4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(long, nr_dentry
);
118 static DEFINE_PER_CPU(long, nr_dentry_unused
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
138 for_each_possible_cpu(i
)
139 sum
+= per_cpu(nr_dentry
, i
);
140 return sum
< 0 ? 0 : sum
;
143 static long get_nr_dentry_unused(void)
147 for_each_possible_cpu(i
)
148 sum
+= per_cpu(nr_dentry_unused
, i
);
149 return sum
< 0 ? 0 : sum
;
152 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
153 size_t *lenp
, loff_t
*ppos
)
155 dentry_stat
.nr_dentry
= get_nr_dentry();
156 dentry_stat
.nr_unused
= get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
179 unsigned long a
,b
,mask
;
182 a
= *(unsigned long *)cs
;
183 b
= load_unaligned_zeropad(ct
);
184 if (tcount
< sizeof(unsigned long))
186 if (unlikely(a
!= b
))
188 cs
+= sizeof(unsigned long);
189 ct
+= sizeof(unsigned long);
190 tcount
-= sizeof(unsigned long);
194 mask
= bytemask_from_count(tcount
);
195 return unlikely(!!((a
^ b
) & mask
));
200 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
214 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
216 const unsigned char *cs
;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs
, ct
, tcount
);
238 static void __d_free(struct rcu_head
*head
)
240 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
242 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
243 if (dname_external(dentry
))
244 kfree(dentry
->d_name
.name
);
245 kmem_cache_free(dentry_cache
, dentry
);
248 static void dentry_free(struct dentry
*dentry
)
250 /* if dentry was never visible to RCU, immediate free is OK */
251 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
252 __d_free(&dentry
->d_u
.d_rcu
);
254 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
258 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
259 * @dentry: the target dentry
260 * After this call, in-progress rcu-walk path lookup will fail. This
261 * should be called after unhashing, and after changing d_inode (if
262 * the dentry has not already been unhashed).
264 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
266 assert_spin_locked(&dentry
->d_lock
);
267 /* Go through a barrier */
268 write_seqcount_barrier(&dentry
->d_seq
);
272 * Release the dentry's inode, using the filesystem
273 * d_iput() operation if defined. Dentry has no refcount
276 static void dentry_iput(struct dentry
* dentry
)
277 __releases(dentry
->d_lock
)
278 __releases(dentry
->d_inode
->i_lock
)
280 struct inode
*inode
= dentry
->d_inode
;
282 dentry
->d_inode
= NULL
;
283 hlist_del_init(&dentry
->d_alias
);
284 spin_unlock(&dentry
->d_lock
);
285 spin_unlock(&inode
->i_lock
);
287 fsnotify_inoderemove(inode
);
288 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
289 dentry
->d_op
->d_iput(dentry
, inode
);
293 spin_unlock(&dentry
->d_lock
);
298 * Release the dentry's inode, using the filesystem
299 * d_iput() operation if defined. dentry remains in-use.
301 static void dentry_unlink_inode(struct dentry
* dentry
)
302 __releases(dentry
->d_lock
)
303 __releases(dentry
->d_inode
->i_lock
)
305 struct inode
*inode
= dentry
->d_inode
;
306 __d_clear_type(dentry
);
307 dentry
->d_inode
= NULL
;
308 hlist_del_init(&dentry
->d_alias
);
309 dentry_rcuwalk_barrier(dentry
);
310 spin_unlock(&dentry
->d_lock
);
311 spin_unlock(&inode
->i_lock
);
313 fsnotify_inoderemove(inode
);
314 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
315 dentry
->d_op
->d_iput(dentry
, inode
);
321 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
322 * is in use - which includes both the "real" per-superblock
323 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
326 * on the shrink list (ie not on the superblock LRU list).
328 * The per-cpu "nr_dentry_unused" counters are updated with
329 * the DCACHE_LRU_LIST bit.
331 * These helper functions make sure we always follow the
332 * rules. d_lock must be held by the caller.
334 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
335 static void d_lru_add(struct dentry
*dentry
)
337 D_FLAG_VERIFY(dentry
, 0);
338 dentry
->d_flags
|= DCACHE_LRU_LIST
;
339 this_cpu_inc(nr_dentry_unused
);
340 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
343 static void d_lru_del(struct dentry
*dentry
)
345 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
346 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
347 this_cpu_dec(nr_dentry_unused
);
348 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
351 static void d_shrink_del(struct dentry
*dentry
)
353 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
354 list_del_init(&dentry
->d_lru
);
355 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
356 this_cpu_dec(nr_dentry_unused
);
359 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
361 D_FLAG_VERIFY(dentry
, 0);
362 list_add(&dentry
->d_lru
, list
);
363 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
364 this_cpu_inc(nr_dentry_unused
);
368 * These can only be called under the global LRU lock, ie during the
369 * callback for freeing the LRU list. "isolate" removes it from the
370 * LRU lists entirely, while shrink_move moves it to the indicated
373 static void d_lru_isolate(struct dentry
*dentry
)
375 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
376 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
377 this_cpu_dec(nr_dentry_unused
);
378 list_del_init(&dentry
->d_lru
);
381 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
383 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
384 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
385 list_move_tail(&dentry
->d_lru
, list
);
389 * dentry_lru_(add|del)_list) must be called with d_lock held.
391 static void dentry_lru_add(struct dentry
*dentry
)
393 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
398 * d_drop - drop a dentry
399 * @dentry: dentry to drop
401 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
402 * be found through a VFS lookup any more. Note that this is different from
403 * deleting the dentry - d_delete will try to mark the dentry negative if
404 * possible, giving a successful _negative_ lookup, while d_drop will
405 * just make the cache lookup fail.
407 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
408 * reason (NFS timeouts or autofs deletes).
410 * __d_drop requires dentry->d_lock.
412 void __d_drop(struct dentry
*dentry
)
414 if (!d_unhashed(dentry
)) {
415 struct hlist_bl_head
*b
;
417 * Hashed dentries are normally on the dentry hashtable,
418 * with the exception of those newly allocated by
419 * d_obtain_alias, which are always IS_ROOT:
421 if (unlikely(IS_ROOT(dentry
)))
422 b
= &dentry
->d_sb
->s_anon
;
424 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
427 __hlist_bl_del(&dentry
->d_hash
);
428 dentry
->d_hash
.pprev
= NULL
;
430 dentry_rcuwalk_barrier(dentry
);
433 EXPORT_SYMBOL(__d_drop
);
435 void d_drop(struct dentry
*dentry
)
437 spin_lock(&dentry
->d_lock
);
439 spin_unlock(&dentry
->d_lock
);
441 EXPORT_SYMBOL(d_drop
);
443 static void __dentry_kill(struct dentry
*dentry
)
445 struct dentry
*parent
= NULL
;
446 bool can_free
= true;
447 if (!IS_ROOT(dentry
))
448 parent
= dentry
->d_parent
;
451 * The dentry is now unrecoverably dead to the world.
453 lockref_mark_dead(&dentry
->d_lockref
);
456 * inform the fs via d_prune that this dentry is about to be
457 * unhashed and destroyed.
459 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) && !d_unhashed(dentry
))
460 dentry
->d_op
->d_prune(dentry
);
462 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
463 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
466 /* if it was on the hash then remove it */
468 list_del(&dentry
->d_u
.d_child
);
470 * Inform d_walk() that we are no longer attached to the
473 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
475 spin_unlock(&parent
->d_lock
);
478 * dentry_iput drops the locks, at which point nobody (except
479 * transient RCU lookups) can reach this dentry.
481 BUG_ON((int)dentry
->d_lockref
.count
> 0);
482 this_cpu_dec(nr_dentry
);
483 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
484 dentry
->d_op
->d_release(dentry
);
486 spin_lock(&dentry
->d_lock
);
487 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
488 dentry
->d_flags
|= DCACHE_MAY_FREE
;
491 spin_unlock(&dentry
->d_lock
);
492 if (likely(can_free
))
497 * Finish off a dentry we've decided to kill.
498 * dentry->d_lock must be held, returns with it unlocked.
499 * If ref is non-zero, then decrement the refcount too.
500 * Returns dentry requiring refcount drop, or NULL if we're done.
502 static struct dentry
*dentry_kill(struct dentry
*dentry
)
503 __releases(dentry
->d_lock
)
505 struct inode
*inode
= dentry
->d_inode
;
506 struct dentry
*parent
= NULL
;
508 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
511 if (!IS_ROOT(dentry
)) {
512 parent
= dentry
->d_parent
;
513 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
515 spin_unlock(&inode
->i_lock
);
520 __dentry_kill(dentry
);
524 spin_unlock(&dentry
->d_lock
);
526 return dentry
; /* try again with same dentry */
529 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
531 struct dentry
*parent
= dentry
->d_parent
;
534 if (unlikely((int)dentry
->d_lockref
.count
< 0))
536 if (likely(spin_trylock(&parent
->d_lock
)))
539 spin_unlock(&dentry
->d_lock
);
541 parent
= ACCESS_ONCE(dentry
->d_parent
);
542 spin_lock(&parent
->d_lock
);
544 * We can't blindly lock dentry until we are sure
545 * that we won't violate the locking order.
546 * Any changes of dentry->d_parent must have
547 * been done with parent->d_lock held, so
548 * spin_lock() above is enough of a barrier
549 * for checking if it's still our child.
551 if (unlikely(parent
!= dentry
->d_parent
)) {
552 spin_unlock(&parent
->d_lock
);
556 if (parent
!= dentry
)
557 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
566 * This is complicated by the fact that we do not want to put
567 * dentries that are no longer on any hash chain on the unused
568 * list: we'd much rather just get rid of them immediately.
