hyperv: Remove recv_pkt_list and lock
[linux/fpc-iii.git] / drivers / spi / spi-tegra114.c
blob400649595505e874e2b8873e1561a9e33310da56
1 /*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
38 #define SPI_COMMAND1 0x000
39 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
40 #define SPI_PACKED (1 << 5)
41 #define SPI_TX_EN (1 << 11)
42 #define SPI_RX_EN (1 << 12)
43 #define SPI_BOTH_EN_BYTE (1 << 13)
44 #define SPI_BOTH_EN_BIT (1 << 14)
45 #define SPI_LSBYTE_FE (1 << 15)
46 #define SPI_LSBIT_FE (1 << 16)
47 #define SPI_BIDIROE (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
52 #define SPI_IDLE_SDA_MASK (3 << 18)
53 #define SPI_CS_SS_VAL (1 << 20)
54 #define SPI_CS_SW_HW (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
60 #define SPI_CS_SEL_0 (0 << 26)
61 #define SPI_CS_SEL_1 (1 << 26)
62 #define SPI_CS_SEL_2 (2 << 26)
63 #define SPI_CS_SEL_3 (3 << 26)
64 #define SPI_CS_SEL_MASK (3 << 26)
65 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0 (0 << 28)
67 #define SPI_CONTROL_MODE_1 (1 << 28)
68 #define SPI_CONTROL_MODE_2 (2 << 28)
69 #define SPI_CONTROL_MODE_3 (3 << 28)
70 #define SPI_CONTROL_MODE_MASK (3 << 28)
71 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
72 #define SPI_M_S (1 << 30)
73 #define SPI_PIO (1 << 31)
75 #define SPI_COMMAND2 0x004
76 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
79 #define SPI_CS_TIMING1 0x008
80 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
82 ((((val) & 0xFFu) << ((cs) * 8)) | \
83 ((reg) & ~(0xFFu << ((cs) * 8))))
85 #define SPI_CS_TIMING2 0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
95 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
96 ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
98 (reg = (((val) & 0xF) << ((cs) * 8)) | \
99 ((reg) & ~(0xF << ((cs) * 8))))
101 #define SPI_TRANS_STATUS 0x010
102 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
104 #define SPI_RDY (1 << 30)
106 #define SPI_FIFO_STATUS 0x014
107 #define SPI_RX_FIFO_EMPTY (1 << 0)
108 #define SPI_RX_FIFO_FULL (1 << 1)
109 #define SPI_TX_FIFO_EMPTY (1 << 2)
110 #define SPI_TX_FIFO_FULL (1 << 3)
111 #define SPI_RX_FIFO_UNF (1 << 4)
112 #define SPI_RX_FIFO_OVF (1 << 5)
113 #define SPI_TX_FIFO_UNF (1 << 6)
114 #define SPI_TX_FIFO_OVF (1 << 7)
115 #define SPI_ERR (1 << 8)
116 #define SPI_TX_FIFO_FLUSH (1 << 14)
117 #define SPI_RX_FIFO_FLUSH (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END (1 << 30)
121 #define SPI_CS_INACTIVE (1 << 31)
123 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
124 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
127 #define SPI_TX_DATA 0x018
128 #define SPI_RX_DATA 0x01C
130 #define SPI_DMA_CTL 0x020
131 #define SPI_TX_TRIG_1 (0 << 15)
132 #define SPI_TX_TRIG_4 (1 << 15)
133 #define SPI_TX_TRIG_8 (2 << 15)
134 #define SPI_TX_TRIG_16 (3 << 15)
135 #define SPI_TX_TRIG_MASK (3 << 15)
136 #define SPI_RX_TRIG_1 (0 << 19)
137 #define SPI_RX_TRIG_4 (1 << 19)
138 #define SPI_RX_TRIG_8 (2 << 19)
139 #define SPI_RX_TRIG_16 (3 << 19)
140 #define SPI_RX_TRIG_MASK (3 << 19)
141 #define SPI_IE_TX (1 << 28)
142 #define SPI_IE_RX (1 << 29)
143 #define SPI_CONT (1 << 30)
144 #define SPI_DMA (1 << 31)
145 #define SPI_DMA_EN SPI_DMA
147 #define SPI_DMA_BLK 0x024
148 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
150 #define SPI_TX_FIFO 0x108
151 #define SPI_RX_FIFO 0x188
152 #define MAX_CHIP_SELECT 4
153 #define SPI_FIFO_DEPTH 64
154 #define DATA_DIR_TX (1 << 0)
155 #define DATA_DIR_RX (1 << 1)
157 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES 16
162 #define SPI_DEFAULT_SPEED 25000000
164 struct tegra_spi_data {
165 struct device *dev;
166 struct spi_master *master;
167 spinlock_t lock;
169 struct clk *clk;
170 struct reset_control *rst;
171 void __iomem *base;
172 phys_addr_t phys;
173 unsigned irq;
174 u32 cur_speed;
176 struct spi_device *cur_spi;
177 struct spi_device *cs_control;
178 unsigned cur_pos;
179 unsigned words_per_32bit;
180 unsigned bytes_per_word;
181 unsigned curr_dma_words;
182 unsigned cur_direction;
184 unsigned cur_rx_pos;
185 unsigned cur_tx_pos;
187 unsigned dma_buf_size;
