2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
50 * near_copies and far_copies must be at least one, and their product is at most
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
59 * Number of guaranteed r10bios in case of extreme VM load:
61 #define NR_RAID10_BIOS 256
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
73 #define IO_MADE_GOOD ((struct bio *)2)
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
81 static int max_queued_requests
= 1024;
83 static void allow_barrier(struct r10conf
*conf
);
84 static void lower_barrier(struct r10conf
*conf
);
85 static int enough(struct r10conf
*conf
, int ignore
);
86 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
88 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
89 static void end_reshape_write(struct bio
*bio
, int error
);
90 static void end_reshape(struct r10conf
*conf
);
92 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
94 struct r10conf
*conf
= data
;
95 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
97 /* allocate a r10bio with room for raid_disks entries in the
99 return kzalloc(size
, gfp_flags
);
102 static void r10bio_pool_free(void *r10_bio
, void *data
)
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
122 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
124 struct r10conf
*conf
= data
;
126 struct r10bio
*r10_bio
;
131 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
135 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
136 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
137 nalloc
= conf
->copies
; /* resync */
139 nalloc
= 2; /* recovery */
144 for (j
= nalloc
; j
-- ; ) {
145 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
148 r10_bio
->devs
[j
].bio
= bio
;
149 if (!conf
->have_replacement
)
151 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
154 r10_bio
->devs
[j
].repl_bio
= bio
;
157 * Allocate RESYNC_PAGES data pages and attach them
160 for (j
= 0 ; j
< nalloc
; j
++) {
161 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
162 bio
= r10_bio
->devs
[j
].bio
;
163 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
164 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
165 &conf
->mddev
->recovery
)) {
166 /* we can share bv_page's during recovery
168 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
169 page
= rbio
->bi_io_vec
[i
].bv_page
;
172 page
= alloc_page(gfp_flags
);
176 bio
->bi_io_vec
[i
].bv_page
= page
;
178 rbio
->bi_io_vec
[i
].bv_page
= page
;
186 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
188 for (i
= 0; i
< RESYNC_PAGES
; i
++)
189 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
192 for ( ; j
< nalloc
; j
++) {
193 if (r10_bio
->devs
[j
].bio
)
194 bio_put(r10_bio
->devs
[j
].bio
);
195 if (r10_bio
->devs
[j
].repl_bio
)
196 bio_put(r10_bio
->devs
[j
].repl_bio
);
198 r10bio_pool_free(r10_bio
, conf
);
202 static void r10buf_pool_free(void *__r10_bio
, void *data
)
205 struct r10conf
*conf
= data
;
206 struct r10bio
*r10bio
= __r10_bio
;
209 for (j
=0; j
< conf
->copies
; j
++) {
210 struct bio
*bio
= r10bio
->devs
[j
].bio
;
212 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
213 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
214 bio
->bi_io_vec
[i
].bv_page
= NULL
;
218 bio
= r10bio
->devs
[j
].repl_bio
;
222 r10bio_pool_free(r10bio
, conf
);
225 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
229 for (i
= 0; i
< conf
->copies
; i
++) {
230 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
231 if (!BIO_SPECIAL(*bio
))
234 bio
= &r10_bio
->devs
[i
].repl_bio
;
235 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
241 static void free_r10bio(struct r10bio
*r10_bio
)
243 struct r10conf
*conf
= r10_bio
->mddev
->private;
245 put_all_bios(conf
, r10_bio
);
246 mempool_free(r10_bio
, conf
->r10bio_pool
);
249 static void put_buf(struct r10bio
*r10_bio
)
251 struct r10conf
*conf
= r10_bio
->mddev
->private;
253 mempool_free(r10_bio
, conf
->r10buf_pool
);
258 static void reschedule_retry(struct r10bio
*r10_bio
)
261 struct mddev
*mddev
= r10_bio
->mddev
;
262 struct r10conf
*conf
= mddev
->private;
264 spin_lock_irqsave(&conf
->device_lock
, flags
);
265 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
267 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
269 /* wake up frozen array... */
270 wake_up(&conf
->wait_barrier
);
272 md_wakeup_thread(mddev
->thread
);
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
280 static void raid_end_bio_io(struct r10bio
*r10_bio
)
282 struct bio
*bio
= r10_bio
->master_bio
;
284 struct r10conf
*conf
= r10_bio
->mddev
->private;
286 if (bio
->bi_phys_segments
) {
288 spin_lock_irqsave(&conf
->device_lock
, flags
);
289 bio
->bi_phys_segments
--;
290 done
= (bio
->bi_phys_segments
== 0);
291 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
294 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
295 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
299 * Wake up any possible resync thread that waits for the device
304 free_r10bio(r10_bio
);
308 * Update disk head position estimator based on IRQ completion info.
310 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
312 struct r10conf
*conf
= r10_bio
->mddev
->private;
314 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
315 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
319 * Find the disk number which triggered given bio
321 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
322 struct bio
*bio
, int *slotp
, int *replp
)
327 for (slot
= 0; slot
< conf
->copies
; slot
++) {
328 if (r10_bio
->devs
[slot
].bio
== bio
)
330 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
336 BUG_ON(slot
== conf
->copies
);
337 update_head_pos(slot
, r10_bio
);
343 return r10_bio
->devs
[slot
].devnum
;
346 static void raid10_end_read_request(struct bio
*bio
, int error
)
348 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
349 struct r10bio
*r10_bio
= bio
->bi_private
;
351 struct md_rdev
*rdev
;
352 struct r10conf
*conf
= r10_bio
->mddev
->private;
355 slot
= r10_bio
->read_slot
;
356 dev
= r10_bio
->devs
[slot
].devnum
;
357 rdev
= r10_bio
->devs
[slot
].rdev
;
359 * this branch is our 'one mirror IO has finished' event handler:
361 update_head_pos(slot
, r10_bio
);
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
373 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
381 spin_lock_irqsave(&conf
->device_lock
, flags
);
382 if (!enough(conf
, rdev
->raid_disk
))
384 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
387 raid_end_bio_io(r10_bio
);
388 rdev_dec_pending(rdev
, conf
->mddev
);
391 * oops, read error - keep the refcount on the rdev
393 char b
[BDEVNAME_SIZE
];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
397 bdevname(rdev
->bdev
, b
),
398 (unsigned long long)r10_bio
->sector
);
399 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
400 reschedule_retry(r10_bio
);
404 static void close_write(struct r10bio
*r10_bio
)
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
409 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
411 md_write_end(r10_bio
->mddev
);
414 static void one_write_done(struct r10bio
*r10_bio
)
416 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
417 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
418 reschedule_retry(r10_bio
);
420 close_write(r10_bio
);
421 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
422 reschedule_retry(r10_bio
);
424 raid_end_bio_io(r10_bio
);
429 static void raid10_end_write_request(struct bio
*bio
, int error
)
431 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
432 struct r10bio
*r10_bio
= bio
->bi_private
;
435 struct r10conf
*conf
= r10_bio
->mddev
->private;
437 struct md_rdev
*rdev
= NULL
;
439 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
442 rdev
= conf
->mirrors
[dev
].replacement
;
446 rdev
= conf
->mirrors
[dev
].rdev
;
449 * this branch is our 'one mirror IO has finished' event handler:
453 /* Never record new bad blocks to replacement,
456 md_error(rdev
->mddev
, rdev
);
458 set_bit(WriteErrorSeen
, &rdev
->flags
);
459 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
460 set_bit(MD_RECOVERY_NEEDED
,
461 &rdev
->mddev
->recovery
);
462 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
478 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev
,
482 r10_bio
->devs
[slot
].addr
,
484 &first_bad
, &bad_sectors
)) {
487 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
489 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
491 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
497 * Let's see if all mirrored write operations have finished
500 one_write_done(r10_bio
);
502 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
530 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
539 /* now calculate first sector/dev */
540 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
541 sector
= r10bio
->sector
& geo
->chunk_mask
;
543 chunk
*= geo
->near_copies
;
545 dev
= sector_div(stripe
, geo
->raid_disks
);
547 stripe
*= geo
->far_copies
;
549 sector
+= stripe
<< geo
->chunk_shift
;
551 /* and calculate all the others */
552 for (n
= 0; n
< geo
->near_copies
; n
++) {
555 r10bio
->devs
[slot
].addr
= sector
;
556 r10bio
->devs
[slot
].devnum
= d
;
559 for (f
= 1; f
< geo
->far_copies
; f
++) {
560 d
+= geo
->near_copies
;
561 if (d
>= geo
->raid_disks
)
562 d
-= geo
->raid_disks
;
564 r10bio
->devs
[slot
].devnum
= d
;
565 r10bio
->devs
[slot
].addr
= s
;
569 if (dev
>= geo
->raid_disks
) {
571 sector
+= (geo
->chunk_mask
+ 1);
576 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
578 struct geom
*geo
= &conf
->geo
;
580 if (conf
->reshape_progress
!= MaxSector
&&
581 ((r10bio
->sector
>= conf
->reshape_progress
) !=
582 conf
->mddev
->reshape_backwards
)) {
583 set_bit(R10BIO_Previous
, &r10bio
->state
);
586 clear_bit(R10BIO_Previous
, &r10bio
->state
);
588 __raid10_find_phys(geo
, r10bio
);
591 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
593 sector_t offset
, chunk
, vchunk
;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
597 struct geom
*geo
= &conf
->geo
;
599 offset
= sector
& geo
->chunk_mask
;
600 if (geo
->far_offset
) {
602 chunk
= sector
>> geo
->chunk_shift
;
603 fc
= sector_div(chunk
, geo
->far_copies
);
604 dev
-= fc
* geo
->near_copies
;
606 dev
+= geo
->raid_disks
;
608 while (sector
>= geo
->stride
) {
609 sector
-= geo
->stride
;
610 if (dev
< geo
->near_copies
)
611 dev
+= geo
->raid_disks
- geo
->near_copies
;
613 dev
-= geo
->near_copies
;
615 chunk
= sector
>> geo
->chunk_shift
;
617 vchunk
= chunk
* geo
->raid_disks
+ dev
;
618 sector_div(vchunk
, geo
->near_copies
);
619 return (vchunk
<< geo
->chunk_shift
) + offset
;
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
632 static int raid10_mergeable_bvec(struct request_queue
*q
,
633 struct bvec_merge_data
*bvm
,
634 struct bio_vec
*biovec
)
636 struct mddev
*mddev
= q
->queuedata
;
637 struct r10conf
*conf
= mddev
->private;
638 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
640 unsigned int chunk_sectors
;
641 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
642 struct geom
*geo
= &conf
->geo
;
644 chunk_sectors
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
) + 1;
645 if (conf
->reshape_progress
!= MaxSector
&&
646 ((sector
>= conf
->reshape_progress
) !=
647 conf
->mddev
->reshape_backwards
))
650 if (geo
->near_copies
< geo
->raid_disks
) {
651 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
652 + bio_sectors
)) << 9;
654 /* bio_add cannot handle a negative return */
656 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
657 return biovec
->bv_len
;
659 max
= biovec
->bv_len
;
661 if (mddev
->merge_check_needed
) {
663 struct r10bio r10_bio
;
664 struct r10dev devs
[conf
->copies
];
666 struct r10bio
*r10_bio
= &on_stack
.r10_bio
;
668 if (conf
->reshape_progress
!= MaxSector
) {
669 /* Cannot give any guidance during reshape */
670 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
671 return biovec
->bv_len
;
674 r10_bio
->sector
= sector
;
675 raid10_find_phys(conf
, r10_bio
);
677 for (s
= 0; s
< conf
->copies
; s
++) {
678 int disk
= r10_bio
->devs
[s
].devnum
;
679 struct md_rdev
*rdev
= rcu_dereference(
680 conf
->mirrors
[disk
].rdev
);
681 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
682 struct request_queue
*q
=
683 bdev_get_queue(rdev
->bdev
);
684 if (q
->merge_bvec_fn
) {
685 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
687 bvm
->bi_bdev
= rdev
->bdev
;
688 max
= min(max
, q
->merge_bvec_fn(
692 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
693 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
694 struct request_queue
*q
=
695 bdev_get_queue(rdev
->bdev
);
696 if (q
->merge_bvec_fn
) {
697 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
699 bvm
->bi_bdev
= rdev
->bdev
;
700 max
= min(max
, q
->merge_bvec_fn(
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
722 * The rdev for the device selected will have nr_pending incremented.