570 * However, that implies that we have to traverse the dentry
571 * tree upwards to the parents which might _also_ now be
572 * scheduled for deletion (it may have been only waiting for
573 * its last child to go away).
575 * This tail recursion is done by hand as we don't want to depend
576 * on the compiler to always get this right (gcc generally doesn't).
577 * Real recursion would eat up our stack space.
581 * dput - release a dentry
582 * @dentry: dentry to release
584 * Release a dentry. This will drop the usage count and if appropriate
585 * call the dentry unlink method as well as removing it from the queues and
586 * releasing its resources. If the parent dentries were scheduled for release
587 * they too may now get deleted.
589 void dput(struct dentry
*dentry
)
591 if (unlikely(!dentry
))
595 if (lockref_put_or_lock(&dentry
->d_lockref
))
598 /* Unreachable? Get rid of it */
599 if (unlikely(d_unhashed(dentry
)))
602 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
603 if (dentry
->d_op
->d_delete(dentry
))
607 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
608 dentry
->d_flags
|= DCACHE_REFERENCED
;
609 dentry_lru_add(dentry
);
611 dentry
->d_lockref
.count
--;
612 spin_unlock(&dentry
->d_lock
);
616 dentry
= dentry_kill(dentry
);
623 * d_invalidate - invalidate a dentry
624 * @dentry: dentry to invalidate
626 * Try to invalidate the dentry if it turns out to be
627 * possible. If there are other dentries that can be
628 * reached through this one we can't delete it and we
629 * return -EBUSY. On success we return 0.
634 int d_invalidate(struct dentry
* dentry
)
637 * If it's already been dropped, return OK.
639 spin_lock(&dentry
->d_lock
);
640 if (d_unhashed(dentry
)) {
641 spin_unlock(&dentry
->d_lock
);
645 * Check whether to do a partial shrink_dcache
646 * to get rid of unused child entries.
648 if (!list_empty(&dentry
->d_subdirs
)) {
649 spin_unlock(&dentry
->d_lock
);
650 shrink_dcache_parent(dentry
);
651 spin_lock(&dentry
->d_lock
);
655 * Somebody else still using it?
657 * If it's a directory, we can't drop it
658 * for fear of somebody re-populating it
659 * with children (even though dropping it
660 * would make it unreachable from the root,
661 * we might still populate it if it was a
662 * working directory or similar).
663 * We also need to leave mountpoints alone,
666 if (dentry
->d_lockref
.count
> 1 && dentry
->d_inode
) {
667 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
668 spin_unlock(&dentry
->d_lock
);
674 spin_unlock(&dentry
->d_lock
);
677 EXPORT_SYMBOL(d_invalidate
);
679 /* This must be called with d_lock held */
680 static inline void __dget_dlock(struct dentry
*dentry
)
682 dentry
->d_lockref
.count
++;
685 static inline void __dget(struct dentry
*dentry
)
687 lockref_get(&dentry
->d_lockref
);
690 struct dentry
*dget_parent(struct dentry
*dentry
)
696 * Do optimistic parent lookup without any
700 ret
= ACCESS_ONCE(dentry
->d_parent
);
701 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
703 if (likely(gotref
)) {
704 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
711 * Don't need rcu_dereference because we re-check it was correct under
715 ret
= dentry
->d_parent
;
716 spin_lock(&ret
->d_lock
);
717 if (unlikely(ret
!= dentry
->d_parent
)) {
718 spin_unlock(&ret
->d_lock
);
723 BUG_ON(!ret
->d_lockref
.count
);
724 ret
->d_lockref
.count
++;
725 spin_unlock(&ret
->d_lock
);
728 EXPORT_SYMBOL(dget_parent
);
731 * d_find_alias - grab a hashed alias of inode
732 * @inode: inode in question
734 * If inode has a hashed alias, or is a directory and has any alias,
735 * acquire the reference to alias and return it. Otherwise return NULL.
736 * Notice that if inode is a directory there can be only one alias and
737 * it can be unhashed only if it has no children, or if it is the root
740 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
741 * any other hashed alias over that one.
743 static struct dentry
*__d_find_alias(struct inode
*inode
)
745 struct dentry
*alias
, *discon_alias
;
749 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
750 spin_lock(&alias
->d_lock
);
751 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
752 if (IS_ROOT(alias
) &&
753 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
754 discon_alias
= alias
;
757 spin_unlock(&alias
->d_lock
);
761 spin_unlock(&alias
->d_lock
);
764 alias
= discon_alias
;
765 spin_lock(&alias
->d_lock
);
766 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
768 spin_unlock(&alias
->d_lock
);
771 spin_unlock(&alias
->d_lock
);
777 struct dentry
*d_find_alias(struct inode
*inode
)
779 struct dentry
*de
= NULL
;
781 if (!hlist_empty(&inode
->i_dentry
)) {
782 spin_lock(&inode
->i_lock
);
783 de
= __d_find_alias(inode
);
784 spin_unlock(&inode
->i_lock
);
788 EXPORT_SYMBOL(d_find_alias
);
791 * Try to kill dentries associated with this inode.
792 * WARNING: you must own a reference to inode.
794 void d_prune_aliases(struct inode
*inode
)
796 struct dentry
*dentry
;
798 spin_lock(&inode
->i_lock
);
799 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
800 spin_lock(&dentry
->d_lock
);
801 if (!dentry
->d_lockref
.count
) {
803 * inform the fs via d_prune that this dentry
804 * is about to be unhashed and destroyed.
806 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
808 dentry
->d_op
->d_prune(dentry
);
810 __dget_dlock(dentry
);
812 spin_unlock(&dentry
->d_lock
);
813 spin_unlock(&inode
->i_lock
);
817 spin_unlock(&dentry
->d_lock
);
819 spin_unlock(&inode
->i_lock
);
821 EXPORT_SYMBOL(d_prune_aliases
);
823 static void shrink_dentry_list(struct list_head
*list
)
825 struct dentry
*dentry
, *parent
;
827 while (!list_empty(list
)) {
829 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
830 spin_lock(&dentry
->d_lock
);
831 parent
= lock_parent(dentry
);
834 * The dispose list is isolated and dentries are not accounted
835 * to the LRU here, so we can simply remove it from the list
836 * here regardless of whether it is referenced or not.
838 d_shrink_del(dentry
);
841 * We found an inuse dentry which was not removed from
842 * the LRU because of laziness during lookup. Do not free it.
844 if ((int)dentry
->d_lockref
.count
> 0) {
845 spin_unlock(&dentry
->d_lock
);
847 spin_unlock(&parent
->d_lock
);
852 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
853 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
854 spin_unlock(&dentry
->d_lock
);
856 spin_unlock(&parent
->d_lock
);
862 inode
= dentry
->d_inode
;
863 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
864 d_shrink_add(dentry
, list
);
865 spin_unlock(&dentry
->d_lock
);
867 spin_unlock(&parent
->d_lock
);
871 __dentry_kill(dentry
);
874 * We need to prune ancestors too. This is necessary to prevent
875 * quadratic behavior of shrink_dcache_parent(), but is also
876 * expected to be beneficial in reducing dentry cache
880 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
881 parent
= lock_parent(dentry
);
882 if (dentry
->d_lockref
.count
!= 1) {
883 dentry
->d_lockref
.count
--;
884 spin_unlock(&dentry
->d_lock
);
886 spin_unlock(&parent
->d_lock
);
889 inode
= dentry
->d_inode
; /* can't be NULL */
890 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
891 spin_unlock(&dentry
->d_lock
);
893 spin_unlock(&parent
->d_lock
);
897 __dentry_kill(dentry
);
903 static enum lru_status
904 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
906 struct list_head
*freeable
= arg
;
907 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
911 * we are inverting the lru lock/dentry->d_lock here,
912 * so use a trylock. If we fail to get the lock, just skip
915 if (!spin_trylock(&dentry
->d_lock
))
919 * Referenced dentries are still in use. If they have active
920 * counts, just remove them from the LRU. Otherwise give them
921 * another pass through the LRU.
923 if (dentry
->d_lockref
.count
) {
924 d_lru_isolate(dentry
);
925 spin_unlock(&dentry
->d_lock
);
929 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
930 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
931 spin_unlock(&dentry
->d_lock
);
934 * The list move itself will be made by the common LRU code. At
935 * this point, we've dropped the dentry->d_lock but keep the
936 * lru lock. This is safe to do, since every list movement is
937 * protected by the lru lock even if both locks are held.
939 * This is guaranteed by the fact that all LRU management
940 * functions are intermediated by the LRU API calls like
941 * list_lru_add and list_lru_del. List movement in this file
942 * only ever occur through this functions or through callbacks
943 * like this one, that are called from the LRU API.
945 * The only exceptions to this are functions like
946 * shrink_dentry_list, and code that first checks for the
947 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
948 * operating only with stack provided lists after they are
949 * properly isolated from the main list. It is thus, always a
955 d_lru_shrink_move(dentry
, freeable
);
956 spin_unlock(&dentry
->d_lock
);
962 * prune_dcache_sb - shrink the dcache
964 * @nr_to_scan : number of entries to try to free
965 * @nid: which node to scan for freeable entities
967 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
968 * done when we need more memory an called from the superblock shrinker
971 * This function may fail to free any resources if all the dentries are in
974 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
980 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
981 &dispose
, &nr_to_scan
);
982 shrink_dentry_list(&dispose
);
986 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
987 spinlock_t
*lru_lock
, void *arg
)
989 struct list_head
*freeable
= arg
;
990 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
993 * we are inverting the lru lock/dentry->d_lock here,
994 * so use a trylock. If we fail to get the lock, just skip
997 if (!spin_trylock(&dentry
->d_lock
))
1000 d_lru_shrink_move(dentry
, freeable
);
1001 spin_unlock(&dentry
->d_lock
);
1008 * shrink_dcache_sb - shrink dcache for a superblock
1011 * Shrink the dcache for the specified super block. This is used to free
1012 * the dcache before unmounting a file system.