188 unsigned max_buf_size;
189 bool is_curr_dma_xfer;
191 struct completion rx_dma_complete;
192 struct completion tx_dma_complete;
194 u32 tx_status;
195 u32 rx_status;
196 u32 status_reg;
197 bool is_packed;
199 u32 command1_reg;
200 u32 dma_control_reg;
201 u32 def_command1_reg;
203 struct completion xfer_completion;
204 struct spi_transfer *curr_xfer;
205 struct dma_chan *rx_dma_chan;
206 u32 *rx_dma_buf;
207 dma_addr_t rx_dma_phys;
208 struct dma_async_tx_descriptor *rx_dma_desc;
210 struct dma_chan *tx_dma_chan;
211 u32 *tx_dma_buf;
212 dma_addr_t tx_dma_phys;
213 struct dma_async_tx_descriptor *tx_dma_desc;
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220 unsigned long reg)
222 return readl(tspi->base + reg);
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226 u32 val, unsigned long reg)
228 writel(val, tspi->base + reg);
230 /* Read back register to make sure that register writes completed */
231 if (reg != SPI_TX_FIFO)
232 readl(tspi->base + SPI_COMMAND1);
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
237 u32 val;
239 /* Write 1 to clear status register */
240 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
243 /* Clear fifo status error if any */
244 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245 if (val & SPI_ERR)
246 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247 SPI_FIFO_STATUS);
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251 struct spi_device *spi, struct tegra_spi_data *tspi,
252 struct spi_transfer *t)
254 unsigned remain_len = t->len - tspi->cur_pos;
255 unsigned max_word;
256 unsigned bits_per_word = t->bits_per_word;
257 unsigned max_len;
258 unsigned total_fifo_words;
260 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
262 if (bits_per_word == 8 || bits_per_word == 16) {
263 tspi->is_packed = 1;
264 tspi->words_per_32bit = 32/bits_per_word;
265 } else {
266 tspi->is_packed = 0;
267 tspi->words_per_32bit = 1;
270 if (tspi->is_packed) {
271 max_len = min(remain_len, tspi->max_buf_size);
272 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273 total_fifo_words = (max_len + 3) / 4;
274 } else {
275 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276 max_word = min(max_word, tspi->max_buf_size/4);
277 tspi->curr_dma_words = max_word;
278 total_fifo_words = max_word;
280 return total_fifo_words;
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284 struct tegra_spi_data *tspi, struct spi_transfer *t)
286 unsigned nbytes;
287 unsigned tx_empty_count;
288 u32 fifo_status;
289 unsigned max_n_32bit;
290 unsigned i, count;
291 unsigned int written_words;
292 unsigned fifo_words_left;
293 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
295 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
298 if (tspi->is_packed) {
299 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300 written_words = min(fifo_words_left, tspi->curr_dma_words);
301 nbytes = written_words * tspi->bytes_per_word;
302 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303 for (count = 0; count < max_n_32bit; count++) {
304 u32 x = 0;
305 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
306 x |= (u32)(*tx_buf++) << (i * 8);
307 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309 } else {
310 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
311 written_words = max_n_32bit;
312 nbytes = written_words * tspi->bytes_per_word;
313 for (count = 0; count < max_n_32bit; count++) {
314 u32 x = 0;
315 for (i = 0; nbytes && (i < tspi->bytes_per_word);
316 i++, nbytes--)
317 x |= (u32)(*tx_buf++) << (i * 8);
318 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
321 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
322 return written_words;
325 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
326 struct tegra_spi_data *tspi, struct spi_transfer *t)
328 unsigned rx_full_count;
329 u32 fifo_status;
330 unsigned i, count;
331 unsigned int read_words = 0;
332 unsigned len;
333 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
335 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
336 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
