1226 if (bio
->bi_rw
& REQ_DISCARD
)
1227 pool
->process_discard(tc
, bio
);
1229 pool
->process_bio(tc
, bio
);
1233 * If there are any deferred flush bios, we must commit
1234 * the metadata before issuing them.
1236 bio_list_init(&bios
);
1237 spin_lock_irqsave(&pool
->lock
, flags
);
1238 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1239 bio_list_init(&pool
->deferred_flush_bios
);
1240 spin_unlock_irqrestore(&pool
->lock
, flags
);
1242 if (bio_list_empty(&bios
) && !need_commit_due_to_time(pool
))
1245 if (commit_or_fallback(pool
)) {
1246 while ((bio
= bio_list_pop(&bios
)))
1250 pool
->last_commit_jiffies
= jiffies
;
1252 while ((bio
= bio_list_pop(&bios
)))
1253 generic_make_request(bio
);
1256 static void do_worker(struct work_struct
*ws
)
1258 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1260 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1261 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
1262 process_deferred_bios(pool
);
1266 * We want to commit periodically so that not too much
1267 * unwritten data builds up.
1269 static void do_waker(struct work_struct
*ws
)
1271 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
1273 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
1276 /*----------------------------------------------------------------*/
1278 static enum pool_mode
get_pool_mode(struct pool
*pool
)
1280 return pool
->pf
.mode
;
1283 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
)
1287 pool
->pf
.mode
= mode
;
1291 DMERR("switching pool to failure mode");
1292 pool
->process_bio
= process_bio_fail
;
1293 pool
->process_discard
= process_bio_fail
;
1294 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1295 pool
->process_prepared_discard
= process_prepared_discard_fail
;
1299 DMERR("switching pool to read-only mode");
1300 r
= dm_pool_abort_metadata(pool
->pmd
);
1302 DMERR("aborting transaction failed");
1303 set_pool_mode(pool
, PM_FAIL
);
1305 dm_pool_metadata_read_only(pool
->pmd
);
1306 pool
->process_bio
= process_bio_read_only
;
1307 pool
->process_discard
= process_discard
;
1308 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1309 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1314 pool
->process_bio
= process_bio
;
1315 pool
->process_discard
= process_discard
;
1316 pool
->process_prepared_mapping
= process_prepared_mapping
;
1317 pool
->process_prepared_discard
= process_prepared_discard
;
1322 /*----------------------------------------------------------------*/
1325 * Mapping functions.
1329 * Called only while mapping a thin bio to hand it over to the workqueue.
1331 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1333 unsigned long flags
;
1334 struct pool
*pool
= tc
->pool
;
1336 spin_lock_irqsave(&pool
->lock
, flags
);
1337 bio_list_add(&pool
->deferred_bios
, bio
);
1338 spin_unlock_irqrestore(&pool
->lock
, flags
);
1343 static struct dm_thin_endio_hook
*thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
1345 struct pool
*pool
= tc
->pool
;
1346 struct dm_thin_endio_hook
*h
= mempool_alloc(pool
->endio_hook_pool
, GFP_NOIO
);
1349 h
->shared_read_entry
= NULL
;
1350 h
->all_io_entry
= bio
->bi_rw
& REQ_DISCARD
? NULL
: dm_deferred_entry_inc(pool
->all_io_ds
);
1351 h
->overwrite_mapping
= NULL
;
1357 * Non-blocking function called from the thin target's map function.
1359 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
,
1360 union map_info
*map_context
)
1363 struct thin_c
*tc
= ti
->private;
1364 dm_block_t block
= get_bio_block(tc
, bio
);
1365 struct dm_thin_device
*td
= tc
->td
;
1366 struct dm_thin_lookup_result result
;
1368 map_context
->ptr
= thin_hook_bio(tc
, bio
);
1370 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
1372 return DM_MAPIO_SUBMITTED
;
1375 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
1376 thin_defer_bio(tc
, bio
);
1377 return DM_MAPIO_SUBMITTED
;
1380 r
= dm_thin_find_block(td
, block
, 0, &result
);
1383 * Note that we defer readahead too.
1387 if (unlikely(result
.shared
)) {
1389 * We have a race condition here between the
1390 * result.shared value returned by the lookup and
1391 * snapshot creation, which may cause new
1394 * To avoid this always quiesce the origin before
1395 * taking the snap. You want to do this anyway to
1396 * ensure a consistent application view
1399 * More distant ancestors are irrelevant. The
1400 * shared flag will be set in their case.