1014 void shrink_dcache_sb(struct super_block
*sb
)
1021 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1022 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1024 this_cpu_sub(nr_dentry_unused
, freed
);
1025 shrink_dentry_list(&dispose
);
1026 } while (freed
> 0);
1028 EXPORT_SYMBOL(shrink_dcache_sb
);
1031 * enum d_walk_ret - action to talke during tree walk
1032 * @D_WALK_CONTINUE: contrinue walk
1033 * @D_WALK_QUIT: quit walk
1034 * @D_WALK_NORETRY: quit when retry is needed
1035 * @D_WALK_SKIP: skip this dentry and its children
1045 * d_walk - walk the dentry tree
1046 * @parent: start of walk
1047 * @data: data passed to @enter() and @finish()
1048 * @enter: callback when first entering the dentry
1049 * @finish: callback when successfully finished the walk
1051 * The @enter() and @finish() callbacks are called with d_lock held.
1053 static void d_walk(struct dentry
*parent
, void *data
,
1054 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1055 void (*finish
)(void *))
1057 struct dentry
*this_parent
;
1058 struct list_head
*next
;
1060 enum d_walk_ret ret
;
1064 read_seqbegin_or_lock(&rename_lock
, &seq
);
1065 this_parent
= parent
;
1066 spin_lock(&this_parent
->d_lock
);
1068 ret
= enter(data
, this_parent
);
1070 case D_WALK_CONTINUE
:
1075 case D_WALK_NORETRY
:
1080 next
= this_parent
->d_subdirs
.next
;
1082 while (next
!= &this_parent
->d_subdirs
) {
1083 struct list_head
*tmp
= next
;
1084 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1087 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1089 ret
= enter(data
, dentry
);
1091 case D_WALK_CONTINUE
:
1094 spin_unlock(&dentry
->d_lock
);
1096 case D_WALK_NORETRY
:
1100 spin_unlock(&dentry
->d_lock
);
1104 if (!list_empty(&dentry
->d_subdirs
)) {
1105 spin_unlock(&this_parent
->d_lock
);
1106 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1107 this_parent
= dentry
;
1108 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1111 spin_unlock(&dentry
->d_lock
);
1114 * All done at this level ... ascend and resume the search.
1116 if (this_parent
!= parent
) {
1117 struct dentry
*child
= this_parent
;
1118 this_parent
= child
->d_parent
;
1121 spin_unlock(&child
->d_lock
);
1122 spin_lock(&this_parent
->d_lock
);
1125 * might go back up the wrong parent if we have had a rename
1128 if (this_parent
!= child
->d_parent
||
1129 (child
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1130 need_seqretry(&rename_lock
, seq
)) {
1131 spin_unlock(&this_parent
->d_lock
);
1136 next
= child
->d_u
.d_child
.next
;
1139 if (need_seqretry(&rename_lock
, seq
)) {
1140 spin_unlock(&this_parent
->d_lock
);
1147 spin_unlock(&this_parent
->d_lock
);
1148 done_seqretry(&rename_lock
, seq
);
1159 * Search for at least 1 mount point in the dentry's subdirs.
1160 * We descend to the next level whenever the d_subdirs
1161 * list is non-empty and continue searching.
1164 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1167 if (d_mountpoint(dentry
)) {
1171 return D_WALK_CONTINUE
;
1175 * have_submounts - check for mounts over a dentry
1176 * @parent: dentry to check.
1178 * Return true if the parent or its subdirectories contain
1181 int have_submounts(struct dentry
*parent
)
1185 d_walk(parent
, &ret
, check_mount
, NULL
);
1189 EXPORT_SYMBOL(have_submounts
);
1192 * Called by mount code to set a mountpoint and check if the mountpoint is
1193 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1194 * subtree can become unreachable).
1196 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1197 * this reason take rename_lock and d_lock on dentry and ancestors.
1199 int d_set_mounted(struct dentry
*dentry
)
1203 write_seqlock(&rename_lock
);
1204 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1205 /* Need exclusion wrt. check_submounts_and_drop() */
1206 spin_lock(&p
->d_lock
);
1207 if (unlikely(d_unhashed(p
))) {
1208 spin_unlock(&p
->d_lock
);
1211 spin_unlock(&p
->d_lock
);
1213 spin_lock(&dentry
->d_lock
);
1214 if (!d_unlinked(dentry
)) {
1215 dentry
->d_flags
|= DCACHE_MOUNTED
;
1218 spin_unlock(&dentry
->d_lock
);
1220 write_sequnlock(&rename_lock
);
1225 * Search the dentry child list of the specified parent,
1226 * and move any unused dentries to the end of the unused
1227 * list for prune_dcache(). We descend to the next level
1228 * whenever the d_subdirs list is non-empty and continue
1231 * It returns zero iff there are no unused children,
1232 * otherwise it returns the number of children moved to
1233 * the end of the unused list. This may not be the total
1234 * number of unused children, because select_parent can
1235 * drop the lock and return early due to latency
1239 struct select_data
{
1240 struct dentry
*start
;
1241 struct list_head dispose
;
1245 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1247 struct select_data
*data
= _data
;
1248 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1250 if (data
->start
== dentry
)
1253 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1256 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1258 if (!dentry
->d_lockref
.count
) {
1259 d_shrink_add(dentry
, &data
->dispose
);
1264 * We can return to the caller if we have found some (this
1265 * ensures forward progress). We'll be coming back to find
1268 if (!list_empty(&data
->dispose
))
1269 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1275 * shrink_dcache_parent - prune dcache
1276 * @parent: parent of entries to prune
1278 * Prune the dcache to remove unused children of the parent dentry.
1280 void shrink_dcache_parent(struct dentry
*parent
)
1283 struct select_data data
;
1285 INIT_LIST_HEAD(&data
.dispose
);
1286 data
.start
= parent
;
1289 d_walk(parent
, &data
, select_collect
, NULL
);
1293 shrink_dentry_list(&data
.dispose
);
1297 EXPORT_SYMBOL(shrink_dcache_parent
);
1299 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1301 /* it has busy descendents; complain about those instead */
1302 if (!list_empty(&dentry
->d_subdirs
))
1303 return D_WALK_CONTINUE
;
1305 /* root with refcount 1 is fine */
1306 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1307 return D_WALK_CONTINUE
;
1309 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1310 " still in use (%d) [unmount of %s %s]\n",
1313 dentry
->d_inode
->i_ino
: 0UL,
1315 dentry
->d_lockref
.count
,
1316 dentry
->d_sb
->s_type
->name
,
1317 dentry
->d_sb
->s_id
);
1319 return D_WALK_CONTINUE
;
1322 static void do_one_tree(struct dentry
*dentry
)
1324 shrink_dcache_parent(dentry
);
1325 d_walk(dentry
, dentry
, umount_check
, NULL
);
1331 * destroy the dentries attached to a superblock on unmounting
1333 void shrink_dcache_for_umount(struct super_block
*sb
)
1335 struct dentry
*dentry
;
1337 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1339 dentry
= sb
->s_root
;
1341 do_one_tree(dentry
);
1343 while (!hlist_bl_empty(&sb
->s_anon
)) {
1344 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1345 do_one_tree(dentry
);
1349 static enum d_walk_ret
check_and_collect(void *_data
, struct dentry
*dentry
)
1351 struct select_data
*data
= _data
;
1353 if (d_mountpoint(dentry
)) {
1354 data
->found
= -EBUSY
;
1358 return select_collect(_data
, dentry
);
1361 static void check_and_drop(void *_data
)
1363 struct select_data
*data
= _data
;
1365 if (d_mountpoint(data
->start
))
1366 data
->found
= -EBUSY
;
1368 __d_drop(data
->start
);
1372 * check_submounts_and_drop - prune dcache, check for submounts and drop
1374 * All done as a single atomic operation relative to has_unlinked_ancestor().
1375 * Returns 0 if successfully unhashed @parent. If there were submounts then
1378 * @dentry: dentry to prune and drop
1380 int check_submounts_and_drop(struct dentry
*dentry
)
1384 /* Negative dentries can be dropped without further checks */
1385 if (!dentry
->d_inode
) {
1391 struct select_data data
;
1393 INIT_LIST_HEAD(&data
.dispose
);
1394 data
.start
= dentry
;
1397 d_walk(dentry
, &data
, check_and_collect
, check_and_drop
);
1400 if (!list_empty(&data
.dispose
))
1401 shrink_dentry_list(&data
.dispose
);
1412 EXPORT_SYMBOL(check_submounts_and_drop
);
1415 * __d_alloc - allocate a dcache entry
1416 * @sb: filesystem it will belong to
1417 * @name: qstr of the name
1419 * Allocates a dentry. It returns %NULL if there is insufficient memory
1420 * available. On a success the dentry is returned. The name passed in is
1421 * copied and the copy passed in may be reused after this call.
1424 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1426 struct dentry
*dentry
;
1429 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1434 * We guarantee that the inline name is always NUL-terminated.