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
729 static struct md_rdev
*read_balance(struct r10conf
*conf
,
730 struct r10bio
*r10_bio
,
733 const sector_t this_sector
= r10_bio
->sector
;
735 int sectors
= r10_bio
->sectors
;
736 int best_good_sectors
;
737 sector_t new_distance
, best_dist
;
738 struct md_rdev
*best_rdev
, *rdev
= NULL
;
741 struct geom
*geo
= &conf
->geo
;
743 raid10_find_phys(conf
, r10_bio
);
746 sectors
= r10_bio
->sectors
;
749 best_dist
= MaxSector
;
750 best_good_sectors
= 0;
753 * Check if we can balance. We can balance on the whole
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
758 if (conf
->mddev
->recovery_cp
< MaxSector
759 && (this_sector
+ sectors
>= conf
->next_resync
))
762 for (slot
= 0; slot
< conf
->copies
; slot
++) {
767 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
769 disk
= r10_bio
->devs
[slot
].devnum
;
770 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
771 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
772 test_bit(Unmerged
, &rdev
->flags
) ||
773 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
774 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
776 test_bit(Faulty
, &rdev
->flags
) ||
777 test_bit(Unmerged
, &rdev
->flags
))
779 if (!test_bit(In_sync
, &rdev
->flags
) &&
780 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
783 dev_sector
= r10_bio
->devs
[slot
].addr
;
784 if (is_badblock(rdev
, dev_sector
, sectors
,
785 &first_bad
, &bad_sectors
)) {
786 if (best_dist
< MaxSector
)
787 /* Already have a better slot */
789 if (first_bad
<= dev_sector
) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
794 bad_sectors
-= (dev_sector
- first_bad
);
795 if (!do_balance
&& sectors
> bad_sectors
)
796 sectors
= bad_sectors
;
797 if (best_good_sectors
> sectors
)
798 best_good_sectors
= sectors
;
800 sector_t good_sectors
=
801 first_bad
- dev_sector
;
802 if (good_sectors
> best_good_sectors
) {
803 best_good_sectors
= good_sectors
;
808 /* Must read from here */
813 best_good_sectors
= sectors
;
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
822 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
825 /* for far > 1 always use the lowest address */
826 if (geo
->far_copies
> 1)
827 new_distance
= r10_bio
->devs
[slot
].addr
;
829 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
830 conf
->mirrors
[disk
].head_position
);
831 if (new_distance
< best_dist
) {
832 best_dist
= new_distance
;
837 if (slot
>= conf
->copies
) {
843 atomic_inc(&rdev
->nr_pending
);
844 if (test_bit(Faulty
, &rdev
->flags
)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
848 rdev_dec_pending(rdev
, conf
->mddev
);
851 r10_bio
->read_slot
= slot
;
855 *max_sectors
= best_good_sectors
;
860 int md_raid10_congested(struct mddev
*mddev
, int bits
)
862 struct r10conf
*conf
= mddev
->private;
865 if ((bits
& (1 << BDI_async_congested
)) &&
866 conf
->pending_count
>= max_queued_requests
)
871 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
874 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
875 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
876 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
878 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
884 EXPORT_SYMBOL_GPL(md_raid10_congested
);
886 static int raid10_congested(void *data
, int bits
)
888 struct mddev
*mddev
= data
;
890 return mddev_congested(mddev
, bits
) ||
891 md_raid10_congested(mddev
, bits
);
894 static void flush_pending_writes(struct r10conf
*conf
)
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
899 spin_lock_irq(&conf
->device_lock
);
901 if (conf
->pending_bio_list
.head
) {
903 bio
= bio_list_get(&conf
->pending_bio_list
);
904 conf
->pending_count
= 0;
905 spin_unlock_irq(&conf
->device_lock
);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf
->mddev
->bitmap
);
909 wake_up(&conf
->wait_barrier
);
911 while (bio
) { /* submit pending writes */
912 struct bio
*next
= bio
->bi_next
;
914 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
915 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
919 generic_make_request(bio
);
923 spin_unlock_irq(&conf
->device_lock
);
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
948 static void raise_barrier(struct r10conf
*conf
, int force
)
950 BUG_ON(force
&& !conf
->barrier
);
951 spin_lock_irq(&conf
->resync_lock
);
953 /* Wait until no block IO is waiting (unless 'force') */
954 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
955 conf
->resync_lock
, );
957 /* block any new IO from starting */
960 /* Now wait for all pending IO to complete */
961 wait_event_lock_irq(conf
->wait_barrier
,
962 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
963 conf
->resync_lock
, );
965 spin_unlock_irq(&conf
->resync_lock
);
968 static void lower_barrier(struct r10conf
*conf
)
971 spin_lock_irqsave(&conf
->resync_lock
, flags
);
973 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
974 wake_up(&conf
->wait_barrier
);
977 static void wait_barrier(struct r10conf
*conf
)
979 spin_lock_irq(&conf
->resync_lock
);
982 /* Wait for the barrier to drop.
983 * However if there are already pending
984 * requests (preventing the barrier from
985 * rising completely), and the
986 * pre-process bio queue isn't empty,
987 * then don't wait, as we need to empty
988 * that queue to get the nr_pending
991 wait_event_lock_irq(conf
->wait_barrier
,
995 !bio_list_empty(current
->bio_list
)),
1001 spin_unlock_irq(&conf
->resync_lock
);
1004 static void allow_barrier(struct r10conf
*conf
)
1006 unsigned long flags
;
1007 spin_lock_irqsave(&conf
->resync_lock
, flags
);
1009 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
1010 wake_up(&conf
->wait_barrier
);
1013 static void freeze_array(struct r10conf
*conf
)
1015 /* stop syncio and normal IO and wait for everything to
1017 * We increment barrier and nr_waiting, and then
1018 * wait until nr_pending match nr_queued+1
1019 * This is called in the context of one normal IO request
1020 * that has failed. Thus any sync request that might be pending
1021 * will be blocked by nr_pending, and we need to wait for
1022 * pending IO requests to complete or be queued for re-try.
1023 * Thus the number queued (nr_queued) plus this request (1)
1024 * must match the number of pending IOs (nr_pending) before
1027 spin_lock_irq(&conf
->resync_lock
);
1030 wait_event_lock_irq(conf
->wait_barrier
,
1031 conf
->nr_pending
== conf
->nr_queued
+1,
1033 flush_pending_writes(conf
));
1035 spin_unlock_irq(&conf
->resync_lock
);
1038 static void unfreeze_array(struct r10conf
*conf
)
1040 /* reverse the effect of the freeze */
1041 spin_lock_irq(&conf
->resync_lock
);
1044 wake_up(&conf
->wait_barrier
);
1045 spin_unlock_irq(&conf
->resync_lock
);
1048 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1049 struct md_rdev
*rdev
)
1051 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1052 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1053 return rdev
->data_offset
;
1055 return rdev
->new_data_offset
;
1058 struct raid10_plug_cb
{
1059 struct blk_plug_cb cb
;
1060 struct bio_list pending
;
1064 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1066 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1068 struct mddev
*mddev
= plug
->cb
.data
;
1069 struct r10conf
*conf
= mddev
->private;
1072 if (from_schedule
) {
1073 spin_lock_irq(&conf
->device_lock
);
1074 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1075 conf
->pending_count
+= plug
->pending_cnt
;
1076 spin_unlock_irq(&conf
->device_lock
);
1077 md_wakeup_thread(mddev
->thread
);
1082 /* we aren't scheduling, so we can do the write-out directly. */
1083 bio
= bio_list_get(&plug
->pending
);
1084 bitmap_unplug(mddev
->bitmap
);
1085 wake_up(&conf
->wait_barrier
);
1087 while (bio
) { /* submit pending writes */
1088 struct bio
*next
= bio
->bi_next
;
1089 bio
->bi_next
= NULL
;
1090 generic_make_request(bio
);
1096 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1098 struct r10conf
*conf
= mddev
->private;
1099 struct r10bio
*r10_bio
;
1100 struct bio
*read_bio
;
1102 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1103 int chunk_sects
= chunk_mask
+ 1;
1104 const int rw
= bio_data_dir(bio
);
1105 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1106 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1107 const unsigned long do_discard
= (bio
->bi_rw
1108 & (REQ_DISCARD
| REQ_SECURE
));
1109 unsigned long flags
;
1110 struct md_rdev
*blocked_rdev
;
1111 struct blk_plug_cb
*cb
;
1112 struct raid10_plug_cb
*plug
= NULL
;
1113 int sectors_handled
;
1117 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1118 md_flush_request(mddev
, bio
);
1122 /* If this request crosses a chunk boundary, we need to
1123 * split it. This will only happen for 1 PAGE (or less) requests.
1125 if (unlikely((bio
->bi_sector
& chunk_mask
) + (bio
->bi_size
>> 9)
1127 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1128 || conf
->prev
.near_copies
< conf
->prev
.raid_disks
))) {
1129 struct bio_pair
*bp
;
1130 /* Sanity check -- queue functions should prevent this happening */
1131 if ((bio
->bi_vcnt
!= 1 && bio
->bi_vcnt
!= 0) ||
1134 /* This is a one page bio that upper layers
1135 * refuse to split for us, so we need to split it.
1138 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1140 /* Each of these 'make_request' calls will call 'wait_barrier'.
1141 * If the first succeeds but the second blocks due to the resync
1142 * thread raising the barrier, we will deadlock because the
1143 * IO to the underlying device will be queued in generic_make_request
1144 * and will never complete, so will never reduce nr_pending.
1145 * So increment nr_waiting here so no new raise_barriers will
1146 * succeed, and so the second wait_barrier cannot block.
1148 spin_lock_irq(&conf
->resync_lock
);
1150 spin_unlock_irq(&conf
->resync_lock
);
1152 make_request(mddev
, &bp
->bio1
);
1153 make_request(mddev
, &bp
->bio2
);
1155 spin_lock_irq(&conf
->resync_lock
);
1157 wake_up(&conf
->wait_barrier
);
1158 spin_unlock_irq(&conf
->resync_lock
);
1160 bio_pair_release(bp
);
1163 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1165 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1171 md_write_start(mddev
, bio
);
1174 * Register the new request and wait if the reconstruction
1175 * thread has put up a bar for new requests.
1176 * Continue immediately if no resync is active currently.
1180 sectors
= bio
->bi_size
>> 9;
1181 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1182 bio
->bi_sector
< conf
->reshape_progress
&&
1183 bio
->bi_sector
+ sectors
> conf
->reshape_progress
) {
1184 /* IO spans the reshape position. Need to wait for
1187 allow_barrier(conf
);
1188 wait_event(conf
->wait_barrier
,
1189 conf
->reshape_progress
<= bio
->bi_sector
||
1190 conf
->reshape_progress
>= bio
->bi_sector
+ sectors
);
1193 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1194 bio_data_dir(bio
) == WRITE
&&
1195 (mddev
->reshape_backwards
1196 ? (bio
->bi_sector
< conf
->reshape_safe
&&
1197 bio
->bi_sector
+ sectors
> conf
->reshape_progress
)
1198 : (bio
->bi_sector
+ sectors
> conf
->reshape_safe
&&
1199 bio
->bi_sector
< conf
->reshape_progress
))) {
1200 /* Need to update reshape_position in metadata */
1201 mddev
->reshape_position
= conf
->reshape_progress
;
1202 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1203 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1204 md_wakeup_thread(mddev
->thread
);
1205 wait_event(mddev
->sb_wait
,
1206 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1208 conf
->reshape_safe
= mddev
->reshape_position
;
1211 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1213 r10_bio
->master_bio
= bio
;
1214 r10_bio
->sectors
= sectors
;
1216 r10_bio
->mddev
= mddev
;
1217 r10_bio
->sector
= bio
->bi_sector
;
1220 /* We might need to issue multiple reads to different
1221 * devices if there are bad blocks around, so we keep
1222 * track of the number of reads in bio->bi_phys_segments.
1223 * If this is 0, there is only one r10_bio and no locking
1224 * will be needed when the request completes. If it is
1225 * non-zero, then it is the number of not-completed requests.
1227 bio
->bi_phys_segments
= 0;
1228 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1232 * read balancing logic:
1234 struct md_rdev
*rdev
;
1238 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1240 raid_end_bio_io(r10_bio
);
1243 slot
= r10_bio
->read_slot
;
1245 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1246 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1249 r10_bio
->devs
[slot
].bio
= read_bio
;
1250 r10_bio
->devs
[slot
].rdev
= rdev
;
1252 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1253 choose_data_offset(r10_bio
, rdev
);
1254 read_bio
->bi_bdev
= rdev
->bdev
;
1255 read_bio
->bi_end_io
= raid10_end_read_request
;
1256 read_bio
->bi_rw
= READ
| do_sync
;
1257 read_bio
->bi_private
= r10_bio
;
1259 if (max_sectors
< r10_bio
->sectors
) {
1260 /* Could not read all from this device, so we will
1261 * need another r10_bio.
1263 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1265 r10_bio
->sectors
= max_sectors
;
1266 spin_lock_irq(&conf
->device_lock
);
1267 if (bio
->bi_phys_segments
== 0)
1268 bio
->bi_phys_segments
= 2;
1270 bio
->bi_phys_segments
++;
1271 spin_unlock(&conf
->device_lock
);
1272 /* Cannot call generic_make_request directly
1273 * as that will be queued in __generic_make_request
1274 * and subsequent mempool_alloc might block
1275 * waiting for it. so hand bio over to raid10d.
1277 reschedule_retry(r10_bio
);
1279 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1281 r10_bio
->master_bio
= bio
;
1282 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1285 r10_bio
->mddev
= mddev
;
1286 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1289 generic_make_request(read_bio
);
1296 if (conf
->pending_count
>= max_queued_requests
) {
1297 md_wakeup_thread(mddev
->thread
);
1298 wait_event(conf
->wait_barrier
,
1299 conf
->pending_count
< max_queued_requests
);
1301 /* first select target devices under rcu_lock and
1302 * inc refcount on their rdev. Record them by setting
1304 * If there are known/acknowledged bad blocks on any device
1305 * on which we have seen a write error, we want to avoid
1306 * writing to those blocks. This potentially requires several
1307 * writes to write around the bad blocks. Each set of writes
1308 * gets its own r10_bio with a set of bios attached. The number
1309 * of r10_bios is recored in bio->bi_phys_segments just as with
1313 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1314 raid10_find_phys(conf
, r10_bio
);
1316 blocked_rdev
= NULL
;
1318 max_sectors
= r10_bio
->sectors
;
1320 for (i
= 0; i
< conf
->copies
; i
++) {
1321 int d
= r10_bio
->devs
[i
].devnum
;
1322 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1323 struct md_rdev
*rrdev
= rcu_dereference(
1324 conf
->mirrors
[d
].replacement
);
1327 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1328 atomic_inc(&rdev
->nr_pending
);
1329 blocked_rdev
= rdev
;
1332 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1333 atomic_inc(&rrdev
->nr_pending
);
1334 blocked_rdev
= rrdev
;
1337 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1338 || test_bit(Unmerged
, &rrdev
->flags
)))
1341 r10_bio
->devs
[i
].bio
= NULL
;
1342 r10_bio
->devs
[i
].repl_bio
= NULL
;
1343 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
1344 test_bit(Unmerged
, &rdev
->flags
)) {
1345 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1348 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1350 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1354 is_bad
= is_badblock(rdev
, dev_sector
,
1356 &first_bad
, &bad_sectors
);
1358 /* Mustn't write here until the bad block
1361 atomic_inc(&rdev
->nr_pending
);
1362 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1363 blocked_rdev
= rdev
;
1366 if (is_bad
&& first_bad
<= dev_sector
) {
1367 /* Cannot write here at all */
1368 bad_sectors
-= (dev_sector
- first_bad
);
1369 if (bad_sectors
< max_sectors
)
1370 /* Mustn't write more than bad_sectors
1371 * to other devices yet
1373 max_sectors
= bad_sectors
;
1374 /* We don't set R10BIO_Degraded as that
1375 * only applies if the disk is missing,
1376 * so it might be re-added, and we want to
1377 * know to recover this chunk.
