2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
24 #include <linux/slab.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 #ifdef CONFIG_MTD_NAND_OMAP_BCH
140 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141 0xac, 0x6b, 0xff, 0x99, 0x7b};
142 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
145 /* oob info generated runtime depending on ecc algorithm and layout selected */
146 static struct nand_ecclayout omap_oobinfo
;
148 struct omap_nand_info
{
149 struct nand_hw_control controller
;
150 struct omap_nand_platform_data
*pdata
;
152 struct nand_chip nand
;
153 struct platform_device
*pdev
;
156 unsigned long phys_base
;
157 enum omap_ecc ecc_opt
;
158 struct completion comp
;
159 struct dma_chan
*dma
;
163 OMAP_NAND_IO_READ
= 0, /* read */
164 OMAP_NAND_IO_WRITE
, /* write */
168 struct gpmc_nand_regs reg
;
169 /* fields specific for BCHx_HW ECC scheme */
170 struct device
*elm_dev
;
171 struct device_node
*of_node
;
175 * omap_prefetch_enable - configures and starts prefetch transfer
176 * @cs: cs (chip select) number
177 * @fifo_th: fifo threshold to be used for read/ write
178 * @dma_mode: dma mode enable (1) or disable (0)
179 * @u32_count: number of bytes to be transferred
180 * @is_write: prefetch read(0) or write post(1) mode
182 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
183 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
187 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
190 if (readl(info
->reg
.gpmc_prefetch_control
))
193 /* Set the amount of bytes to be prefetched */
194 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
196 /* Set dma/mpu mode, the prefetch read / post write and
197 * enable the engine. Set which cs is has requested for.
199 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
200 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
201 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (0x1 & is_write
));
202 writel(val
, info
->reg
.gpmc_prefetch_config1
);
204 /* Start the prefetch engine */
205 writel(0x1, info
->reg
.gpmc_prefetch_control
);
211 * omap_prefetch_reset - disables and stops the prefetch engine
213 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
217 /* check if the same module/cs is trying to reset */
218 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
219 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
222 /* Stop the PFPW engine */
223 writel(0x0, info
->reg
.gpmc_prefetch_control
);
225 /* Reset/disable the PFPW engine */
226 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
232 * omap_hwcontrol - hardware specific access to control-lines
233 * @mtd: MTD device structure
234 * @cmd: command to device
236 * NAND_NCE: bit 0 -> don't care
237 * NAND_CLE: bit 1 -> Command Latch
238 * NAND_ALE: bit 2 -> Address Latch
240 * NOTE: boards may use different bits for these!!
242 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
244 struct omap_nand_info
*info
= container_of(mtd
,
245 struct omap_nand_info
, mtd
);
247 if (cmd
!= NAND_CMD_NONE
) {
249 writeb(cmd
, info
->reg
.gpmc_nand_command
);
251 else if (ctrl
& NAND_ALE
)
252 writeb(cmd
, info
->reg
.gpmc_nand_address
);
255 writeb(cmd
, info
->reg
.gpmc_nand_data
);
260 * omap_read_buf8 - read data from NAND controller into buffer
261 * @mtd: MTD device structure
262 * @buf: buffer to store date
263 * @len: number of bytes to read
265 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
267 struct nand_chip
*nand
= mtd
->priv
;
269 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
273 * omap_write_buf8 - write buffer to NAND controller
274 * @mtd: MTD device structure
276 * @len: number of bytes to write
278 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
280 struct omap_nand_info
*info
= container_of(mtd
,
281 struct omap_nand_info
, mtd
);
282 u_char
*p
= (u_char
*)buf
;
286 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
287 /* wait until buffer is available for write */
289 status
= readl(info
->reg
.gpmc_status
) &
296 * omap_read_buf16 - read data from NAND controller into buffer
297 * @mtd: MTD device structure
298 * @buf: buffer to store date
299 * @len: number of bytes to read
301 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
303 struct nand_chip
*nand
= mtd
->priv
;
305 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
309 * omap_write_buf16 - write buffer to NAND controller
310 * @mtd: MTD device structure
312 * @len: number of bytes to write
314 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
316 struct omap_nand_info
*info
= container_of(mtd
,
317 struct omap_nand_info
, mtd
);
318 u16
*p
= (u16
*) buf
;
320 /* FIXME try bursts of writesw() or DMA ... */
324 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
325 /* wait until buffer is available for write */
327 status
= readl(info
->reg
.gpmc_status
) &
334 * omap_read_buf_pref - read data from NAND controller into buffer
335 * @mtd: MTD device structure
336 * @buf: buffer to store date
337 * @len: number of bytes to read
339 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
341 struct omap_nand_info
*info
= container_of(mtd
,
342 struct omap_nand_info
, mtd
);
343 uint32_t r_count
= 0;
347 /* take care of subpage reads */
349 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
350 omap_read_buf16(mtd
, buf
, len
% 4);
352 omap_read_buf8(mtd
, buf
, len
% 4);
353 p
= (u32
*) (buf
+ len
% 4);
357 /* configure and start prefetch transfer */
358 ret
= omap_prefetch_enable(info
->gpmc_cs
,
359 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
361 /* PFPW engine is busy, use cpu copy method */
362 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
363 omap_read_buf16(mtd
, (u_char
*)p
, len
);
365 omap_read_buf8(mtd
, (u_char
*)p
, len
);
368 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
369 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
370 r_count
= r_count
>> 2;
371 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
375 /* disable and stop the PFPW engine */
376 omap_prefetch_reset(info
->gpmc_cs
, info
);
381 * omap_write_buf_pref - write buffer to NAND controller
382 * @mtd: MTD device structure
384 * @len: number of bytes to write
386 static void omap_write_buf_pref(struct mtd_info
*mtd
,
387 const u_char
*buf
, int len
)
389 struct omap_nand_info
*info
= container_of(mtd
,
390 struct omap_nand_info
, mtd
);
391 uint32_t w_count
= 0;
394 unsigned long tim
, limit
;
397 /* take care of subpage writes */
399 writeb(*buf
, info
->nand