337 if (tspi->is_packed) {
338 len = tspi->curr_dma_words * tspi->bytes_per_word;
339 for (count = 0; count < rx_full_count; count++) {
340 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
341 for (i = 0; len && (i < 4); i++, len--)
342 *rx_buf++ = (x >> i*8) & 0xFF;
344 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
345 read_words += tspi->curr_dma_words;
346 } else {
347 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
348 for (count = 0; count < rx_full_count; count++) {
349 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
350 for (i = 0; (i < tspi->bytes_per_word); i++)
351 *rx_buf++ = (x >> (i*8)) & 0xFF;
353 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
354 read_words += rx_full_count;
356 return read_words;
359 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
360 struct tegra_spi_data *tspi, struct spi_transfer *t)
362 /* Make the dma buffer to read by cpu */
363 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
364 tspi->dma_buf_size, DMA_TO_DEVICE);
366 if (tspi->is_packed) {
367 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
368 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
369 } else {
370 unsigned int i;
371 unsigned int count;
372 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
373 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
375 for (count = 0; count < tspi->curr_dma_words; count++) {
376 u32 x = 0;
377 for (i = 0; consume && (i < tspi->bytes_per_word);
378 i++, consume--)
379 x |= (u32)(*tx_buf++) << (i * 8);
380 tspi->tx_dma_buf[count] = x;
383 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
385 /* Make the dma buffer to read by dma */
386 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
387 tspi->dma_buf_size, DMA_TO_DEVICE);
390 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
391 struct tegra_spi_data *tspi, struct spi_transfer *t)
393 /* Make the dma buffer to read by cpu */
394 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
395 tspi->dma_buf_size, DMA_FROM_DEVICE);
397 if (tspi->is_packed) {
398 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
399 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
400 } else {
401 unsigned int i;
402 unsigned int count;
403 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
404 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
406 for (count = 0; count < tspi->curr_dma_words; count++) {
407 u32 x = tspi->rx_dma_buf[count] & rx_mask;
408 for (i = 0; (i < tspi->bytes_per_word); i++)
409 *rx_buf++ = (x >> (i*8)) & 0xFF;
412 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
414 /* Make the dma buffer to read by dma */
415 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
416 tspi->dma_buf_size, DMA_FROM_DEVICE);
419 static void tegra_spi_dma_complete(void *args)
421 struct completion *dma_complete = args;
423 complete(dma_complete);
426 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
428 reinit_completion(&tspi->tx_dma_complete);
429 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
430 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
431 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
432 if (!tspi->tx_dma_desc) {
433 dev_err(tspi->dev, "Not able to get desc for Tx\n");
434 return -EIO;
437 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
438 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
440 dmaengine_submit(tspi->tx_dma_desc);
441 dma_async_issue_pending(tspi->tx_dma_chan);
442 return 0;
445 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
447 reinit_completion(&tspi->rx_dma_complete);
448 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
449 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
450 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
451 if (!tspi->rx_dma_desc) {
452 dev_err(tspi->dev, "Not able to get desc for Rx\n");
453 return -EIO;
456 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
457 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
459 dmaengine_submit(tspi->rx_dma_desc);
460 dma_async_issue_pending(tspi->rx_dma_chan);
461 return 0;