1402 thin_defer_bio(tc
, bio
);
1403 r
= DM_MAPIO_SUBMITTED
;
1405 remap(tc
, bio
, result
.block
);
1406 r
= DM_MAPIO_REMAPPED
;
1411 if (get_pool_mode(tc
->pool
) == PM_READ_ONLY
) {
1413 * This block isn't provisioned, and we have no way
1414 * of doing so. Just error it.
1417 r
= DM_MAPIO_SUBMITTED
;
1424 * In future, the failed dm_thin_find_block above could
1425 * provide the hint to load the metadata into cache.
1427 thin_defer_bio(tc
, bio
);
1428 r
= DM_MAPIO_SUBMITTED
;
1433 * Must always call bio_io_error on failure.
1434 * dm_thin_find_block can fail with -EINVAL if the
1435 * pool is switched to fail-io mode.
1438 r
= DM_MAPIO_SUBMITTED
;
1445 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1448 unsigned long flags
;
1449 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1451 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1452 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1453 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1456 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1457 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1463 static void __requeue_bios(struct pool
*pool
)
1465 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1466 bio_list_init(&pool
->retry_on_resume_list
);
1469 /*----------------------------------------------------------------
1470 * Binding of control targets to a pool object
1471 *--------------------------------------------------------------*/
1472 static bool data_dev_supports_discard(struct pool_c
*pt
)
1474 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1476 return q
&& blk_queue_discard(q
);
1480 * If discard_passdown was enabled verify that the data device
1481 * supports discards. Disable discard_passdown if not.
1483 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
1485 struct pool
*pool
= pt
->pool
;
1486 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
1487 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
1488 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
1489 const char *reason
= NULL
;
1490 char buf
[BDEVNAME_SIZE
];
1492 if (!pt
->adjusted_pf
.discard_passdown
)
1495 if (!data_dev_supports_discard(pt
))
1496 reason
= "discard unsupported";
1498 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
1499 reason
= "max discard sectors smaller than a block";
1501 else if (data_limits
->discard_granularity
> block_size
)
1502 reason
= "discard granularity larger than a block";
1504 else if (block_size
& (data_limits
->discard_granularity
- 1))
1505 reason
= "discard granularity not a factor of block size";
1508 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
1509 pt
->adjusted_pf
.discard_passdown
= false;
1513 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1515 struct pool_c
*pt
= ti
->private;
1518 * We want to make sure that degraded pools are never upgraded.
1520 enum pool_mode old_mode
= pool
->pf
.mode
;
1521 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
1523 if (old_mode
> new_mode
)
1524 new_mode
= old_mode
;
1527 pool
->low_water_blocks
= pt
->low_water_blocks
;
1528 pool
->pf
= pt
->adjusted_pf
;
1530 set_pool_mode(pool
, new_mode
);
1535 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1541 /*----------------------------------------------------------------
1543 *--------------------------------------------------------------*/
1544 /* Initialize pool features. */
1545 static void pool_features_init(struct pool_features
*pf
)
1547 pf
->mode
= PM_WRITE
;
1548 pf
->zero_new_blocks
= true;
1549 pf
->discard_enabled
= true;
1550 pf
->discard_passdown
= true;
1553 static void __pool_destroy(struct pool
*pool
)
1555 __pool_table_remove(pool
);
1557 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1558 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1560 dm_bio_prison_destroy(pool
->prison
);
1561 dm_kcopyd_client_destroy(pool
->copier
);
1564 destroy_workqueue(pool
->wq
);
1566 if (pool
->next_mapping
)
1567 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1568 mempool_destroy(pool
->mapping_pool
);
1569 mempool_destroy(pool
->endio_hook_pool
);
1570 dm_deferred_set_destroy(pool
->shared_read_ds
);
1571 dm_deferred_set_destroy(pool
->all_io_ds
);
1575 static struct kmem_cache
*_new_mapping_cache
;
1576 static struct kmem_cache
*_endio_hook_cache
;
1578 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1579 struct block_device
*metadata_dev
,
1580 unsigned long block_size
,
1581 int read_only
, char **error
)
1586 struct dm_pool_metadata
*pmd
;
1587 bool format_device
= read_only
? false : true;
1589 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
1591 *error
= "Error creating metadata object";
1592 return (struct pool
*)pmd
;
1595 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1597 *error
= "Error allocating memory for pool";
1598 err_p
= ERR_PTR(-ENOMEM
);
1603 pool
->sectors_per_block
= block_size
;
1604 if (block_size
& (block_size
- 1))
1605 pool
->sectors_per_block_shift
= -1;
1607 pool
->sectors_per_block_shift
= __ffs(block_size
);
1608 pool
->low_water_blocks
= 0;
1609 pool_features_init(&pool
->pf
);
1610 pool
->prison
= dm_bio_prison_create(PRISON_CELLS
);
1611 if (!pool
->prison
) {
1612 *error
= "Error creating pool's bio prison";
1613 err_p
= ERR_PTR(-ENOMEM
);
1617 pool
->copier
= dm_kcopyd_client_create();
1618 if (IS_ERR(pool
->copier
)) {
1619 r
= PTR_ERR(pool
->copier
);
1620 *error
= "Error creating pool's kcopyd client";
1622 goto bad_kcopyd_client
;
1626 * Create singlethreaded workqueue that will service all devices
1627 * that use this metadata.