1435 * This way the memcpy() done by the name switching in rename
1436 * will still always have a NUL at the end, even if we might
1437 * be overwriting an internal NUL character
1439 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1440 if (name
->len
> DNAME_INLINE_LEN
-1) {
1441 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1443 kmem_cache_free(dentry_cache
, dentry
);
1447 dname
= dentry
->d_iname
;
1450 dentry
->d_name
.len
= name
->len
;
1451 dentry
->d_name
.hash
= name
->hash
;
1452 memcpy(dname
, name
->name
, name
->len
);
1453 dname
[name
->len
] = 0;
1455 /* Make sure we always see the terminating NUL character */
1457 dentry
->d_name
.name
= dname
;
1459 dentry
->d_lockref
.count
= 1;
1460 dentry
->d_flags
= 0;
1461 spin_lock_init(&dentry
->d_lock
);
1462 seqcount_init(&dentry
->d_seq
);
1463 dentry
->d_inode
= NULL
;
1464 dentry
->d_parent
= dentry
;
1466 dentry
->d_op
= NULL
;
1467 dentry
->d_fsdata
= NULL
;
1468 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1469 INIT_LIST_HEAD(&dentry
->d_lru
);
1470 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1471 INIT_HLIST_NODE(&dentry
->d_alias
);
1472 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1473 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1475 this_cpu_inc(nr_dentry
);
1481 * d_alloc - allocate a dcache entry
1482 * @parent: parent of entry to allocate
1483 * @name: qstr of the name
1485 * Allocates a dentry. It returns %NULL if there is insufficient memory
1486 * available. On a success the dentry is returned. The name passed in is
1487 * copied and the copy passed in may be reused after this call.
1489 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1491 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1495 spin_lock(&parent
->d_lock
);
1497 * don't need child lock because it is not subject
1498 * to concurrency here
1500 __dget_dlock(parent
);
1501 dentry
->d_parent
= parent
;
1502 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1503 spin_unlock(&parent
->d_lock
);
1507 EXPORT_SYMBOL(d_alloc
);
1510 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1511 * @sb: the superblock
1512 * @name: qstr of the name
1514 * For a filesystem that just pins its dentries in memory and never
1515 * performs lookups at all, return an unhashed IS_ROOT dentry.
1517 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1519 return __d_alloc(sb
, name
);
1521 EXPORT_SYMBOL(d_alloc_pseudo
);
1523 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1528 q
.len
= strlen(name
);
1529 q
.hash
= full_name_hash(q
.name
, q
.len
);
1530 return d_alloc(parent
, &q
);
1532 EXPORT_SYMBOL(d_alloc_name
);
1534 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1536 WARN_ON_ONCE(dentry
->d_op
);
1537 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1539 DCACHE_OP_REVALIDATE
|
1540 DCACHE_OP_WEAK_REVALIDATE
|
1541 DCACHE_OP_DELETE
));
1546 dentry
->d_flags
|= DCACHE_OP_HASH
;
1548 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1549 if (op
->d_revalidate
)
1550 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1551 if (op
->d_weak_revalidate
)
1552 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1554 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1556 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1559 EXPORT_SYMBOL(d_set_d_op
);
1561 static unsigned d_flags_for_inode(struct inode
*inode
)
1563 unsigned add_flags
= DCACHE_FILE_TYPE
;
1566 return DCACHE_MISS_TYPE
;
1568 if (S_ISDIR(inode
->i_mode
)) {
1569 add_flags
= DCACHE_DIRECTORY_TYPE
;
1570 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1571 if (unlikely(!inode
->i_op
->lookup
))
1572 add_flags
= DCACHE_AUTODIR_TYPE
;
1574 inode
->i_opflags
|= IOP_LOOKUP
;
1576 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1577 if (unlikely(inode
->i_op
->follow_link
))
1578 add_flags
= DCACHE_SYMLINK_TYPE
;
1580 inode
->i_opflags
|= IOP_NOFOLLOW
;
1583 if (unlikely(IS_AUTOMOUNT(inode
)))
1584 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1588 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1590 unsigned add_flags
= d_flags_for_inode(inode
);
1592 spin_lock(&dentry
->d_lock
);
1593 __d_set_type(dentry
, add_flags
);
1595 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1596 dentry
->d_inode
= inode
;
1597 dentry_rcuwalk_barrier(dentry
);
1598 spin_unlock(&dentry
->d_lock
);
1599 fsnotify_d_instantiate(dentry
, inode
);
1603 * d_instantiate - fill in inode information for a dentry
1604 * @entry: dentry to complete
1605 * @inode: inode to attach to this dentry
1607 * Fill in inode information in the entry.
1609 * This turns negative dentries into productive full members
1612 * NOTE! This assumes that the inode count has been incremented
1613 * (or otherwise set) by the caller to indicate that it is now
1614 * in use by the dcache.
1617 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1619 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1621 spin_lock(&inode
->i_lock
);
1622 __d_instantiate(entry
, inode
);
1624 spin_unlock(&inode
->i_lock
);
1625 security_d_instantiate(entry
, inode
);
1627 EXPORT_SYMBOL(d_instantiate
);
1630 * d_instantiate_unique - instantiate a non-aliased dentry
1631 * @entry: dentry to instantiate
1632 * @inode: inode to attach to this dentry
1634 * Fill in inode information in the entry. On success, it returns NULL.
1635 * If an unhashed alias of "entry" already exists, then we return the
1636 * aliased dentry instead and drop one reference to inode.
1638 * Note that in order to avoid conflicts with rename() etc, the caller
1639 * had better be holding the parent directory semaphore.
1641 * This also assumes that the inode count has been incremented
1642 * (or otherwise set) by the caller to indicate that it is now
1643 * in use by the dcache.
1645 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1646 struct inode
*inode
)
1648 struct dentry
*alias
;
1649 int len
= entry
->d_name
.len
;
1650 const char *name
= entry
->d_name
.name
;
1651 unsigned int hash
= entry
->d_name
.hash
;
1654 __d_instantiate(entry
, NULL
);
1658 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1660 * Don't need alias->d_lock here, because aliases with
1661 * d_parent == entry->d_parent are not subject to name or
1662 * parent changes, because the parent inode i_mutex is held.
1664 if (alias
->d_name
.hash
!= hash
)
1666 if (alias
->d_parent
!= entry
->d_parent
)
1668 if (alias
->d_name
.len
!= len
)
1670 if (dentry_cmp(alias
, name
, len
))
1676 __d_instantiate(entry
, inode
);
1680 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1682 struct dentry
*result
;
1684 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1687 spin_lock(&inode
->i_lock
);
1688 result
= __d_instantiate_unique(entry
, inode
);
1690 spin_unlock(&inode
->i_lock
);
1693 security_d_instantiate(entry
, inode
);
1697 BUG_ON(!d_unhashed(result
));
1702 EXPORT_SYMBOL(d_instantiate_unique
);
1705 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1706 * @entry: dentry to complete
1707 * @inode: inode to attach to this dentry
1709 * Fill in inode information in the entry. If a directory alias is found, then
1710 * return an error (and drop inode). Together with d_materialise_unique() this
1711 * guarantees that a directory inode may never have more than one alias.
1713 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1715 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1717 spin_lock(&inode
->i_lock
);
1718 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1719 spin_unlock(&inode
->i_lock
);
1723 __d_instantiate(entry
, inode
);
1724 spin_unlock(&inode
->i_lock
);
1725 security_d_instantiate(entry
, inode
);
1729 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1731 struct dentry
*d_make_root(struct inode
*root_inode
)
1733 struct dentry
*res
= NULL
;
1736 static const struct qstr name
= QSTR_INIT("/", 1);
1738 res
= __d_alloc(root_inode
->i_sb
, &name
);
1740 d_instantiate(res
, root_inode
);
1746 EXPORT_SYMBOL(d_make_root
);
1748 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1750 struct dentry
*alias
;
1752 if (hlist_empty(&inode
->i_dentry
))
1754 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1760 * d_find_any_alias - find any alias for a given inode
1761 * @inode: inode to find an alias for
1763 * If any aliases exist for the given inode, take and return a
1764 * reference for one of them. If no aliases exist, return %NULL.
1766 struct dentry
*d_find_any_alias(struct inode
*inode
)
1770 spin_lock(&inode
->i_lock
);
1771 de
= __d_find_any_alias(inode
);
1772 spin_unlock(&inode
->i_lock
);
1775 EXPORT_SYMBOL(d_find_any_alias
);
1777 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1779 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1785 return ERR_PTR(-ESTALE
);
1787 return ERR_CAST(inode
);
1789 res
= d_find_any_alias(inode
);
1793 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1795 res
= ERR_PTR(-ENOMEM
);
1799 spin_lock(&inode
->i_lock
);
1800 res
= __d_find_any_alias(inode
);
1802 spin_unlock(&inode
->i_lock
);
1807 /* attach a disconnected dentry */
1808 add_flags
= d_flags_for_inode(inode
);
1811 add_flags
|= DCACHE_DISCONNECTED
;
1813 spin_lock(&tmp
->d_lock
);
1814 tmp
->d_inode
= inode
;
1815 tmp
->d_flags
|= add_flags
;
1816 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1817 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1818 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1819 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1820 spin_unlock(&tmp
->d_lock
);
1821 spin_unlock(&inode
->i_lock
);
1822 security_d_instantiate(tmp
, inode
);
1827 if (res
&& !IS_ERR(res
))
1828 security_d_instantiate(res
, inode
);
1834 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1835 * @inode: inode to allocate the dentry for
1837 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1838 * similar open by handle operations. The returned dentry may be anonymous,
1839 * or may have a full name (if the inode was already in the cache).
