hyperv: Remove recv_pkt_list and lock
[linux/fpc-iii.git] / mm / slab.c
blob388cb1ae6fbc4907e6f0c6776b652adb5d055fe7
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
169 #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
175 static bool pfmemalloc_active __read_mostly;
178 * struct array_cache
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 spinlock_t lock;
195 void *entry[]; /*
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp)
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
212 static inline void set_obj_pfmemalloc(void **objp)
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
218 static inline void clear_obj_pfmemalloc(void **objp)
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init {
229 struct array_cache cache;
230 void *entries[BOOT_CPUCACHE_ENTRIES];
234 * Need this for bootstrapping a per node allocator.
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
242 static int drain_freelist(struct kmem_cache *cache,
243 struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
249 static int slab_early_init = 1;
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
261 parent->colour_next = 0;
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
271 } while (0)
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
283 #define BATCHREFILL_LIMIT 16
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
288 * OTOH the cpuarrays can contain lots of objects,
289 * which could lock up otherwise freeable slabs.
291 #define REAPTIMEOUT_AC (2*HZ)
292 #define REAPTIMEOUT_NODE (4*HZ)
294 #if STATS
295 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
296 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298 #define STATS_INC_GROWN(x) ((x)->grown++)
299 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
300 #define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
305 #define STATS_INC_ERR(x) ((x)->errors++)
306 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
307 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
309 #define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
314 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318 #else
319 #define STATS_INC_ACTIVE(x) do { } while (0)
320 #define STATS_DEC_ACTIVE(x) do { } while (0)
321 #define STATS_INC_ALLOCED(x) do { } while (0)
322 #define STATS_INC_GROWN(x) do { } while (0)
323 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
324 #define STATS_SET_HIGH(x) do { } while (0)
325 #define STATS_INC_ERR(x) do { } while (0)
326 #define STATS_INC_NODEALLOCS(x) do { } while (0)
327 #define STATS_INC_NODEFREES(x) do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
329 #define STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x) do { } while (0)
331 #define STATS_INC_ALLOCMISS(x) do { } while (0)
332 #define STATS_INC_FREEHIT(x) do { } while (0)
333 #define STATS_INC_FREEMISS(x) do { } while (0)
334 #endif
336 #if DEBUG
339 * memory layout of objects:
340 * 0 : objp
341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345 * redzone word.
346 * cachep->obj_offset: The real object.
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
349 * [BYTES_PER_WORD long]
351 static int obj_offset(struct kmem_cache *cachep)
353 return cachep->obj_offset;
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
367 return (unsigned long long *)(objp + cachep->size -
368 sizeof(unsigned long long) -
369 REDZONE_ALIGN);
370 return (unsigned long long *) (objp + cachep->size -
371 sizeof(unsigned long long));
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
380 #else
382 #define obj_offset(x) 0
383 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
387 #endif
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
407 return page->s_mem + cache->size * idx;
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
423 static struct arraycache_init initarray_generic =
424 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
426 /* internal cache of cache description objs */
427 static struct kmem_cache kmem_cache_boot = {
428 .batchcount = 1,
429 .limit = BOOT_CPUCACHE_ENTRIES,
430 .shared = 1,
431 .size = sizeof(struct kmem_cache),
432 .name = "kmem_cache",
435 #define BAD_ALIEN_MAGIC 0x01020304ul
437 #ifdef CONFIG_LOCKDEP
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
450 static struct lock_class_key on_slab_l3_key;
451 static struct lock_class_key on_slab_alc_key;
453 static struct lock_class_key debugobj_l3_key;
454 static struct lock_class_key debugobj_alc_key;
456 static void slab_set_lock_classes(struct kmem_cache *cachep,
457 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 int q)
460 struct array_cache **alc;
461 struct kmem_cache_node *n;
462 int r;
464 n = cachep->node[q];
465 if (!n)
466 return;
468 lockdep_set_class(&n->list_lock, l3_key);
469 alc = n->alien;
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
477 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 return;
479 for_each_node(r) {
480 if (alc[r])
481 lockdep_set_class(&alc[r]->lock, alc_key);
485 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
487 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
490 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
492 int node;
494 for_each_online_node(node)
495 slab_set_debugobj_lock_classes_node(cachep, node);
498 static void init_node_lock_keys(int q)
500 int i;
502 if (slab_state < UP)
503 return;
505 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506 struct kmem_cache_node *n;
507 struct kmem_cache *cache = kmalloc_caches[i];
509 if (!cache)
510 continue;
512 n = cache->node[q];
513 if (!n || OFF_SLAB(cache))
514 continue;
516 slab_set_lock_classes(cache, &on_slab_l3_key,
517 &on_slab_alc_key, q);
521 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
523 if (!cachep->node[q])
524 return;
526 slab_set_lock_classes(cachep, &on_slab_l3_key,
527 &on_slab_alc_key, q);
530 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
532 int node;
534 VM_BUG_ON(OFF_SLAB(cachep));
535 for_each_node(node)
536 on_slab_lock_classes_node(cachep, node);
539 static inline void init_lock_keys(void)
541 int node;
543 for_each_node(node)
544 init_node_lock_keys(node);
546 #else
547 static void init_node_lock_keys(int q)
551 static inline void init_lock_keys(void)
555 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
559 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
563 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
567 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
570 #endif
572 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
574 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
576 return cachep->array[smp_processor_id()];
579 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 size_t idx_size, size_t align)
582 int nr_objs;
583 size_t freelist_size;
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
591 * into account.
593 nr_objs = slab_size / (buffer_size + idx_size);
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
599 freelist_size = slab_size - nr_objs * buffer_size;
600 if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 nr_objs--;
603 return nr_objs;
607 * Calculate the number of objects and left-over bytes for a given buffer size.
609 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 size_t align, int flags, size_t *left_over,
611 unsigned int *num)
613 int nr_objs;
614 size_t mgmt_size;
615 size_t slab_size = PAGE_SIZE << gfporder;
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
620 * slab is used for:
622 * - One unsigned int for each object
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
631 if (flags & CFLGS_OFF_SLAB) {
632 mgmt_size = 0;
633 nr_objs = slab_size / buffer_size;
635 } else {
636 nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 sizeof(freelist_idx_t), align);
638 mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
640 *num = nr_objs;
641 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
644 #if DEBUG
645 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
647 static void __slab_error(const char *function, struct kmem_cache *cachep,
648 char *msg)
650 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
651 function, cachep->name, msg);
652 dump_stack();
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
655 #endif
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
662 * line
665 static int use_alien_caches __read_mostly = 1;
666 static int __init noaliencache_setup(char *s)
668 use_alien_caches = 0;
669 return 1;
671 __setup("noaliencache", noaliencache_setup);
673 static int __init slab_max_order_setup(char *str)
675 get_option(&str, &slab_max_order);
676 slab_max_order = slab_max_order < 0 ? 0 :
677 min(slab_max_order, MAX_ORDER - 1);
678 slab_max_order_set = true;
680 return 1;
682 __setup("slab_max_order=", slab_max_order_setup);
684 #ifdef CONFIG_NUMA
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
691 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
693 static void init_reap_node(int cpu)
695 int node;
697 node = next_node(cpu_to_mem(cpu), node_online_map);
698 if (node == MAX_NUMNODES)
699 node = first_node(node_online_map);
701 per_cpu(slab_reap_node, cpu) = node;
704 static void next_reap_node(void)
706 int node = __this_cpu_read(slab_reap_node);
708 node = next_node(node, node_online_map);
709 if (unlikely(node >= MAX_NUMNODES))
710 node = first_node(node_online_map);
711 __this_cpu_write(slab_reap_node, node);
714 #else
715 #define init_reap_node(cpu) do { } while (0)
716 #define next_reap_node(void) do { } while (0)
717 #endif
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
724 * lock.
726 static void start_cpu_timer(int cpu)
728 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
733 * at that time.
735 if (keventd_up() && reap_work->work.func == NULL) {
736 init_reap_node(cpu);
737 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 schedule_delayed_work_on(cpu, reap_work,
739 __round_jiffies_relative(HZ, cpu));
743 static struct array_cache *alloc_arraycache(int node, int entries,
744 int batchcount, gfp_t gfp)
746 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
747 struct array_cache *nc = NULL;
749 nc = kmalloc_node(memsize, gfp, node);
751 * The array_cache structures contain pointers to free object.