1629 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
1631 *error
= "Error creating pool's workqueue";
1632 err_p
= ERR_PTR(-ENOMEM
);
1636 INIT_WORK(&pool
->worker
, do_worker
);
1637 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
1638 spin_lock_init(&pool
->lock
);
1639 bio_list_init(&pool
->deferred_bios
);
1640 bio_list_init(&pool
->deferred_flush_bios
);
1641 INIT_LIST_HEAD(&pool
->prepared_mappings
);
1642 INIT_LIST_HEAD(&pool
->prepared_discards
);
1643 pool
->low_water_triggered
= 0;
1644 pool
->no_free_space
= 0;
1645 bio_list_init(&pool
->retry_on_resume_list
);
1647 pool
->shared_read_ds
= dm_deferred_set_create();
1648 if (!pool
->shared_read_ds
) {
1649 *error
= "Error creating pool's shared read deferred set";
1650 err_p
= ERR_PTR(-ENOMEM
);
1651 goto bad_shared_read_ds
;
1654 pool
->all_io_ds
= dm_deferred_set_create();
1655 if (!pool
->all_io_ds
) {
1656 *error
= "Error creating pool's all io deferred set";
1657 err_p
= ERR_PTR(-ENOMEM
);
1661 pool
->next_mapping
= NULL
;
1662 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
1663 _new_mapping_cache
);
1664 if (!pool
->mapping_pool
) {
1665 *error
= "Error creating pool's mapping mempool";
1666 err_p
= ERR_PTR(-ENOMEM
);
1667 goto bad_mapping_pool
;
1670 pool
->endio_hook_pool
= mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE
,
1672 if (!pool
->endio_hook_pool
) {
1673 *error
= "Error creating pool's endio_hook mempool";
1674 err_p
= ERR_PTR(-ENOMEM
);
1675 goto bad_endio_hook_pool
;
1677 pool
->ref_count
= 1;
1678 pool
->last_commit_jiffies
= jiffies
;
1679 pool
->pool_md
= pool_md
;
1680 pool
->md_dev
= metadata_dev
;
1681 __pool_table_insert(pool
);
1685 bad_endio_hook_pool
:
1686 mempool_destroy(pool
->mapping_pool
);
1688 dm_deferred_set_destroy(pool
->all_io_ds
);
1690 dm_deferred_set_destroy(pool
->shared_read_ds
);
1692 destroy_workqueue(pool
->wq
);
1694 dm_kcopyd_client_destroy(pool
->copier
);
1696 dm_bio_prison_destroy(pool
->prison
);
1700 if (dm_pool_metadata_close(pmd
))
1701 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1706 static void __pool_inc(struct pool
*pool
)
1708 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1712 static void __pool_dec(struct pool
*pool
)
1714 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1715 BUG_ON(!pool
->ref_count
);
1716 if (!--pool
->ref_count
)
1717 __pool_destroy(pool
);
1720 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
1721 struct block_device
*metadata_dev
,
1722 unsigned long block_size
, int read_only
,
1723 char **error
, int *created
)
1725 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
1728 if (pool
->pool_md
!= pool_md
) {
1729 *error
= "metadata device already in use by a pool";
1730 return ERR_PTR(-EBUSY
);
1735 pool
= __pool_table_lookup(pool_md
);
1737 if (pool
->md_dev
!= metadata_dev
) {
1738 *error
= "different pool cannot replace a pool";
1739 return ERR_PTR(-EINVAL
);
1744 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
1752 /*----------------------------------------------------------------
1753 * Pool target methods
1754 *--------------------------------------------------------------*/
1755 static void pool_dtr(struct dm_target
*ti
)
1757 struct pool_c
*pt
= ti
->private;
1759 mutex_lock(&dm_thin_pool_table
.mutex
);
1761 unbind_control_target(pt
->pool
, ti
);
1762 __pool_dec(pt
->pool
);
1763 dm_put_device(ti
, pt
->metadata_dev
);
1764 dm_put_device(ti
, pt
->data_dev
);
1767 mutex_unlock(&dm_thin_pool_table
.mutex
);
1770 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
1771 struct dm_target
*ti
)
1775 const char *arg_name
;
1777 static struct dm_arg _args
[] = {
1778 {0, 3, "Invalid number of pool feature arguments"},
1782 * No feature arguments supplied.