1378 * In this case the device is here, and the
1379 * fact that this chunk is not in-sync is
1380 * recorded in the bad block log.
1385 int good_sectors
= first_bad
- dev_sector
;
1386 if (good_sectors
< max_sectors
)
1387 max_sectors
= good_sectors
;
1390 r10_bio
->devs
[i
].bio
= bio
;
1391 atomic_inc(&rdev
->nr_pending
);
1393 r10_bio
->devs
[i
].repl_bio
= bio
;
1394 atomic_inc(&rrdev
->nr_pending
);
1399 if (unlikely(blocked_rdev
)) {
1400 /* Have to wait for this device to get unblocked, then retry */
1404 for (j
= 0; j
< i
; j
++) {
1405 if (r10_bio
->devs
[j
].bio
) {
1406 d
= r10_bio
->devs
[j
].devnum
;
1407 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1409 if (r10_bio
->devs
[j
].repl_bio
) {
1410 struct md_rdev
*rdev
;
1411 d
= r10_bio
->devs
[j
].devnum
;
1412 rdev
= conf
->mirrors
[d
].replacement
;
1414 /* Race with remove_disk */
1416 rdev
= conf
->mirrors
[d
].rdev
;
1418 rdev_dec_pending(rdev
, mddev
);
1421 allow_barrier(conf
);
1422 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1427 if (max_sectors
< r10_bio
->sectors
) {
1428 /* We are splitting this into multiple parts, so
1429 * we need to prepare for allocating another r10_bio.
1431 r10_bio
->sectors
= max_sectors
;
1432 spin_lock_irq(&conf
->device_lock
);
1433 if (bio
->bi_phys_segments
== 0)
1434 bio
->bi_phys_segments
= 2;
1436 bio
->bi_phys_segments
++;
1437 spin_unlock_irq(&conf
->device_lock
);
1439 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1441 atomic_set(&r10_bio
->remaining
, 1);
1442 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1444 for (i
= 0; i
< conf
->copies
; i
++) {
1446 int d
= r10_bio
->devs
[i
].devnum
;
1447 if (!r10_bio
->devs
[i
].bio
)
1450 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1451 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1453 r10_bio
->devs
[i
].bio
= mbio
;
1455 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1456 choose_data_offset(r10_bio
,
1457 conf
->mirrors
[d
].rdev
));
1458 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1459 mbio
->bi_end_io
= raid10_end_write_request
;
1460 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
| do_discard
;
1461 mbio
->bi_private
= r10_bio
;
1463 atomic_inc(&r10_bio
->remaining
);
1465 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1467 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1470 spin_lock_irqsave(&conf
->device_lock
, flags
);
1472 bio_list_add(&plug
->pending
, mbio
);
1473 plug
->pending_cnt
++;
1475 bio_list_add(&conf
->pending_bio_list
, mbio
);
1476 conf
->pending_count
++;
1478 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1480 md_wakeup_thread(mddev
->thread
);
1482 if (!r10_bio
->devs
[i
].repl_bio
)
1485 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1486 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1488 r10_bio
->devs
[i
].repl_bio
= mbio
;
1490 /* We are actively writing to the original device
1491 * so it cannot disappear, so the replacement cannot
1494 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1497 conf
->mirrors
[d
].replacement
));
1498 mbio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
1499 mbio
->bi_end_io
= raid10_end_write_request
;
1500 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
| do_discard
;
1501 mbio
->bi_private
= r10_bio
;
1503 atomic_inc(&r10_bio
->remaining
);
1504 spin_lock_irqsave(&conf
->device_lock
, flags
);
1505 bio_list_add(&conf
->pending_bio_list
, mbio
);
1506 conf
->pending_count
++;
1507 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1508 if (!mddev_check_plugged(mddev
))
1509 md_wakeup_thread(mddev
->thread
);
1512 /* Don't remove the bias on 'remaining' (one_write_done) until
1513 * after checking if we need to go around again.
1516 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1517 one_write_done(r10_bio
);
1518 /* We need another r10_bio. It has already been counted
1519 * in bio->bi_phys_segments.
1521 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1523 r10_bio
->master_bio
= bio
;
1524 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1526 r10_bio
->mddev
= mddev
;
1527 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1531 one_write_done(r10_bio
);
1533 /* In case raid10d snuck in to freeze_array */
1534 wake_up(&conf
->wait_barrier
);
1537 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1539 struct r10conf
*conf
= mddev
->private;
1542 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1543 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1544 if (conf
->geo
.near_copies
> 1)
1545 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1546 if (conf
->geo
.far_copies
> 1) {
1547 if (conf
->geo
.far_offset
)
1548 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1550 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1552 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1553 conf
->geo
.raid_disks
- mddev
->degraded
);
1554 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1555 seq_printf(seq
, "%s",
1556 conf
->mirrors
[i
].rdev
&&
1557 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1558 seq_printf(seq
, "]");
1561 /* check if there are enough drives for
1562 * every block to appear on atleast one.
1563 * Don't consider the device numbered 'ignore'
1564 * as we might be about to remove it.
1566 static int _enough(struct r10conf
*conf
, struct geom
*geo
, int ignore
)
1571 int n
= conf
->copies
;
1575 if (conf
->mirrors
[this].rdev
&&
1578 this = (this+1) % geo
->raid_disks
;
1582 first
= (first
+ geo
->near_copies
) % geo
->raid_disks
;
1583 } while (first
!= 0);
1587 static int enough(struct r10conf
*conf
, int ignore
)
1589 return _enough(conf
, &conf
->geo
, ignore
) &&
1590 _enough(conf
, &conf
->prev
, ignore
);
1593 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1595 char b
[BDEVNAME_SIZE
];
1596 struct r10conf
*conf
= mddev
->private;
1599 * If it is not operational, then we have already marked it as dead
1600 * else if it is the last working disks, ignore the error, let the
1601 * next level up know.
1602 * else mark the drive as failed
1604 if (test_bit(In_sync
, &rdev
->flags
)
1605 && !enough(conf
, rdev
->raid_disk
))
1607 * Don't fail the drive, just return an IO error.
1610 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1611 unsigned long flags
;
1612 spin_lock_irqsave(&conf
->device_lock
, flags
);
1614 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1616 * if recovery is running, make sure it aborts.
1618 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1620 set_bit(Blocked
, &rdev
->flags
);
1621 set_bit(Faulty
, &rdev
->flags
);
1622 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1624 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1625 "md/raid10:%s: Operation continuing on %d devices.\n",
1626 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1627 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1630 static void print_conf(struct r10conf
*conf
)
1633 struct raid10_info
*tmp
;
1635 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1637 printk(KERN_DEBUG
"(!conf)\n");
1640 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1641 conf
->geo
.raid_disks
);
1643 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1644 char b
[BDEVNAME_SIZE
];
1645 tmp
= conf
->mirrors
+ i
;
1647 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1648 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1649 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1650 bdevname(tmp
->rdev
->bdev
,b
));
1654 static void close_sync(struct r10conf
*conf
)
1657 allow_barrier(conf
);
1659 mempool_destroy(conf
->r10buf_pool
);
1660 conf
->r10buf_pool
= NULL
;
1663 static int raid10_spare_active(struct mddev
*mddev
)
1666 struct r10conf
*conf
= mddev
->private;
1667 struct raid10_info
*tmp
;
1669 unsigned long flags
;
1672 * Find all non-in_sync disks within the RAID10 configuration
1673 * and mark them in_sync
1675 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1676 tmp
= conf
->mirrors
+ i
;
1677 if (tmp
->replacement
1678 && tmp
->replacement
->recovery_offset
== MaxSector
1679 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1680 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1681 /* Replacement has just become active */
1683 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1686 /* Replaced device not technically faulty,
1687 * but we need to be sure it gets removed
1688 * and never re-added.
1690 set_bit(Faulty
, &tmp
->rdev
->flags
);
1691 sysfs_notify_dirent_safe(
1692 tmp
->rdev
->sysfs_state
);
1694 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1695 } else if (tmp
->rdev
1696 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1697 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1699 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1702 spin_lock_irqsave(&conf
->device_lock
, flags
);
1703 mddev
->degraded
-= count
;
1704 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1711 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1713 struct r10conf
*conf
= mddev
->private;
1717 int last
= conf
->geo
.raid_disks
- 1;
1718 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1720 if (mddev
->recovery_cp
< MaxSector
)
1721 /* only hot-add to in-sync arrays, as recovery is
1722 * very different from resync
1725 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, &conf
->prev
, -1))
1728 if (rdev
->raid_disk
>= 0)
1729 first
= last
= rdev
->raid_disk
;
1731 if (q
->merge_bvec_fn
) {
1732 set_bit(Unmerged
, &rdev
->flags
);
1733 mddev
->merge_check_needed
= 1;
1736 if (rdev
->saved_raid_disk
>= first
&&
1737 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1738 mirror
= rdev
->saved_raid_disk
;
1741 for ( ; mirror
<= last
; mirror
++) {
1742 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1743 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1746 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1747 p
->replacement
!= NULL
)
1749 clear_bit(In_sync
, &rdev
->flags
);
1750 set_bit(Replacement
, &rdev
->flags
);
1751 rdev
->raid_disk
= mirror
;
1753 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1754 rdev
->data_offset
<< 9);
1756 rcu_assign_pointer(p
->replacement
, rdev
);
1760 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1761 rdev
->data_offset
<< 9);
1763 p
->head_position
= 0;
1764 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1765 rdev
->raid_disk
= mirror
;
1767 if (rdev
->saved_raid_disk
!= mirror
)
1769 rcu_assign_pointer(p
->rdev
, rdev
);
1772 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1773 /* Some requests might not have seen this new
1774 * merge_bvec_fn. We must wait for them to complete
1775 * before merging the device fully.
1776 * First we make sure any code which has tested
1777 * our function has submitted the request, then
1778 * we wait for all outstanding requests to complete.
1780 synchronize_sched();
1781 raise_barrier(conf
, 0);
1782 lower_barrier(conf
);
1783 clear_bit(Unmerged
, &rdev
->flags
);
1785 md_integrity_add_rdev(rdev
, mddev
);
1786 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1787 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1793 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1795 struct r10conf
*conf
= mddev
->private;
1797 int number
= rdev
->raid_disk
;
1798 struct md_rdev
**rdevp
;
1799 struct raid10_info
*p
= conf
->mirrors
+ number
;
1802 if (rdev
== p
->rdev
)
1804 else if (rdev
== p
->replacement
)
1805 rdevp
= &p
->replacement
;
1809 if (test_bit(In_sync
, &rdev
->flags
) ||
1810 atomic_read(&rdev
->nr_pending
)) {
1814 /* Only remove faulty devices if recovery
1817 if (!test_bit(Faulty
, &rdev
->flags
) &&
1818 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1819 (!p
->replacement
|| p
->replacement
== rdev
) &&
1820 number
< conf
->geo
.raid_disks
&&
1827 if (atomic_read(&rdev
->nr_pending
)) {
1828 /* lost the race, try later */
1832 } else if (p
->replacement
) {
1833 /* We must have just cleared 'rdev' */
1834 p
->rdev
= p
->replacement
;
1835 clear_bit(Replacement
, &p
->replacement
->flags
);
1836 smp_mb(); /* Make sure other CPUs may see both as identical
1837 * but will never see neither -- if they are careful.
1839 p
->replacement
= NULL
;
1840 clear_bit(WantReplacement
, &rdev
->flags
);
1842 /* We might have just remove the Replacement as faulty
1843 * Clear the flag just in case
1845 clear_bit(WantReplacement
, &rdev
->flags
);
1847 err
= md_integrity_register(mddev
);
1856 static void end_sync_read(struct bio
*bio
, int error
)
1858 struct r10bio
*r10_bio
= bio
->bi_private
;
1859 struct r10conf
*conf
= r10_bio
->mddev
->private;
1862 if (bio
== r10_bio
->master_bio
) {
1863 /* this is a reshape read */
1864 d
= r10_bio
->read_slot
; /* really the read dev */
1866 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1868 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1869 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1871 /* The write handler will notice the lack of
1872 * R10BIO_Uptodate and record any errors etc
1874 atomic_add(r10_bio
->sectors
,
1875 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1877 /* for reconstruct, we always reschedule after a read.
1878 * for resync, only after all reads
1880 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1881 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1882 atomic_dec_and_test(&r10_bio
->remaining
)) {
1883 /* we have read all the blocks,
1884 * do the comparison in process context in raid10d
1886 reschedule_retry(r10_bio
);
1890 static void end_sync_request(struct r10bio
*r10_bio
)
1892 struct mddev
*mddev
= r10_bio
->mddev
;
1894 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1895 if (r10_bio
->master_bio
== NULL
) {
1896 /* the primary of several recovery bios */
1897 sector_t s
= r10_bio
->sectors
;
1898 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1899 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1900 reschedule_retry(r10_bio
);
1903 md_done_sync(mddev
, s
, 1);
1906 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1907 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1908 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1909 reschedule_retry(r10_bio
);
1917 static void end_sync_write(struct bio
*bio
, int error
)
1919 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1920 struct r10bio
*r10_bio
= bio
->bi_private
;
1921 struct mddev
*mddev
= r10_bio
->mddev
;
1922 struct r10conf
*conf
= mddev
->private;
1928 struct md_rdev
*rdev
= NULL
;
1930 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1932 rdev
= conf
->mirrors
[d
].replacement
;
1934 rdev
= conf
->mirrors
[d
].rdev
;
1938 md_error(mddev
, rdev
);
1940 set_bit(WriteErrorSeen
, &rdev
->flags
);
1941 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1942 set_bit(MD_RECOVERY_NEEDED
,
1943 &rdev
->mddev
->recovery
);
1944 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1946 } else if (is_badblock(rdev
,
1947 r10_bio
->devs
[slot
].addr
,
1949 &first_bad
, &bad_sectors
))
1950 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1952 rdev_dec_pending(rdev
, mddev
);
1954 end_sync_request(r10_bio
);
1958 * Note: sync and recover and handled very differently for raid10
1959 * This code is for resync.