.IO_ADDR_W
);
400 p
= (u16
*)(buf
+ 1);
404 /* configure and start prefetch transfer */
405 ret
= omap_prefetch_enable(info
->gpmc_cs
,
406 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
408 /* PFPW engine is busy, use cpu copy method */
409 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
410 omap_write_buf16(mtd
, (u_char
*)p
, len
);
412 omap_write_buf8(mtd
, (u_char
*)p
, len
);
415 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
416 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
417 w_count
= w_count
>> 1;
418 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
419 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
421 /* wait for data to flushed-out before reset the prefetch */
423 limit
= (loops_per_jiffy
*
424 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
427 val
= readl(info
->reg
.gpmc_prefetch_status
);
428 val
= PREFETCH_STATUS_COUNT(val
);
429 } while (val
&& (tim
++ < limit
));
431 /* disable and stop the PFPW engine */
432 omap_prefetch_reset(info
->gpmc_cs
, info
);
437 * omap_nand_dma_callback: callback on the completion of dma transfer
438 * @data: pointer to completion data structure
440 static void omap_nand_dma_callback(void *data
)
442 complete((struct completion
*) data
);
446 * omap_nand_dma_transfer: configure and start dma transfer
447 * @mtd: MTD device structure
448 * @addr: virtual address in RAM of source/destination
449 * @len: number of data bytes to be transferred
450 * @is_write: flag for read/write operation
452 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
453 unsigned int len
, int is_write
)
455 struct omap_nand_info
*info
= container_of(mtd
,
456 struct omap_nand_info
, mtd
);
457 struct dma_async_tx_descriptor
*tx
;
458 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
460 struct scatterlist sg
;
461 unsigned long tim
, limit
;
466 if (addr
>= high_memory
) {
469 if (((size_t)addr
& PAGE_MASK
) !=
470 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
472 p1
= vmalloc_to_page(addr
);
475 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
478 sg_init_one(&sg
, addr
, len
);
479 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
481 dev_err(&info
->pdev
->dev
,
482 "Couldn't DMA map a %d byte buffer\n", len
);
486 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
487 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
488 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
492 tx
->callback
= omap_nand_dma_callback
;
493 tx
->callback_param
= &info
->comp
;
494 dmaengine_submit(tx
);
496 /* configure and start prefetch transfer */
497 ret
= omap_prefetch_enable(info
->gpmc_cs
,
498 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
500 /* PFPW engine is busy, use cpu copy method */
503 init_completion(&info
->comp
);
504 dma_async_issue_pending(info
->dma
);
506 /* setup and start DMA using dma_addr */
507 wait_for_completion(&info
->comp
);
509 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
513 val
= readl(info
->reg
.gpmc_prefetch_status
);
514 val
= PREFETCH_STATUS_COUNT(val
);
515 } while (val
&& (tim
++ < limit
));
517 /* disable and stop the PFPW engine */
518 omap_prefetch_reset(info
->gpmc_cs
, info
);
520 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
524 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
526 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
527 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
528 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
530 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
531 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
537 * @mtd: MTD device structure
538 * @buf: buffer to store date
539 * @len: number of bytes to read
541 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
543 if (len
<= mtd
->oobsize
)
544 omap_read_buf_pref(mtd
, buf
, len
);
546 /* start transfer in DMA mode */
547 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
551 * omap_write_buf_dma_pref - write buffer to NAND controller
552 * @mtd: MTD device structure
554 * @len: number of bytes to write
556 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
557 const u_char
*buf
, int len
)
559 if (len
<= mtd
->oobsize
)
560 omap_write_buf_pref(mtd
, buf
, len
);
562 /* start transfer in DMA mode */
563 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
567 * omap_nand_irq - GPMC irq handler
568 * @this_irq: gpmc irq number
569 * @dev: omap_nand_info structure pointer is passed here
571 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
573 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
576 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
577 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
578 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
579 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
580 if (this_irq
== info
->gpmc_irq_count
)
583 if (info
->buf_len
&& (info
->buf_len
< bytes
))
584 bytes
= info
->buf_len
;
585 else if (!info
->buf_len
)
587 iowrite32_rep(info
->nand
.IO_ADDR_W
,
588 (u32
*)info
->buf
, bytes
>> 2);
589 info
->buf
= info
->buf
+ bytes
;
590 info
->buf_len
-= bytes
;
593 ioread32_rep(info
->nand
.IO_ADDR_R
,
594 (u32
*)info
->buf
, bytes
>> 2);
595 info
->buf
= info
->buf
+ bytes
;
597 if (this_irq
== info
->gpmc_irq_count
)
604 complete(&info
->comp
);
606 disable_irq_nosync(info
->gpmc_irq_fifo
);
607 disable_irq_nosync(info
->gpmc_irq_count
);
613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
614 * @mtd: MTD device structure
615 * @buf: buffer to store date
616 * @len: number of bytes to read
618 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
620 struct omap_nand_info
*info
= container_of(mtd
,
621 struct omap_nand_info
, mtd
);
624 if (len
<= mtd
->oobsize
) {
625 omap_read_buf_pref(mtd
, buf
, len
);
629 info
->iomode
= OMAP_NAND_IO_READ
;
631 init_completion(&info
->comp
);
633 /* configure and start prefetch transfer */
634 ret
= omap_prefetch_enable(info
->gpmc_cs
,
635 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
637 /* PFPW engine is busy, use cpu copy method */
642 enable_irq(info
->gpmc_irq_count
);
643 enable_irq(info
->gpmc_irq_fifo
);
645 /* waiting for read to complete */
646 wait_for_completion(&info
->comp
);
648 /* disable and stop the PFPW engine */
649 omap_prefetch_reset(info
->gpmc_cs
, info
);
653 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
654 omap_read_buf16(mtd
, buf
, len
);
656 omap_read_buf8(mtd
, buf
, len
);
660 * omap_write_buf_irq_pref - write buffer to NAND controller