1841 * When called on a directory inode, we must ensure that the inode only ever
1842 * has one dentry. If a dentry is found, that is returned instead of
1843 * allocating a new one.
1845 * On successful return, the reference to the inode has been transferred
1846 * to the dentry. In case of an error the reference on the inode is released.
1847 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1848 * be passed in and the error will be propagated to the return value,
1849 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1851 struct dentry
*d_obtain_alias(struct inode
*inode
)
1853 return __d_obtain_alias(inode
, 1);
1855 EXPORT_SYMBOL(d_obtain_alias
);
1858 * d_obtain_root - find or allocate a dentry for a given inode
1859 * @inode: inode to allocate the dentry for
1861 * Obtain an IS_ROOT dentry for the root of a filesystem.
1863 * We must ensure that directory inodes only ever have one dentry. If a
1864 * dentry is found, that is returned instead of allocating a new one.
1866 * On successful return, the reference to the inode has been transferred
1867 * to the dentry. In case of an error the reference on the inode is
1868 * released. A %NULL or IS_ERR inode may be passed in and will be the
1869 * error will be propagate to the return value, with a %NULL @inode
1870 * replaced by ERR_PTR(-ESTALE).
1872 struct dentry
*d_obtain_root(struct inode
*inode
)
1874 return __d_obtain_alias(inode
, 0);
1876 EXPORT_SYMBOL(d_obtain_root
);
1879 * d_add_ci - lookup or allocate new dentry with case-exact name
1880 * @inode: the inode case-insensitive lookup has found
1881 * @dentry: the negative dentry that was passed to the parent's lookup func
1882 * @name: the case-exact name to be associated with the returned dentry
1884 * This is to avoid filling the dcache with case-insensitive names to the
1885 * same inode, only the actual correct case is stored in the dcache for
1886 * case-insensitive filesystems.
1888 * For a case-insensitive lookup match and if the the case-exact dentry
1889 * already exists in in the dcache, use it and return it.
1891 * If no entry exists with the exact case name, allocate new dentry with
1892 * the exact case, and return the spliced entry.
1894 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1897 struct dentry
*found
;
1901 * First check if a dentry matching the name already exists,
1902 * if not go ahead and create it now.
1904 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1905 if (unlikely(IS_ERR(found
)))
1908 new = d_alloc(dentry
->d_parent
, name
);
1910 found
= ERR_PTR(-ENOMEM
);
1914 found
= d_splice_alias(inode
, new);
1923 * If a matching dentry exists, and it's not negative use it.
1925 * Decrement the reference count to balance the iget() done
1928 if (found
->d_inode
) {
1929 if (unlikely(found
->d_inode
!= inode
)) {
1930 /* This can't happen because bad inodes are unhashed. */
1931 BUG_ON(!is_bad_inode(inode
));
1932 BUG_ON(!is_bad_inode(found
->d_inode
));
1939 * Negative dentry: instantiate it unless the inode is a directory and
1940 * already has a dentry.
1942 new = d_splice_alias(inode
, found
);
1953 EXPORT_SYMBOL(d_add_ci
);
1956 * Do the slow-case of the dentry name compare.
1958 * Unlike the dentry_cmp() function, we need to atomically
1959 * load the name and length information, so that the
1960 * filesystem can rely on them, and can use the 'name' and
1961 * 'len' information without worrying about walking off the
1962 * end of memory etc.
1964 * Thus the read_seqcount_retry() and the "duplicate" info
1965 * in arguments (the low-level filesystem should not look
1966 * at the dentry inode or name contents directly, since
1967 * rename can change them while we're in RCU mode).
1969 enum slow_d_compare
{
1975 static noinline
enum slow_d_compare
slow_dentry_cmp(
1976 const struct dentry
*parent
,
1977 struct dentry
*dentry
,
1979 const struct qstr
*name
)
1981 int tlen
= dentry
->d_name
.len
;
1982 const char *tname
= dentry
->d_name
.name
;
1984 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1986 return D_COMP_SEQRETRY
;
1988 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
1989 return D_COMP_NOMATCH
;
1994 * __d_lookup_rcu - search for a dentry (racy, store-free)
1995 * @parent: parent dentry
1996 * @name: qstr of name we wish to find
1997 * @seqp: returns d_seq value at the point where the dentry was found
1998 * Returns: dentry, or NULL
2000 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2001 * resolution (store-free path walking) design described in
2002 * Documentation/filesystems/path-lookup.txt.
2004 * This is not to be used outside core vfs.
2006 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2007 * held, and rcu_read_lock held. The returned dentry must not be stored into
2008 * without taking d_lock and checking d_seq sequence count against @seq
2011 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2014 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2015 * the returned dentry, so long as its parent's seqlock is checked after the
2016 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2017 * is formed, giving integrity down the path walk.
2019 * NOTE! The caller *has* to check the resulting dentry against the sequence
2020 * number we've returned before using any of the resulting dentry state!
2022 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2023 const struct qstr
*name
,
2026 u64 hashlen
= name
->hash_len
;
2027 const unsigned char *str
= name
->name
;
2028 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2029 struct hlist_bl_node
*node
;
2030 struct dentry
*dentry
;
2033 * Note: There is significant duplication with __d_lookup_rcu which is
2034 * required to prevent single threaded performance regressions
2035 * especially on architectures where smp_rmb (in seqcounts) are costly.
2036 * Keep the two functions in sync.
2040 * The hash list is protected using RCU.
2042 * Carefully use d_seq when comparing a candidate dentry, to avoid
2043 * races with d_move().
2045 * It is possible that concurrent renames can mess up our list
2046 * walk here and result in missing our dentry, resulting in the
2047 * false-negative result. d_lookup() protects against concurrent
2048 * renames using rename_lock seqlock.
2050 * See Documentation/filesystems/path-lookup.txt for more details.
2052 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2057 * The dentry sequence count protects us from concurrent
2058 * renames, and thus protects parent and name fields.
2060 * The caller must perform a seqcount check in order
2061 * to do anything useful with the returned dentry.
2063 * NOTE! We do a "raw" seqcount_begin here. That means that
2064 * we don't wait for the sequence count to stabilize if it
2065 * is in the middle of a sequence change. If we do the slow
2066 * dentry compare, we will do seqretries until it is stable,
2067 * and if we end up with a successful lookup, we actually
2068 * want to exit RCU lookup anyway.
2070 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2071 if (dentry
->d_parent
!= parent
)
2073 if (d_unhashed(dentry
))
2076 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2077 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2080 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2083 case D_COMP_NOMATCH
:
2090 if (dentry
->d_name
.hash_len
!= hashlen
)
2093 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2100 * d_lookup - search for a dentry
2101 * @parent: parent dentry
2102 * @name: qstr of name we wish to find
2103 * Returns: dentry, or NULL
2105 * d_lookup searches the children of the parent dentry for the name in
2106 * question. If the dentry is found its reference count is incremented and the
2107 * dentry is returned. The caller must use dput to free the entry when it has
2108 * finished using it. %NULL is returned if the dentry does not exist.
2110 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2112 struct dentry
*dentry
;
2116 seq
= read_seqbegin(&rename_lock
);
2117 dentry
= __d_lookup(parent
, name
);
2120 } while (read_seqretry(&rename_lock
, seq
));
2123 EXPORT_SYMBOL(d_lookup
);
2126 * __d_lookup - search for a dentry (racy)
2127 * @parent: parent dentry
2128 * @name: qstr of name we wish to find
2129 * Returns: dentry, or NULL
2131 * __d_lookup is like d_lookup, however it may (rarely) return a
2132 * false-negative result due to unrelated rename activity.
2134 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2135 * however it must be used carefully, eg. with a following d_lookup in
2136 * the case of failure.
2138 * __d_lookup callers must be commented.
2140 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2142 unsigned int len
= name
->len
;
2143 unsigned int hash
= name
->hash
;
2144 const unsigned char *str
= name
->name
;
2145 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2146 struct hlist_bl_node
*node
;
2147 struct dentry
*found
= NULL
;
2148 struct dentry
*dentry
;
2151 * Note: There is significant duplication with __d_lookup_rcu which is
2152 * required to prevent single threaded performance regressions
2153 * especially on architectures where smp_rmb (in seqcounts) are costly.
2154 * Keep the two functions in sync.
2158 * The hash list is protected using RCU.
2160 * Take d_lock when comparing a candidate dentry, to avoid races
2163 * It is possible that concurrent renames can mess up our list
2164 * walk here and result in missing our dentry, resulting in the
2165 * false-negative result. d_lookup() protects against concurrent
2166 * renames using rename_lock seqlock.
2168 * See Documentation/filesystems/path-lookup.txt for more details.
2172 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2174 if (dentry
->d_name
.hash
!= hash
)
2177 spin_lock(&dentry
->d_lock
);
2178 if (dentry
->d_parent
!= parent
)
2180 if (d_unhashed(dentry
))
2184 * It is safe to compare names since d_move() cannot
2185 * change the qstr (protected by d_lock).
2187 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2188 int tlen
= dentry
->d_name
.len
;
2189 const char *tname
= dentry
->d_name
.name
;
2190 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2193 if (dentry
->d_name
.len
!= len
)
2195 if (dentry_cmp(dentry
, str
, len
))
2199 dentry
->d_lockref
.count
++;
2201 spin_unlock(&dentry
->d_lock
);
2204 spin_unlock(&dentry
->d_lock
);
2212 * d_hash_and_lookup - hash the qstr then search for a dentry
2213 * @dir: Directory to search in
2214 * @name: qstr of name we wish to find
2216 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2218 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2221 * Check for a fs-specific hash function. Note that we must
2222 * calculate the standard hash first, as the d_op->d_hash()
2223 * routine may choose to leave the hash value unchanged.