1787 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
1791 while (argc
&& !r
) {
1792 arg_name
= dm_shift_arg(as
);
1795 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
1796 pf
->zero_new_blocks
= false;
1798 else if (!strcasecmp(arg_name
, "ignore_discard"))
1799 pf
->discard_enabled
= false;
1801 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
1802 pf
->discard_passdown
= false;
1804 else if (!strcasecmp(arg_name
, "read_only"))
1805 pf
->mode
= PM_READ_ONLY
;
1808 ti
->error
= "Unrecognised pool feature requested";
1818 * thin-pool <metadata dev> <data dev>
1819 * <data block size (sectors)>
1820 * <low water mark (blocks)>
1821 * [<#feature args> [<arg>]*]
1823 * Optional feature arguments are:
1824 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1825 * ignore_discard: disable discard
1826 * no_discard_passdown: don't pass discards down to the data device
1828 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
1830 int r
, pool_created
= 0;
1833 struct pool_features pf
;
1834 struct dm_arg_set as
;
1835 struct dm_dev
*data_dev
;
1836 unsigned long block_size
;
1837 dm_block_t low_water_blocks
;
1838 struct dm_dev
*metadata_dev
;
1839 sector_t metadata_dev_size
;
1840 char b
[BDEVNAME_SIZE
];
1843 * FIXME Remove validation from scope of lock.
1845 mutex_lock(&dm_thin_pool_table
.mutex
);
1848 ti
->error
= "Invalid argument count";
1855 r
= dm_get_device(ti
, argv
[0], FMODE_READ
| FMODE_WRITE
, &metadata_dev
);
1857 ti
->error
= "Error opening metadata block device";
1861 metadata_dev_size
= i_size_read(metadata_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
1862 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
1863 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1864 bdevname(metadata_dev
->bdev
, b
), THIN_METADATA_MAX_SECTORS
);
1866 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
1868 ti
->error
= "Error getting data device";
1872 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
1873 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
1874 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
1875 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
1876 ti
->error
= "Invalid block size";
1881 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
1882 ti
->error
= "Invalid low water mark";
1888 * Set default pool features.
1890 pool_features_init(&pf
);
1892 dm_consume_args(&as
, 4);
1893 r
= parse_pool_features(&as
, &pf
, ti
);
1897 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
1903 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
1904 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
1911 * 'pool_created' reflects whether this is the first table load.
1912 * Top level discard support is not allowed to be changed after
1913 * initial load. This would require a pool reload to trigger thin
1916 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
1917 ti
->error
= "Discard support cannot be disabled once enabled";
1919 goto out_flags_changed
;
1924 pt
->metadata_dev
= metadata_dev
;
1925 pt
->data_dev
= data_dev
;
1926 pt
->low_water_blocks
= low_water_blocks
;
1927 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
1928 ti
->num_flush_requests
= 1;
1931 * Only need to enable discards if the pool should pass
1932 * them down to the data device. The thin device's discard
1933 * processing will cause mappings to be removed from the btree.
1935 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
1936 ti
->num_discard_requests
= 1;
1939 * Setting 'discards_supported' circumvents the normal
1940 * stacking of discard limits (this keeps the pool and
1941 * thin devices' discard limits consistent).
1943 ti
->discards_supported
= true;
1944 ti
->discard_zeroes_data_unsupported
= true;
1948 pt
->callbacks
.congested_fn
= pool_is_congested
;
1949 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
1951 mutex_unlock(&dm_thin_pool_table
.mutex
);
1960 dm_put_device(ti
, data_dev
);
1962 dm_put_device(ti
, metadata_dev
);
1964 mutex_unlock(&dm_thin_pool_table
.mutex
);
1969 static int pool_map(struct dm_target
*ti
, struct bio
*bio
,
1970 union map_info
*map_context
)
1973 struct pool_c
*pt
= ti
->private;
1974 struct pool
*pool
= pt
->pool
;
1975 unsigned long flags
;
1978 * As this is a singleton target, ti->begin is always zero.