1960 * For resync, we read through virtual addresses and read all blocks.
1961 * If there is any error, we schedule a write. The lowest numbered
1962 * drive is authoritative.
1963 * However requests come for physical address, so we need to map.
1964 * For every physical address there are raid_disks/copies virtual addresses,
1965 * which is always are least one, but is not necessarly an integer.
1966 * This means that a physical address can span multiple chunks, so we may
1967 * have to submit multiple io requests for a single sync request.
1970 * We check if all blocks are in-sync and only write to blocks that
1973 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1975 struct r10conf
*conf
= mddev
->private;
1977 struct bio
*tbio
, *fbio
;
1980 atomic_set(&r10_bio
->remaining
, 1);
1982 /* find the first device with a block */
1983 for (i
=0; i
<conf
->copies
; i
++)
1984 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1987 if (i
== conf
->copies
)
1991 fbio
= r10_bio
->devs
[i
].bio
;
1993 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1994 /* now find blocks with errors */
1995 for (i
=0 ; i
< conf
->copies
; i
++) {
1998 tbio
= r10_bio
->devs
[i
].bio
;
2000 if (tbio
->bi_end_io
!= end_sync_read
)
2004 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
2005 /* We know that the bi_io_vec layout is the same for
2006 * both 'first' and 'i', so we just compare them.
2007 * All vec entries are PAGE_SIZE;
2009 for (j
= 0; j
< vcnt
; j
++)
2010 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
2011 page_address(tbio
->bi_io_vec
[j
].bv_page
),
2012 fbio
->bi_io_vec
[j
].bv_len
))
2016 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2017 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2018 /* Don't fix anything. */
2021 /* Ok, we need to write this bio, either to correct an
2022 * inconsistency or to correct an unreadable block.
2023 * First we need to fixup bv_offset, bv_len and
2024 * bi_vecs, as the read request might have corrupted these
2026 tbio
->bi_vcnt
= vcnt
;
2027 tbio
->bi_size
= r10_bio
->sectors
<< 9;
2029 tbio
->bi_phys_segments
= 0;
2030 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2031 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
2032 tbio
->bi_next
= NULL
;
2033 tbio
->bi_rw
= WRITE
;
2034 tbio
->bi_private
= r10_bio
;
2035 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
2037 for (j
=0; j
< vcnt
; j
++) {
2038 tbio
->bi_io_vec
[j
].bv_offset
= 0;
2039 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
2041 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
2042 page_address(fbio
->bi_io_vec
[j
].bv_page
),
2045 tbio
->bi_end_io
= end_sync_write
;
2047 d
= r10_bio
->devs
[i
].devnum
;
2048 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2049 atomic_inc(&r10_bio
->remaining
);
2050 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
2052 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2053 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2054 generic_make_request(tbio
);
2057 /* Now write out to any replacement devices
2060 for (i
= 0; i
< conf
->copies
; i
++) {
2063 tbio
= r10_bio
->devs
[i
].repl_bio
;
2064 if (!tbio
|| !tbio
->bi_end_io
)
2066 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2067 && r10_bio
->devs
[i
].bio
!= fbio
)
2068 for (j
= 0; j
< vcnt
; j
++)
2069 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
2070 page_address(fbio
->bi_io_vec
[j
].bv_page
),
2072 d
= r10_bio
->devs
[i
].devnum
;
2073 atomic_inc(&r10_bio
->remaining
);
2074 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2075 tbio
->bi_size
>> 9);
2076 generic_make_request(tbio
);
2080 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2081 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2087 * Now for the recovery code.
2088 * Recovery happens across physical sectors.
2089 * We recover all non-is_sync drives by finding the virtual address of
2090 * each, and then choose a working drive that also has that virt address.
2091 * There is a separate r10_bio for each non-in_sync drive.
2092 * Only the first two slots are in use. The first for reading,
2093 * The second for writing.
2096 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2098 /* We got a read error during recovery.
2099 * We repeat the read in smaller page-sized sections.
2100 * If a read succeeds, write it to the new device or record
2101 * a bad block if we cannot.
2102 * If a read fails, record a bad block on both old and
2105 struct mddev
*mddev
= r10_bio
->mddev
;
2106 struct r10conf
*conf
= mddev
->private;
2107 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2109 int sectors
= r10_bio
->sectors
;
2111 int dr
= r10_bio
->devs
[0].devnum
;
2112 int dw
= r10_bio
->devs
[1].devnum
;
2116 struct md_rdev
*rdev
;
2120 if (s
> (PAGE_SIZE
>>9))
2123 rdev
= conf
->mirrors
[dr
].rdev
;
2124 addr
= r10_bio
->devs
[0].addr
+ sect
,
2125 ok
= sync_page_io(rdev
,
2128 bio
->bi_io_vec
[idx
].bv_page
,
2131 rdev
= conf
->mirrors
[dw
].rdev
;
2132 addr
= r10_bio
->devs
[1].addr
+ sect
;
2133 ok
= sync_page_io(rdev
,
2136 bio
->bi_io_vec
[idx
].bv_page
,
2139 set_bit(WriteErrorSeen
, &rdev
->flags
);
2140 if (!test_and_set_bit(WantReplacement
,
2142 set_bit(MD_RECOVERY_NEEDED
,
2143 &rdev
->mddev
->recovery
);
2147 /* We don't worry if we cannot set a bad block -
2148 * it really is bad so there is no loss in not
2151 rdev_set_badblocks(rdev
, addr
, s
, 0);
2153 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2154 /* need bad block on destination too */
2155 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2156 addr
= r10_bio
->devs
[1].addr
+ sect
;
2157 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2159 /* just abort the recovery */
2161 "md/raid10:%s: recovery aborted"
2162 " due to read error\n",
2165 conf
->mirrors
[dw
].recovery_disabled
2166 = mddev
->recovery_disabled
;
2167 set_bit(MD_RECOVERY_INTR
,
2180 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2182 struct r10conf
*conf
= mddev
->private;
2184 struct bio
*wbio
, *wbio2
;
2186 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2187 fix_recovery_read_error(r10_bio
);
2188 end_sync_request(r10_bio
);
2193 * share the pages with the first bio
2194 * and submit the write request
2196 d
= r10_bio
->devs
[1].devnum
;
2197 wbio
= r10_bio
->devs
[1].bio
;
2198 wbio2
= r10_bio
->devs
[1].repl_bio
;
2199 if (wbio
->bi_end_io
) {
2200 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2201 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2202 generic_make_request(wbio
);
2204 if (wbio2
&& wbio2
->bi_end_io
) {
2205 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2206 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2207 wbio2
->bi_size
>> 9);
2208 generic_make_request(wbio2
);
2214 * Used by fix_read_error() to decay the per rdev read_errors.
2215 * We halve the read error count for every hour that has elapsed
2216 * since the last recorded read error.
2219 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2221 struct timespec cur_time_mon
;
2222 unsigned long hours_since_last
;
2223 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2225 ktime_get_ts(&cur_time_mon
);
2227 if (rdev
->last_read_error
.tv_sec
== 0 &&
2228 rdev
->last_read_error
.tv_nsec
== 0) {
2229 /* first time we've seen a read error */
2230 rdev
->last_read_error
= cur_time_mon
;
2234 hours_since_last
= (cur_time_mon
.tv_sec
-
2235 rdev
->last_read_error
.tv_sec
) / 3600;
2237 rdev
->last_read_error
= cur_time_mon
;
2240 * if hours_since_last is > the number of bits in read_errors
2241 * just set read errors to 0. We do this to avoid
2242 * overflowing the shift of read_errors by hours_since_last.
2244 if (hours_since_last
>= 8 * sizeof(read_errors
))
2245 atomic_set(&rdev
->read_errors
, 0);
2247 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2250 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2251 int sectors
, struct page
*page
, int rw
)
2256 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2257 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2259 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2263 set_bit(WriteErrorSeen
, &rdev
->flags
);
2264 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2265 set_bit(MD_RECOVERY_NEEDED
,
2266 &rdev
->mddev
->recovery
);
2268 /* need to record an error - either for the block or the device */
2269 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2270 md_error(rdev
->mddev
, rdev
);
2275 * This is a kernel thread which:
2277 * 1. Retries failed read operations on working mirrors.
2278 * 2. Updates the raid superblock when problems encounter.
2279 * 3. Performs writes following reads for array synchronising.
2282 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2284 int sect
= 0; /* Offset from r10_bio->sector */
2285 int sectors
= r10_bio
->sectors
;
2286 struct md_rdev
*rdev
;
2287 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2288 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2290 /* still own a reference to this rdev, so it cannot
2291 * have been cleared recently.
2293 rdev
= conf
->mirrors
[d
].rdev
;
2295 if (test_bit(Faulty
, &rdev
->flags
))
2296 /* drive has already been failed, just ignore any
2297 more fix_read_error() attempts */
2300 check_decay_read_errors(mddev
, rdev
);
2301 atomic_inc(&rdev
->read_errors
);
2302 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2303 char b
[BDEVNAME_SIZE
];
2304 bdevname(rdev
->bdev
, b
);
2307 "md/raid10:%s: %s: Raid device exceeded "
2308 "read_error threshold [cur %d:max %d]\n",
2310 atomic_read(&rdev
->read_errors
), max_read_errors
);
2312 "md/raid10:%s: %s: Failing raid device\n",
2314 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2315 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2321 int sl
= r10_bio
->read_slot
;
2325 if (s
> (PAGE_SIZE
>>9))
2333 d
= r10_bio
->devs
[sl
].devnum
;
2334 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2336 !test_bit(Unmerged
, &rdev
->flags
) &&
2337 test_bit(In_sync
, &rdev
->flags
) &&
2338 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2339 &first_bad
, &bad_sectors
) == 0) {
2340 atomic_inc(&rdev
->nr_pending
);
2342 success
= sync_page_io(rdev
,
2343 r10_bio
->devs
[sl
].addr
+
2346 conf
->tmppage
, READ
, false);
2347 rdev_dec_pending(rdev
, mddev
);
2353 if (sl
== conf
->copies
)
2355 } while (!success
&& sl
!= r10_bio
->read_slot
);
2359 /* Cannot read from anywhere, just mark the block
2360 * as bad on the first device to discourage future
2363 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2364 rdev
= conf
->mirrors
[dn
].rdev
;
2366 if (!rdev_set_badblocks(
2368 r10_bio
->devs
[r10_bio
->read_slot
].addr
2371 md_error(mddev
, rdev
);
2372 r10_bio
->devs
[r10_bio
->read_slot
].bio
2379 /* write it back and re-read */
2381 while (sl
!= r10_bio
->read_slot
) {
2382 char b
[BDEVNAME_SIZE
];
2387 d
= r10_bio
->devs
[sl
].devnum
;
2388 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2390 test_bit(Unmerged
, &rdev
->flags
) ||
2391 !test_bit(In_sync
, &rdev
->flags
))
2394 atomic_inc(&rdev
->nr_pending
);
2396 if (r10_sync_page_io(rdev
,
2397 r10_bio
->devs
[sl
].addr
+
2399 s
, conf
->tmppage
, WRITE
)
2401 /* Well, this device is dead */
2403 "md/raid10:%s: read correction "
2405 " (%d sectors at %llu on %s)\n",
2407 (unsigned long long)(
2409 choose_data_offset(r10_bio
,
2411 bdevname(rdev
->bdev
, b
));
2412 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2415 bdevname(rdev
->bdev
, b
));
2417 rdev_dec_pending(rdev
, mddev
);
2421 while (sl
!= r10_bio
->read_slot
) {
2422 char b
[BDEVNAME_SIZE
];
2427 d
= r10_bio
->devs
[sl
].devnum
;
2428 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2430 !test_bit(In_sync
, &rdev
->flags
))
2433 atomic_inc(&rdev
->nr_pending
);
2435 switch (r10_sync_page_io(rdev
,
2436 r10_bio
->devs
[sl
].addr
+
2441 /* Well, this device is dead */
2443 "md/raid10:%s: unable to read back "
2445 " (%d sectors at %llu on %s)\n",
2447 (unsigned long long)(
2449 choose_data_offset(r10_bio
, rdev
)),
2450 bdevname(rdev
->bdev
, b
));
2451 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2454 bdevname(rdev
->bdev
, b
));
2458 "md/raid10:%s: read error corrected"
2459 " (%d sectors at %llu on %s)\n",
2461 (unsigned long long)(
2463 choose_data_offset(r10_bio
, rdev
)),
2464 bdevname(rdev
->bdev
, b
));
2465 atomic_add(s
, &rdev
->corrected_errors
);
2468 rdev_dec_pending(rdev
, mddev
);
2478 static void bi_complete(struct bio
*bio
, int error
)
2480 complete((struct completion
*)bio
->bi_private
);
2483 static int submit_bio_wait(int rw
, struct bio
*bio
)
2485 struct completion event
;
2488 init_completion(&event
);
2489 bio
->bi_private
= &event
;
2490 bio
->bi_end_io
= bi_complete
;
2491 submit_bio(rw
, bio
);
2492 wait_for_completion(&event
);
2494 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2497 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2499 struct bio
*bio
= r10_bio
->master_bio
;
2500 struct mddev
*mddev
= r10_bio
->mddev
;
2501 struct r10conf
*conf
= mddev
->private;
2502 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2503 /* bio has the data to be written to slot 'i' where
2504 * we just recently had a write error.
2505 * We repeatedly clone the bio and trim down to one block,
2506 * then try the write. Where the write fails we record
2508 * It is conceivable that the bio doesn't exactly align with
2509 * blocks. We must handle this.
2511 * We currently own a reference to the rdev.