752 * However, when such objects are allocated or transferred to another
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
757 kmemleak_no_scan(nc);
758 if (nc) {
759 nc->avail = 0;
760 nc->limit = entries;
761 nc->batchcount = batchcount;
762 nc->touched = 0;
763 spin_lock_init(&nc->lock);
765 return nc;
768 static inline bool is_slab_pfmemalloc(struct page *page)
770 return PageSlabPfmemalloc(page);
773 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
774 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 struct array_cache *ac)
777 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778 struct page *page;
779 unsigned long flags;
781 if (!pfmemalloc_active)
782 return;
784 spin_lock_irqsave(&n->list_lock, flags);
785 list_for_each_entry(page, &n->slabs_full, lru)
786 if (is_slab_pfmemalloc(page))
787 goto out;
789 list_for_each_entry(page, &n->slabs_partial, lru)
790 if (is_slab_pfmemalloc(page))
791 goto out;
793 list_for_each_entry(page, &n->slabs_free, lru)
794 if (is_slab_pfmemalloc(page))
795 goto out;
797 pfmemalloc_active = false;
798 out:
799 spin_unlock_irqrestore(&n->list_lock, flags);
802 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 gfp_t flags, bool force_refill)
805 int i;
806 void *objp = ac->entry[--ac->avail];
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp))) {
810 struct kmem_cache_node *n;
812 if (gfp_pfmemalloc_allowed(flags)) {
813 clear_obj_pfmemalloc(&objp);
814 return objp;
817 /* The caller cannot use PFMEMALLOC objects, find another one */
818 for (i = 0; i < ac->avail; i++) {
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac->entry[i])) {
821 objp = ac->entry[i];
822 ac->entry[i] = ac->entry[ac->avail];
823 ac->entry[ac->avail] = objp;
824 return objp;
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
832 n = cachep->node[numa_mem_id()];
833 if (!list_empty(&n->slabs_free) && force_refill) {
834 struct page *page = virt_to_head_page(objp);
835 ClearPageSlabPfmemalloc(page);
836 clear_obj_pfmemalloc(&objp);
837 recheck_pfmemalloc_active(cachep, ac);
838 return objp;
841 /* No !PFMEMALLOC objects available */
842 ac->avail++;
843 objp = NULL;
846 return objp;
849 static inline void *ac_get_obj(struct kmem_cache *cachep,
850 struct array_cache *ac, gfp_t flags, bool force_refill)
852 void *objp;
854 if (unlikely(sk_memalloc_socks()))
855 objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 else
857 objp = ac->entry[--ac->avail];
859 return objp;
862 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 void *objp)
865 if (unlikely(pfmemalloc_active)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
867 struct page *page = virt_to_head_page(objp);
868 if (PageSlabPfmemalloc(page))
869 set_obj_pfmemalloc(&objp);
872 return objp;
875 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 void *objp)
878 if (unlikely(sk_memalloc_socks()))
879 objp = __ac_put_obj(cachep, ac, objp);
881 ac->entry[ac->avail++] = objp;
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
888 * Return the number of entries transferred.
890 static int transfer_objects(struct array_cache *to,
891 struct array_cache *from, unsigned int max)
893 /* Figure out how many entries to transfer */
894 int nr = min3(from->avail, max, to->limit - to->avail);
896 if (!nr)
897 return 0;
899 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 sizeof(void *) *nr);
902 from->avail -= nr;
903 to->avail += nr;
904 return nr;
907 #ifndef CONFIG_NUMA
909 #define drain_alien_cache(cachep, alien) do { } while (0)
910 #define reap_alien(cachep, n) do { } while (0)
912 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
914 return (struct array_cache **)BAD_ALIEN_MAGIC;
917 static inline void free_alien_cache(struct array_cache **ac_ptr)
921 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
923 return 0;
926 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 gfp_t flags)
929 return NULL;
932 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 gfp_t flags, int nodeid)
935 return NULL;
938 #else /* CONFIG_NUMA */
940 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
943 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
945 struct array_cache **ac_ptr;
946 int memsize = sizeof(void *) * nr_node_ids;
947 int i;
949 if (limit > 1)
950 limit = 12;
951 ac_ptr = kzalloc_node(memsize, gfp, node);
952 if (ac_ptr) {
953 for_each_node(i) {
954 if (i == node || !node_online(i))
955 continue;
956 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957 if (!ac_ptr[i]) {
958 for (i--; i >= 0; i--)
959 kfree(ac_ptr[i]);
960 kfree(ac_ptr);
961 return NULL;
965 return ac_ptr;
968 static void free_alien_cache(struct array_cache **ac_ptr)
970 int i;
972 if (!ac_ptr)
973 return;
974 for_each_node(i)
975 kfree(ac_ptr[i]);
976 kfree(ac_ptr);
979 static void __drain_alien_cache(struct kmem_cache *cachep,
980 struct array_cache *ac, int node)
982 struct kmem_cache_node *n = cachep->node[node];
984 if (ac->avail) {
985 spin_lock(&n->list_lock);
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
991 if (n->shared)
992 transfer_objects(n->shared, ac, ac->limit);
994 free_block(cachep, ac->entry, ac->avail, node);
995 ac->avail = 0;
996 spin_unlock(&n->list_lock);
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1003 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1005 int node = __this_cpu_read(slab_reap_node);
1007 if (n->alien) {
1008 struct array_cache *ac = n->alien[node];
1010 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 __drain_alien_cache(cachep, ac, node);
1012 spin_unlock_irq(&ac->lock);
1017 static void drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache **alien)
1020 int i = 0;
1021 struct array_cache *ac;
1022 unsigned long flags;
1024 for_each_online_node(i) {
1025 ac = alien[i];
1026 if (ac) {
1027 spin_lock_irqsave(&ac->lock, flags);
1028 __drain_alien_cache(cachep, ac, i);
1029 spin_unlock_irqrestore(&ac->lock, flags);
1034 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1036 int nodeid = page_to_nid(virt_to_page(objp));
1037 struct kmem_cache_node *n;
1038 struct array_cache *alien = NULL;
1039 int node;
1041 node = numa_mem_id();
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1047 if (likely(nodeid == node))
1048 return 0;
1050 n = cachep->node[node];
1051 STATS_INC_NODEFREES(cachep);
1052 if (n->alien && n->alien[nodeid]) {
1053 alien = n->alien[nodeid];
1054 spin_lock(&alien->lock);
1055 if (unlikely(alien->avail == alien->limit)) {
1056 STATS_INC_ACOVERFLOW(cachep);
1057 __drain_alien_cache(cachep, alien, nodeid);
1059 ac_put_obj(cachep, alien, objp);
1060 spin_unlock(&alien->lock);
1061 } else {
1062 spin_lock(&(cachep->node[nodeid])->list_lock);
1063 free_block(cachep, &objp, 1, nodeid);
1064 spin_unlock(&(cachep->node[nodeid])->list_lock);
1066 return 1;
1068 #endif
1071 * Allocates and initializes node for a node on each slab cache, used for
1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1073 * will be allocated off-node since memory is not yet online for the new node.
1074 * When hotplugging memory or a cpu, existing node are not replaced if
1075 * already in use.
1077 * Must hold slab_mutex.
1079 static int init_cache_node_node(int node)
1081 struct kmem_cache *cachep;
1082 struct kmem_cache_node *n;
1083 const int memsize = sizeof(struct kmem_cache_node);
1085 list_for_each_entry(cachep, &slab_caches, list) {
1087 * Set up the kmem_cache_node for cpu before we can
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1091 if (!cachep->node[node]) {
1092 n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 if (!n)
1094 return -ENOMEM;
1095 kmem_cache_node_init(n);
1096 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
1102 * protection here.