2225 name
->hash
= full_name_hash(name
->name
, name
->len
);
2226 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2227 int err
= dir
->d_op
->d_hash(dir
, name
);
2228 if (unlikely(err
< 0))
2229 return ERR_PTR(err
);
2231 return d_lookup(dir
, name
);
2233 EXPORT_SYMBOL(d_hash_and_lookup
);
2236 * d_validate - verify dentry provided from insecure source (deprecated)
2237 * @dentry: The dentry alleged to be valid child of @dparent
2238 * @dparent: The parent dentry (known to be valid)
2240 * An insecure source has sent us a dentry, here we verify it and dget() it.
2241 * This is used by ncpfs in its readdir implementation.
2242 * Zero is returned in the dentry is invalid.
2244 * This function is slow for big directories, and deprecated, do not use it.
2246 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2248 struct dentry
*child
;
2250 spin_lock(&dparent
->d_lock
);
2251 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2252 if (dentry
== child
) {
2253 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2254 __dget_dlock(dentry
);
2255 spin_unlock(&dentry
->d_lock
);
2256 spin_unlock(&dparent
->d_lock
);
2260 spin_unlock(&dparent
->d_lock
);
2264 EXPORT_SYMBOL(d_validate
);
2267 * When a file is deleted, we have two options:
2268 * - turn this dentry into a negative dentry
2269 * - unhash this dentry and free it.
2271 * Usually, we want to just turn this into
2272 * a negative dentry, but if anybody else is
2273 * currently using the dentry or the inode
2274 * we can't do that and we fall back on removing
2275 * it from the hash queues and waiting for
2276 * it to be deleted later when it has no users
2280 * d_delete - delete a dentry
2281 * @dentry: The dentry to delete
2283 * Turn the dentry into a negative dentry if possible, otherwise
2284 * remove it from the hash queues so it can be deleted later
2287 void d_delete(struct dentry
* dentry
)
2289 struct inode
*inode
;
2292 * Are we the only user?
2295 spin_lock(&dentry
->d_lock
);
2296 inode
= dentry
->d_inode
;
2297 isdir
= S_ISDIR(inode
->i_mode
);
2298 if (dentry
->d_lockref
.count
== 1) {
2299 if (!spin_trylock(&inode
->i_lock
)) {
2300 spin_unlock(&dentry
->d_lock
);
2304 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2305 dentry_unlink_inode(dentry
);
2306 fsnotify_nameremove(dentry
, isdir
);
2310 if (!d_unhashed(dentry
))
2313 spin_unlock(&dentry
->d_lock
);
2315 fsnotify_nameremove(dentry
, isdir
);
2317 EXPORT_SYMBOL(d_delete
);
2319 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2321 BUG_ON(!d_unhashed(entry
));
2323 entry
->d_flags
|= DCACHE_RCUACCESS
;
2324 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2328 static void _d_rehash(struct dentry
* entry
)
2330 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2334 * d_rehash - add an entry back to the hash
2335 * @entry: dentry to add to the hash
2337 * Adds a dentry to the hash according to its name.
2340 void d_rehash(struct dentry
* entry
)
2342 spin_lock(&entry
->d_lock
);
2344 spin_unlock(&entry
->d_lock
);
2346 EXPORT_SYMBOL(d_rehash
);
2349 * dentry_update_name_case - update case insensitive dentry with a new name
2350 * @dentry: dentry to be updated
2353 * Update a case insensitive dentry with new case of name.
2355 * dentry must have been returned by d_lookup with name @name. Old and new
2356 * name lengths must match (ie. no d_compare which allows mismatched name
2359 * Parent inode i_mutex must be held over d_lookup and into this call (to
2360 * keep renames and concurrent inserts, and readdir(2) away).
2362 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2364 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2365 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2367 spin_lock(&dentry
->d_lock
);
2368 write_seqcount_begin(&dentry
->d_seq
);
2369 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2370 write_seqcount_end(&dentry
->d_seq
);
2371 spin_unlock(&dentry
->d_lock
);
2373 EXPORT_SYMBOL(dentry_update_name_case
);
2375 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2377 if (dname_external(target
)) {
2378 if (dname_external(dentry
)) {
2380 * Both external: swap the pointers
2382 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2385 * dentry:internal, target:external. Steal target's
2386 * storage and make target internal.
2388 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2389 dentry
->d_name
.len
+ 1);
2390 dentry
->d_name
.name
= target
->d_name
.name
;
2391 target
->d_name
.name
= target
->d_iname
;
2394 if (dname_external(dentry
)) {
2396 * dentry:external, target:internal. Give dentry's
2397 * storage to target and make dentry internal
2399 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2400 target
->d_name
.len
+ 1);
2401 target
->d_name
.name
= dentry
->d_name
.name
;
2402 dentry
->d_name
.name
= dentry
->d_iname
;
2405 * Both are internal.
2408 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2409 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2410 swap(((long *) &dentry
->d_iname
)[i
],
2411 ((long *) &target
->d_iname
)[i
]);
2415 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2418 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2421 * XXXX: do we really need to take target->d_lock?
2423 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2424 spin_lock(&target
->d_parent
->d_lock
);
2426 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2427 spin_lock(&dentry
->d_parent
->d_lock
);
2428 spin_lock_nested(&target
->d_parent
->d_lock
,
2429 DENTRY_D_LOCK_NESTED
);
2431 spin_lock(&target
->d_parent
->d_lock
);
2432 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2433 DENTRY_D_LOCK_NESTED
);
2436 if (target
< dentry
) {
2437 spin_lock_nested(&target
->d_lock
, 2);
2438 spin_lock_nested(&dentry
->d_lock
, 3);
2440 spin_lock_nested(&dentry
->d_lock
, 2);
2441 spin_lock_nested(&target
->d_lock
, 3);
2445 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2446 struct dentry
*target
)
2448 if (target
->d_parent
!= dentry
->d_parent
)
2449 spin_unlock(&dentry
->d_parent
->d_lock
);
2450 if (target
->d_parent
!= target
)
2451 spin_unlock(&target
->d_parent
->d_lock
);
2455 * When switching names, the actual string doesn't strictly have to
2456 * be preserved in the target - because we're dropping the target
2457 * anyway. As such, we can just do a simple memcpy() to copy over
2458 * the new name before we switch.
2460 * Note that we have to be a lot more careful about getting the hash
2461 * switched - we have to switch the hash value properly even if it
2462 * then no longer matches the actual (corrupted) string of the target.
2463 * The hash value has to match the hash queue that the dentry is on..
2466 * __d_move - move a dentry
2467 * @dentry: entry to move
2468 * @target: new dentry
2469 * @exchange: exchange the two dentries
2471 * Update the dcache to reflect the move of a file name. Negative
2472 * dcache entries should not be moved in this way. Caller must hold
2473 * rename_lock, the i_mutex of the source and target directories,
2474 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2476 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2479 if (!dentry
->d_inode
)
2480 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2482 BUG_ON(d_ancestor(dentry
, target
));
2483 BUG_ON(d_ancestor(target
, dentry
));
2485 dentry_lock_for_move(dentry
, target
);
2487 write_seqcount_begin(&dentry
->d_seq
);
2488 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2490 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2493 * Move the dentry to the target hash queue. Don't bother checking
2494 * for the same hash queue because of how unlikely it is.
2497 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2500 * Unhash the target (d_delete() is not usable here). If exchanging
2501 * the two dentries, then rehash onto the other's hash queue.
2506 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2509 list_del(&dentry
->d_u
.d_child
);
2510 list_del(&target
->d_u
.d_child
);
2512 /* Switch the names.. */
2513 switch_names(dentry
, target
);
2514 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2516 /* ... and switch the parents */
2517 if (IS_ROOT(dentry
)) {
2518 dentry
->d_parent
= target
->d_parent
;
2519 target
->d_parent
= target
;
2520 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2522 swap(dentry
->d_parent
, target
->d_parent
);
2524 /* And add them back to the (new) parent lists */
2525 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2528 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2530 write_seqcount_end(&target
->d_seq
);
2531 write_seqcount_end(&dentry
->d_seq
);
2533 dentry_unlock_parents_for_move(dentry
, target
);
2535 fsnotify_d_move(target
);
2536 spin_unlock(&target
->d_lock
);
2537 fsnotify_d_move(dentry
);
2538 spin_unlock(&dentry
->d_lock
);
2542 * d_move - move a dentry
2543 * @dentry: entry to move
2544 * @target: new dentry
2546 * Update the dcache to reflect the move of a file name. Negative
2547 * dcache entries should not be moved in this way. See the locking
2548 * requirements for __d_move.
2550 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2552 write_seqlock(&rename_lock
);
2553 __d_move(dentry
, target
, false);
2554 write_sequnlock(&rename_lock
);
2556 EXPORT_SYMBOL(d_move
);
2559 * d_exchange - exchange two dentries
2560 * @dentry1: first dentry
2561 * @dentry2: second dentry
2563 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2565 write_seqlock(&rename_lock
);
2567 WARN_ON(!dentry1
->d_inode
);
2568 WARN_ON(!dentry2
->d_inode
);
2569 WARN_ON(IS_ROOT(dentry1
));
2570 WARN_ON(IS_ROOT(dentry2
));
2572 __d_move(dentry1
, dentry2
, true);
2574 write_sequnlock(&rename_lock
);
2578 * d_ancestor - search for an ancestor
2579 * @p1: ancestor dentry
2582 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2583 * an ancestor of p2, else NULL.