2517 int sect_to_write
= r10_bio
->sectors
;
2520 if (rdev
->badblocks
.shift
< 0)
2523 block_sectors
= 1 << rdev
->badblocks
.shift
;
2524 sector
= r10_bio
->sector
;
2525 sectors
= ((r10_bio
->sector
+ block_sectors
)
2526 & ~(sector_t
)(block_sectors
- 1))
2529 while (sect_to_write
) {
2531 if (sectors
> sect_to_write
)
2532 sectors
= sect_to_write
;
2533 /* Write at 'sector' for 'sectors' */
2534 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2535 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2536 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2537 choose_data_offset(r10_bio
, rdev
) +
2538 (sector
- r10_bio
->sector
));
2539 wbio
->bi_bdev
= rdev
->bdev
;
2540 if (submit_bio_wait(WRITE
, wbio
) == 0)
2542 ok
= rdev_set_badblocks(rdev
, sector
,
2547 sect_to_write
-= sectors
;
2549 sectors
= block_sectors
;
2554 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2556 int slot
= r10_bio
->read_slot
;
2558 struct r10conf
*conf
= mddev
->private;
2559 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2560 char b
[BDEVNAME_SIZE
];
2561 unsigned long do_sync
;
2564 /* we got a read error. Maybe the drive is bad. Maybe just
2565 * the block and we can fix it.
2566 * We freeze all other IO, and try reading the block from
2567 * other devices. When we find one, we re-write
2568 * and check it that fixes the read error.
2569 * This is all done synchronously while the array is
2572 bio
= r10_bio
->devs
[slot
].bio
;
2573 bdevname(bio
->bi_bdev
, b
);
2575 r10_bio
->devs
[slot
].bio
= NULL
;
2577 if (mddev
->ro
== 0) {
2579 fix_read_error(conf
, mddev
, r10_bio
);
2580 unfreeze_array(conf
);
2582 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2584 rdev_dec_pending(rdev
, mddev
);
2587 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2589 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2590 " read error for block %llu\n",
2592 (unsigned long long)r10_bio
->sector
);
2593 raid_end_bio_io(r10_bio
);
2597 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2598 slot
= r10_bio
->read_slot
;
2601 "md/raid10:%s: %s: redirecting "
2602 "sector %llu to another mirror\n",
2604 bdevname(rdev
->bdev
, b
),
2605 (unsigned long long)r10_bio
->sector
);
2606 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2609 r10_bio
->sector
- bio
->bi_sector
,
2611 r10_bio
->devs
[slot
].bio
= bio
;
2612 r10_bio
->devs
[slot
].rdev
= rdev
;
2613 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2614 + choose_data_offset(r10_bio
, rdev
);
2615 bio
->bi_bdev
= rdev
->bdev
;
2616 bio
->bi_rw
= READ
| do_sync
;
2617 bio
->bi_private
= r10_bio
;
2618 bio
->bi_end_io
= raid10_end_read_request
;
2619 if (max_sectors
< r10_bio
->sectors
) {
2620 /* Drat - have to split this up more */
2621 struct bio
*mbio
= r10_bio
->master_bio
;
2622 int sectors_handled
=
2623 r10_bio
->sector
+ max_sectors
2625 r10_bio
->sectors
= max_sectors
;
2626 spin_lock_irq(&conf
->device_lock
);
2627 if (mbio
->bi_phys_segments
== 0)
2628 mbio
->bi_phys_segments
= 2;
2630 mbio
->bi_phys_segments
++;
2631 spin_unlock_irq(&conf
->device_lock
);
2632 generic_make_request(bio
);
2634 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2636 r10_bio
->master_bio
= mbio
;
2637 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2640 set_bit(R10BIO_ReadError
,
2642 r10_bio
->mddev
= mddev
;
2643 r10_bio
->sector
= mbio
->bi_sector
2648 generic_make_request(bio
);
2651 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2653 /* Some sort of write request has finished and it
2654 * succeeded in writing where we thought there was a
2655 * bad block. So forget the bad block.
2656 * Or possibly if failed and we need to record
2660 struct md_rdev
*rdev
;
2662 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2663 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2664 for (m
= 0; m
< conf
->copies
; m
++) {
2665 int dev
= r10_bio
->devs
[m
].devnum
;
2666 rdev
= conf
->mirrors
[dev
].rdev
;
2667 if (r10_bio
->devs
[m
].bio
== NULL
)
2669 if (test_bit(BIO_UPTODATE
,
2670 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2671 rdev_clear_badblocks(
2673 r10_bio
->devs
[m
].addr
,
2674 r10_bio
->sectors
, 0);
2676 if (!rdev_set_badblocks(
2678 r10_bio
->devs
[m
].addr
,
2679 r10_bio
->sectors
, 0))
2680 md_error(conf
->mddev
, rdev
);
2682 rdev
= conf
->mirrors
[dev
].replacement
;
2683 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2685 if (test_bit(BIO_UPTODATE
,
2686 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2687 rdev_clear_badblocks(
2689 r10_bio
->devs
[m
].addr
,
2690 r10_bio
->sectors
, 0);
2692 if (!rdev_set_badblocks(
2694 r10_bio
->devs
[m
].addr
,
2695 r10_bio
->sectors
, 0))
2696 md_error(conf
->mddev
, rdev
);
2701 for (m
= 0; m
< conf
->copies
; m
++) {
2702 int dev
= r10_bio
->devs
[m
].devnum
;
2703 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2704 rdev
= conf
->mirrors
[dev
].rdev
;
2705 if (bio
== IO_MADE_GOOD
) {
2706 rdev_clear_badblocks(
2708 r10_bio
->devs
[m
].addr
,
2709 r10_bio
->sectors
, 0);
2710 rdev_dec_pending(rdev
, conf
->mddev
);
2711 } else if (bio
!= NULL
&&
2712 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2713 if (!narrow_write_error(r10_bio
, m
)) {
2714 md_error(conf
->mddev
, rdev
);
2715 set_bit(R10BIO_Degraded
,
2718 rdev_dec_pending(rdev
, conf
->mddev
);
2720 bio
= r10_bio
->devs
[m
].repl_bio
;
2721 rdev
= conf
->mirrors
[dev
].replacement
;
2722 if (rdev
&& bio
== IO_MADE_GOOD
) {
2723 rdev_clear_badblocks(
2725 r10_bio
->devs
[m
].addr
,
2726 r10_bio
->sectors
, 0);
2727 rdev_dec_pending(rdev
, conf
->mddev
);
2730 if (test_bit(R10BIO_WriteError
,
2732 close_write(r10_bio
);
2733 raid_end_bio_io(r10_bio
);
2737 static void raid10d(struct md_thread
*thread
)
2739 struct mddev
*mddev
= thread
->mddev
;
2740 struct r10bio
*r10_bio
;
2741 unsigned long flags
;
2742 struct r10conf
*conf
= mddev
->private;
2743 struct list_head
*head
= &conf
->retry_list
;
2744 struct blk_plug plug
;
2746 md_check_recovery(mddev
);
2748 blk_start_plug(&plug
);
2751 flush_pending_writes(conf
);
2753 spin_lock_irqsave(&conf
->device_lock
, flags
);
2754 if (list_empty(head
)) {
2755 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2758 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2759 list_del(head
->prev
);
2761 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2763 mddev
= r10_bio
->mddev
;
2764 conf
= mddev
->private;
2765 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2766 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2767 handle_write_completed(conf
, r10_bio
);
2768 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2769 reshape_request_write(mddev
, r10_bio
);
2770 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2771 sync_request_write(mddev
, r10_bio
);
2772 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2773 recovery_request_write(mddev
, r10_bio
);
2774 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2775 handle_read_error(mddev
, r10_bio
);
2777 /* just a partial read to be scheduled from a
2780 int slot
= r10_bio
->read_slot
;
2781 generic_make_request(r10_bio
->devs
[slot
].bio
);
2785 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2786 md_check_recovery(mddev
);
2788 blk_finish_plug(&plug
);
2792 static int init_resync(struct r10conf
*conf
)
2797 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2798 BUG_ON(conf
->r10buf_pool
);
2799 conf
->have_replacement
= 0;
2800 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2801 if (conf
->mirrors
[i
].replacement
)
2802 conf
->have_replacement
= 1;
2803 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2804 if (!conf
->r10buf_pool
)
2806 conf
->next_resync
= 0;
2811 * perform a "sync" on one "block"
2813 * We need to make sure that no normal I/O request - particularly write
2814 * requests - conflict with active sync requests.
2816 * This is achieved by tracking pending requests and a 'barrier' concept
2817 * that can be installed to exclude normal IO requests.
2819 * Resync and recovery are handled very differently.
2820 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2822 * For resync, we iterate over virtual addresses, read all copies,
2823 * and update if there are differences. If only one copy is live,
2825 * For recovery, we iterate over physical addresses, read a good
2826 * value for each non-in_sync drive, and over-write.
2828 * So, for recovery we may have several outstanding complex requests for a
2829 * given address, one for each out-of-sync device. We model this by allocating
2830 * a number of r10_bio structures, one for each out-of-sync device.
2831 * As we setup these structures, we collect all bio's together into a list
2832 * which we then process collectively to add pages, and then process again
2833 * to pass to generic_make_request.
2835 * The r10_bio structures are linked using a borrowed master_bio pointer.
2836 * This link is counted in ->remaining. When the r10_bio that points to NULL
2837 * has its remaining count decremented to 0, the whole complex operation
2842 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2843 int *skipped
, int go_faster
)
2845 struct r10conf
*conf
= mddev
->private;
2846 struct r10bio
*r10_bio
;
2847 struct bio
*biolist
= NULL
, *bio
;
2848 sector_t max_sector
, nr_sectors
;
2851 sector_t sync_blocks
;
2852 sector_t sectors_skipped
= 0;
2853 int chunks_skipped
= 0;
2854 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2856 if (!conf
->r10buf_pool
)
2857 if (init_resync(conf
))
2861 max_sector
= mddev
->dev_sectors
;
2862 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2863 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2864 max_sector
= mddev
->resync_max_sectors
;
2865 if (sector_nr
>= max_sector
) {
2866 /* If we aborted, we need to abort the
2867 * sync on the 'current' bitmap chucks (there can
2868 * be several when recovering multiple devices).
2869 * as we may have started syncing it but not finished.
2870 * We can find the current address in
2871 * mddev->curr_resync, but for recovery,
2872 * we need to convert that to several
2873 * virtual addresses.
2875 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2880 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2881 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2882 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2884 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2886 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2887 bitmap_end_sync(mddev
->bitmap
, sect
,
2891 /* completed sync */
2892 if ((!mddev
->bitmap
|| conf
->fullsync
)
2893 && conf
->have_replacement
2894 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2895 /* Completed a full sync so the replacements
2896 * are now fully recovered.
2898 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2899 if (conf
->mirrors
[i
].replacement
)
2900 conf
->mirrors
[i
].replacement
2906 bitmap_close_sync(mddev
->bitmap
);
2909 return sectors_skipped
;
2912 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2913 return reshape_request(mddev
, sector_nr
, skipped
);
2915 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2916 /* if there has been nothing to do on any drive,
2917 * then there is nothing to do at all..
2920 return (max_sector
- sector_nr
) + sectors_skipped
;
2923 if (max_sector
> mddev
->resync_max
)
2924 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2926 /* make sure whole request will fit in a chunk - if chunks
2929 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2930 max_sector
> (sector_nr
| chunk_mask
))
2931 max_sector
= (sector_nr
| chunk_mask
) + 1;
2933 * If there is non-resync activity waiting for us then
2934 * put in a delay to throttle resync.
2936 if (!go_faster
&& conf
->nr_waiting
)
2937 msleep_interruptible(1000);
2939 /* Again, very different code for resync and recovery.
2940 * Both must result in an r10bio with a list of bios that
2941 * have bi_end_io, bi_sector, bi_bdev set,
2942 * and bi_private set to the r10bio.
2943 * For recovery, we may actually create several r10bios
2944 * with 2 bios in each, that correspond to the bios in the main one.
2945 * In this case, the subordinate r10bios link back through a
2946 * borrowed master_bio pointer, and the counter in the master
2947 * includes a ref from each subordinate.
2949 /* First, we decide what to do and set ->bi_end_io
2950 * To end_sync_read if we want to read, and
2951 * end_sync_write if we will want to write.
2954 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2955 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2956 /* recovery... the complicated one */
2960 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2966 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
2968 if ((mirror
->rdev
== NULL
||
2969 test_bit(In_sync
, &mirror
->rdev
->flags
))
2971 (mirror
->replacement
== NULL
||
2973 &mirror
->replacement
->flags
)))
2977 /* want to reconstruct this device */
2979 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2980 if (sect
>= mddev
->resync_max_sectors
) {
2981 /* last stripe is not complete - don't
2982 * try to recover this sector.