1104 cachep->node[node] = n;
1107 spin_lock_irq(&cachep->node[node]->list_lock);
1108 cachep->node[node]->free_limit =
1109 (1 + nr_cpus_node(node)) *
1110 cachep->batchcount + cachep->num;
1111 spin_unlock_irq(&cachep->node[node]->list_lock);
1113 return 0;
1116 static inline int slabs_tofree(struct kmem_cache *cachep,
1117 struct kmem_cache_node *n)
1119 return (n->free_objects + cachep->num - 1) / cachep->num;
1122 static void cpuup_canceled(long cpu)
1124 struct kmem_cache *cachep;
1125 struct kmem_cache_node *n = NULL;
1126 int node = cpu_to_mem(cpu);
1127 const struct cpumask *mask = cpumask_of_node(node);
1129 list_for_each_entry(cachep, &slab_caches, list) {
1130 struct array_cache *nc;
1131 struct array_cache *shared;
1132 struct array_cache **alien;
1134 /* cpu is dead; no one can alloc from it. */
1135 nc = cachep->array[cpu];
1136 cachep->array[cpu] = NULL;
1137 n = cachep->node[node];
1139 if (!n)
1140 goto free_array_cache;
1142 spin_lock_irq(&n->list_lock);
1144 /* Free limit for this kmem_cache_node */
1145 n->free_limit -= cachep->batchcount;
1146 if (nc)
1147 free_block(cachep, nc->entry, nc->avail, node);
1149 if (!cpumask_empty(mask)) {
1150 spin_unlock_irq(&n->list_lock);
1151 goto free_array_cache;
1154 shared = n->shared;
1155 if (shared) {
1156 free_block(cachep, shared->entry,
1157 shared->avail, node);
1158 n->shared = NULL;
1161 alien = n->alien;
1162 n->alien = NULL;
1164 spin_unlock_irq(&n->list_lock);
1166 kfree(shared);
1167 if (alien) {
1168 drain_alien_cache(cachep, alien);
1169 free_alien_cache(alien);
1171 free_array_cache:
1172 kfree(nc);
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1179 list_for_each_entry(cachep, &slab_caches, list) {
1180 n = cachep->node[node];
1181 if (!n)
1182 continue;
1183 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1187 static int cpuup_prepare(long cpu)
1189 struct kmem_cache *cachep;
1190 struct kmem_cache_node *n = NULL;
1191 int node = cpu_to_mem(cpu);
1192 int err;
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_cache_node and not this cpu's kmem_cache_node
1200 err = init_cache_node_node(node);
1201 if (err < 0)
1202 goto bad;
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1208 list_for_each_entry(cachep, &slab_caches, list) {
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1213 nc = alloc_arraycache(node, cachep->limit,
1214 cachep->batchcount, GFP_KERNEL);
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
1220 0xbaadf00d, GFP_KERNEL);
1221 if (!shared) {
1222 kfree(nc);
1223 goto bad;
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
1231 goto bad;
1234 cachep->array[cpu] = nc;
1235 n = cachep->node[node];
1236 BUG_ON(!n);
1238 spin_lock_irq(&n->list_lock);
1239 if (!n->shared) {
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1244 n->shared = shared;
1245 shared = NULL;
1247 #ifdef CONFIG_NUMA
1248 if (!n->alien) {
1249 n->alien = alien;
1250 alien = NULL;
1252 #endif
1253 spin_unlock_irq(&n->list_lock);
1254 kfree(shared);
1255 free_alien_cache(alien);
1256 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 slab_set_debugobj_lock_classes_node(cachep, node);
1258 else if (!OFF_SLAB(cachep) &&
1259 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 on_slab_lock_classes_node(cachep, node);
1262 init_node_lock_keys(node);
1264 return 0;
1265 bad:
1266 cpuup_canceled(cpu);
1267 return -ENOMEM;
1270 static int cpuup_callback(struct notifier_block *nfb,
1271 unsigned long action, void *hcpu)
1273 long cpu = (long)hcpu;
1274 int err = 0;
1276 switch (action) {
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 err = cpuup_prepare(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 case CPU_ONLINE:
1284 case CPU_ONLINE_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE:
1289 case CPU_DOWN_PREPARE_FROZEN:
1291 * Shutdown cache reaper. Note that the slab_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 break;
1300 case CPU_DOWN_FAILED:
1301 case CPU_DOWN_FAILED_FROZEN:
1302 start_cpu_timer(cpu);
1303 break;
1304 case CPU_DEAD:
1305 case CPU_DEAD_FROZEN:
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_cache_node of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The node
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1314 /* fall through */
1315 #endif
1316 case CPU_UP_CANCELED:
1317 case CPU_UP_CANCELED_FROZEN:
1318 mutex_lock(&slab_mutex);
1319 cpuup_canceled(cpu);
1320 mutex_unlock(&slab_mutex);
1321 break;
1323 return notifier_from_errno(err);
1326 static struct notifier_block cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1336 * Must hold slab_mutex.
1338 static int __meminit drain_cache_node_node(int node)
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1343 list_for_each_entry(cachep, &slab_caches, list) {
1344 struct kmem_cache_node *n;
1346 n = cachep->node[node];
1347 if (!n)
1348 continue;
1350 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1352 if (!list_empty(&n->slabs_full) ||
1353 !list_empty(&n->slabs_partial)) {
1354 ret = -EBUSY;
1355 break;
1358 return ret;
1361 static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
1374 mutex_lock(&slab_mutex);
1375 ret = init_cache_node_node(nid);
1376 mutex_unlock(&slab_mutex);
1377 break;
1378 case MEM_GOING_OFFLINE:
1379 mutex_lock(&slab_mutex);
1380 ret = drain_cache_node_node(nid);
1381 mutex_unlock(&slab_mutex);
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1389 out:
1390 return notifier_from_errno(ret);
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1395 * swap the static kmem_cache_node with kmalloced memory
1397 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398 int nodeid)
1400 struct kmem_cache_node *ptr;
1402 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 BUG_ON(!ptr);
1405 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1407 * Do not assume that spinlocks can be initialized via memcpy:
1409 spin_lock_init(&ptr->list_lock);
1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 cachep->node[nodeid] = ptr;
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
1419 static void __init set_up_node(struct kmem_cache *cachep, int index)
1421 int node;
1423 for_each_online_node(node) {
1424 cachep->node[node] = &init_kmem_cache_node[index + node];
1425 cachep->node[node]->next_reap = jiffies +
1426 REAPTIMEOUT_NODE +
1427 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1432 * The memory after the last cpu cache pointer is used for the
1433 * the node pointer.
1435 static void setup_node_pointer(struct kmem_cache *cachep)
1437 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1444 void __init kmem_cache_init(void)
1446 int i;
1448 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 sizeof(struct rcu_head));
1450 kmem_cache = &kmem_cache_boot;
1451 setup_node_pointer(kmem_cache);
1453 if (num_possible_nodes() == 1)
1454 use_alien_caches = 0;
1456 for (i = 0; i < NUM_INIT_LISTS; i++)
1457 kmem_cache_node_init(&init_kmem_cache_node[i]);
1459 set_up_node(kmem_cache, CACHE_CACHE);
1462 * Fragmentation resistance on low memory - only use bigger
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1466 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467 slab_max_order = SLAB_MAX_ORDER_HI;
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
1474 * Initially an __init data area is used for the head array and the
1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1476 * array at the end of the bootstrap.
1477 * 2) Create the first kmalloc cache.
1478 * The struct kmem_cache for the new cache is allocated normally.
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1481 * head arrays.
1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1483 * kmalloc cache with kmalloc allocated arrays.
1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1489 /* 1) create the kmem_cache */
1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1494 create_boot_cache(kmem_cache, "kmem_cache",
1495 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496 nr_node_ids * sizeof(struct kmem_cache_node *),
1497 SLAB_HWCACHE_ALIGN);
1498 list_add(&kmem_cache->list, &slab_caches);
1500 /* 2+3) create the kmalloc caches */
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_cache_node structures first. Without this, further allocations will
1505 * bug.
1508 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1511 if (INDEX_AC != INDEX_NODE)
1512 kmalloc_caches[INDEX_NODE] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1516 slab_early_init = 0;
1518 /* 4) Replace the bootstrap head arrays */
1520 struct array_cache *ptr;
1522 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1524 memcpy(ptr, cpu_cache_get(kmem_cache),
1525 sizeof(struct arraycache_init));
1527 * Do not assume that spinlocks can be initialized via memcpy:
1529 spin_lock_init(&ptr->lock);
1531 kmem_cache->array[smp_processor_id()] = ptr;
1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1535 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1536 != &initarray_generic.cache);
1537 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1538 sizeof(struct arraycache_init));
1540 * Do not assume that spinlocks can be initialized via memcpy:
1542 spin_lock_init(&ptr->lock);
1544 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1546 /* 5) Replace the bootstrap kmem_cache_node */
1548 int nid;
1550 for_each_online_node(nid) {
1551 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1553 init_list(kmalloc_caches[INDEX_AC],
1554 &init_kmem_cache_node[SIZE_AC + nid], nid);
1556 if (INDEX_AC != INDEX_NODE) {
1557 init_list(kmalloc_caches[INDEX_NODE],
1558 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1566 void __init kmem_cache_init_late(void)
1568 struct kmem_cache *cachep;
1570 slab_state = UP;
1572 /* 6) resize the head arrays to their final sizes */
1573 mutex_lock(&slab_mutex);
1574 list_for_each_entry(cachep, &slab_caches, list)
1575 if (enable_cpucache(cachep, GFP_NOWAIT))
1576 BUG();
1577 mutex_unlock(&slab_mutex);
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1580 init_lock_keys();
1582 /* Done! */
1583 slab_state = FULL;
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1589 register_cpu_notifier(&cpucache_notifier);
1591 #ifdef CONFIG_NUMA
1593 * Register a memory hotplug callback that initializes and frees
1594 * node.