661 * @mtd: MTD device structure
663 * @len: number of bytes to write
665 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
666 const u_char
*buf
, int len
)
668 struct omap_nand_info
*info
= container_of(mtd
,
669 struct omap_nand_info
, mtd
);
671 unsigned long tim
, limit
;
674 if (len
<= mtd
->oobsize
) {
675 omap_write_buf_pref(mtd
, buf
, len
);
679 info
->iomode
= OMAP_NAND_IO_WRITE
;
680 info
->buf
= (u_char
*) buf
;
681 init_completion(&info
->comp
);
683 /* configure and start prefetch transfer : size=24 */
684 ret
= omap_prefetch_enable(info
->gpmc_cs
,
685 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
687 /* PFPW engine is busy, use cpu copy method */
692 enable_irq(info
->gpmc_irq_count
);
693 enable_irq(info
->gpmc_irq_fifo
);
695 /* waiting for write to complete */
696 wait_for_completion(&info
->comp
);
698 /* wait for data to flushed-out before reset the prefetch */
700 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
702 val
= readl(info
->reg
.gpmc_prefetch_status
);
703 val
= PREFETCH_STATUS_COUNT(val
);
705 } while (val
&& (tim
++ < limit
));
707 /* disable and stop the PFPW engine */
708 omap_prefetch_reset(info
->gpmc_cs
, info
);
712 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
713 omap_write_buf16(mtd
, buf
, len
);
715 omap_write_buf8(mtd
, buf
, len
);
719 * gen_true_ecc - This function will generate true ECC value
720 * @ecc_buf: buffer to store ecc code
722 * This generated true ECC value can be used when correcting
723 * data read from NAND flash memory core
725 static void gen_true_ecc(u8
*ecc_buf
)
727 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
728 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
730 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
731 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
732 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
733 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
734 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
735 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
739 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
740 * @ecc_data1: ecc code from nand spare area
741 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
742 * @page_data: page data
744 * This function compares two ECC's and indicates if there is an error.
745 * If the error can be corrected it will be corrected to the buffer.
746 * If there is no error, %0 is returned. If there is an error but it
747 * was corrected, %1 is returned. Otherwise, %-1 is returned.
749 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
750 u8
*ecc_data2
, /* read from register */
754 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
755 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
762 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
764 gen_true_ecc(ecc_data1
);
765 gen_true_ecc(ecc_data2
);
767 for (i
= 0; i
<= 2; i
++) {
768 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
769 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
772 for (i
= 0; i
< 8; i
++) {
773 tmp0_bit
[i
] = *ecc_data1
% 2;
774 *ecc_data1
= *ecc_data1
/ 2;
777 for (i
= 0; i
< 8; i
++) {
778 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
779 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
782 for (i
= 0; i
< 8; i
++) {
783 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
784 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
787 for (i
= 0; i
< 8; i
++) {
788 comp0_bit
[i
] = *ecc_data2
% 2;
789 *ecc_data2
= *ecc_data2
/ 2;
792 for (i
= 0; i
< 8; i
++) {
793 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
794 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
797 for (i
= 0; i
< 8; i
++) {
798 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
799 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
802 for (i
= 0; i
< 6; i
++)
803 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
805 for (i
= 0; i
< 8; i
++)
806 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
808 for (i
= 0; i
< 8; i
++)
809 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
811 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
812 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
814 for (i
= 0; i
< 24; i
++)
815 ecc_sum
+= ecc_bit
[i
];
819 /* Not reached because this function is not called if
820 * ECC values are equal
825 /* Uncorrectable error */
826 pr_debug("ECC UNCORRECTED_ERROR 1\n");
830 /* UN-Correctable error */
831 pr_debug("ECC UNCORRECTED_ERROR B\n");
835 /* Correctable error */
836 find_byte
= (ecc_bit
[23] << 8) +
846 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
848 pr_debug("Correcting single bit ECC error at offset: "
849 "%d, bit: %d\n", find_byte
, find_bit
);
851 page_data
[find_byte
] ^= (1 << find_bit
);
856 if (ecc_data2
[0] == 0 &&
861 pr_debug("UNCORRECTED_ERROR default\n");
867 * omap_correct_data - Compares the ECC read with HW generated ECC
868 * @mtd: MTD device structure
870 * @read_ecc: ecc read from nand flash
871 * @calc_ecc: ecc read from HW ECC registers
873 * Compares the ecc read from nand spare area with ECC registers values
874 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
875 * detection and correction. If there are no errors, %0 is returned. If
876 * there were errors and all of the errors were corrected, the number of
877 * corrected errors is returned. If uncorrectable errors exist, %-1 is
880 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
881 u_char
*read_ecc
, u_char
*calc_ecc
)
883 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
885 int blockCnt
= 0, i
= 0, ret
= 0;
888 /* Ex NAND_ECC_HW12_2048 */
889 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
890 (info
->nand
.ecc
.size
== 2048))
895 for (i
= 0; i
< blockCnt
; i
++) {
896 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
897 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
900 /* keep track of the number of corrected errors */
911 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
912 * @mtd: MTD device structure
913 * @dat: The pointer to data on which ecc is computed
914 * @ecc_code: The ecc_code buffer
916 * Using noninverted ECC can be considered ugly since writing a blank
917 * page ie. padding will clear the ECC bytes. This is no problem as long
918 * nobody is trying to write data on the seemingly unused page. Reading
919 * an erased page will produce an ECC mismatch between generated and read
920 * ECC bytes that has to be dealt with separately.