2986 /* Unless we are doing a full sync, or a replacement
2987 * we only need to recover the block if it is set in
2990 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2992 if (sync_blocks
< max_sync
)
2993 max_sync
= sync_blocks
;
2995 mirror
->replacement
== NULL
&&
2997 /* yep, skip the sync_blocks here, but don't assume
2998 * that there will never be anything to do here
3000 chunks_skipped
= -1;
3004 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3005 raise_barrier(conf
, rb2
!= NULL
);
3006 atomic_set(&r10_bio
->remaining
, 0);
3008 r10_bio
->master_bio
= (struct bio
*)rb2
;
3010 atomic_inc(&rb2
->remaining
);
3011 r10_bio
->mddev
= mddev
;
3012 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3013 r10_bio
->sector
= sect
;
3015 raid10_find_phys(conf
, r10_bio
);
3017 /* Need to check if the array will still be
3020 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
3021 if (conf
->mirrors
[j
].rdev
== NULL
||
3022 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
3027 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3028 &sync_blocks
, still_degraded
);
3031 for (j
=0; j
<conf
->copies
;j
++) {
3033 int d
= r10_bio
->devs
[j
].devnum
;
3034 sector_t from_addr
, to_addr
;
3035 struct md_rdev
*rdev
;
3036 sector_t sector
, first_bad
;
3038 if (!conf
->mirrors
[d
].rdev
||
3039 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
3041 /* This is where we read from */
3043 rdev
= conf
->mirrors
[d
].rdev
;
3044 sector
= r10_bio
->devs
[j
].addr
;
3046 if (is_badblock(rdev
, sector
, max_sync
,
3047 &first_bad
, &bad_sectors
)) {
3048 if (first_bad
> sector
)
3049 max_sync
= first_bad
- sector
;
3051 bad_sectors
-= (sector
3053 if (max_sync
> bad_sectors
)
3054 max_sync
= bad_sectors
;
3058 bio
= r10_bio
->devs
[0].bio
;
3059 bio
->bi_next
= biolist
;
3061 bio
->bi_private
= r10_bio
;
3062 bio
->bi_end_io
= end_sync_read
;
3064 from_addr
= r10_bio
->devs
[j
].addr
;
3065 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
3066 bio
->bi_bdev
= rdev
->bdev
;
3067 atomic_inc(&rdev
->nr_pending
);
3068 /* and we write to 'i' (if not in_sync) */
3070 for (k
=0; k
<conf
->copies
; k
++)
3071 if (r10_bio
->devs
[k
].devnum
== i
)
3073 BUG_ON(k
== conf
->copies
);
3074 to_addr
= r10_bio
->devs
[k
].addr
;
3075 r10_bio
->devs
[0].devnum
= d
;
3076 r10_bio
->devs
[0].addr
= from_addr
;
3077 r10_bio
->devs
[1].devnum
= i
;
3078 r10_bio
->devs
[1].addr
= to_addr
;
3080 rdev
= mirror
->rdev
;
3081 if (!test_bit(In_sync
, &rdev
->flags
)) {
3082 bio
= r10_bio
->devs
[1].bio
;
3083 bio
->bi_next
= biolist
;
3085 bio
->bi_private
= r10_bio
;
3086 bio
->bi_end_io
= end_sync_write
;
3088 bio
->bi_sector
= to_addr
3089 + rdev
->data_offset
;
3090 bio
->bi_bdev
= rdev
->bdev
;
3091 atomic_inc(&r10_bio
->remaining
);
3093 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3095 /* and maybe write to replacement */
3096 bio
= r10_bio
->devs
[1].repl_bio
;
3098 bio
->bi_end_io
= NULL
;
3099 rdev
= mirror
->replacement
;
3100 /* Note: if rdev != NULL, then bio
3101 * cannot be NULL as r10buf_pool_alloc will
3102 * have allocated it.
3103 * So the second test here is pointless.
3104 * But it keeps semantic-checkers happy, and
3105 * this comment keeps human reviewers
3108 if (rdev
== NULL
|| bio
== NULL
||
3109 test_bit(Faulty
, &rdev
->flags
))
3111 bio
->bi_next
= biolist
;
3113 bio
->bi_private
= r10_bio
;
3114 bio
->bi_end_io
= end_sync_write
;
3116 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
3117 bio
->bi_bdev
= rdev
->bdev
;
3118 atomic_inc(&r10_bio
->remaining
);
3121 if (j
== conf
->copies
) {
3122 /* Cannot recover, so abort the recovery or
3123 * record a bad block */
3126 atomic_dec(&rb2
->remaining
);
3129 /* problem is that there are bad blocks
3130 * on other device(s)
3133 for (k
= 0; k
< conf
->copies
; k
++)
3134 if (r10_bio
->devs
[k
].devnum
== i
)
3136 if (!test_bit(In_sync
,
3137 &mirror
->rdev
->flags
)
3138 && !rdev_set_badblocks(
3140 r10_bio
->devs
[k
].addr
,
3143 if (mirror
->replacement
&&
3144 !rdev_set_badblocks(
3145 mirror
->replacement
,
3146 r10_bio
->devs
[k
].addr
,
3151 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3153 printk(KERN_INFO
"md/raid10:%s: insufficient "
3154 "working devices for recovery.\n",
3156 mirror
->recovery_disabled
3157 = mddev
->recovery_disabled
;
3162 if (biolist
== NULL
) {
3164 struct r10bio
*rb2
= r10_bio
;
3165 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3166 rb2
->master_bio
= NULL
;
3172 /* resync. Schedule a read for every block at this virt offset */
3175 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3177 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3178 &sync_blocks
, mddev
->degraded
) &&
3179 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3180 &mddev
->recovery
)) {
3181 /* We can skip this block */
3183 return sync_blocks
+ sectors_skipped
;
3185 if (sync_blocks
< max_sync
)
3186 max_sync
= sync_blocks
;
3187 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3189 r10_bio
->mddev
= mddev
;
3190 atomic_set(&r10_bio
->remaining
, 0);
3191 raise_barrier(conf
, 0);
3192 conf
->next_resync
= sector_nr
;
3194 r10_bio
->master_bio
= NULL
;
3195 r10_bio
->sector
= sector_nr
;
3196 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3197 raid10_find_phys(conf
, r10_bio
);
3198 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3200 for (i
= 0; i
< conf
->copies
; i
++) {
3201 int d
= r10_bio
->devs
[i
].devnum
;
3202 sector_t first_bad
, sector
;
3205 if (r10_bio
->devs
[i
].repl_bio
)
3206 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3208 bio
= r10_bio
->devs
[i
].bio
;
3209 bio
->bi_end_io
= NULL
;
3210 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3211 if (conf
->mirrors
[d
].rdev
== NULL
||
3212 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3214 sector
= r10_bio
->devs
[i
].addr
;
3215 if (is_badblock(conf
->mirrors
[d
].rdev
,
3217 &first_bad
, &bad_sectors
)) {
3218 if (first_bad
> sector
)
3219 max_sync
= first_bad
- sector
;
3221 bad_sectors
-= (sector
- first_bad
);
3222 if (max_sync
> bad_sectors
)
3223 max_sync
= bad_sectors
;
3227 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3228 atomic_inc(&r10_bio
->remaining
);
3229 bio
->bi_next
= biolist
;
3231 bio
->bi_private
= r10_bio
;
3232 bio
->bi_end_io
= end_sync_read
;
3234 bio
->bi_sector
= sector
+
3235 conf
->mirrors
[d
].rdev
->data_offset
;
3236 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3239 if (conf
->mirrors
[d
].replacement
== NULL
||
3241 &conf
->mirrors
[d
].replacement
->flags
))
3244 /* Need to set up for writing to the replacement */
3245 bio
= r10_bio
->devs
[i
].repl_bio
;
3246 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3248 sector
= r10_bio
->devs
[i
].addr
;
3249 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3250 bio
->bi_next
= biolist
;
3252 bio
->bi_private
= r10_bio
;
3253 bio
->bi_end_io
= end_sync_write
;
3255 bio
->bi_sector
= sector
+
3256 conf
->mirrors
[d
].replacement
->data_offset
;
3257 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3262 for (i
=0; i
<conf
->copies
; i
++) {
3263 int d
= r10_bio
->devs
[i
].devnum
;
3264 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3265 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3267 if (r10_bio
->devs
[i
].repl_bio
&&
3268 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3270 conf
->mirrors
[d
].replacement
,
3279 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3281 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3283 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3286 bio
->bi_phys_segments
= 0;
3291 if (sector_nr
+ max_sync
< max_sector
)
3292 max_sector
= sector_nr
+ max_sync
;
3295 int len
= PAGE_SIZE
;
3296 if (sector_nr
+ (len
>>9) > max_sector
)
3297 len
= (max_sector
- sector_nr
) << 9;
3300 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3302 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3303 if (bio_add_page(bio
, page
, len
, 0))
3307 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3308 for (bio2
= biolist
;
3309 bio2
&& bio2
!= bio
;
3310 bio2
= bio2
->bi_next
) {
3311 /* remove last page from this bio */
3313 bio2
->bi_size
-= len
;
3314 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3318 nr_sectors
+= len
>>9;
3319 sector_nr
+= len
>>9;
3320 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3322 r10_bio
->sectors
= nr_sectors
;
3326 biolist
= biolist
->bi_next
;
3328 bio
->bi_next
= NULL
;
3329 r10_bio
= bio
->bi_private
;
3330 r10_bio
->sectors
= nr_sectors
;
3332 if (bio
->bi_end_io
== end_sync_read
) {
3333 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3334 generic_make_request(bio
);
3338 if (sectors_skipped
)
3339 /* pretend they weren't skipped, it makes
3340 * no important difference in this case
3342 md_done_sync(mddev
, sectors_skipped
, 1);
3344 return sectors_skipped
+ nr_sectors
;
3346 /* There is nowhere to write, so all non-sync
3347 * drives must be failed or in resync, all drives
3348 * have a bad block, so try the next chunk...
3350 if (sector_nr
+ max_sync
< max_sector
)
3351 max_sector
= sector_nr
+ max_sync
;
3353 sectors_skipped
+= (max_sector
- sector_nr
);
3355 sector_nr
= max_sector
;
3360 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3363 struct r10conf
*conf
= mddev
->private;
3366 raid_disks
= min(conf
->geo
.raid_disks
,
3367 conf
->prev
.raid_disks
);
3369 sectors
= conf
->dev_sectors
;
3371 size
= sectors
>> conf
->geo
.chunk_shift
;
3372 sector_div(size
, conf
->geo
.far_copies
);
3373 size
= size
* raid_disks
;
3374 sector_div(size
, conf
->geo
.near_copies
);
3376 return size
<< conf
->geo
.chunk_shift
;
3379 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3381 /* Calculate the number of sectors-per-device that will
3382 * actually be used, and set conf->dev_sectors and
3386 size
= size
>> conf
->geo
.chunk_shift
;
3387 sector_div(size
, conf
->geo
.far_copies
);
3388 size
= size
* conf
->geo
.raid_disks
;
3389 sector_div(size
, conf
->geo
.near_copies
);
3390 /* 'size' is now the number of chunks in the array */
3391 /* calculate "used chunks per device" */
3392 size
= size
* conf
->copies
;
3394 /* We need to round up when dividing by raid_disks to
3395 * get the stride size.
3397 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3399 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3401 if (conf
->geo
.far_offset
)
3402 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3404 sector_div(size
, conf
->geo
.far_copies
);
3405 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3409 enum geo_type
{geo_new
, geo_old
, geo_start
};
3410 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3413 int layout
, chunk
, disks
;
3416 layout
= mddev
->layout
;
3417 chunk
= mddev
->chunk_sectors
;
3418 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3421 layout
= mddev
->new_layout
;
3422 chunk
= mddev
->new_chunk_sectors
;
3423 disks
= mddev
->raid_disks
;
3425 default: /* avoid 'may be unused' warnings */
3426 case geo_start
: /* new when starting reshape - raid_disks not
3428 layout
= mddev
->new_layout
;
3429 chunk
= mddev
->new_chunk_sectors
;
3430 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3435 if (chunk
< (PAGE_SIZE
>> 9) ||
3436 !is_power_of_2(chunk
))
3439 fc
= (layout
>> 8) & 255;
3440 fo
= layout
& (1<<16);
3441 geo
->raid_disks
= disks
;
3442 geo
->near_copies
= nc
;
3443 geo
->far_copies
= fc
;
3444 geo
->far_offset
= fo
;
3445 geo
->chunk_mask
= chunk
- 1;
3446 geo
->chunk_shift
= ffz(~chunk
);
3450 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3452 struct r10conf
*conf
= NULL
;
3457 copies
= setup_geo(&geo
, mddev
, geo_new
);
3460 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3461 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3462 mdname(mddev
), PAGE_SIZE
);
3466 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3467 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3468 mdname(mddev
), mddev
->new_layout
);
3473 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3477 /* FIXME calc properly */
3478 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3479 max(0,mddev
->delta_disks
)),
3484 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3489 conf
->copies
= copies
;
3490 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3491 r10bio_pool_free
, conf
);
3492 if (!conf
->r10bio_pool
)
3495 calc_sectors(conf
, mddev
->dev_sectors
);
3496 if (mddev
->reshape_position
== MaxSector
) {
3497 conf
->prev
= conf
->geo
;
3498 conf
->reshape_progress
= MaxSector
;
3500 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3504 conf
->reshape_progress
= mddev
->reshape_position
;
3505 if (conf
->prev
.far_offset
)
3506 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3508 /* far_copies must be 1 */
3509 conf
->prev
.stride
= conf
->dev_sectors
;
3511 spin_lock_init(&conf
->device_lock
);
3512 INIT_LIST_HEAD(&conf
->retry_list
);
3514 spin_lock_init(&conf
->resync_lock
);
3515 init_waitqueue_head(&conf
->wait_barrier
);
3517 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3521 conf
->mddev
= mddev
;
3526 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3529 if (conf
->r10bio_pool
)
3530 mempool_destroy(conf
->r10bio_pool
);
3531 kfree(conf
->mirrors
);
3532 safe_put_page(conf
->tmppage
);
3535 return ERR_PTR(err
);
3538 static int run(struct mddev
*mddev
)
3540 struct r10conf
*conf
;
3541 int i
, disk_idx
, chunk_size
;
3542 struct raid10_info
*disk
;
3543 struct md_rdev
*rdev
;
3545 sector_t min_offset_diff
= 0;
3547 bool discard_supported
= false;
3549 if (mddev
->private == NULL
) {
3550 conf
= setup_conf(mddev
);
3552 return PTR_ERR(conf
);
3553 mddev
->private = conf
;
3555 conf
= mddev
->private;
3559 mddev
->thread
= conf
->thread
;
3560 conf
->thread
= NULL
;
3562 chunk_size
= mddev
->chunk_sectors
<< 9;
3564 blk_queue_max_discard_sectors(mddev
->queue
,
3565 mddev
->chunk_sectors
);
3566 blk_queue_io_min(mddev
->queue
, chunk_size
);
3567 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3568 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3570 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3571 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3574 rdev_for_each(rdev
, mddev
) {
3576 struct request_queue
*q
;
3578 disk_idx
= rdev
->raid_disk
;
3581 if (disk_idx
>= conf
->geo
.raid_disks
&&
3582 disk_idx
>= conf
->prev
.raid_disks
)
3584 disk
= conf
->mirrors
+ disk_idx
;
3586 if (test_bit(Replacement
, &rdev
->flags
)) {
3587 if (disk
->replacement
)
3589 disk
->replacement
= rdev
;
3595 q
= bdev_get_queue(rdev
->bdev
);
3596 if (q
->merge_bvec_fn
)
3597 mddev
->merge_check_needed
= 1;
3598 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3599 if (!mddev
->reshape_backwards
)
3603 if (first
|| diff
< min_offset_diff
)
3604 min_offset_diff
= diff
;
3607 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3608 rdev
->data_offset
<< 9);
3610 disk
->head_position
= 0;
3612 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3613 discard_supported
= true;
3617 if (discard_supported
)
3618 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3621 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3624 /* need to check that every block has at least one working mirror */
3625 if (!enough(conf
, -1)) {
3626 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3631 if (conf
->reshape_progress
!= MaxSector
) {
3632 /* must ensure that shape change is supported */
3633 if (conf
->geo
.far_copies
!= 1 &&
3634 conf
->geo
.far_offset
== 0)
3636 if (conf
->prev
.far_copies
!= 1 &&
3637 conf
->geo
.far_offset
== 0)
3641 mddev
->degraded
= 0;
3643 i
< conf
->geo
.raid_disks
3644 || i
< conf
->prev
.raid_disks
;
3647 disk
= conf
->mirrors
+ i
;
3649 if (!disk
->rdev
&& disk
->replacement
) {
3650 /* The replacement is all we have - use it */
3651 disk
->rdev
= disk
->replacement
;
3652 disk
->replacement
= NULL
;
3653 clear_bit(Replacement
, &disk
->rdev
->flags
);
3657 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3658 disk
->head_position
= 0;
3663 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3666 if (mddev
->recovery_cp
!= MaxSector
)
3667 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3668 " -- starting background reconstruction\n",
3671 "md/raid10:%s: active with %d out of %d devices\n",
3672 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3673 conf
->geo
.raid_disks
);
3675 * Ok, everything is just fine now
3677 mddev
->dev_sectors
= conf
->dev_sectors
;
3678 size
= raid10_size(mddev
, 0, 0);
3679 md_set_array_sectors(mddev
, size
);
3680 mddev
->resync_max_sectors
= size
;
3683 int stripe
= conf
->geo
.raid_disks
*
3684 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3685 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3686 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3688 /* Calculate max read-ahead size.