1596 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597 #endif
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1605 static int __init cpucache_init(void)
1607 int cpu;
1610 * Register the timers that return unneeded pages to the page allocator
1612 for_each_online_cpu(cpu)
1613 start_cpu_timer(cpu);
1615 /* Done! */
1616 slab_state = FULL;
1617 return 0;
1619 __initcall(cpucache_init);
1621 static noinline void
1622 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1624 struct kmem_cache_node *n;
1625 struct page *page;
1626 unsigned long flags;
1627 int node;
1629 printk(KERN_WARNING
1630 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1631 nodeid, gfpflags);
1632 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1633 cachep->name, cachep->size, cachep->gfporder);
1635 for_each_online_node(node) {
1636 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1637 unsigned long active_slabs = 0, num_slabs = 0;
1639 n = cachep->node[node];
1640 if (!n)
1641 continue;
1643 spin_lock_irqsave(&n->list_lock, flags);
1644 list_for_each_entry(page, &n->slabs_full, lru) {
1645 active_objs += cachep->num;
1646 active_slabs++;
1648 list_for_each_entry(page, &n->slabs_partial, lru) {
1649 active_objs += page->active;
1650 active_slabs++;
1652 list_for_each_entry(page, &n->slabs_free, lru)
1653 num_slabs++;
1655 free_objects += n->free_objects;
1656 spin_unlock_irqrestore(&n->list_lock, flags);
1658 num_slabs += active_slabs;
1659 num_objs = num_slabs * cachep->num;
1660 printk(KERN_WARNING
1661 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1662 node, active_slabs, num_slabs, active_objs, num_objs,
1663 free_objects);
1668 * Interface to system's page allocator. No need to hold the cache-lock.
1670 * If we requested dmaable memory, we will get it. Even if we
1671 * did not request dmaable memory, we might get it, but that
1672 * would be relatively rare and ignorable.
1674 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1675 int nodeid)
1677 struct page *page;
1678 int nr_pages;
1680 flags |= cachep->allocflags;
1681 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 flags |= __GFP_RECLAIMABLE;
1684 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1685 if (!page) {
1686 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1687 slab_out_of_memory(cachep, flags, nodeid);
1688 return NULL;
1691 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1692 if (unlikely(page->pfmemalloc))
1693 pfmemalloc_active = true;
1695 nr_pages = (1 << cachep->gfporder);
1696 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1697 add_zone_page_state(page_zone(page),
1698 NR_SLAB_RECLAIMABLE, nr_pages);
1699 else
1700 add_zone_page_state(page_zone(page),
1701 NR_SLAB_UNRECLAIMABLE, nr_pages);
1702 __SetPageSlab(page);
1703 if (page->pfmemalloc)
1704 SetPageSlabPfmemalloc(page);
1705 memcg_bind_pages(cachep, cachep->gfporder);
1707 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1708 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1710 if (cachep->ctor)
1711 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1712 else
1713 kmemcheck_mark_unallocated_pages(page, nr_pages);
1716 return page;
1720 * Interface to system's page release.
1722 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1724 const unsigned long nr_freed = (1 << cachep->gfporder);
1726 kmemcheck_free_shadow(page, cachep->gfporder);
1728 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1729 sub_zone_page_state(page_zone(page),
1730 NR_SLAB_RECLAIMABLE, nr_freed);
1731 else
1732 sub_zone_page_state(page_zone(page),
1733 NR_SLAB_UNRECLAIMABLE, nr_freed);
1735 BUG_ON(!PageSlab(page));
1736 __ClearPageSlabPfmemalloc(page);
1737 __ClearPageSlab(page);
1738 page_mapcount_reset(page);
1739 page->mapping = NULL;
1741 memcg_release_pages(cachep, cachep->gfporder);
1742 if (current->reclaim_state)
1743 current->reclaim_state->reclaimed_slab += nr_freed;
1744 __free_memcg_kmem_pages(page, cachep->gfporder);
1747 static void kmem_rcu_free(struct rcu_head *head)
1749 struct kmem_cache *cachep;
1750 struct page *page;
1752 page = container_of(head, struct page, rcu_head);
1753 cachep = page->slab_cache;
1755 kmem_freepages(cachep, page);
1758 #if DEBUG
1760 #ifdef CONFIG_DEBUG_PAGEALLOC
1761 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1762 unsigned long caller)
1764 int size = cachep->object_size;
1766 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1768 if (size < 5 * sizeof(unsigned long))
1769 return;
1771 *addr++ = 0x12345678;
1772 *addr++ = caller;
1773 *addr++ = smp_processor_id();
1774 size -= 3 * sizeof(unsigned long);
1776 unsigned long *sptr = &caller;
1777 unsigned long svalue;
1779 while (!kstack_end(sptr)) {
1780 svalue = *sptr++;
1781 if (kernel_text_address(svalue)) {
1782 *addr++ = svalue;
1783 size -= sizeof(unsigned long);
1784 if (size <= sizeof(unsigned long))
1785 break;
1790 *addr++ = 0x87654321;
1792 #endif
1794 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1796 int size = cachep->object_size;
1797 addr = &((char *)addr)[obj_offset(cachep)];
1799 memset(addr, val, size);
1800 *(unsigned char *)(addr + size - 1) = POISON_END;
1803 static void dump_line(char *data, int offset, int limit)
1805 int i;
1806 unsigned char error = 0;
1807 int bad_count = 0;
1809 printk(KERN_ERR "%03x: ", offset);
1810 for (i = 0; i < limit; i++) {
1811 if (data[offset + i] != POISON_FREE) {
1812 error = data[offset + i];
1813 bad_count++;
1816 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1817 &data[offset], limit, 1);
1819 if (bad_count == 1) {
1820 error ^= POISON_FREE;
1821 if (!(error & (error - 1))) {
1822 printk(KERN_ERR "Single bit error detected. Probably "
1823 "bad RAM.\n");
1824 #ifdef CONFIG_X86
1825 printk(KERN_ERR "Run memtest86+ or a similar memory "
1826 "test tool.\n");
1827 #else
1828 printk(KERN_ERR "Run a memory test tool.\n");
1829 #endif
1833 #endif
1835 #if DEBUG
1837 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1839 int i, size;
1840 char *realobj;
1842 if (cachep->flags & SLAB_RED_ZONE) {
1843 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1844 *dbg_redzone1(cachep, objp),
1845 *dbg_redzone2(cachep, objp));
1848 if (cachep->flags & SLAB_STORE_USER) {
1849 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1850 *dbg_userword(cachep, objp),
1851 *dbg_userword(cachep, objp));
1853 realobj = (char *)objp + obj_offset(cachep);
1854 size = cachep->object_size;
1855 for (i = 0; i < size && lines; i += 16, lines--) {
1856 int limit;
1857 limit = 16;
1858 if (i + limit > size)
1859 limit = size - i;
1860 dump_line(realobj, i, limit);
1864 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1866 char *realobj;
1867 int size, i;
1868 int lines = 0;
1870 realobj = (char *)objp + obj_offset(cachep);
1871 size = cachep->object_size;
1873 for (i = 0; i < size; i++) {
1874 char exp = POISON_FREE;
1875 if (i == size - 1)
1876 exp = POISON_END;
1877 if (realobj[i] != exp) {
1878 int limit;
1879 /* Mismatch ! */
1880 /* Print header */
1881 if (lines == 0) {
1882 printk(KERN_ERR
1883 "Slab corruption (%s): %s start=%p, len=%d\n",
1884 print_tainted(), cachep->name, realobj, size);
1885 print_objinfo(cachep, objp, 0);
1887 /* Hexdump the affected line */
1888 i = (i / 16) * 16;
1889 limit = 16;
1890 if (i + limit > size)
1891 limit = size - i;
1892 dump_line(realobj, i, limit);
1893 i += 16;
1894 lines++;
1895 /* Limit to 5 lines */
1896 if (lines > 5)
1897 break;
1900 if (lines != 0) {
1901 /* Print some data about the neighboring objects, if they
1902 * exist:
1904 struct page *page = virt_to_head_page(objp);
1905 unsigned int objnr;
1907 objnr = obj_to_index(cachep, page, objp);
1908 if (objnr) {
1909 objp = index_to_obj(cachep, page, objnr - 1);
1910 realobj = (char *)objp + obj_offset(cachep);
1911 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1912 realobj, size);
1913 print_objinfo(cachep, objp, 2);
1915 if (objnr + 1 < cachep->num) {
1916 objp = index_to_obj(cachep, page, objnr + 1);
1917 realobj = (char *)objp + obj_offset(cachep);
1918 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1919 realobj, size);
1920 print_objinfo(cachep, objp, 2);
1924 #endif
1926 #if DEBUG
1927 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1928 struct page *page)
1930 int i;
1931 for (i = 0; i < cachep->num; i++) {
1932 void *objp = index_to_obj(cachep, page, i);
1934 if (cachep->flags & SLAB_POISON) {
1935 #ifdef CONFIG_DEBUG_PAGEALLOC
1936 if (cachep->size % PAGE_SIZE == 0 &&
1937 OFF_SLAB(cachep))
1938 kernel_map_pages(virt_to_page(objp),
1939 cachep->size / PAGE_SIZE, 1);
1940 else
1941 check_poison_obj(cachep, objp);
1942 #else
1943 check_poison_obj(cachep, objp);
1944 #endif
1946 if (cachep->flags & SLAB_RED_ZONE) {
1947 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1948 slab_error(cachep, "start of a freed object "
1949 "was overwritten");
1950 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1951 slab_error(cachep, "end of a freed object "
1952 "was overwritten");
1956 #else
1957 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1958 struct page *page)
1961 #endif
1964 * slab_destroy - destroy and release all objects in a slab
1965 * @cachep: cache pointer being destroyed
1966 * @page: page pointer being destroyed
1968 * Destroy all the objs in a slab, and release the mem back to the system.