464 static int tegra_spi_start_dma_based_transfer(
465 struct tegra_spi_data *tspi, struct spi_transfer *t)
467 u32 val;
468 unsigned int len;
469 int ret = 0;
470 u32 status;
472 /* Make sure that Rx and Tx fifo are empty */
473 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
474 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
475 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
476 (unsigned)status);
477 return -EIO;
480 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
481 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
483 if (tspi->is_packed)
484 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
485 4) * 4;
486 else
487 len = tspi->curr_dma_words * 4;
489 /* Set attention level based on length of transfer */
490 if (len & 0xF)
491 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
492 else if (((len) >> 4) & 0x1)
493 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
494 else
495 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
497 if (tspi->cur_direction & DATA_DIR_TX)
498 val |= SPI_IE_TX;
500 if (tspi->cur_direction & DATA_DIR_RX)
501 val |= SPI_IE_RX;
503 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
504 tspi->dma_control_reg = val;
506 if (tspi->cur_direction & DATA_DIR_TX) {
507 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
508 ret = tegra_spi_start_tx_dma(tspi, len);
509 if (ret < 0) {
510 dev_err(tspi->dev,
511 "Starting tx dma failed, err %d\n", ret);
512 return ret;
516 if (tspi->cur_direction & DATA_DIR_RX) {
517 /* Make the dma buffer to read by dma */
518 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
519 tspi->dma_buf_size, DMA_FROM_DEVICE);
521 ret = tegra_spi_start_rx_dma(tspi, len);
522 if (ret < 0) {
523 dev_err(tspi->dev,
524 "Starting rx dma failed, err %d\n", ret);
525 if (tspi->cur_direction & DATA_DIR_TX)
526 dmaengine_terminate_all(tspi->tx_dma_chan);
527 return ret;
530 tspi->is_curr_dma_xfer = true;
531 tspi->dma_control_reg = val;
533 val |= SPI_DMA_EN;
534 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
535 return ret;
538 static int tegra_spi_start_cpu_based_transfer(
539 struct tegra_spi_data *tspi, struct spi_transfer *t)
541 u32 val;
542 unsigned cur_words;
544 if (tspi->cur_direction & DATA_DIR_TX)
545 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
546 else
547 cur_words = tspi->curr_dma_words;
549 val = SPI_DMA_BLK_SET(cur_words - 1);
550 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
552 val = 0;
553 if (tspi->cur_direction & DATA_DIR_TX)
554 val |= SPI_IE_TX;
556 if (tspi->cur_direction & DATA_DIR_RX)
557 val |= SPI_IE_RX;
559 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560 tspi->dma_control_reg = val;
562 tspi->is_curr_dma_xfer = false;
564 val |= SPI_DMA_EN;
565 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
566 return 0;
569 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
570 bool dma_to_memory)
572 struct dma_chan *dma_chan;
573 u32 *dma_buf;
574 dma_addr_t dma_phys;
575 int ret;
576 struct dma_slave_config dma_sconfig;
578 dma_chan = dma_request_slave_channel_reason(tspi->dev,
579 dma_to_memory ? "rx" : "tx");
580 if (IS_ERR(dma_chan)) {
581 ret = PTR_ERR(dma_chan);
582 if (ret != -EPROBE_DEFER)
583 dev_err(tspi->dev,
584 "Dma channel is not available: %d\n", ret);
585 return ret;
588 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
589 &dma_phys, GFP_KERNEL);
590 if (!dma_buf) {
591 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
592 dma_release_channel(dma_chan);
593 return -ENOMEM;
596 if (dma_to_memory) {
597 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 dma_sconfig.src_maxburst = 0;
600 } else {
601 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
602 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
603 dma_sconfig.dst_maxburst = 0;
606 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
607 if (ret)
608 goto scrub;
609 if (dma_to_memory) {
610 tspi->rx_dma_chan = dma_chan;
611 tspi->rx_dma_buf = dma_buf;
612 tspi->rx_dma_phys = dma_phys;
613 } else {
614 tspi->tx_dma_chan = dma_chan;
615 tspi->tx_dma_buf = dma_buf;
616 tspi->tx_dma_phys = dma_phys;