922 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
925 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
929 val
= readl(info
->reg
.gpmc_ecc_config
);
930 if (((val
>> ECC_CONFIG_CS_SHIFT
) & ~CS_MASK
) != info
->gpmc_cs
)
933 /* read ecc result */
934 val
= readl(info
->reg
.gpmc_ecc1_result
);
935 *ecc_code
++ = val
; /* P128e, ..., P1e */
936 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
937 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
938 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
944 * omap_enable_hwecc - This function enables the hardware ecc functionality
945 * @mtd: MTD device structure
946 * @mode: Read/Write mode
948 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
950 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
952 struct nand_chip
*chip
= mtd
->priv
;
953 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
956 /* clear ecc and enable bits */
957 val
= ECCCLEAR
| ECC1
;
958 writel(val
, info
->reg
.gpmc_ecc_control
);
960 /* program ecc and result sizes */
961 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
963 writel(val
, info
->reg
.gpmc_ecc_size_config
);
968 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
970 case NAND_ECC_READSYN
:
971 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
974 dev_info(&info
->pdev
->dev
,
975 "error: unrecognized Mode[%d]!\n", mode
);
979 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
980 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
981 writel(val
, info
->reg
.gpmc_ecc_config
);
985 * omap_wait - wait until the command is done
986 * @mtd: MTD device structure
987 * @chip: NAND Chip structure
989 * Wait function is called during Program and erase operations and
990 * the way it is called from MTD layer, we should wait till the NAND
991 * chip is ready after the programming/erase operation has completed.
993 * Erase can take up to 400ms and program up to 20ms according to
994 * general NAND and SmartMedia specs
996 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
998 struct nand_chip
*this = mtd
->priv
;
999 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1001 unsigned long timeo
= jiffies
;
1002 int status
, state
= this->state
;
1004 if (state
== FL_ERASING
)
1005 timeo
+= msecs_to_jiffies(400);
1007 timeo
+= msecs_to_jiffies(20);
1009 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1010 while (time_before(jiffies
, timeo
)) {
1011 status
= readb(info
->reg
.gpmc_nand_data
);
1012 if (status
& NAND_STATUS_READY
)
1017 status
= readb(info
->reg
.gpmc_nand_data
);
1022 * omap_dev_ready - calls the platform specific dev_ready function
1023 * @mtd: MTD device structure
1025 static int omap_dev_ready(struct mtd_info
*mtd
)
1027 unsigned int val
= 0;
1028 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1031 val
= readl(info
->reg
.gpmc_status
);
1033 if ((val
& 0x100) == 0x100) {
1041 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1042 * @mtd: MTD device structure
1043 * @mode: Read/Write mode
1045 * When using BCH, sector size is hardcoded to 512 bytes.
1046 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1047 * for error correction.
1049 * eccsize0 = 0 (no additional protected byte in spare area)
1050 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1052 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1054 unsigned int bch_type
;
1055 unsigned int dev_width
, nsectors
;
1056 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1058 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1059 struct nand_chip
*chip
= mtd
->priv
;
1061 unsigned int ecc_size1
, ecc_size0
;
1063 /* GPMC configurations for calculating ECC */
1065 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1068 if (mode
== NAND_ECC_READ
) {
1069 wr_mode
= BCH_WRAPMODE_6
;
1070 ecc_size0
= BCH_ECC_SIZE0
;
1071 ecc_size1
= BCH_ECC_SIZE1
;
1073 wr_mode
= BCH_WRAPMODE_6
;
1074 ecc_size0
= BCH_ECC_SIZE0
;
1075 ecc_size1
= BCH_ECC_SIZE1
;
1078 case OMAP_ECC_BCH4_CODE_HW
:
1080 nsectors
= chip
->ecc
.steps
;
1081 if (mode
== NAND_ECC_READ
) {
1082 wr_mode
= BCH_WRAPMODE_1
;
1083 ecc_size0
= BCH4R_ECC_SIZE0
;
1084 ecc_size1
= BCH4R_ECC_SIZE1
;
1086 wr_mode
= BCH_WRAPMODE_6
;
1087 ecc_size0
= BCH_ECC_SIZE0
;
1088 ecc_size1
= BCH_ECC_SIZE1
;
1091 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1094 if (mode
== NAND_ECC_READ
) {
1095 wr_mode
= BCH_WRAPMODE_6
;
1096 ecc_size0
= BCH_ECC_SIZE0
;
1097 ecc_size1
= BCH_ECC_SIZE1
;
1099 wr_mode
= BCH_WRAPMODE_6
;
1100 ecc_size0
= BCH_ECC_SIZE0
;
1101 ecc_size1
= BCH_ECC_SIZE1
;
1104 case OMAP_ECC_BCH8_CODE_HW
:
1106 nsectors
= chip
->ecc
.steps
;
1107 if (mode
== NAND_ECC_READ
) {
1108 wr_mode
= BCH_WRAPMODE_1
;
1109 ecc_size0
= BCH8R_ECC_SIZE0
;
1110 ecc_size1
= BCH8R_ECC_SIZE1
;
1112 wr_mode
= BCH_WRAPMODE_6
;
1113 ecc_size0
= BCH_ECC_SIZE0
;
1114 ecc_size1
= BCH_ECC_SIZE1
;
1121 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1123 /* Configure ecc size for BCH */
1124 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1125 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1127 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1129 /* BCH configuration */
1130 val
= ((1 << 16) | /* enable BCH */
1131 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1132 (wr_mode
<< 8) | /* wrap mode */
1133 (dev_width
<< 7) | /* bus width */
1134 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1135 (info
->gpmc_cs
<< 1) | /* ECC CS */
1136 (0x1)); /* enable ECC */
1138 writel(val
, info
->reg
.gpmc_ecc_config
);
1140 /* Clear ecc and enable bits */
1141 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1144 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1145 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1146 0x97, 0x79, 0xe5, 0x24, 0xb5};
1149 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1150 * @mtd: MTD device structure
1151 * @dat: The pointer to data on which ecc is computed
1152 * @ecc_code: The ecc_code buffer
1154 * Support calculating of BCH4/8 ecc vectors for the page
1156 static int __maybe_unused
omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1157 const u_char
*dat
, u_char
*ecc_calc
)
1159 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1161 int eccbytes
= info
->nand
.ecc
.bytes
;
1162 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1164 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1167 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1168 for (i
= 0; i
< nsectors
; i
++) {
1169 ecc_code
= ecc_calc
;
1170 switch (info
->ecc_opt
) {
1171 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1172 case OMAP_ECC_BCH8_CODE_HW
:
1173 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1174 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1175 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1176 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1177 *ecc_code
++ = (bch_val4
& 0xFF);
1178 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1179 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1180 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1181 *ecc_code
++ = (bch_val3
& 0xFF);
1182 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1183 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1184 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1185 *ecc_code
++ = (bch_val2
& 0xFF);
1186 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1187 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1188 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1189 *ecc_code
++ = (bch_val1
& 0xFF);
1191 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1192 case OMAP_ECC_BCH4_CODE_HW
:
1193 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1194 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1195 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1196 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1197 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1198 ((bch_val1
>> 28) & 0xF);
1199 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1200 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1201 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1202 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1208 /* ECC scheme specific syndrome customizations */
1209 switch (info
->ecc_opt
) {
1210 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1211 /* Add constant polynomial to remainder, so that
1212 * ECC of blank pages results in 0x0 on reading back */
1213 for (i
= 0; i
< eccbytes
; i
++)
1214 ecc_calc
[i
] ^= bch4_polynomial
[i
];
1216 case OMAP_ECC_BCH4_CODE_HW
:
1217 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1218 ecc_calc
[eccbytes
- 1] = 0x0;
1220 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1221 /* Add constant polynomial to remainder, so that
1222 * ECC of blank pages results in 0x0 on reading back */
1223 for (i
= 0; i
< eccbytes
; i
++)
1224 ecc_calc
[i
] ^= bch8_polynomial
[i
];
1226 case OMAP_ECC_BCH8_CODE_HW
:
1227 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1228 ecc_calc
[eccbytes
- 1] = 0x0;
1234 ecc_calc
+= eccbytes
;
1241 * erased_sector_bitflips - count bit flips
1242 * @data: data sector buffer
1244 * @info: omap_nand_info
1246 * Check the bit flips in erased page falls below correctable level.
1247 * If falls below, report the page as erased with correctable bit
1248 * flip, else report as uncorrectable page.
1250 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1251 struct omap_nand_info
*info
)
1253 int flip_bits
= 0, i
;
1255 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1256 flip_bits
+= hweight8(~data
[i
]);
1257 if (flip_bits
> info
->nand
.ecc
.strength
)
1261 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1262 flip_bits
+= hweight8(~oob
[i
]);
1263 if (flip_bits
> info
->nand
.ecc
.strength
)
1268 * Bit flips falls in correctable level.
1269 * Fill data area with 0xFF
1272 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1273 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1279 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1281 * omap_elm_correct_data - corrects page data area in case error reported
1282 * @mtd: MTD device structure
1284 * @read_ecc: ecc read from nand flash
1285 * @calc_ecc: ecc read from HW ECC registers
1287 * Calculated ecc vector reported as zero in case of non-error pages.
1288 * In case of non-zero ecc vector, first filter out erased-pages, and
1289 * then process data via ELM to detect bit-flips.
1291 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1292 u_char
*read_ecc
, u_char
*calc_ecc
)
1294 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1296 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1297 int eccsteps
= info
->nand
.ecc
.steps
;
1298 int i
, j
, stat
= 0;
1299 int eccflag
, actual_eccbytes
;
1300 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1301 u_char
*ecc_vec
= calc_ecc
;
1302 u_char
*spare_ecc
= read_ecc
;
1303 u_char
*erased_ecc_vec
;
1306 bool is_error_reported
= false;
1307 u32 bit_pos
, byte_pos
, error_max
, pos
;
1310 switch (info
->ecc_opt
) {
1311 case OMAP_ECC_BCH4_CODE_HW
:
1312 /* omit 7th ECC byte reserved for ROM code compatibility */
1313 actual_eccbytes
= ecc
->bytes
- 1;
1314 erased_ecc_vec
= bch4_vector
;
1316 case OMAP_ECC_BCH8_CODE_HW
:
1317 /* omit 14th ECC byte reserved for ROM code compatibility */
1318 actual_eccbytes
= ecc
->bytes
- 1;
1319 erased_ecc_vec
= bch8_vector
;
1322 pr_err("invalid driver configuration\n");
1326 /* Initialize elm error vector to zero */
1327 memset(err_vec
, 0, sizeof(err_vec
));
1329 for (i
= 0; i
< eccsteps
; i
++) {
1330 eccflag
= 0; /* initialize eccflag */
1333 * Check any error reported,
1334 * In case of error, non zero ecc reported.
1336 for (j
= 0; j
< actual_eccbytes
; j
++) {
1337 if (calc_ecc
[j
] != 0) {
1338 eccflag
= 1; /* non zero ecc, error present */
1344 if (memcmp(calc_ecc
, erased_ecc_vec
,
1345 actual_eccbytes
) == 0) {
1347 * calc_ecc[] matches pattern for ECC(all 0xff)
1348 * so this is definitely an erased-page
1351 buf
= &data
[info
->nand
.ecc
.size
* i
];
1353 * count number of 0-bits in read_buf.