1980 spin_lock_irqsave(&pool
->lock
, flags
);
1981 bio
->bi_bdev
= pt
->data_dev
->bdev
;
1982 r
= DM_MAPIO_REMAPPED
;
1983 spin_unlock_irqrestore(&pool
->lock
, flags
);
1989 * Retrieves the number of blocks of the data device from
1990 * the superblock and compares it to the actual device size,
1991 * thus resizing the data device in case it has grown.
1993 * This both copes with opening preallocated data devices in the ctr
1994 * being followed by a resume
1996 * calling the resume method individually after userspace has
1997 * grown the data device in reaction to a table event.
1999 static int pool_preresume(struct dm_target
*ti
)
2002 struct pool_c
*pt
= ti
->private;
2003 struct pool
*pool
= pt
->pool
;
2004 sector_t data_size
= ti
->len
;
2005 dm_block_t sb_data_size
;
2008 * Take control of the pool object.
2010 r
= bind_control_target(pool
, ti
);
2014 (void) sector_div(data_size
, pool
->sectors_per_block
);
2016 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
2018 DMERR("failed to retrieve data device size");
2022 if (data_size
< sb_data_size
) {
2023 DMERR("pool target too small, is %llu blocks (expected %llu)",
2024 (unsigned long long)data_size
, sb_data_size
);
2027 } else if (data_size
> sb_data_size
) {
2028 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
2030 DMERR("failed to resize data device");
2031 /* FIXME Stricter than necessary: Rollback transaction instead here */
2032 set_pool_mode(pool
, PM_READ_ONLY
);
2036 (void) commit_or_fallback(pool
);
2042 static void pool_resume(struct dm_target
*ti
)
2044 struct pool_c
*pt
= ti
->private;
2045 struct pool
*pool
= pt
->pool
;
2046 unsigned long flags
;
2048 spin_lock_irqsave(&pool
->lock
, flags
);
2049 pool
->low_water_triggered
= 0;
2050 pool
->no_free_space
= 0;
2051 __requeue_bios(pool
);
2052 spin_unlock_irqrestore(&pool
->lock
, flags
);
2054 do_waker(&pool
->waker
.work
);
2057 static void pool_postsuspend(struct dm_target
*ti
)
2059 struct pool_c
*pt
= ti
->private;
2060 struct pool
*pool
= pt
->pool
;
2062 cancel_delayed_work(&pool
->waker
);
2063 flush_workqueue(pool
->wq
);
2064 (void) commit_or_fallback(pool
);
2067 static int check_arg_count(unsigned argc
, unsigned args_required
)
2069 if (argc
!= args_required
) {
2070 DMWARN("Message received with %u arguments instead of %u.",
2071 argc
, args_required
);
2078 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
2080 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
2081 *dev_id
<= MAX_DEV_ID
)
2085 DMWARN("Message received with invalid device id: %s", arg
);
2090 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2095 r
= check_arg_count(argc
, 2);
2099 r
= read_dev_id(argv
[1], &dev_id
, 1);
2103 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
2105 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2113 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2116 dm_thin_id origin_dev_id
;
2119 r
= check_arg_count(argc
, 3);
2123 r
= read_dev_id(argv
[1], &dev_id
, 1);
2127 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
2131 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
2133 DMWARN("Creation of new snapshot %s of device %s failed.",
2141 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2146 r
= check_arg_count(argc
, 2);
2150 r
= read_dev_id(argv
[1], &dev_id
, 1);
2154 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2156 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2161 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2163 dm_thin_id old_id
, new_id
;
2166 r
= check_arg_count(argc
, 3);
2170 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2171 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2175 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2176 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2180 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2182 DMWARN("Failed to change transaction id from %s to %s.",
2190 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2194 r
= check_arg_count(argc
, 1);
2198 (void) commit_or_fallback(pool
);
2200 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
2202 DMWARN("reserve_metadata_snap message failed.");
2207 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2211 r
= check_arg_count(argc
, 1);
2215 r
= dm_pool_release_metadata_snap(pool
->pmd
);
2217 DMWARN("release_metadata_snap message failed.");
2223 * Messages supported:
2224 * create_thin <dev_id>
2225 * create_snap <dev_id> <origin_id>
2227 * trim <dev_id> <new_size_in_sectors>
2228 * set_transaction_id <current_trans_id> <new_trans_id>