618 return 0;
620 scrub:
621 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
622 dma_release_channel(dma_chan);
623 return ret;
626 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
627 bool dma_to_memory)
629 u32 *dma_buf;
630 dma_addr_t dma_phys;
631 struct dma_chan *dma_chan;
633 if (dma_to_memory) {
634 dma_buf = tspi->rx_dma_buf;
635 dma_chan = tspi->rx_dma_chan;
636 dma_phys = tspi->rx_dma_phys;
637 tspi->rx_dma_chan = NULL;
638 tspi->rx_dma_buf = NULL;
639 } else {
640 dma_buf = tspi->tx_dma_buf;
641 dma_chan = tspi->tx_dma_chan;
642 dma_phys = tspi->tx_dma_phys;
643 tspi->tx_dma_buf = NULL;
644 tspi->tx_dma_chan = NULL;
646 if (!dma_chan)
647 return;
649 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
650 dma_release_channel(dma_chan);
653 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
654 struct spi_transfer *t, bool is_first_of_msg)
656 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
657 u32 speed = t->speed_hz;
658 u8 bits_per_word = t->bits_per_word;
659 u32 command1;
660 int req_mode;
662 if (speed != tspi->cur_speed) {
663 clk_set_rate(tspi->clk, speed);
664 tspi->cur_speed = speed;
667 tspi->cur_spi = spi;
668 tspi->cur_pos = 0;
669 tspi->cur_rx_pos = 0;
670 tspi->cur_tx_pos = 0;
671 tspi->curr_xfer = t;
673 if (is_first_of_msg) {
674 tegra_spi_clear_status(tspi);
676 command1 = tspi->def_command1_reg;
677 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
679 command1 &= ~SPI_CONTROL_MODE_MASK;
680 req_mode = spi->mode & 0x3;
681 if (req_mode == SPI_MODE_0)
682 command1 |= SPI_CONTROL_MODE_0;
683 else if (req_mode == SPI_MODE_1)
684 command1 |= SPI_CONTROL_MODE_1;
685 else if (req_mode == SPI_MODE_2)
686 command1 |= SPI_CONTROL_MODE_2;
687 else if (req_mode == SPI_MODE_3)
688 command1 |= SPI_CONTROL_MODE_3;
690 if (tspi->cs_control) {
691 if (tspi->cs_control != spi)
692 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
693 tspi->cs_control = NULL;
694 } else
695 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
697 command1 |= SPI_CS_SW_HW;
698 if (spi->mode & SPI_CS_HIGH)
699 command1 |= SPI_CS_SS_VAL;
700 else
701 command1 &= ~SPI_CS_SS_VAL;
703 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
704 } else {
705 command1 = tspi->command1_reg;
706 command1 &= ~SPI_BIT_LENGTH(~0);
707 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
710 return command1;
713 static int tegra_spi_start_transfer_one(struct spi_device *spi,
714 struct spi_transfer *t, u32 command1)
716 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
717 unsigned total_fifo_words;
718 int ret;
720 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
722 if (tspi->is_packed)
723 command1 |= SPI_PACKED;
725 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
726 tspi->cur_direction = 0;
727 if (t->rx_buf) {
728 command1 |= SPI_RX_EN;
729 tspi->cur_direction |= DATA_DIR_RX;
731 if (t->tx_buf) {
732 command1 |= SPI_TX_EN;
733 tspi->cur_direction |= DATA_DIR_TX;
735 command1 |= SPI_CS_SEL(spi->chip_select);
736 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
737 tspi->command1_reg = command1;
739 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
740 tspi->def_command1_reg, (unsigned)command1);
742 if (total_fifo_words > SPI_FIFO_DEPTH)
743 ret = tegra_spi_start_dma_based_transfer(tspi, t);
744 else
745 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
746 return ret;
749 static int tegra_spi_setup(struct spi_device *spi)
751 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
752 u32 val;
753 unsigned long flags;
754 int ret;
756 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
757 spi->bits_per_word,
758 spi->mode & SPI_CPOL ? "" : "~",
759 spi->mode & SPI_CPHA ? "" : "~",
760 spi->max_speed_hz);
762 ret = pm_runtime_get_sync(tspi->dev);
763 if (ret < 0) {
764 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
765 return ret;
768 spin_lock_irqsave(&tspi->lock, flags);
769 val = tspi->def_command1_reg;
770 if (spi->mode & SPI_CS_HIGH)
771 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
772 else
773 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