3689 * We need to readahead at least twice a whole stripe....
3692 stripe
/= conf
->geo
.near_copies
;
3693 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3694 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3695 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3699 if (md_integrity_register(mddev
))
3702 if (conf
->reshape_progress
!= MaxSector
) {
3703 unsigned long before_length
, after_length
;
3705 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3706 conf
->prev
.far_copies
);
3707 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3708 conf
->geo
.far_copies
);
3710 if (max(before_length
, after_length
) > min_offset_diff
) {
3711 /* This cannot work */
3712 printk("md/raid10: offset difference not enough to continue reshape\n");
3715 conf
->offset_diff
= min_offset_diff
;
3717 conf
->reshape_safe
= conf
->reshape_progress
;
3718 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3719 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3720 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3721 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3722 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3729 md_unregister_thread(&mddev
->thread
);
3730 if (conf
->r10bio_pool
)
3731 mempool_destroy(conf
->r10bio_pool
);
3732 safe_put_page(conf
->tmppage
);
3733 kfree(conf
->mirrors
);
3735 mddev
->private = NULL
;
3740 static int stop(struct mddev
*mddev
)
3742 struct r10conf
*conf
= mddev
->private;
3744 raise_barrier(conf
, 0);
3745 lower_barrier(conf
);
3747 md_unregister_thread(&mddev
->thread
);
3749 /* the unplug fn references 'conf'*/
3750 blk_sync_queue(mddev
->queue
);
3752 if (conf
->r10bio_pool
)
3753 mempool_destroy(conf
->r10bio_pool
);
3754 kfree(conf
->mirrors
);
3756 mddev
->private = NULL
;
3760 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3762 struct r10conf
*conf
= mddev
->private;
3766 raise_barrier(conf
, 0);
3769 lower_barrier(conf
);
3774 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3776 /* Resize of 'far' arrays is not supported.
3777 * For 'near' and 'offset' arrays we can set the
3778 * number of sectors used to be an appropriate multiple
3779 * of the chunk size.
3780 * For 'offset', this is far_copies*chunksize.
3781 * For 'near' the multiplier is the LCM of
3782 * near_copies and raid_disks.
3783 * So if far_copies > 1 && !far_offset, fail.
3784 * Else find LCM(raid_disks, near_copy)*far_copies and
3785 * multiply by chunk_size. Then round to this number.
3786 * This is mostly done by raid10_size()
3788 struct r10conf
*conf
= mddev
->private;
3789 sector_t oldsize
, size
;
3791 if (mddev
->reshape_position
!= MaxSector
)
3794 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3797 oldsize
= raid10_size(mddev
, 0, 0);
3798 size
= raid10_size(mddev
, sectors
, 0);
3799 if (mddev
->external_size
&&
3800 mddev
->array_sectors
> size
)
3802 if (mddev
->bitmap
) {
3803 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3807 md_set_array_sectors(mddev
, size
);
3808 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3809 revalidate_disk(mddev
->gendisk
);
3810 if (sectors
> mddev
->dev_sectors
&&
3811 mddev
->recovery_cp
> oldsize
) {
3812 mddev
->recovery_cp
= oldsize
;
3813 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3815 calc_sectors(conf
, sectors
);
3816 mddev
->dev_sectors
= conf
->dev_sectors
;
3817 mddev
->resync_max_sectors
= size
;
3821 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3823 struct md_rdev
*rdev
;
3824 struct r10conf
*conf
;
3826 if (mddev
->degraded
> 0) {
3827 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3829 return ERR_PTR(-EINVAL
);
3832 /* Set new parameters */
3833 mddev
->new_level
= 10;
3834 /* new layout: far_copies = 1, near_copies = 2 */
3835 mddev
->new_layout
= (1<<8) + 2;
3836 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3837 mddev
->delta_disks
= mddev
->raid_disks
;
3838 mddev
->raid_disks
*= 2;
3839 /* make sure it will be not marked as dirty */
3840 mddev
->recovery_cp
= MaxSector
;
3842 conf
= setup_conf(mddev
);
3843 if (!IS_ERR(conf
)) {
3844 rdev_for_each(rdev
, mddev
)
3845 if (rdev
->raid_disk
>= 0)
3846 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3853 static void *raid10_takeover(struct mddev
*mddev
)
3855 struct r0conf
*raid0_conf
;
3857 /* raid10 can take over:
3858 * raid0 - providing it has only two drives
3860 if (mddev
->level
== 0) {
3861 /* for raid0 takeover only one zone is supported */
3862 raid0_conf
= mddev
->private;
3863 if (raid0_conf
->nr_strip_zones
> 1) {
3864 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3865 " with more than one zone.\n",
3867 return ERR_PTR(-EINVAL
);
3869 return raid10_takeover_raid0(mddev
);
3871 return ERR_PTR(-EINVAL
);
3874 static int raid10_check_reshape(struct mddev
*mddev
)
3876 /* Called when there is a request to change
3877 * - layout (to ->new_layout)
3878 * - chunk size (to ->new_chunk_sectors)
3879 * - raid_disks (by delta_disks)
3880 * or when trying to restart a reshape that was ongoing.
3882 * We need to validate the request and possibly allocate
3883 * space if that might be an issue later.
3885 * Currently we reject any reshape of a 'far' mode array,
3886 * allow chunk size to change if new is generally acceptable,
3887 * allow raid_disks to increase, and allow
3888 * a switch between 'near' mode and 'offset' mode.
3890 struct r10conf
*conf
= mddev
->private;
3893 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3896 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3897 /* mustn't change number of copies */
3899 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3900 /* Cannot switch to 'far' mode */
3903 if (mddev
->array_sectors
& geo
.chunk_mask
)
3904 /* not factor of array size */
3907 if (!enough(conf
, -1))
3910 kfree(conf
->mirrors_new
);
3911 conf
->mirrors_new
= NULL
;
3912 if (mddev
->delta_disks
> 0) {
3913 /* allocate new 'mirrors' list */
3914 conf
->mirrors_new
= kzalloc(
3915 sizeof(struct raid10_info
)
3916 *(mddev
->raid_disks
+
3917 mddev
->delta_disks
),
3919 if (!conf
->mirrors_new
)
3926 * Need to check if array has failed when deciding whether to:
3928 * - remove non-faulty devices
3931 * This determination is simple when no reshape is happening.
3932 * However if there is a reshape, we need to carefully check
3933 * both the before and after sections.
3934 * This is because some failed devices may only affect one
3935 * of the two sections, and some non-in_sync devices may
3936 * be insync in the section most affected by failed devices.
3938 static int calc_degraded(struct r10conf
*conf
)
3940 int degraded
, degraded2
;
3945 /* 'prev' section first */
3946 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3947 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3948 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3950 else if (!test_bit(In_sync
, &rdev
->flags
))
3951 /* When we can reduce the number of devices in
3952 * an array, this might not contribute to
3953 * 'degraded'. It does now.
3958 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3962 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3963 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3964 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3966 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3967 /* If reshape is increasing the number of devices,
3968 * this section has already been recovered, so
3969 * it doesn't contribute to degraded.
3972 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
3977 if (degraded2
> degraded
)
3982 static int raid10_start_reshape(struct mddev
*mddev
)
3984 /* A 'reshape' has been requested. This commits
3985 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3986 * This also checks if there are enough spares and adds them
3988 * We currently require enough spares to make the final
3989 * array non-degraded. We also require that the difference
3990 * between old and new data_offset - on each device - is
3991 * enough that we never risk over-writing.
3994 unsigned long before_length
, after_length
;
3995 sector_t min_offset_diff
= 0;
3998 struct r10conf
*conf
= mddev
->private;
3999 struct md_rdev
*rdev
;
4003 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4006 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4009 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4010 conf
->prev
.far_copies
);
4011 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4012 conf
->geo
.far_copies
);
4014 rdev_for_each(rdev
, mddev
) {
4015 if (!test_bit(In_sync
, &rdev
->flags
)
4016 && !test_bit(Faulty
, &rdev
->flags
))
4018 if (rdev
->raid_disk
>= 0) {
4019 long long diff
= (rdev
->new_data_offset
4020 - rdev
->data_offset
);
4021 if (!mddev
->reshape_backwards
)
4025 if (first
|| diff
< min_offset_diff
)
4026 min_offset_diff
= diff
;
4030 if (max(before_length
, after_length
) > min_offset_diff
)
4033 if (spares
< mddev
->delta_disks
)
4036 conf
->offset_diff
= min_offset_diff
;
4037 spin_lock_irq(&conf
->device_lock
);
4038 if (conf
->mirrors_new
) {
4039 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4040 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4042 kfree(conf
->mirrors_old
); /* FIXME and elsewhere */
4043 conf
->mirrors_old
= conf
->mirrors
;
4044 conf
->mirrors
= conf
->mirrors_new
;
4045 conf
->mirrors_new
= NULL
;
4047 setup_geo(&conf
->geo
, mddev
, geo_start
);
4049 if (mddev
->reshape_backwards
) {
4050 sector_t size
= raid10_size(mddev
, 0, 0);
4051 if (size
< mddev
->array_sectors
) {
4052 spin_unlock_irq(&conf
->device_lock
);
4053 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
4057 mddev
->resync_max_sectors
= size
;
4058 conf
->reshape_progress
= size
;
4060 conf
->reshape_progress
= 0;
4061 spin_unlock_irq(&conf
->device_lock
);
4063 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4064 ret
= bitmap_resize(mddev
->bitmap
,
4065 raid10_size(mddev
, 0,
4066 conf
->geo
.raid_disks
),
4071 if (mddev
->delta_disks
> 0) {
4072 rdev_for_each(rdev
, mddev
)
4073 if (rdev
->raid_disk
< 0 &&
4074 !test_bit(Faulty
, &rdev
->flags
)) {
4075 if (raid10_add_disk(mddev
, rdev
) == 0) {
4076 if (rdev
->raid_disk
>=
4077 conf
->prev
.raid_disks
)
4078 set_bit(In_sync
, &rdev
->flags
);
4080 rdev
->recovery_offset
= 0;
4082 if (sysfs_link_rdev(mddev
, rdev
))
4083 /* Failure here is OK */;
4085 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4086 && !test_bit(Faulty
, &rdev
->flags
)) {
4087 /* This is a spare that was manually added */
4088 set_bit(In_sync
, &rdev
->flags
);
4091 /* When a reshape changes the number of devices,
4092 * ->degraded is measured against the larger of the
4093 * pre and post numbers.
4095 spin_lock_irq(&conf
->device_lock
);
4096 mddev
->degraded
= calc_degraded(conf
);
4097 spin_unlock_irq(&conf
->device_lock
);
4098 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4099 mddev
->reshape_position
= conf
->reshape_progress
;
4100 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4102 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4103 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4104 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4105 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4107 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4109 if (!mddev
->sync_thread
) {
4113 conf
->reshape_checkpoint
= jiffies
;
4114 md_wakeup_thread(mddev
->sync_thread
);
4115 md_new_event(mddev
);
4119 mddev
->recovery
= 0;
4120 spin_lock_irq(&conf
->device_lock
);
4121 conf
->geo
= conf
->prev
;
4122 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4123 rdev_for_each(rdev
, mddev
)
4124 rdev
->new_data_offset
= rdev
->data_offset
;
4126 conf
->reshape_progress
= MaxSector
;
4127 mddev
->reshape_position
= MaxSector
;
4128 spin_unlock_irq(&conf
->device_lock
);
4132 /* Calculate the last device-address that could contain
4133 * any block from the chunk that includes the array-address 's'
4134 * and report the next address.
4135 * i.e. the address returned will be chunk-aligned and after
4136 * any data that is in the chunk containing 's'.
4138 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4140 s
= (s
| geo
->chunk_mask
) + 1;
4141 s
>>= geo
->chunk_shift
;
4142 s
*= geo
->near_copies
;
4143 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4144 s
*= geo
->far_copies
;
4145 s
<<= geo
->chunk_shift
;
4149 /* Calculate the first device-address that could contain
4150 * any block from the chunk that includes the array-address 's'.