2585 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2589 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2590 if (p
->d_parent
== p1
)
2597 * This helper attempts to cope with remotely renamed directories
2599 * It assumes that the caller is already holding
2600 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2602 * Note: If ever the locking in lock_rename() changes, then please
2603 * remember to update this too...
2605 static struct dentry
*__d_unalias(struct inode
*inode
,
2606 struct dentry
*dentry
, struct dentry
*alias
)
2608 struct mutex
*m1
= NULL
, *m2
= NULL
;
2609 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2611 /* If alias and dentry share a parent, then no extra locks required */
2612 if (alias
->d_parent
== dentry
->d_parent
)
2615 /* See lock_rename() */
2616 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2618 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2619 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2621 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2623 if (likely(!d_mountpoint(alias
))) {
2624 __d_move(alias
, dentry
, false);
2628 spin_unlock(&inode
->i_lock
);
2637 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2638 * named dentry in place of the dentry to be replaced.
2639 * returns with anon->d_lock held!
2641 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2643 struct dentry
*dparent
;
2645 dentry_lock_for_move(anon
, dentry
);
2647 write_seqcount_begin(&dentry
->d_seq
);
2648 write_seqcount_begin_nested(&anon
->d_seq
, DENTRY_D_LOCK_NESTED
);
2650 dparent
= dentry
->d_parent
;
2652 switch_names(dentry
, anon
);
2653 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2655 dentry
->d_parent
= dentry
;
2656 list_del_init(&dentry
->d_u
.d_child
);
2657 anon
->d_parent
= dparent
;
2658 if (likely(!d_unhashed(anon
))) {
2659 hlist_bl_lock(&anon
->d_sb
->s_anon
);
2660 __hlist_bl_del(&anon
->d_hash
);
2661 anon
->d_hash
.pprev
= NULL
;
2662 hlist_bl_unlock(&anon
->d_sb
->s_anon
);
2664 list_move(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2666 write_seqcount_end(&dentry
->d_seq
);
2667 write_seqcount_end(&anon
->d_seq
);
2669 dentry_unlock_parents_for_move(anon
, dentry
);
2670 spin_unlock(&dentry
->d_lock
);
2672 /* anon->d_lock still locked, returns locked */
2676 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2677 * @inode: the inode which may have a disconnected dentry
2678 * @dentry: a negative dentry which we want to point to the inode.
2680 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2681 * place of the given dentry and return it, else simply d_add the inode
2682 * to the dentry and return NULL.
2684 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2685 * we should error out: directories can't have multiple aliases.
2687 * This is needed in the lookup routine of any filesystem that is exportable
2688 * (via knfsd) so that we can build dcache paths to directories effectively.
2690 * If a dentry was found and moved, then it is returned. Otherwise NULL
2691 * is returned. This matches the expected return value of ->lookup.
2693 * Cluster filesystems may call this function with a negative, hashed dentry.
2694 * In that case, we know that the inode will be a regular file, and also this
2695 * will only occur during atomic_open. So we need to check for the dentry
2696 * being already hashed only in the final case.
2698 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2700 struct dentry
*new = NULL
;
2703 return ERR_CAST(inode
);
2705 if (inode
&& S_ISDIR(inode
->i_mode
)) {
2706 spin_lock(&inode
->i_lock
);
2707 new = __d_find_any_alias(inode
);
2709 if (!IS_ROOT(new)) {
2710 spin_unlock(&inode
->i_lock
);
2712 return ERR_PTR(-EIO
);
2714 if (d_ancestor(new, dentry
)) {
2715 spin_unlock(&inode
->i_lock
);
2717 return ERR_PTR(-EIO
);
2719 write_seqlock(&rename_lock
);
2720 __d_materialise_dentry(dentry
, new);
2721 write_sequnlock(&rename_lock
);
2723 spin_unlock(&new->d_lock
);
2724 spin_unlock(&inode
->i_lock
);
2725 security_d_instantiate(new, inode
);
2728 /* already taking inode->i_lock, so d_add() by hand */
2729 __d_instantiate(dentry
, inode
);
2730 spin_unlock(&inode
->i_lock
);
2731 security_d_instantiate(dentry
, inode
);
2735 d_instantiate(dentry
, inode
);
2736 if (d_unhashed(dentry
))
2741 EXPORT_SYMBOL(d_splice_alias
);
2744 * d_materialise_unique - introduce an inode into the tree
2745 * @dentry: candidate dentry
2746 * @inode: inode to bind to the dentry, to which aliases may be attached
2748 * Introduces an dentry into the tree, substituting an extant disconnected
2749 * root directory alias in its place if there is one. Caller must hold the
2750 * i_mutex of the parent directory.
2752 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2754 struct dentry
*actual
;
2756 BUG_ON(!d_unhashed(dentry
));
2760 __d_instantiate(dentry
, NULL
);
2765 spin_lock(&inode
->i_lock
);
2767 if (S_ISDIR(inode
->i_mode
)) {
2768 struct dentry
*alias
;
2770 /* Does an aliased dentry already exist? */
2771 alias
= __d_find_alias(inode
);
2774 write_seqlock(&rename_lock
);
2776 if (d_ancestor(alias
, dentry
)) {
2777 /* Check for loops */
2778 actual
= ERR_PTR(-ELOOP
);
2779 spin_unlock(&inode
->i_lock
);
2780 } else if (IS_ROOT(alias
)) {
2781 /* Is this an anonymous mountpoint that we
2782 * could splice into our tree? */
2783 __d_materialise_dentry(dentry
, alias
);
2784 write_sequnlock(&rename_lock
);
2787 /* Nope, but we must(!) avoid directory
2788 * aliasing. This drops inode->i_lock */
2789 actual
= __d_unalias(inode
, dentry
, alias
);
2791 write_sequnlock(&rename_lock
);
2792 if (IS_ERR(actual
)) {
2793 if (PTR_ERR(actual
) == -ELOOP
)
2794 pr_warn_ratelimited(
2795 "VFS: Lookup of '%s' in %s %s"
2796 " would have caused loop\n",
2797 dentry
->d_name
.name
,
2798 inode
->i_sb
->s_type
->name
,
2806 /* Add a unique reference */
2807 actual
= __d_instantiate_unique(dentry
, inode
);
2811 BUG_ON(!d_unhashed(actual
));
2813 spin_lock(&actual
->d_lock
);
2816 spin_unlock(&actual
->d_lock
);
2817 spin_unlock(&inode
->i_lock
);
2819 if (actual
== dentry
) {
2820 security_d_instantiate(dentry
, inode
);
2827 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2829 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2833 return -ENAMETOOLONG
;
2835 memcpy(*buffer
, str
, namelen
);
2840 * prepend_name - prepend a pathname in front of current buffer pointer
2841 * @buffer: buffer pointer
2842 * @buflen: allocated length of the buffer
2843 * @name: name string and length qstr structure
2845 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2846 * make sure that either the old or the new name pointer and length are
2847 * fetched. However, there may be mismatch between length and pointer.
2848 * The length cannot be trusted, we need to copy it byte-by-byte until
2849 * the length is reached or a null byte is found. It also prepends "/" at
2850 * the beginning of the name. The sequence number check at the caller will
2851 * retry it again when a d_move() does happen. So any garbage in the buffer
2852 * due to mismatched pointer and length will be discarded.
2854 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2856 const char *dname
= ACCESS_ONCE(name
->name
);
2857 u32 dlen
= ACCESS_ONCE(name
->len
);
2860 *buflen
-= dlen
+ 1;
2862 return -ENAMETOOLONG
;
2863 p
= *buffer
-= dlen
+ 1;
2875 * prepend_path - Prepend path string to a buffer
2876 * @path: the dentry/vfsmount to report
2877 * @root: root vfsmnt/dentry
2878 * @buffer: pointer to the end of the buffer
2879 * @buflen: pointer to buffer length
2881 * The function will first try to write out the pathname without taking any
2882 * lock other than the RCU read lock to make sure that dentries won't go away.
2883 * It only checks the sequence number of the global rename_lock as any change
2884 * in the dentry's d_seq will be preceded by changes in the rename_lock
2885 * sequence number. If the sequence number had been changed, it will restart
2886 * the whole pathname back-tracing sequence again by taking the rename_lock.
2887 * In this case, there is no need to take the RCU read lock as the recursive
2888 * parent pointer references will keep the dentry chain alive as long as no
2889 * rename operation is performed.
2891 static int prepend_path(const struct path
*path
,
2892 const struct path
*root
,
2893 char **buffer
, int *buflen
)
2895 struct dentry
*dentry
;
2896 struct vfsmount
*vfsmnt
;
2899 unsigned seq
, m_seq
= 0;
2905 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2912 dentry
= path
->dentry
;
2914 mnt
= real_mount(vfsmnt
);
2915 read_seqbegin_or_lock(&rename_lock
, &seq
);
2916 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2917 struct dentry
* parent
;
2919 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2920 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2922 if (mnt
!= parent
) {
2923 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2929 * Filesystems needing to implement special "root names"
2930 * should do so with ->d_dname()
2932 if (IS_ROOT(dentry
) &&
2933 (dentry
->d_name
.len
!= 1 ||
2934 dentry
->d_name
.name
[0] != '/')) {
2935 WARN(1, "Root dentry has weird name <%.*s>\n",
2936 (int) dentry
->d_name
.len
,
2937 dentry
->d_name
.name
);
2940 error
= is_mounted(vfsmnt
) ? 1 : 2;
2943 parent
= dentry
->d_parent
;
2945 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2953 if (need_seqretry(&rename_lock
, seq
)) {
2957 done_seqretry(&rename_lock
, seq
);
2961 if (need_seqretry(&mount_lock
, m_seq
)) {
2965 done_seqretry(&mount_lock
, m_seq
);
2967 if (error
>= 0 && bptr
== *buffer
) {
2969 error
= -ENAMETOOLONG
;
2979 * __d_path - return the path of a dentry
2980 * @path: the dentry/vfsmount to report
2981 * @root: root vfsmnt/dentry
2982 * @buf: buffer to return value in
2983 * @buflen: buffer length
2985 * Convert a dentry into an ASCII path name.