774 tspi->def_command1_reg = val;
775 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
776 spin_unlock_irqrestore(&tspi->lock, flags);
778 pm_runtime_put(tspi->dev);
779 return 0;
782 static void tegra_spi_transfer_delay(int delay)
784 if (!delay)
785 return;
787 if (delay >= 1000)
788 mdelay(delay / 1000);
790 udelay(delay % 1000);
793 static int tegra_spi_transfer_one_message(struct spi_master *master,
794 struct spi_message *msg)
796 bool is_first_msg = true;
797 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
798 struct spi_transfer *xfer;
799 struct spi_device *spi = msg->spi;
800 int ret;
801 bool skip = false;
803 msg->status = 0;
804 msg->actual_length = 0;
806 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
807 u32 cmd1;
809 reinit_completion(&tspi->xfer_completion);
811 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
813 if (!xfer->len) {
814 ret = 0;
815 skip = true;
816 goto complete_xfer;
819 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
820 if (ret < 0) {
821 dev_err(tspi->dev,
822 "spi can not start transfer, err %d\n", ret);
823 goto complete_xfer;
826 is_first_msg = false;
827 ret = wait_for_completion_timeout(&tspi->xfer_completion,
828 SPI_DMA_TIMEOUT);
829 if (WARN_ON(ret == 0)) {
830 dev_err(tspi->dev,
831 "spi trasfer timeout, err %d\n", ret);
832 ret = -EIO;
833 goto complete_xfer;
836 if (tspi->tx_status || tspi->rx_status) {
837 dev_err(tspi->dev, "Error in Transfer\n");
838 ret = -EIO;
839 goto complete_xfer;
841 msg->actual_length += xfer->len;
843 complete_xfer:
844 if (ret < 0 || skip) {
845 tegra_spi_writel(tspi, tspi->def_command1_reg,
846 SPI_COMMAND1);
847 tegra_spi_transfer_delay(xfer->delay_usecs);
848 goto exit;
849 } else if (list_is_last(&xfer->transfer_list,
850 &msg->transfers)) {
851 if (xfer->cs_change)
852 tspi->cs_control = spi;
853 else {
854 tegra_spi_writel(tspi, tspi->def_command1_reg,
855 SPI_COMMAND1);
856 tegra_spi_transfer_delay(xfer->delay_usecs);
858 } else if (xfer->cs_change) {
859 tegra_spi_writel(tspi, tspi->def_command1_reg,
860 SPI_COMMAND1);
861 tegra_spi_transfer_delay(xfer->delay_usecs);
865 ret = 0;
866 exit:
867 msg->status = ret;
868 spi_finalize_current_message(master);
869 return ret;
872 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
874 struct spi_transfer *t = tspi->curr_xfer;
875 unsigned long flags;
877 spin_lock_irqsave(&tspi->lock, flags);
878 if (tspi->tx_status || tspi->rx_status) {
879 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
880 tspi->status_reg);
881 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
882 tspi->command1_reg, tspi->dma_control_reg);
883 reset_control_assert(tspi->rst);
884 udelay(2);
885 reset_control_deassert(tspi->rst);
886 complete(&tspi->xfer_completion);
887 goto exit;
890 if (tspi->cur_direction & DATA_DIR_RX)
891 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
893 if (tspi->cur_direction & DATA_DIR_TX)
894 tspi->cur_pos = tspi->cur_tx_pos;
895 else
896 tspi->cur_pos = tspi->cur_rx_pos;
898 if (tspi->cur_pos == t->len) {
899 complete(&tspi->xfer_completion);
900 goto exit;
903 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
904 tegra_spi_start_cpu_based_transfer(tspi, t);
905 exit:
906 spin_unlock_irqrestore(&tspi->lock, flags);
907 return IRQ_HANDLED;
910 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
912 struct spi_transfer *t = tspi->curr_xfer;
913 long wait_status;
914 int err = 0;
915 unsigned total_fifo_words;
916 unsigned long flags;
918 /* Abort dmas if any error */
919 if (tspi->cur_direction & DATA_DIR_TX) {
920 if (tspi->tx_status) {
921 dmaengine_terminate_all(tspi->tx_dma_chan);
922 err += 1;
923 } else {
924 wait_status = wait_for_completion_interruptible_timeout(
925 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
926 if (wait_status <= 0) {
927 dmaengine_terminate_all(tspi->tx_dma_chan);
928 dev_err(tspi->dev, "TxDma Xfer failed\n");
929 err += 1;
934 if (tspi->cur_direction & DATA_DIR_RX) {
935 if (tspi->rx_status) {
936 dmaengine_terminate_all(tspi->rx_dma_chan);
937 err += 2;
938 } else {