1969 * Before calling the slab must have been unlinked from the cache. The
1970 * cache-lock is not held/needed.
1972 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1974 void *freelist;
1976 freelist = page->freelist;
1977 slab_destroy_debugcheck(cachep, page);
1978 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1979 struct rcu_head *head;
1982 * RCU free overloads the RCU head over the LRU.
1983 * slab_page has been overloeaded over the LRU,
1984 * however it is not used from now on so that
1985 * we can use it safely.
1987 head = (void *)&page->rcu_head;
1988 call_rcu(head, kmem_rcu_free);
1990 } else {
1991 kmem_freepages(cachep, page);
1995 * From now on, we don't use freelist
1996 * although actual page can be freed in rcu context
1998 if (OFF_SLAB(cachep))
1999 kmem_cache_free(cachep->freelist_cache, freelist);
2003 * calculate_slab_order - calculate size (page order) of slabs
2004 * @cachep: pointer to the cache that is being created
2005 * @size: size of objects to be created in this cache.
2006 * @align: required alignment for the objects.
2007 * @flags: slab allocation flags
2009 * Also calculates the number of objects per slab.
2011 * This could be made much more intelligent. For now, try to avoid using
2012 * high order pages for slabs. When the gfp() functions are more friendly
2013 * towards high-order requests, this should be changed.
2015 static size_t calculate_slab_order(struct kmem_cache *cachep,
2016 size_t size, size_t align, unsigned long flags)
2018 unsigned long offslab_limit;
2019 size_t left_over = 0;
2020 int gfporder;
2022 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2023 unsigned int num;
2024 size_t remainder;
2026 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2027 if (!num)
2028 continue;
2030 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2031 if (num > SLAB_OBJ_MAX_NUM)
2032 break;
2034 if (flags & CFLGS_OFF_SLAB) {
2036 * Max number of objs-per-slab for caches which
2037 * use off-slab slabs. Needed to avoid a possible
2038 * looping condition in cache_grow().
2040 offslab_limit = size;
2041 offslab_limit /= sizeof(freelist_idx_t);
2043 if (num > offslab_limit)
2044 break;
2047 /* Found something acceptable - save it away */
2048 cachep->num = num;
2049 cachep->gfporder = gfporder;
2050 left_over = remainder;
2053 * A VFS-reclaimable slab tends to have most allocations
2054 * as GFP_NOFS and we really don't want to have to be allocating
2055 * higher-order pages when we are unable to shrink dcache.
2057 if (flags & SLAB_RECLAIM_ACCOUNT)
2058 break;
2061 * Large number of objects is good, but very large slabs are
2062 * currently bad for the gfp()s.
2064 if (gfporder >= slab_max_order)
2065 break;
2068 * Acceptable internal fragmentation?
2070 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2071 break;
2073 return left_over;
2076 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2078 if (slab_state >= FULL)
2079 return enable_cpucache(cachep, gfp);
2081 if (slab_state == DOWN) {
2083 * Note: Creation of first cache (kmem_cache).
2084 * The setup_node is taken care
2085 * of by the caller of __kmem_cache_create
2087 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2088 slab_state = PARTIAL;
2089 } else if (slab_state == PARTIAL) {
2091 * Note: the second kmem_cache_create must create the cache
2092 * that's used by kmalloc(24), otherwise the creation of
2093 * further caches will BUG().
2095 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2098 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2099 * the second cache, then we need to set up all its node/,
2100 * otherwise the creation of further caches will BUG().
2102 set_up_node(cachep, SIZE_AC);
2103 if (INDEX_AC == INDEX_NODE)
2104 slab_state = PARTIAL_NODE;
2105 else
2106 slab_state = PARTIAL_ARRAYCACHE;
2107 } else {
2108 /* Remaining boot caches */
2109 cachep->array[smp_processor_id()] =
2110 kmalloc(sizeof(struct arraycache_init), gfp);
2112 if (slab_state == PARTIAL_ARRAYCACHE) {
2113 set_up_node(cachep, SIZE_NODE);
2114 slab_state = PARTIAL_NODE;
2115 } else {
2116 int node;
2117 for_each_online_node(node) {
2118 cachep->node[node] =
2119 kmalloc_node(sizeof(struct kmem_cache_node),
2120 gfp, node);
2121 BUG_ON(!cachep->node[node]);
2122 kmem_cache_node_init(cachep->node[node]);
2126 cachep->node[numa_mem_id()]->next_reap =
2127 jiffies + REAPTIMEOUT_NODE +
2128 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2130 cpu_cache_get(cachep)->avail = 0;
2131 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132 cpu_cache_get(cachep)->batchcount = 1;
2133 cpu_cache_get(cachep)->touched = 0;
2134 cachep->batchcount = 1;
2135 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136 return 0;
2140 * __kmem_cache_create - Create a cache.
2141 * @cachep: cache management descriptor
2142 * @flags: SLAB flags
2144 * Returns a ptr to the cache on success, NULL on failure.
2145 * Cannot be called within a int, but can be interrupted.
2146 * The @ctor is run when new pages are allocated by the cache.
2148 * The flags are
2150 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2151 * to catch references to uninitialised memory.
2153 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2154 * for buffer overruns.
2156 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2157 * cacheline. This can be beneficial if you're counting cycles as closely
2158 * as davem.
2161 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2163 size_t left_over, freelist_size, ralign;
2164 gfp_t gfp;
2165 int err;
2166 size_t size = cachep->size;
2168 #if DEBUG
2169 #if FORCED_DEBUG
2171 * Enable redzoning and last user accounting, except for caches with
2172 * large objects, if the increased size would increase the object size
2173 * above the next power of two: caches with object sizes just above a
2174 * power of two have a significant amount of internal fragmentation.
2176 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2177 2 * sizeof(unsigned long long)))
2178 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2179 if (!(flags & SLAB_DESTROY_BY_RCU))
2180 flags |= SLAB_POISON;
2181 #endif
2182 if (flags & SLAB_DESTROY_BY_RCU)
2183 BUG_ON(flags & SLAB_POISON);
2184 #endif
2187 * Check that size is in terms of words. This is needed to avoid
2188 * unaligned accesses for some archs when redzoning is used, and makes
2189 * sure any on-slab bufctl's are also correctly aligned.
2191 if (size & (BYTES_PER_WORD - 1)) {
2192 size += (BYTES_PER_WORD - 1);
2193 size &= ~(BYTES_PER_WORD - 1);
2197 * Redzoning and user store require word alignment or possibly larger.
2198 * Note this will be overridden by architecture or caller mandated
2199 * alignment if either is greater than BYTES_PER_WORD.