2229 * reserve_metadata_snap
2230 * release_metadata_snap
2232 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2235 struct pool_c
*pt
= ti
->private;
2236 struct pool
*pool
= pt
->pool
;
2238 if (!strcasecmp(argv
[0], "create_thin"))
2239 r
= process_create_thin_mesg(argc
, argv
, pool
);
2241 else if (!strcasecmp(argv
[0], "create_snap"))
2242 r
= process_create_snap_mesg(argc
, argv
, pool
);
2244 else if (!strcasecmp(argv
[0], "delete"))
2245 r
= process_delete_mesg(argc
, argv
, pool
);
2247 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2248 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2250 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
2251 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
2253 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
2254 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
2257 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2260 (void) commit_or_fallback(pool
);
2265 static void emit_flags(struct pool_features
*pf
, char *result
,
2266 unsigned sz
, unsigned maxlen
)
2268 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
2269 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
);
2270 DMEMIT("%u ", count
);
2272 if (!pf
->zero_new_blocks
)
2273 DMEMIT("skip_block_zeroing ");
2275 if (!pf
->discard_enabled
)
2276 DMEMIT("ignore_discard ");
2278 if (!pf
->discard_passdown
)
2279 DMEMIT("no_discard_passdown ");
2281 if (pf
->mode
== PM_READ_ONLY
)
2282 DMEMIT("read_only ");
2287 * <transaction id> <used metadata sectors>/<total metadata sectors>
2288 * <used data sectors>/<total data sectors> <held metadata root>
2290 static int pool_status(struct dm_target
*ti
, status_type_t type
,
2291 unsigned status_flags
, char *result
, unsigned maxlen
)
2295 uint64_t transaction_id
;
2296 dm_block_t nr_free_blocks_data
;
2297 dm_block_t nr_free_blocks_metadata
;
2298 dm_block_t nr_blocks_data
;
2299 dm_block_t nr_blocks_metadata
;
2300 dm_block_t held_root
;
2301 char buf
[BDEVNAME_SIZE
];
2302 char buf2
[BDEVNAME_SIZE
];
2303 struct pool_c
*pt
= ti
->private;
2304 struct pool
*pool
= pt
->pool
;
2307 case STATUSTYPE_INFO
:
2308 if (get_pool_mode(pool
) == PM_FAIL
) {
2313 /* Commit to ensure statistics aren't out-of-date */
2314 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
2315 (void) commit_or_fallback(pool
);
2317 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
,
2322 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
,
2323 &nr_free_blocks_metadata
);
2327 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2331 r
= dm_pool_get_free_block_count(pool
->pmd
,
2332 &nr_free_blocks_data
);
2336 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2340 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
2344 DMEMIT("%llu %llu/%llu %llu/%llu ",
2345 (unsigned long long)transaction_id
,
2346 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2347 (unsigned long long)nr_blocks_metadata
,
2348 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2349 (unsigned long long)nr_blocks_data
);
2352 DMEMIT("%llu ", held_root
);
2356 if (pool
->pf
.mode
== PM_READ_ONLY
)
2361 if (pool
->pf
.discard_enabled
&& pool
->pf
.discard_passdown
)
2362 DMEMIT("discard_passdown");
2364 DMEMIT("no_discard_passdown");
2368 case STATUSTYPE_TABLE
:
2369 DMEMIT("%s %s %lu %llu ",
2370 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2371 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2372 (unsigned long)pool
->sectors_per_block
,
2373 (unsigned long long)pt
->low_water_blocks
);
2374 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
2381 static int pool_iterate_devices(struct dm_target
*ti
,
2382 iterate_devices_callout_fn fn
, void *data
)
2384 struct pool_c
*pt
= ti
->private;
2386 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2389 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2390 struct bio_vec
*biovec
, int max_size
)
2392 struct pool_c
*pt
= ti
->private;
2393 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2395 if (!q
->merge_bvec_fn
)
2398 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2400 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2403 static bool block_size_is_power_of_two(struct pool
*pool
)
2405 return pool
->sectors_per_block_shift
>= 0;
2408 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
2410 struct pool
*pool
= pt
->pool
;
2411 struct queue_limits
*data_limits
;
2413 limits
->max_discard_sectors
= pool
->sectors_per_block
;
2416 * discard_granularity is just a hint, and not enforced.