1354 * This check can be removed once a similar
1355 * check is introduced in generic NAND driver
1357 bitflip_count
= erased_sector_bitflips(
1358 buf
, read_ecc
, info
);
1359 if (bitflip_count
) {
1361 * number of 0-bits within ECC limits
1362 * So this may be an erased-page
1364 stat
+= bitflip_count
;
1367 * Too many 0-bits. It may be a
1368 * - programmed-page, OR
1369 * - erased-page with many bit-flips
1370 * So this page requires check by ELM
1372 err_vec
[i
].error_reported
= true;
1373 is_error_reported
= true;
1378 /* Update the ecc vector */
1379 calc_ecc
+= ecc
->bytes
;
1380 read_ecc
+= ecc
->bytes
;
1383 /* Check if any error reported */
1384 if (!is_error_reported
)
1387 /* Decode BCH error using ELM module */
1388 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1391 for (i
= 0; i
< eccsteps
; i
++) {
1392 if (err_vec
[i
].error_uncorrectable
) {
1393 pr_err("nand: uncorrectable bit-flips found\n");
1395 } else if (err_vec
[i
].error_reported
) {
1396 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1397 switch (info
->ecc_opt
) {
1398 case OMAP_ECC_BCH4_CODE_HW
:
1399 /* Add 4 bits to take care of padding */
1400 pos
= err_vec
[i
].error_loc
[j
] +
1403 case OMAP_ECC_BCH8_CODE_HW
:
1404 pos
= err_vec
[i
].error_loc
[j
];
1409 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1410 /* Calculate bit position of error */
1413 /* Calculate byte position of error */
1414 byte_pos
= (error_max
- pos
- 1) / 8;
1416 if (pos
< error_max
) {
1417 if (byte_pos
< 512) {
1418 pr_debug("bitflip@dat[%d]=%x\n",
1419 byte_pos
, data
[byte_pos
]);
1420 data
[byte_pos
] ^= 1 << bit_pos
;
1422 pr_debug("bitflip@oob[%d]=%x\n",
1424 spare_ecc
[byte_pos
- 512]);
1425 spare_ecc
[byte_pos
- 512] ^=
1429 pr_err("invalid bit-flip @ %d:%d\n",
1436 /* Update number of correctable errors */
1437 stat
+= err_vec
[i
].error_count
;
1439 /* Update page data with sector size */
1441 spare_ecc
+= ecc
->bytes
;
1444 return (err
) ? err
: stat
;
1448 * omap_write_page_bch - BCH ecc based write page function for entire page
1449 * @mtd: mtd info structure
1450 * @chip: nand chip info structure
1452 * @oob_required: must write chip->oob_poi to OOB
1454 * Custom write page method evolved to support multi sector writing in one shot
1456 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1457 const uint8_t *buf
, int oob_required
)
1460 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1461 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1463 /* Enable GPMC ecc engine */
1464 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1467 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1469 /* Update ecc vector from GPMC result registers */
1470 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1472 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1473 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1475 /* Write ecc vector to OOB area */
1476 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1481 * omap_read_page_bch - BCH ecc based page read function for entire page
1482 * @mtd: mtd info structure
1483 * @chip: nand chip info structure
1484 * @buf: buffer to store read data
1485 * @oob_required: caller requires OOB data read to chip->oob_poi
1486 * @page: page number to read
1488 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1489 * used for error correction.
1490 * Custom method evolved to support ELM error correction & multi sector
1491 * reading. On reading page data area is read along with OOB data with
1492 * ecc engine enabled. ecc vector updated after read of OOB data.
1493 * For non error pages ecc vector reported as zero.
1495 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1496 uint8_t *buf
, int oob_required
, int page
)
1498 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1499 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1500 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1501 uint8_t *oob
= &chip
->oob_poi
[eccpos
[0]];
1502 uint32_t oob_pos
= mtd
->writesize
+ chip
->ecc
.layout
->eccpos
[0];
1504 unsigned int max_bitflips
= 0;
1506 /* Enable GPMC ecc engine */
1507 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1510 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1512 /* Read oob bytes */
1513 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, oob_pos
, -1);
1514 chip
->read_buf(mtd
, oob
, chip
->ecc
.total
);
1516 /* Calculate ecc bytes */
1517 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1519 memcpy(ecc_code
, &chip
->oob_poi
[eccpos
[0]], chip
->ecc
.total
);
1521 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1524 mtd
->ecc_stats
.failed
++;
1526 mtd
->ecc_stats
.corrected
+= stat
;
1527 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1530 return max_bitflips
;
1534 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1535 * @omap_nand_info: NAND device structure containing platform data
1536 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1538 static int is_elm_present(struct omap_nand_info
*info
,
1539 struct device_node
*elm_node
, enum bch_ecc bch_type
)
1541 struct platform_device
*pdev
;
1542 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1544 /* check whether elm-id is passed via DT */
1546 pr_err("nand: error: ELM DT node not found\n");
1549 pdev
= of_find_device_by_node(elm_node
);
1550 /* check whether ELM device is registered */
1552 pr_err("nand: error: ELM device not found\n");
1555 /* ELM module available, now configure it */
1556 info
->elm_dev
= &pdev
->dev
;
1557 err
= elm_config(info
->elm_dev
, bch_type
,
1558 (info
->mtd
.writesize
/ ecc
->size
), ecc
->size
, ecc
->bytes
);
1562 #endif /* CONFIG_MTD_NAND_ECC_BCH */
1564 static int omap_nand_probe(struct platform_device
*pdev
)
1566 struct omap_nand_info
*info
;
1567 struct omap_nand_platform_data
*pdata
;
1568 struct mtd_info
*mtd
;
1569 struct nand_chip
*nand_chip
;
1570 struct nand_ecclayout
*ecclayout
;
1573 dma_cap_mask_t mask
;
1576 struct resource
*res
;
1577 struct mtd_part_parser_data ppdata
= {};
1579 pdata
= dev_get_platdata(&pdev
->dev
);
1580 if (pdata
== NULL