2201 if (flags & SLAB_STORE_USER)
2202 ralign = BYTES_PER_WORD;
2204 if (flags & SLAB_RED_ZONE) {
2205 ralign = REDZONE_ALIGN;
2206 /* If redzoning, ensure that the second redzone is suitably
2207 * aligned, by adjusting the object size accordingly. */
2208 size += REDZONE_ALIGN - 1;
2209 size &= ~(REDZONE_ALIGN - 1);
2212 /* 3) caller mandated alignment */
2213 if (ralign < cachep->align) {
2214 ralign = cachep->align;
2216 /* disable debug if necessary */
2217 if (ralign > __alignof__(unsigned long long))
2218 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2220 * 4) Store it.
2222 cachep->align = ralign;
2224 if (slab_is_available())
2225 gfp = GFP_KERNEL;
2226 else
2227 gfp = GFP_NOWAIT;
2229 setup_node_pointer(cachep);
2230 #if DEBUG
2233 * Both debugging options require word-alignment which is calculated
2234 * into align above.
2236 if (flags & SLAB_RED_ZONE) {
2237 /* add space for red zone words */
2238 cachep->obj_offset += sizeof(unsigned long long);
2239 size += 2 * sizeof(unsigned long long);
2241 if (flags & SLAB_STORE_USER) {
2242 /* user store requires one word storage behind the end of
2243 * the real object. But if the second red zone needs to be
2244 * aligned to 64 bits, we must allow that much space.
2246 if (flags & SLAB_RED_ZONE)
2247 size += REDZONE_ALIGN;
2248 else
2249 size += BYTES_PER_WORD;
2251 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2252 if (size >= kmalloc_size(INDEX_NODE + 1)
2253 && cachep->object_size > cache_line_size()
2254 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2255 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2256 size = PAGE_SIZE;
2258 #endif
2259 #endif
2262 * Determine if the slab management is 'on' or 'off' slab.
2263 * (bootstrapping cannot cope with offslab caches so don't do
2264 * it too early on. Always use on-slab management when
2265 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2267 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2268 !(flags & SLAB_NOLEAKTRACE))
2270 * Size is large, assume best to place the slab management obj
2271 * off-slab (should allow better packing of objs).
2273 flags |= CFLGS_OFF_SLAB;
2275 size = ALIGN(size, cachep->align);
2277 * We should restrict the number of objects in a slab to implement
2278 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2280 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2281 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2283 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2285 if (!cachep->num)
2286 return -E2BIG;
2288 freelist_size =
2289 ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
2292 * If the slab has been placed off-slab, and we have enough space then
2293 * move it on-slab. This is at the expense of any extra colouring.
2295 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2296 flags &= ~CFLGS_OFF_SLAB;
2297 left_over -= freelist_size;
2300 if (flags & CFLGS_OFF_SLAB) {
2301 /* really off slab. No need for manual alignment */
2302 freelist_size = cachep->num * sizeof(freelist_idx_t);
2304 #ifdef CONFIG_PAGE_POISONING
2305 /* If we're going to use the generic kernel_map_pages()
2306 * poisoning, then it's going to smash the contents of
2307 * the redzone and userword anyhow, so switch them off.
2309 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2310 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2311 #endif
2314 cachep->colour_off = cache_line_size();
2315 /* Offset must be a multiple of the alignment. */
2316 if (cachep->colour_off < cachep->align)
2317 cachep->colour_off = cachep->align;
2318 cachep->colour = left_over / cachep->colour_off;
2319 cachep->freelist_size = freelist_size;
2320 cachep->flags = flags;
2321 cachep->allocflags = __GFP_COMP;
2322 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2323 cachep->allocflags |= GFP_DMA;
2324 cachep->size = size;
2325 cachep->reciprocal_buffer_size = reciprocal_value(size);
2327 if (flags & CFLGS_OFF_SLAB) {
2328 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2330 * This is a possibility for one of the kmalloc_{dma,}_caches.
2331 * But since we go off slab only for object size greater than
2332 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2333 * in ascending order,this should not happen at all.
2334 * But leave a BUG_ON for some lucky dude.
2336 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2339 err = setup_cpu_cache(cachep, gfp);
2340 if (err) {
2341 __kmem_cache_shutdown(cachep);
2342 return err;
2345 if (flags & SLAB_DEBUG_OBJECTS) {
2347 * Would deadlock through slab_destroy()->call_rcu()->
2348 * debug_object_activate()->kmem_cache_alloc().
2350 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2352 slab_set_debugobj_lock_classes(cachep);
2353 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2354 on_slab_lock_classes(cachep);
2356 return 0;
2359 #if DEBUG
2360 static void check_irq_off(void)
2362 BUG_ON(!irqs_disabled());
2365 static void check_irq_on(void)
2367 BUG_ON(irqs_disabled());
2370 static void check_spinlock_acquired(struct kmem_cache *cachep)
2372 #ifdef CONFIG_SMP
2373 check_irq_off();
2374 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2375 #endif
2378 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2380 #ifdef CONFIG_SMP
2381 check_irq_off();
2382 assert_spin_locked(&cachep->node[node]->list_lock);
2383 #endif
2386 #else
2387 #define check_irq_off() do { } while(0)
2388 #define check_irq_on() do { } while(0)
2389 #define check_spinlock_acquired(x) do { } while(0)
2390 #define check_spinlock_acquired_node(x, y) do { } while(0)
2391 #endif
2393 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2394 struct array_cache *ac,
2395 int force, int node);
2397 static void do_drain(void *arg)
2399 struct kmem_cache *cachep = arg;
2400 struct array_cache *ac;
2401 int node = numa_mem_id();
2403 check_irq_off();
2404 ac = cpu_cache_get(cachep);
2405 spin_lock(&cachep->node[node]->list_lock);
2406 free_block(cachep, ac->entry, ac->avail, node);
2407 spin_unlock(&cachep->node[node]->list_lock);
2408 ac->avail = 0;
2411 static void drain_cpu_caches(struct kmem_cache *cachep)
2413 struct kmem_cache_node *n;
2414 int node;
2416 on_each_cpu(do_drain, cachep, 1);
2417 check_irq_on();
2418 for_each_online_node(node) {
2419 n = cachep->node[node];
2420 if (n && n->alien)
2421 drain_alien_cache(cachep, n->alien);
2424 for_each_online_node(node) {
2425 n = cachep->node[node];
2426 if (n)
2427 drain_array(cachep, n, n->shared, 1, node);
2432 * Remove slabs from the list of free slabs.
2433 * Specify the number of slabs to drain in tofree.
2435 * Returns the actual number of slabs released.
2437 static int drain_freelist(struct kmem_cache *cache,
2438 struct kmem_cache_node *n, int tofree)
2440 struct list_head *p;
2441 int nr_freed;
2442 struct page *page;
2444 nr_freed = 0;
2445 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2447 spin_lock_irq(&n->list_lock);
2448 p = n->slabs_free.prev;
2449 if (p == &n->slabs_free) {
2450 spin_unlock_irq(&n->list_lock);
2451 goto out;
2454 page = list_entry(p, struct page, lru);
2455 #if DEBUG
2456 BUG_ON(page->active);
2457 #endif
2458 list_del(&page->lru);
2460 * Safe to drop the lock. The slab is no longer linked
2461 * to the cache.
2463 n->free_objects -= cache->num;
2464 spin_unlock_irq(&n->list_lock);
2465 slab_destroy(cache, page);
2466 nr_freed++;
2468 out:
2469 return nr_freed;
2472 /* Called with slab_mutex held to protect against cpu hotplug */
2473 static int __cache_shrink(struct kmem_cache *cachep)
2475 int ret = 0, i = 0;
2476 struct kmem_cache_node *n;
2478 drain_cpu_caches(cachep);
2480 check_irq_on();
2481 for_each_online_node(i) {
2482 n = cachep->node[i];
2483 if (!n)
2484 continue;
2486 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2488 ret += !list_empty(&n->slabs_full) ||
2489 !list_empty(&n->slabs_partial);
2491 return (ret ? 1 : 0);
2495 * kmem_cache_shrink - Shrink a cache.
2496 * @cachep: The cache to shrink.
2498 * Releases as many slabs as possible for a cache.
2499 * To help debugging, a zero exit status indicates all slabs were released.