4151 * This too will be the start of a chunk
4153 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4155 s
>>= geo
->chunk_shift
;
4156 s
*= geo
->near_copies
;
4157 sector_div(s
, geo
->raid_disks
);
4158 s
*= geo
->far_copies
;
4159 s
<<= geo
->chunk_shift
;
4163 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4166 /* We simply copy at most one chunk (smallest of old and new)
4167 * at a time, possibly less if that exceeds RESYNC_PAGES,
4168 * or we hit a bad block or something.
4169 * This might mean we pause for normal IO in the middle of
4170 * a chunk, but that is not a problem was mddev->reshape_position
4171 * can record any location.
4173 * If we will want to write to a location that isn't
4174 * yet recorded as 'safe' (i.e. in metadata on disk) then
4175 * we need to flush all reshape requests and update the metadata.
4177 * When reshaping forwards (e.g. to more devices), we interpret
4178 * 'safe' as the earliest block which might not have been copied
4179 * down yet. We divide this by previous stripe size and multiply
4180 * by previous stripe length to get lowest device offset that we
4181 * cannot write to yet.
4182 * We interpret 'sector_nr' as an address that we want to write to.
4183 * From this we use last_device_address() to find where we might
4184 * write to, and first_device_address on the 'safe' position.
4185 * If this 'next' write position is after the 'safe' position,
4186 * we must update the metadata to increase the 'safe' position.
4188 * When reshaping backwards, we round in the opposite direction
4189 * and perform the reverse test: next write position must not be
4190 * less than current safe position.
4192 * In all this the minimum difference in data offsets
4193 * (conf->offset_diff - always positive) allows a bit of slack,
4194 * so next can be after 'safe', but not by more than offset_disk
4196 * We need to prepare all the bios here before we start any IO
4197 * to ensure the size we choose is acceptable to all devices.
4198 * The means one for each copy for write-out and an extra one for
4200 * We store the read-in bio in ->master_bio and the others in
4201 * ->devs[x].bio and ->devs[x].repl_bio.
4203 struct r10conf
*conf
= mddev
->private;
4204 struct r10bio
*r10_bio
;
4205 sector_t next
, safe
, last
;
4209 struct md_rdev
*rdev
;
4212 struct bio
*bio
, *read_bio
;
4213 int sectors_done
= 0;
4215 if (sector_nr
== 0) {
4216 /* If restarting in the middle, skip the initial sectors */
4217 if (mddev
->reshape_backwards
&&
4218 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4219 sector_nr
= (raid10_size(mddev
, 0, 0)
4220 - conf
->reshape_progress
);
4221 } else if (!mddev
->reshape_backwards
&&
4222 conf
->reshape_progress
> 0)
4223 sector_nr
= conf
->reshape_progress
;
4225 mddev
->curr_resync_completed
= sector_nr
;
4226 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4232 /* We don't use sector_nr to track where we are up to
4233 * as that doesn't work well for ->reshape_backwards.
4234 * So just use ->reshape_progress.
4236 if (mddev
->reshape_backwards
) {
4237 /* 'next' is the earliest device address that we might
4238 * write to for this chunk in the new layout
4240 next
= first_dev_address(conf
->reshape_progress
- 1,
4243 /* 'safe' is the last device address that we might read from
4244 * in the old layout after a restart
4246 safe
= last_dev_address(conf
->reshape_safe
- 1,
4249 if (next
+ conf
->offset_diff
< safe
)
4252 last
= conf
->reshape_progress
- 1;
4253 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4254 & conf
->prev
.chunk_mask
);
4255 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4256 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4258 /* 'next' is after the last device address that we
4259 * might write to for this chunk in the new layout
4261 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4263 /* 'safe' is the earliest device address that we might
4264 * read from in the old layout after a restart
4266 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4268 /* Need to update metadata if 'next' might be beyond 'safe'
4269 * as that would possibly corrupt data
4271 if (next
> safe
+ conf
->offset_diff
)
4274 sector_nr
= conf
->reshape_progress
;
4275 last
= sector_nr
| (conf
->geo
.chunk_mask
4276 & conf
->prev
.chunk_mask
);
4278 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4279 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4283 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4284 /* Need to update reshape_position in metadata */
4286 mddev
->reshape_position
= conf
->reshape_progress
;
4287 if (mddev
->reshape_backwards
)
4288 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4289 - conf
->reshape_progress
;
4291 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4292 conf
->reshape_checkpoint
= jiffies
;
4293 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4294 md_wakeup_thread(mddev
->thread
);
4295 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4296 kthread_should_stop());
4297 conf
->reshape_safe
= mddev
->reshape_position
;
4298 allow_barrier(conf
);
4302 /* Now schedule reads for blocks from sector_nr to last */
4303 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4304 raise_barrier(conf
, sectors_done
!= 0);
4305 atomic_set(&r10_bio
->remaining
, 0);
4306 r10_bio
->mddev
= mddev
;
4307 r10_bio
->sector
= sector_nr
;
4308 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4309 r10_bio
->sectors
= last
- sector_nr
+ 1;
4310 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4311 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4314 /* Cannot read from here, so need to record bad blocks
4315 * on all the target devices.
4318 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4319 return sectors_done
;
4322 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4324 read_bio
->bi_bdev
= rdev
->bdev
;
4325 read_bio
->bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4326 + rdev
->data_offset
);
4327 read_bio
->bi_private
= r10_bio
;
4328 read_bio
->bi_end_io
= end_sync_read
;
4329 read_bio
->bi_rw
= READ
;
4330 read_bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4331 read_bio
->bi_flags
|= 1 << BIO_UPTODATE
;
4332 read_bio
->bi_vcnt
= 0;
4333 read_bio
->bi_idx
= 0;
4334 read_bio
->bi_size
= 0;
4335 r10_bio
->master_bio
= read_bio
;
4336 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4338 /* Now find the locations in the new layout */
4339 __raid10_find_phys(&conf
->geo
, r10_bio
);
4342 read_bio
->bi_next
= NULL
;
4344 for (s
= 0; s
< conf
->copies
*2; s
++) {
4346 int d
= r10_bio
->devs
[s
/2].devnum
;
4347 struct md_rdev
*rdev2
;
4349 rdev2
= conf
->mirrors
[d
].replacement
;
4350 b
= r10_bio
->devs
[s
/2].repl_bio
;
4352 rdev2
= conf
->mirrors
[d
].rdev
;
4353 b
= r10_bio
->devs
[s
/2].bio
;
4355 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4357 b
->bi_bdev
= rdev2
->bdev
;
4358 b
->bi_sector
= r10_bio
->devs
[s
/2].addr
+ rdev2
->new_data_offset
;
4359 b
->bi_private
= r10_bio
;
4360 b
->bi_end_io
= end_reshape_write
;
4362 b
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4363 b
->bi_flags
|= 1 << BIO_UPTODATE
;
4371 /* Now add as many pages as possible to all of these bios. */
4374 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4375 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4376 int len
= (max_sectors
- s
) << 9;
4377 if (len
> PAGE_SIZE
)
4379 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4381 if (bio_add_page(bio
, page
, len
, 0))
4384 /* Didn't fit, must stop */
4386 bio2
&& bio2
!= bio
;
4387 bio2
= bio2
->bi_next
) {
4388 /* Remove last page from this bio */
4390 bio2
->bi_size
-= len
;
4391 bio2
->bi_flags
&= ~(1<<BIO_SEG_VALID
);
4395 sector_nr
+= len
>> 9;
4396 nr_sectors
+= len
>> 9;
4399 r10_bio
->sectors
= nr_sectors
;
4401 /* Now submit the read */
4402 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4403 atomic_inc(&r10_bio
->remaining
);
4404 read_bio
->bi_next
= NULL
;
4405 generic_make_request(read_bio
);
4406 sector_nr
+= nr_sectors
;
4407 sectors_done
+= nr_sectors
;
4408 if (sector_nr
<= last
)
4411 /* Now that we have done the whole section we can
4412 * update reshape_progress
4414 if (mddev
->reshape_backwards
)
4415 conf
->reshape_progress
-= sectors_done
;
4417 conf
->reshape_progress
+= sectors_done
;
4419 return sectors_done
;
4422 static void end_reshape_request(struct r10bio
*r10_bio
);
4423 static int handle_reshape_read_error(struct mddev
*mddev
,
4424 struct r10bio
*r10_bio
);
4425 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4427 /* Reshape read completed. Hopefully we have a block
4429 * If we got a read error then we do sync 1-page reads from
4430 * elsewhere until we find the data - or give up.
4432 struct r10conf
*conf
= mddev
->private;
4435 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4436 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4437 /* Reshape has been aborted */
4438 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4442 /* We definitely have the data in the pages, schedule the
4445 atomic_set(&r10_bio
->remaining
, 1);
4446 for (s
= 0; s
< conf
->copies
*2; s
++) {
4448 int d
= r10_bio
->devs
[s
/2].devnum
;
4449 struct md_rdev
*rdev
;
4451 rdev
= conf
->mirrors
[d
].replacement
;
4452 b
= r10_bio
->devs
[s
/2].repl_bio
;
4454 rdev
= conf
->mirrors
[d
].rdev
;
4455 b
= r10_bio
->devs
[s
/2].bio
;
4457 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4459 atomic_inc(&rdev
->nr_pending
);
4460 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4461 atomic_inc(&r10_bio
->remaining
);
4463 generic_make_request(b
);
4465 end_reshape_request(r10_bio
);
4468 static void end_reshape(struct r10conf
*conf
)
4470 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4473 spin_lock_irq(&conf
->device_lock
);
4474 conf
->prev
= conf
->geo
;
4475 md_finish_reshape(conf
->mddev
);
4477 conf
->reshape_progress
= MaxSector
;
4478 spin_unlock_irq(&conf
->device_lock
);
4480 /* read-ahead size must cover two whole stripes, which is
4481 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4483 if (conf
->mddev
->queue
) {
4484 int stripe
= conf
->geo
.raid_disks
*
4485 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4486 stripe
/= conf
->geo
.near_copies
;
4487 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4488 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4494 static int handle_reshape_read_error(struct mddev
*mddev
,
4495 struct r10bio
*r10_bio
)
4497 /* Use sync reads to get the blocks from somewhere else */
4498 int sectors
= r10_bio
->sectors
;
4499 struct r10conf
*conf
= mddev
->private;
4501 struct r10bio r10_bio
;
4502 struct r10dev devs
[conf
->copies
];
4504 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4507 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4509 r10b
->sector
= r10_bio
->sector
;
4510 __raid10_find_phys(&conf
->prev
, r10b
);
4515 int first_slot
= slot
;
4517 if (s
> (PAGE_SIZE
>> 9))
4521 int d
= r10b
->devs
[slot
].devnum
;
4522 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4525 test_bit(Faulty
, &rdev
->flags
) ||
4526 !test_bit(In_sync
, &rdev
->flags
))
4529 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4530 success
= sync_page_io(rdev
,
4539 if (slot
>= conf
->copies
)
4541 if (slot
== first_slot
)
4545 /* couldn't read this block, must give up */
4546 set_bit(MD_RECOVERY_INTR
,
4556 static void end_reshape_write(struct bio
*bio
, int error
)
4558 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
4559 struct r10bio
*r10_bio
= bio
->bi_private
;
4560 struct mddev
*mddev
= r10_bio
->mddev
;
4561 struct r10conf
*conf
= mddev
->private;
4565 struct md_rdev
*rdev
= NULL
;
4567 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4569 rdev
= conf
->mirrors
[d
].replacement
;
4572 rdev
= conf
->mirrors
[d
].rdev
;
4576 /* FIXME should record badblock */
4577 md_error(mddev
, rdev
);
4580 rdev_dec_pending(rdev
, mddev
);
4581 end_reshape_request(r10_bio
);
4584 static void end_reshape_request(struct r10bio
*r10_bio
)
4586 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4588 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4589 bio_put(r10_bio
->master_bio
);
4593 static void raid10_finish_reshape(struct mddev
*mddev
)
4595 struct r10conf
*conf
= mddev
->private;
4597 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4600 if (mddev
->delta_disks
> 0) {
4601 sector_t size
= raid10_size(mddev
, 0, 0);
4602 md_set_array_sectors(mddev
, size
);
4603 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4604 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4605 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4607 mddev
->resync_max_sectors
= size
;
4608 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4609 revalidate_disk(mddev
->gendisk
);
4612 for (d
= conf
->geo
.raid_disks
;
4613 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4615 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4617 clear_bit(In_sync
, &rdev
->flags
);
4618 rdev
= conf
->mirrors
[d
].replacement
;
4620 clear_bit(In_sync
, &rdev
->flags
);
4623 mddev
->layout
= mddev
->new_layout
;
4624 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4625 mddev
->reshape_position
= MaxSector
;
4626 mddev
->delta_disks
= 0;
4627 mddev
->reshape_backwards
= 0;
4630 static struct md_personality raid10_personality
=
4634 .owner
= THIS_MODULE
,
4635 .make_request
= make_request
,
4639 .error_handler
= error
,
4640 .hot_add_disk
= raid10_add_disk
,
4641 .hot_remove_disk
= raid10_remove_disk
,
4642 .spare_active
= raid10_spare_active
,
4643 .sync_request
= sync_request
,
4644 .quiesce
= raid10_quiesce
,
4645 .size
= raid10_size
,
4646 .resize
= raid10_resize
,
4647 .takeover
= raid10_takeover
,
4648 .check_reshape
= raid10_check_reshape
,
4649 .start_reshape
= raid10_start_reshape
,
4650 .finish_reshape
= raid10_finish_reshape
,
4653 static int __init
raid_init(void)
4655 return register_md_personality(&raid10_personality
);
4658 static void raid_exit(void)
4660 unregister_md_personality(&raid10_personality
);
4663 module_init(raid_init
);
4664 module_exit(raid_exit
);
4665 MODULE_LICENSE("GPL");
4666 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4667 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4668 MODULE_ALIAS("md-raid10");
4669 MODULE_ALIAS("md-level-10");
4671 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);