939 wait_status = wait_for_completion_interruptible_timeout(
940 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
941 if (wait_status <= 0) {
942 dmaengine_terminate_all(tspi->rx_dma_chan);
943 dev_err(tspi->dev, "RxDma Xfer failed\n");
944 err += 2;
949 spin_lock_irqsave(&tspi->lock, flags);
950 if (err) {
951 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
952 tspi->status_reg);
953 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
954 tspi->command1_reg, tspi->dma_control_reg);
955 reset_control_assert(tspi->rst);
956 udelay(2);
957 reset_control_deassert(tspi->rst);
958 complete(&tspi->xfer_completion);
959 spin_unlock_irqrestore(&tspi->lock, flags);
960 return IRQ_HANDLED;
963 if (tspi->cur_direction & DATA_DIR_RX)
964 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
966 if (tspi->cur_direction & DATA_DIR_TX)
967 tspi->cur_pos = tspi->cur_tx_pos;
968 else
969 tspi->cur_pos = tspi->cur_rx_pos;
971 if (tspi->cur_pos == t->len) {
972 complete(&tspi->xfer_completion);
973 goto exit;
976 /* Continue transfer in current message */
977 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
978 tspi, t);
979 if (total_fifo_words > SPI_FIFO_DEPTH)
980 err = tegra_spi_start_dma_based_transfer(tspi, t);
981 else
982 err = tegra_spi_start_cpu_based_transfer(tspi, t);
984 exit:
985 spin_unlock_irqrestore(&tspi->lock, flags);
986 return IRQ_HANDLED;
989 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
991 struct tegra_spi_data *tspi = context_data;
993 if (!tspi->is_curr_dma_xfer)
994 return handle_cpu_based_xfer(tspi);
995 return handle_dma_based_xfer(tspi);
998 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1000 struct tegra_spi_data *tspi = context_data;
1002 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1003 if (tspi->cur_direction & DATA_DIR_TX)
1004 tspi->tx_status = tspi->status_reg &
1005 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1007 if (tspi->cur_direction & DATA_DIR_RX)
1008 tspi->rx_status = tspi->status_reg &
1009 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1010 tegra_spi_clear_status(tspi);
1012 return IRQ_WAKE_THREAD;
1015 static struct of_device_id tegra_spi_of_match[] = {
1016 { .compatible = "nvidia,tegra114-spi", },
1019 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1021 static int tegra_spi_probe(struct platform_device *pdev)
1023 struct spi_master *master;
1024 struct tegra_spi_data *tspi;
1025 struct resource *r;
1026 int ret, spi_irq;
1028 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1029 if (!master) {
1030 dev_err(&pdev->dev, "master allocation failed\n");
1031 return -ENOMEM;
1033 platform_set_drvdata(pdev, master);
1034 tspi = spi_master_get_devdata(master);
1036 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1037 &master->max_speed_hz))
1038 master->max_speed_hz = 25000000; /* 25MHz */
1040 /* the spi->mode bits understood by this driver: */
1041 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1042 master->setup = tegra_spi_setup;
1043 master->transfer_one_message = tegra_spi_transfer_one_message;
1044 master->num_chipselect = MAX_CHIP_SELECT;
1045 master->auto_runtime_pm = true;
1047 tspi->master = master;
1048 tspi->dev = &pdev->dev;
1049 spin_lock_init(&tspi->lock);
1051 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1053 if (IS_ERR(tspi->base)) {
1054 ret = PTR_ERR(tspi->base);
1055 goto exit_free_master;
1057 tspi->phys = r->start;
1059 spi_irq = platform_get_irq(pdev, 0);
1060 tspi->irq = spi_irq;
1061 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1062 tegra_spi_isr_thread, IRQF_ONESHOT,
1063 dev_name(&pdev->dev), tspi);
1064 if (ret < 0) {
1065 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1066 tspi->irq);
1067 goto exit_free_master;
1070 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1071 if (IS_ERR(tspi->clk)) {
1072 dev_err(&pdev->dev, "can not get clock\n");
1073 ret = PTR_ERR(tspi->clk);
1074 goto exit_free_irq;
1077 tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1078 if (IS_ERR(tspi->rst)) {
1079 dev_err(&pdev->dev, "can not get reset\n");
1080 ret = PTR_ERR(tspi->rst);
1081 goto exit_free_irq;