2501 int kmem_cache_shrink(struct kmem_cache *cachep)
2503 int ret;
2504 BUG_ON(!cachep || in_interrupt());
2506 get_online_cpus();
2507 mutex_lock(&slab_mutex);
2508 ret = __cache_shrink(cachep);
2509 mutex_unlock(&slab_mutex);
2510 put_online_cpus();
2511 return ret;
2513 EXPORT_SYMBOL(kmem_cache_shrink);
2515 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2517 int i;
2518 struct kmem_cache_node *n;
2519 int rc = __cache_shrink(cachep);
2521 if (rc)
2522 return rc;
2524 for_each_online_cpu(i)
2525 kfree(cachep->array[i]);
2527 /* NUMA: free the node structures */
2528 for_each_online_node(i) {
2529 n = cachep->node[i];
2530 if (n) {
2531 kfree(n->shared);
2532 free_alien_cache(n->alien);
2533 kfree(n);
2536 return 0;
2540 * Get the memory for a slab management obj.
2542 * For a slab cache when the slab descriptor is off-slab, the
2543 * slab descriptor can't come from the same cache which is being created,
2544 * Because if it is the case, that means we defer the creation of
2545 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2546 * And we eventually call down to __kmem_cache_create(), which
2547 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2548 * This is a "chicken-and-egg" problem.
2550 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2551 * which are all initialized during kmem_cache_init().
2553 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2554 struct page *page, int colour_off,
2555 gfp_t local_flags, int nodeid)
2557 void *freelist;
2558 void *addr = page_address(page);
2560 if (OFF_SLAB(cachep)) {
2561 /* Slab management obj is off-slab. */
2562 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2563 local_flags, nodeid);
2564 if (!freelist)
2565 return NULL;
2566 } else {
2567 freelist = addr + colour_off;
2568 colour_off += cachep->freelist_size;
2570 page->active = 0;
2571 page->s_mem = addr + colour_off;
2572 return freelist;
2575 static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx)
2577 return ((freelist_idx_t *)page->freelist)[idx];
2580 static inline void set_free_obj(struct page *page,
2581 unsigned char idx, freelist_idx_t val)
2583 ((freelist_idx_t *)(page->freelist))[idx] = val;
2586 static void cache_init_objs(struct kmem_cache *cachep,
2587 struct page *page)
2589 int i;
2591 for (i = 0; i < cachep->num; i++) {
2592 void *objp = index_to_obj(cachep, page, i);
2593 #if DEBUG
2594 /* need to poison the objs? */
2595 if (cachep->flags & SLAB_POISON)
2596 poison_obj(cachep, objp, POISON_FREE);
2597 if (cachep->flags & SLAB_STORE_USER)
2598 *dbg_userword(cachep, objp) = NULL;
2600 if (cachep->flags & SLAB_RED_ZONE) {
2601 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2602 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2605 * Constructors are not allowed to allocate memory from the same
2606 * cache which they are a constructor for. Otherwise, deadlock.
2607 * They must also be threaded.
2609 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2610 cachep->ctor(objp + obj_offset(cachep));
2612 if (cachep->flags & SLAB_RED_ZONE) {
2613 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2614 slab_error(cachep, "constructor overwrote the"
2615 " end of an object");
2616 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2617 slab_error(cachep, "constructor overwrote the"
2618 " start of an object");
2620 if ((cachep->size % PAGE_SIZE) == 0 &&
2621 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2622 kernel_map_pages(virt_to_page(objp),
2623 cachep->size / PAGE_SIZE, 0);
2624 #else
2625 if (cachep->ctor)
2626 cachep->ctor(objp);
2627 #endif
2628 set_free_obj(page, i, i);
2632 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2634 if (CONFIG_ZONE_DMA_FLAG) {
2635 if (flags & GFP_DMA)
2636 BUG_ON(!(cachep->allocflags & GFP_DMA));
2637 else
2638 BUG_ON(cachep->allocflags & GFP_DMA);
2642 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2643 int nodeid)
2645 void *objp;
2647 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2648 page->active++;
2649 #if DEBUG
2650 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2651 #endif
2653 return objp;
2656 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2657 void *objp, int nodeid)
2659 unsigned int objnr = obj_to_index(cachep, page, objp);
2660 #if DEBUG
2661 unsigned int i;
2663 /* Verify that the slab belongs to the intended node */
2664 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2666 /* Verify double free bug */
2667 for (i = page->active; i < cachep->num; i++) {
2668 if (get_free_obj(page, i) == objnr) {
2669 printk(KERN_ERR "slab: double free detected in cache "
2670 "'%s', objp %p\n", cachep->name, objp);
2671 BUG();
2674 #endif
2675 page->active--;
2676 set_free_obj(page, page->active, objnr);
2680 * Map pages beginning at addr to the given cache and slab. This is required
2681 * for the slab allocator to be able to lookup the cache and slab of a
2682 * virtual address for kfree, ksize, and slab debugging.
2684 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2685 void *freelist)
2687 page->slab_cache = cache;
2688 page->freelist = freelist;
2692 * Grow (by 1) the number of slabs within a cache. This is called by
2693 * kmem_cache_alloc() when there are no active objs left in a cache.
2695 static int cache_grow(struct kmem_cache *cachep,
2696 gfp_t flags, int nodeid, struct page *page)
2698 void *freelist;
2699 size_t offset;
2700 gfp_t local_flags;
2701 struct kmem_cache_node *n;
2704 * Be lazy and only check for valid flags here, keeping it out of the
2705 * critical path in kmem_cache_alloc().
2707 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2708 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2710 /* Take the node list lock to change the colour_next on this node */
2711 check_irq_off();
2712 n = cachep->node[nodeid];
2713 spin_lock(&n->list_lock);
2715 /* Get colour for the slab, and cal the next value. */
2716 offset = n->colour_next;
2717 n->colour_next++;
2718 if (n->colour_next >= cachep->colour)
2719 n->colour_next = 0;
2720 spin_unlock(&n->list_lock);
2722 offset *= cachep->colour_off;
2724 if (local_flags & __GFP_WAIT)
2725 local_irq_enable();
2728 * The test for missing atomic flag is performed here, rather than
2729 * the more obvious place, simply to reduce the critical path length
2730 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2731 * will eventually be caught here (where it matters).
2733 kmem_flagcheck(cachep, flags);
2736 * Get mem for the objs. Attempt to allocate a physical page from
2737 * 'nodeid'.
2739 if (!page)
2740 page = kmem_getpages(cachep, local_flags, nodeid);
2741 if (!page)
2742 goto failed;
2744 /* Get slab management. */
2745 freelist = alloc_slabmgmt(cachep, page, offset,
2746 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2747 if (!freelist)
2748 goto opps1;
2750 slab_map_pages(cachep, page, freelist);
2752 cache_init_objs(cachep, page);
2754 if (local_flags & __GFP_WAIT)
2755 local_irq_disable();
2756 check_irq_off();
2757 spin_lock(&n->list_lock);
2759 /* Make slab active. */
2760 list_add_tail(&page->lru, &(n->slabs_free));
2761 STATS_INC_GROWN(cachep);
2762 n->free_objects += cachep->num;
2763 spin_unlock(&n->list_lock);
2764 return 1;
2765 opps1:
2766 kmem_freepages(cachep, page);
2767 failed:
2768 if (local_flags & __GFP_WAIT)
2769 local_irq_disable();
2770 return 0;
2773 #if DEBUG
2776 * Perform extra freeing checks:
2777 * - detect bad pointers.
2778 * - POISON/RED_ZONE checking
2780 static void kfree_debugcheck(const void *objp)
2782 if (!virt_addr_valid(objp)) {
2783 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2784 (unsigned long)objp);
2785 BUG();
2789 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2791 unsigned long long redzone1, redzone2;
2793 redzone1 = *dbg_redzone1(cache, obj);
2794 redzone2 = *dbg_redzone2(cache, obj);
2797 * Redzone is ok.