) {
1581 dev_err(&pdev
->dev
, "platform data missing\n");
1585 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1590 platform_set_drvdata(pdev
, info
);
1592 spin_lock_init(&info
->controller
.lock
);
1593 init_waitqueue_head(&info
->controller
.wq
);
1596 info
->gpmc_cs
= pdata
->cs
;
1597 info
->reg
= pdata
->reg
;
1598 info
->of_node
= pdata
->of_node
;
1599 info
->ecc_opt
= pdata
->ecc_opt
;
1601 mtd
->priv
= &info
->nand
;
1602 mtd
->name
= dev_name(&pdev
->dev
);
1603 mtd
->owner
= THIS_MODULE
;
1604 nand_chip
= &info
->nand
;
1605 nand_chip
->ecc
.priv
= NULL
;
1606 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
1608 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1609 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1610 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1611 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1613 info
->phys_base
= res
->start
;
1615 nand_chip
->controller
= &info
->controller
;
1617 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1618 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1621 * If RDY/BSY line is connected to OMAP then use the omap ready
1622 * function and the generic nand_wait function which reads the status
1623 * register after monitoring the RDY/BSY line. Otherwise use a standard
1624 * chip delay which is slightly more than tR (AC Timing) of the NAND
1625 * device and read status register until you get a failure or success
1627 if (pdata
->dev_ready
) {
1628 nand_chip
->dev_ready
= omap_dev_ready
;
1629 nand_chip
->chip_delay
= 0;
1631 nand_chip
->waitfunc
= omap_wait
;
1632 nand_chip
->chip_delay
= 50;
1635 /* scan NAND device connected to chip controller */
1636 nand_chip
->options
|= pdata
->devsize
& NAND_BUSWIDTH_16
;
1637 if (nand_scan_ident(mtd
, 1, NULL
)) {
1638 pr_err("nand device scan failed, may be bus-width mismatch\n");
1643 /* check for small page devices */
1644 if ((mtd
->oobsize
< 64) && (pdata
->ecc_opt
!= OMAP_ECC_HAM1_CODE_HW
)) {
1645 pr_err("small page devices are not supported\n");
1650 /* re-populate low-level callbacks based on xfer modes */
1651 switch (pdata
->xfer_type
) {
1652 case NAND_OMAP_PREFETCH_POLLED
:
1653 nand_chip
->read_buf
= omap_read_buf_pref
;
1654 nand_chip
->write_buf
= omap_write_buf_pref
;
1657 case NAND_OMAP_POLLED
:
1658 /* Use nand_base defaults for {read,write}_buf */
1661 case NAND_OMAP_PREFETCH_DMA
:
1663 dma_cap_set(DMA_SLAVE
, mask
);
1664 sig
= OMAP24XX_DMA_GPMC
;
1665 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1667 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1671 struct dma_slave_config cfg
;
1673 memset(&cfg
, 0, sizeof(cfg
));
1674 cfg
.src_addr
= info
->phys_base
;
1675 cfg
.dst_addr
= info
->phys_base
;
1676 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1677 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1678 cfg
.src_maxburst
= 16;
1679 cfg
.dst_maxburst
= 16;
1680 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1682 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1686 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
1687 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
1691 case NAND_OMAP_PREFETCH_IRQ
:
1692 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1693 if (info
->gpmc_irq_fifo
<= 0) {
1694 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1698 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
1699 omap_nand_irq
, IRQF_SHARED
,
1700 "gpmc-nand-fifo", info
);
1702 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1703 info
->gpmc_irq_fifo
, err
);
1704 info
->gpmc_irq_fifo
= 0;
1708 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1709 if (info
->gpmc_irq_count
<= 0) {
1710 dev_err(&pdev
->dev
, "error getting count irq\n");
1714 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
1715 omap_nand_irq
, IRQF_SHARED
,
1716 "gpmc-nand-count", info
);
1718 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1719 info
->gpmc_irq_count
, err
);
1720 info
->gpmc_irq_count
= 0;
1724 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
1725 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
1731 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1736 /* populate MTD interface based on ECC scheme */
1737 nand_chip
->ecc
.layout
= &omap_oobinfo
;
1738 ecclayout
= &omap_oobinfo
;
1739 switch (info
->ecc_opt
) {
1740 case OMAP_ECC_HAM1_CODE_HW
:
1741 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1742 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1743 nand_chip
->ecc
.bytes
= 3;
1744 nand_chip
->ecc
.size
= 512;
1745 nand_chip
->ecc
.strength
= 1;
1746 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
1747 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
1748 nand_chip
->ecc
.correct
= omap_correct_data
;
1749 /* define ECC layout */
1750 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1752 nand_chip
->ecc
.size
);
1753 if (nand_chip
->options
& NAND_BUSWIDTH_16
)
1754 oob_index
= BADBLOCK_MARKER_LENGTH
;
1757 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1758 ecclayout
->eccpos
[i
] = oob_index
;
1759 /* no reserved-marker in ecclayout for this ecc-scheme */
1760 ecclayout
->oobfree
->offset
=
1761 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1764 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1765 #ifdef CONFIG_MTD_NAND_ECC_BCH
1766 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1767 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1768 nand_chip
->ecc
.size
= 512;
1769 nand_chip
->ecc
.bytes
= 7;
1770 nand_chip
->ecc
.strength
= 4;
1771 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1772 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1773 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1774 /* define ECC layout */
1775 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1777 nand_chip
->ecc
.size
);
1778 oob_index
= BADBLOCK_MARKER_LENGTH
;
1779 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1780 ecclayout
->eccpos
[i
] = oob_index
;
1781 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1784 /* include reserved-marker in ecclayout->oobfree calculation */