2987 * Returns a pointer into the buffer or an error code if the
2988 * path was too long.
2990 * "buflen" should be positive.
2992 * If the path is not reachable from the supplied root, return %NULL.
2994 char *__d_path(const struct path
*path
,
2995 const struct path
*root
,
2996 char *buf
, int buflen
)
2998 char *res
= buf
+ buflen
;
3001 prepend(&res
, &buflen
, "\0", 1);
3002 error
= prepend_path(path
, root
, &res
, &buflen
);
3005 return ERR_PTR(error
);
3011 char *d_absolute_path(const struct path
*path
,
3012 char *buf
, int buflen
)
3014 struct path root
= {};
3015 char *res
= buf
+ buflen
;
3018 prepend(&res
, &buflen
, "\0", 1);
3019 error
= prepend_path(path
, &root
, &res
, &buflen
);
3024 return ERR_PTR(error
);
3029 * same as __d_path but appends "(deleted)" for unlinked files.
3031 static int path_with_deleted(const struct path
*path
,
3032 const struct path
*root
,
3033 char **buf
, int *buflen
)
3035 prepend(buf
, buflen
, "\0", 1);
3036 if (d_unlinked(path
->dentry
)) {
3037 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3042 return prepend_path(path
, root
, buf
, buflen
);
3045 static int prepend_unreachable(char **buffer
, int *buflen
)
3047 return prepend(buffer
, buflen
, "(unreachable)", 13);
3050 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3055 seq
= read_seqcount_begin(&fs
->seq
);
3057 } while (read_seqcount_retry(&fs
->seq
, seq
));
3061 * d_path - return the path of a dentry
3062 * @path: path to report
3063 * @buf: buffer to return value in
3064 * @buflen: buffer length
3066 * Convert a dentry into an ASCII path name. If the entry has been deleted
3067 * the string " (deleted)" is appended. Note that this is ambiguous.
3069 * Returns a pointer into the buffer or an error code if the path was
3070 * too long. Note: Callers should use the returned pointer, not the passed
3071 * in buffer, to use the name! The implementation often starts at an offset
3072 * into the buffer, and may leave 0 bytes at the start.
3074 * "buflen" should be positive.
3076 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3078 char *res
= buf
+ buflen
;
3083 * We have various synthetic filesystems that never get mounted. On
3084 * these filesystems dentries are never used for lookup purposes, and
3085 * thus don't need to be hashed. They also don't need a name until a
3086 * user wants to identify the object in /proc/pid/fd/. The little hack
3087 * below allows us to generate a name for these objects on demand:
3089 * Some pseudo inodes are mountable. When they are mounted
3090 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3091 * and instead have d_path return the mounted path.
3093 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3094 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3095 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3098 get_fs_root_rcu(current
->fs
, &root
);
3099 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3103 res
= ERR_PTR(error
);
3106 EXPORT_SYMBOL(d_path
);
3109 * Helper function for dentry_operations.d_dname() members
3111 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3112 const char *fmt
, ...)
3118 va_start(args
, fmt
);
3119 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3122 if (sz
> sizeof(temp
) || sz
> buflen
)
3123 return ERR_PTR(-ENAMETOOLONG
);
3125 buffer
+= buflen
- sz
;
3126 return memcpy(buffer
, temp
, sz
);
3129 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3131 char *end
= buffer
+ buflen
;
3132 /* these dentries are never renamed, so d_lock is not needed */
3133 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3134 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3135 prepend(&end
, &buflen
, "/", 1))
3136 end
= ERR_PTR(-ENAMETOOLONG
);
3139 EXPORT_SYMBOL(simple_dname
);
3142 * Write full pathname from the root of the filesystem into the buffer.
3144 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3146 struct dentry
*dentry
;
3159 prepend(&end
, &len
, "\0", 1);
3163 read_seqbegin_or_lock(&rename_lock
, &seq
);
3164 while (!IS_ROOT(dentry
)) {
3165 struct dentry
*parent
= dentry
->d_parent
;
3168 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3177 if (need_seqretry(&rename_lock
, seq
)) {
3181 done_seqretry(&rename_lock
, seq
);
3186 return ERR_PTR(-ENAMETOOLONG
);
3189 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3191 return __dentry_path(dentry
, buf
, buflen
);
3193 EXPORT_SYMBOL(dentry_path_raw
);
3195 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3200 if (d_unlinked(dentry
)) {
3202 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3206 retval
= __dentry_path(dentry
, buf
, buflen
);
3207 if (!IS_ERR(retval
) && p
)
3208 *p
= '/'; /* restore '/' overriden with '\0' */
3211 return ERR_PTR(-ENAMETOOLONG
);
3214 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3220 seq
= read_seqcount_begin(&fs
->seq
);
3223 } while (read_seqcount_retry(&fs
->seq
, seq
));
3227 * NOTE! The user-level library version returns a
3228 * character pointer. The kernel system call just
3229 * returns the length of the buffer filled (which
3230 * includes the ending '\0' character), or a negative
3231 * error value. So libc would do something like
3233 * char *getcwd(char * buf, size_t size)
3237 * retval = sys_getcwd(buf, size);
3244 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3247 struct path pwd
, root
;
3248 char *page
= __getname();
3254 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3257 if (!d_unlinked(pwd
.dentry
)) {
3259 char *cwd
= page
+ PATH_MAX
;
3260 int buflen
= PATH_MAX
;
3262 prepend(&cwd
, &buflen
, "\0", 1);
3263 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3269 /* Unreachable from current root */
3271 error
= prepend_unreachable(&cwd
, &buflen
);
3277 len
= PATH_MAX
+ page
- cwd
;
3280 if (copy_to_user(buf
, cwd
, len
))
3293 * Test whether new_dentry is a subdirectory of old_dentry.
3295 * Trivially implemented using the dcache structure
3299 * is_subdir - is new dentry a subdirectory of old_dentry
3300 * @new_dentry: new dentry
3301 * @old_dentry: old dentry
3303 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3304 * Returns 0 otherwise.
3305 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3308 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3313 if (new_dentry
== old_dentry
)
3317 /* for restarting inner loop in case of seq retry */
3318 seq
= read_seqbegin(&rename_lock
);
3320 * Need rcu_readlock to protect against the d_parent trashing
3324 if (d_ancestor(old_dentry
, new_dentry
))
3329 } while (read_seqretry(&rename_lock
, seq
));
3334 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3336 struct dentry
*root
= data
;
3337 if (dentry
!= root
) {
3338 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3341 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3342 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3343 dentry
->d_lockref
.count
--;
3346 return D_WALK_CONTINUE
;
3349 void d_genocide(struct dentry
*parent
)
3351 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3354 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3356 inode_dec_link_count(inode
);
3357 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3358 !hlist_unhashed(&dentry
->d_alias
) ||
3359 !d_unlinked(dentry
));
3360 spin_lock(&dentry
->d_parent
->d_lock
);
3361 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3362 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3363 (unsigned long long)inode
->i_ino
);
3364 spin_unlock(&dentry
->d_lock
);
3365 spin_unlock(&dentry
->d_parent
->d_lock
);
3366 d_instantiate(dentry
, inode
);
3368 EXPORT_SYMBOL(d_tmpfile
);
3370 static __initdata
unsigned long dhash_entries
;
3371 static int __init
set_dhash_entries(char *str
)
3375 dhash_entries
= simple_strtoul(str
, &str
, 0);
3378 __setup("dhash_entries=", set_dhash_entries
);
3380 static void __init
dcache_init_early(void)
3384 /* If hashes are distributed across NUMA nodes, defer
3385 * hash allocation until vmalloc space is available.
3391 alloc_large_system_hash("Dentry cache",
3392 sizeof(struct hlist_bl_head
),
3401 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3402 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3405 static void __init
dcache_init(void)
3410 * A constructor could be added for stable state like the lists,
3411 * but it is probably not worth it because of the cache nature
3414 dentry_cache
= KMEM_CACHE(dentry
,
3415 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3417 /* Hash may have been set up in dcache_init_early */
3422 alloc_large_system_hash("Dentry cache",
3423 sizeof(struct hlist_bl_head
),
3432 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3433 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3436 /* SLAB cache for __getname() consumers */
3437 struct kmem_cache
*names_cachep __read_mostly
;
3438 EXPORT_SYMBOL(names_cachep
);
3440 EXPORT_SYMBOL(d_genocide
);
3442 void __init
vfs_caches_init_early(void)
3444 dcache_init_early();
3448 void __init
vfs_caches_init(unsigned long mempages
)
3450 unsigned long reserve
;
3452 /* Base hash sizes on available memory, with a reserve equal to
3453 150% of current kernel size */
3455 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3456 mempages
-= reserve
;
3458 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3459 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3463 files_init(mempages
);