2418 if (pt
->adjusted_pf
.discard_passdown
) {
2419 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
2420 limits
->discard_granularity
= data_limits
->discard_granularity
;
2421 } else if (block_size_is_power_of_two(pool
))
2422 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
2425 * Use largest power of 2 that is a factor of sectors_per_block
2426 * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
2428 limits
->discard_granularity
= max(1 << (ffs(pool
->sectors_per_block
) - 1),
2429 DATA_DEV_BLOCK_SIZE_MIN_SECTORS
) << SECTOR_SHIFT
;
2432 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2434 struct pool_c
*pt
= ti
->private;
2435 struct pool
*pool
= pt
->pool
;
2437 blk_limits_io_min(limits
, 0);
2438 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2441 * pt->adjusted_pf is a staging area for the actual features to use.
2442 * They get transferred to the live pool in bind_control_target()
2443 * called from pool_preresume().
2445 if (!pt
->adjusted_pf
.discard_enabled
)
2448 disable_passdown_if_not_supported(pt
);
2450 set_discard_limits(pt
, limits
);
2453 static struct target_type pool_target
= {
2454 .name
= "thin-pool",
2455 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2456 DM_TARGET_IMMUTABLE
,
2457 .version
= {1, 5, 0},
2458 .module
= THIS_MODULE
,
2462 .postsuspend
= pool_postsuspend
,
2463 .preresume
= pool_preresume
,
2464 .resume
= pool_resume
,
2465 .message
= pool_message
,
2466 .status
= pool_status
,
2467 .merge
= pool_merge
,
2468 .iterate_devices
= pool_iterate_devices
,
2469 .io_hints
= pool_io_hints
,
2472 /*----------------------------------------------------------------
2473 * Thin target methods
2474 *--------------------------------------------------------------*/
2475 static void thin_dtr(struct dm_target
*ti
)
2477 struct thin_c
*tc
= ti
->private;
2479 mutex_lock(&dm_thin_pool_table
.mutex
);
2481 __pool_dec(tc
->pool
);
2482 dm_pool_close_thin_device(tc
->td
);
2483 dm_put_device(ti
, tc
->pool_dev
);
2485 dm_put_device(ti
, tc
->origin_dev
);
2488 mutex_unlock(&dm_thin_pool_table
.mutex
);
2492 * Thin target parameters:
2494 * <pool_dev> <dev_id> [origin_dev]
2496 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2497 * dev_id: the internal device identifier
2498 * origin_dev: a device external to the pool that should act as the origin
2500 * If the pool device has discards disabled, they get disabled for the thin
2503 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2507 struct dm_dev
*pool_dev
, *origin_dev
;
2508 struct mapped_device
*pool_md
;
2510 mutex_lock(&dm_thin_pool_table
.mutex
);
2512 if (argc
!= 2 && argc
!= 3) {
2513 ti
->error
= "Invalid argument count";
2518 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2520 ti
->error
= "Out of memory";
2526 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
2528 ti
->error
= "Error opening origin device";
2529 goto bad_origin_dev
;
2531 tc
->origin_dev
= origin_dev
;
2534 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2536 ti
->error
= "Error opening pool device";
2539 tc
->pool_dev
= pool_dev
;
2541 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2542 ti
->error
= "Invalid device id";
2547 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2549 ti
->error
= "Couldn't get pool mapped device";
2554 tc
->pool
= __pool_table_lookup(pool_md
);
2556 ti
->error
= "Couldn't find pool object";
2558 goto bad_pool_lookup
;
2560 __pool_inc(tc
->pool
);
2562 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2563 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
2567 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2569 ti
->error
= "Couldn't open thin internal device";
2573 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
2577 ti
->num_flush_requests
= 1;
2578 ti
->flush_supported
= true;
2580 /* In case the pool supports discards, pass them on. */
2581 if (tc
->pool
->pf
.discard_enabled
) {
2582 ti
->discards_supported
= true;
2583 ti
->num_discard_requests
= 1;
2584 ti
->discard_zeroes_data_unsupported
= true;
2585 /* Discard requests must be split on a block boundary */
2586 ti
->split_discard_requests
= true;
2591 mutex_unlock(&dm_thin_pool_table
.mutex
);
2596 __pool_dec(tc
->pool
);
2600 dm_put_device(ti
, tc
->pool_dev
);
2603 dm_put_device(ti
, tc
->origin_dev
);