1785 ecclayout
->oobfree
->offset
= 1 +
1786 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1787 /* software bch library is used for locating errors */
1788 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1789 nand_chip
->ecc
.size
,
1790 nand_chip
->ecc
.bytes
,
1791 &nand_chip
->ecc
.layout
);
1792 if (!nand_chip
->ecc
.priv
) {
1793 pr_err("nand: error: unable to use s/w BCH library\n");
1798 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1803 case OMAP_ECC_BCH4_CODE_HW
:
1804 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1805 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1806 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1807 nand_chip
->ecc
.size
= 512;
1808 /* 14th bit is kept reserved for ROM-code compatibility */
1809 nand_chip
->ecc
.bytes
= 7 + 1;
1810 nand_chip
->ecc
.strength
= 4;
1811 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1812 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1813 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1814 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1815 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1816 /* define ECC layout */
1817 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1819 nand_chip
->ecc
.size
);
1820 oob_index
= BADBLOCK_MARKER_LENGTH
;
1821 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1822 ecclayout
->eccpos
[i
] = oob_index
;
1823 /* reserved marker already included in ecclayout->eccbytes */
1824 ecclayout
->oobfree
->offset
=
1825 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1826 /* This ECC scheme requires ELM H/W block */
1827 if (is_elm_present(info
, pdata
->elm_of_node
, BCH4_ECC
) < 0) {
1828 pr_err("nand: error: could not initialize ELM\n");
1834 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1839 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1840 #ifdef CONFIG_MTD_NAND_ECC_BCH
1841 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1842 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1843 nand_chip
->ecc
.size
= 512;
1844 nand_chip
->ecc
.bytes
= 13;
1845 nand_chip
->ecc
.strength
= 8;
1846 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1847 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1848 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1849 /* define ECC layout */
1850 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1852 nand_chip
->ecc
.size
);
1853 oob_index
= BADBLOCK_MARKER_LENGTH
;
1854 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1855 ecclayout
->eccpos
[i
] = oob_index
;
1856 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1859 /* include reserved-marker in ecclayout->oobfree calculation */
1860 ecclayout
->oobfree
->offset
= 1 +
1861 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1862 /* software bch library is used for locating errors */
1863 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1864 nand_chip
->ecc
.size
,
1865 nand_chip
->ecc
.bytes
,
1866 &nand_chip
->ecc
.layout
);
1867 if (!nand_chip
->ecc
.priv
) {
1868 pr_err("nand: error: unable to use s/w BCH library\n");
1874 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1879 case OMAP_ECC_BCH8_CODE_HW
:
1880 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1881 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1882 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1883 nand_chip
->ecc
.size
= 512;
1884 /* 14th bit is kept reserved for ROM-code compatibility */
1885 nand_chip
->ecc
.bytes
= 13 + 1;
1886 nand_chip
->ecc
.strength
= 8;
1887 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1888 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1889 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1890 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1891 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1892 /* This ECC scheme requires ELM H/W block */
1893 err
= is_elm_present(info
, pdata
->elm_of_node
, BCH8_ECC
);
1895 pr_err("nand: error: could not initialize ELM\n");
1898 /* define ECC layout */
1899 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1901 nand_chip
->ecc
.size
);
1902 oob_index
= BADBLOCK_MARKER_LENGTH
;
1903 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1904 ecclayout
->eccpos
[i
] = oob_index
;
1905 /* reserved marker already included in ecclayout->eccbytes */
1906 ecclayout
->oobfree
->offset
=
1907 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1910 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1916 pr_err("nand: error: invalid or unsupported ECC scheme\n");
1921 /* all OOB bytes from oobfree->offset till end off OOB are free */
1922 ecclayout
->oobfree
->length
= mtd
->oobsize
- ecclayout
->oobfree
->offset
;
1923 /* check if NAND device's OOB is enough to store ECC signatures */
1924 if (mtd
->oobsize
< (ecclayout
->eccbytes
+ BADBLOCK_MARKER_LENGTH
)) {
1925 pr_err("not enough OOB bytes required = %d, available=%d\n",
1926 ecclayout
->eccbytes
, mtd
->oobsize
);
1931 /* second phase scan */
1932 if (nand_scan_tail(mtd
)) {
1937 ppdata
.of_node
= pdata
->of_node
;
1938 mtd_device_parse_register(mtd
, NULL
, &ppdata
, pdata
->parts
,
1941 platform_set_drvdata(pdev
, mtd
);
1947 dma_release_channel(info
->dma
);
1948 if (nand_chip
->ecc
.priv
) {
1949 nand_bch_free(nand_chip
->ecc
.priv
);
1950 nand_chip
->ecc
.priv
= NULL
;
1955 static int omap_nand_remove(struct platform_device
*pdev
)
1957 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
1958 struct nand_chip
*nand_chip
= mtd
->priv
;
1959 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1961 if (nand_chip
->ecc
.priv
) {
1962 nand_bch_free(nand_chip
->ecc
.priv
);
1963 nand_chip
->ecc
.priv
= NULL
;
1966 dma_release_channel(info
->dma
);
1971 static struct platform_driver omap_nand_driver
= {
1972 .probe
= omap_nand_probe
,
1973 .remove
= omap_nand_remove
,
1975 .name
= DRIVER_NAME
,
1976 .owner
= THIS_MODULE
,
1980 module_platform_driver(omap_nand_driver
);
1982 MODULE_ALIAS("platform:" DRIVER_NAME
);
1983 MODULE_LICENSE("GPL");
1984 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");