1084 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1085 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1087 ret = tegra_spi_init_dma_param(tspi, true);
1088 if (ret < 0)
1089 goto exit_free_irq;
1090 ret = tegra_spi_init_dma_param(tspi, false);
1091 if (ret < 0)
1092 goto exit_rx_dma_free;
1093 tspi->max_buf_size = tspi->dma_buf_size;
1094 init_completion(&tspi->tx_dma_complete);
1095 init_completion(&tspi->rx_dma_complete);
1097 init_completion(&tspi->xfer_completion);
1099 pm_runtime_enable(&pdev->dev);
1100 if (!pm_runtime_enabled(&pdev->dev)) {
1101 ret = tegra_spi_runtime_resume(&pdev->dev);
1102 if (ret)
1103 goto exit_pm_disable;
1106 ret = pm_runtime_get_sync(&pdev->dev);
1107 if (ret < 0) {
1108 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1109 goto exit_pm_disable;
1111 tspi->def_command1_reg = SPI_M_S;
1112 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1113 pm_runtime_put(&pdev->dev);
1115 master->dev.of_node = pdev->dev.of_node;
1116 ret = devm_spi_register_master(&pdev->dev, master);
1117 if (ret < 0) {
1118 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1119 goto exit_pm_disable;
1121 return ret;
1123 exit_pm_disable:
1124 pm_runtime_disable(&pdev->dev);
1125 if (!pm_runtime_status_suspended(&pdev->dev))
1126 tegra_spi_runtime_suspend(&pdev->dev);
1127 tegra_spi_deinit_dma_param(tspi, false);
1128 exit_rx_dma_free:
1129 tegra_spi_deinit_dma_param(tspi, true);
1130 exit_free_irq:
1131 free_irq(spi_irq, tspi);
1132 exit_free_master:
1133 spi_master_put(master);
1134 return ret;
1137 static int tegra_spi_remove(struct platform_device *pdev)
1139 struct spi_master *master = platform_get_drvdata(pdev);
1140 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1142 free_irq(tspi->irq, tspi);
1144 if (tspi->tx_dma_chan)
1145 tegra_spi_deinit_dma_param(tspi, false);
1147 if (tspi->rx_dma_chan)
1148 tegra_spi_deinit_dma_param(tspi, true);
1150 pm_runtime_disable(&pdev->dev);
1151 if (!pm_runtime_status_suspended(&pdev->dev))
1152 tegra_spi_runtime_suspend(&pdev->dev);
1154 return 0;
1157 #ifdef CONFIG_PM_SLEEP
1158 static int tegra_spi_suspend(struct device *dev)
1160 struct spi_master *master = dev_get_drvdata(dev);
1162 return spi_master_suspend(master);
1165 static int tegra_spi_resume(struct device *dev)
1167 struct spi_master *master = dev_get_drvdata(dev);
1168 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1169 int ret;
1171 ret = pm_runtime_get_sync(dev);
1172 if (ret < 0) {
1173 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1174 return ret;
1176 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1177 pm_runtime_put(dev);
1179 return spi_master_resume(master);
1181 #endif
1183 static int tegra_spi_runtime_suspend(struct device *dev)
1185 struct spi_master *master = dev_get_drvdata(dev);
1186 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1188 /* Flush all write which are in PPSB queue by reading back */
1189 tegra_spi_readl(tspi, SPI_COMMAND1);
1191 clk_disable_unprepare(tspi->clk);
1192 return 0;
1195 static int tegra_spi_runtime_resume(struct device *dev)
1197 struct spi_master *master = dev_get_drvdata(dev);
1198 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1199 int ret;
1201 ret = clk_prepare_enable(tspi->clk);
1202 if (ret < 0) {
1203 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1204 return ret;
1206 return 0;
1209 static const struct dev_pm_ops tegra_spi_pm_ops = {
1210 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1211 tegra_spi_runtime_resume, NULL)
1212 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1214 static struct platform_driver tegra_spi_driver = {
1215 .driver = {
1216 .name = "spi-tegra114",
1217 .owner = THIS_MODULE,
1218 .pm = &tegra_spi_pm_ops,
1219 .of_match_table = tegra_spi_of_match,
1221 .probe = tegra_spi_probe,
1222 .remove = tegra_spi_remove,
1224 module_platform_driver(tegra_spi_driver);
1226 MODULE_ALIAS("platform:spi-tegra114");
1227 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1228 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1229 MODULE_LICENSE("GPL v2");