2607 mutex_unlock(&dm_thin_pool_table
.mutex
);
2612 static int thin_map(struct dm_target
*ti
, struct bio
*bio
,
2613 union map_info
*map_context
)
2615 bio
->bi_sector
= dm_target_offset(ti
, bio
->bi_sector
);
2617 return thin_bio_map(ti
, bio
, map_context
);
2620 static int thin_endio(struct dm_target
*ti
,
2621 struct bio
*bio
, int err
,
2622 union map_info
*map_context
)
2624 unsigned long flags
;
2625 struct dm_thin_endio_hook
*h
= map_context
->ptr
;
2626 struct list_head work
;
2627 struct dm_thin_new_mapping
*m
, *tmp
;
2628 struct pool
*pool
= h
->tc
->pool
;
2630 if (h
->shared_read_entry
) {
2631 INIT_LIST_HEAD(&work
);
2632 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
2634 spin_lock_irqsave(&pool
->lock
, flags
);
2635 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
2638 __maybe_add_mapping(m
);
2640 spin_unlock_irqrestore(&pool
->lock
, flags
);
2643 if (h
->all_io_entry
) {
2644 INIT_LIST_HEAD(&work
);
2645 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
2646 spin_lock_irqsave(&pool
->lock
, flags
);
2647 list_for_each_entry_safe(m
, tmp
, &work
, list
)
2648 list_add(&m
->list
, &pool
->prepared_discards
);
2649 spin_unlock_irqrestore(&pool
->lock
, flags
);
2652 mempool_free(h
, pool
->endio_hook_pool
);
2657 static void thin_postsuspend(struct dm_target
*ti
)
2659 if (dm_noflush_suspending(ti
))
2660 requeue_io((struct thin_c
*)ti
->private);
2664 * <nr mapped sectors> <highest mapped sector>
2666 static int thin_status(struct dm_target
*ti
, status_type_t type
,
2667 unsigned status_flags
, char *result
, unsigned maxlen
)
2671 dm_block_t mapped
, highest
;
2672 char buf
[BDEVNAME_SIZE
];
2673 struct thin_c
*tc
= ti
->private;
2675 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2684 case STATUSTYPE_INFO
:
2685 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
2689 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
2693 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
2695 DMEMIT("%llu", ((highest
+ 1) *
2696 tc
->pool
->sectors_per_block
) - 1);
2701 case STATUSTYPE_TABLE
:
2703 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
2704 (unsigned long) tc
->dev_id
);
2706 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
2714 static int thin_iterate_devices(struct dm_target
*ti
,
2715 iterate_devices_callout_fn fn
, void *data
)
2718 struct thin_c
*tc
= ti
->private;
2719 struct pool
*pool
= tc
->pool
;
2722 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2723 * we follow a more convoluted path through to the pool's target.
2726 return 0; /* nothing is bound */
2728 blocks
= pool
->ti
->len
;
2729 (void) sector_div(blocks
, pool
->sectors_per_block
);
2731 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
2737 * A thin device always inherits its queue limits from its pool.
2739 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2741 struct thin_c
*tc
= ti
->private;
2743 *limits
= bdev_get_queue(tc
->pool_dev
->bdev
)->limits
;
2746 static struct target_type thin_target
= {
2748 .version
= {1, 5, 0},
2749 .module
= THIS_MODULE
,
2753 .end_io
= thin_endio
,
2754 .postsuspend
= thin_postsuspend
,
2755 .status
= thin_status
,
2756 .iterate_devices
= thin_iterate_devices
,
2757 .io_hints
= thin_io_hints
,
2760 /*----------------------------------------------------------------*/
2762 static int __init
dm_thin_init(void)
2768 r
= dm_register_target(&thin_target
);
2772 r
= dm_register_target(&pool_target
);
2774 goto bad_pool_target
;
2778 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
2779 if (!_new_mapping_cache
)
2780 goto bad_new_mapping_cache
;
2782 _endio_hook_cache
= KMEM_CACHE(dm_thin_endio_hook
, 0);
2783 if (!_endio_hook_cache
)
2784 goto bad_endio_hook_cache
;
2788 bad_endio_hook_cache
:
2789 kmem_cache_destroy(_new_mapping_cache
);
2790 bad_new_mapping_cache
:
2791 dm_unregister_target(&pool_target
);
2793 dm_unregister_target(&thin_target
);
2798 static void dm_thin_exit(void)
2800 dm_unregister_target(&thin_target
);
2801 dm_unregister_target(&pool_target
);
2803 kmem_cache_destroy(_new_mapping_cache
);
2804 kmem_cache_destroy(_endio_hook_cache
);
2807 module_init(dm_thin_init
);
2808 module_exit(dm_thin_exit
);
2810 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
2811 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2812 MODULE_LICENSE("GPL");