2799 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2800 return;
2802 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2803 slab_error(cache, "double free detected");
2804 else
2805 slab_error(cache, "memory outside object was overwritten");
2807 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2808 obj, redzone1, redzone2);
2811 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2812 unsigned long caller)
2814 unsigned int objnr;
2815 struct page *page;
2817 BUG_ON(virt_to_cache(objp) != cachep);
2819 objp -= obj_offset(cachep);
2820 kfree_debugcheck(objp);
2821 page = virt_to_head_page(objp);
2823 if (cachep->flags & SLAB_RED_ZONE) {
2824 verify_redzone_free(cachep, objp);
2825 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2826 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2828 if (cachep->flags & SLAB_STORE_USER)
2829 *dbg_userword(cachep, objp) = (void *)caller;
2831 objnr = obj_to_index(cachep, page, objp);
2833 BUG_ON(objnr >= cachep->num);
2834 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2836 if (cachep->flags & SLAB_POISON) {
2837 #ifdef CONFIG_DEBUG_PAGEALLOC
2838 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2839 store_stackinfo(cachep, objp, caller);
2840 kernel_map_pages(virt_to_page(objp),
2841 cachep->size / PAGE_SIZE, 0);
2842 } else {
2843 poison_obj(cachep, objp, POISON_FREE);
2845 #else
2846 poison_obj(cachep, objp, POISON_FREE);
2847 #endif
2849 return objp;
2852 #else
2853 #define kfree_debugcheck(x) do { } while(0)
2854 #define cache_free_debugcheck(x,objp,z) (objp)
2855 #endif
2857 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2858 bool force_refill)
2860 int batchcount;
2861 struct kmem_cache_node *n;
2862 struct array_cache *ac;
2863 int node;
2865 check_irq_off();
2866 node = numa_mem_id();
2867 if (unlikely(force_refill))
2868 goto force_grow;
2869 retry:
2870 ac = cpu_cache_get(cachep);
2871 batchcount = ac->batchcount;
2872 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2874 * If there was little recent activity on this cache, then
2875 * perform only a partial refill. Otherwise we could generate
2876 * refill bouncing.
2878 batchcount = BATCHREFILL_LIMIT;
2880 n = cachep->node[node];
2882 BUG_ON(ac->avail > 0 || !n);
2883 spin_lock(&n->list_lock);
2885 /* See if we can refill from the shared array */
2886 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2887 n->shared->touched = 1;
2888 goto alloc_done;
2891 while (batchcount > 0) {
2892 struct list_head *entry;
2893 struct page *page;
2894 /* Get slab alloc is to come from. */
2895 entry = n->slabs_partial.next;
2896 if (entry == &n->slabs_partial) {
2897 n->free_touched = 1;
2898 entry = n->slabs_free.next;
2899 if (entry == &n->slabs_free)
2900 goto must_grow;
2903 page = list_entry(entry, struct page, lru);
2904 check_spinlock_acquired(cachep);
2907 * The slab was either on partial or free list so
2908 * there must be at least one object available for
2909 * allocation.
2911 BUG_ON(page->active >= cachep->num);
2913 while (page->active < cachep->num && batchcount--) {
2914 STATS_INC_ALLOCED(cachep);
2915 STATS_INC_ACTIVE(cachep);
2916 STATS_SET_HIGH(cachep);
2918 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2919 node));
2922 /* move slabp to correct slabp list: */
2923 list_del(&page->lru);
2924 if (page->active == cachep->num)
2925 list_add(&page->lru, &n->slabs_full);
2926 else
2927 list_add(&page->lru, &n->slabs_partial);
2930 must_grow:
2931 n->free_objects -= ac->avail;
2932 alloc_done:
2933 spin_unlock(&n->list_lock);
2935 if (unlikely(!ac->avail)) {
2936 int x;
2937 force_grow:
2938 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2940 /* cache_grow can reenable interrupts, then ac could change. */
2941 ac = cpu_cache_get(cachep);
2942 node = numa_mem_id();
2944 /* no objects in sight? abort */
2945 if (!x && (ac->avail == 0 || force_refill))
2946 return NULL;
2948 if (!ac->avail) /* objects refilled by interrupt? */
2949 goto retry;
2951 ac->touched = 1;
2953 return ac_get_obj(cachep, ac, flags, force_refill);
2956 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2957 gfp_t flags)
2959 might_sleep_if(flags & __GFP_WAIT);
2960 #if DEBUG
2961 kmem_flagcheck(cachep, flags);
2962 #endif
2965 #if DEBUG
2966 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2967 gfp_t flags, void *objp, unsigned long caller)
2969 if (!objp)
2970 return objp;
2971 if (cachep->flags & SLAB_POISON) {
2972 #ifdef CONFIG_DEBUG_PAGEALLOC
2973 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2974 kernel_map_pages(virt_to_page(objp),
2975 cachep->size / PAGE_SIZE, 1);
2976 else
2977 check_poison_obj(cachep, objp);
2978 #else
2979 check_poison_obj(cachep, objp);
2980 #endif
2981 poison_obj(cachep, objp, POISON_INUSE);
2983 if (cachep->flags & SLAB_STORE_USER)
2984 *dbg_userword(cachep, objp) = (void *)caller;
2986 if (cachep->flags & SLAB_RED_ZONE) {
2987 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2988 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2989 slab_error(cachep, "double free, or memory outside"
2990 " object was overwritten");
2991 printk(KERN_ERR
2992 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2993 objp, *dbg_redzone1(cachep, objp),
2994 *dbg_redzone2(cachep, objp));
2996 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2997 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2999 objp += obj_offset(cachep);
3000 if (cachep->ctor && cachep->flags & SLAB_POISON)
3001 cachep->ctor(objp);
3002 if (ARCH_SLAB_MINALIGN &&
3003 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3004 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3005 objp, (int)ARCH_SLAB_MINALIGN);
3007 return objp;
3009 #else
3010 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3011 #endif
3013 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3015 if (cachep == kmem_cache)
3016 return false;
3018 return should_failslab(cachep->object_size, flags, cachep->flags);
3021 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3023 void *objp;
3024 struct array_cache *ac;
3025 bool force_refill = false;
3027 check_irq_off();
3029 ac = cpu_cache_get(cachep);
3030 if (likely(ac->avail)) {
3031 ac->touched = 1;
3032 objp = ac_get_obj(cachep, ac, flags, false);
3035 * Allow for the possibility all avail objects are not allowed
3036 * by the current flags
3038 if (objp) {
3039 STATS_INC_ALLOCHIT(cachep);
3040 goto out;
3042 force_refill = true;
3045 STATS_INC_ALLOCMISS(cachep);
3046 objp = cache_alloc_refill(cachep, flags, force_refill);
3048 * the 'ac' may be updated by cache_alloc_refill(),
3049 * and kmemleak_erase() requires its correct value.
3051 ac = cpu_cache_get(cachep);
3053 out:
3055 * To avoid a false negative, if an object that is in one of the
3056 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3057 * treat the array pointers as a reference to the object.
3059 if (objp)
3060 kmemleak_erase(&ac->entry[ac->avail]);
3061 return objp;
3064 #ifdef CONFIG_NUMA
3066 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3068 * If we are in_interrupt, then process context, including cpusets and
3069 * mempolicy, may not apply and should not be used for allocation policy.
3071 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3073 int nid_alloc, nid_here;
3075 if (in_interrupt() || (flags & __GFP_THISNODE))
3076 return NULL;
3077 nid_alloc = nid_here = numa_mem_id();
3078 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3079 nid_alloc = cpuset_slab_spread_node();
3080 else if (current->mempolicy)
3081 nid_alloc = mempolicy_slab_node();
3082 if (nid_alloc != nid_here)
3083 return ____cache_alloc_node(cachep, flags, nid_alloc);
3084 return NULL;
3088 * Fallback function if there was no memory available and no objects on a
3089 * certain node and fall back is permitted. First we scan all the
3090 * available node for available objects. If that fails then we
3091 * perform an allocation without specifying a node. This allows the page
3092 * allocator to do its reclaim / fallback magic. We then insert the
3093 * slab into the proper nodelist and then allocate from it.
3095 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3097 struct zonelist *zonelist;
3098 gfp_t local_flags;
3099 struct zoneref *z;
3100 struct zone *zone;
3101 enum zone_type high_zoneidx = gfp_zone(flags);
3102 void *obj = NULL;
3103 int nid;
3104 unsigned int cpuset_mems_cookie;
3106 if (flags & __GFP_THISNODE)
3107 return NULL;
3109 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3111 retry_cpuset:
3112 cpuset_mems_cookie = read_mems_allowed_begin();
3113 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3115 retry:
3117 * Look through allowed nodes for objects available
3118 * from existing per node queues.
3120 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3121 nid = zone_to_nid(zone);
3123 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3124 cache->node[nid] &&
3125 cache->node[nid]->free_objects) {
3126 obj = ____cache_alloc_node(cache,
3127 flags | GFP_THISNODE, nid);
3128 if (obj)
3129 break;
3133 if (!obj) {
3135 * This allocation will be performed within the constraints
3136 * of the current cpuset / memory policy requirements.
3137 * We may trigger various forms of reclaim on the allowed
3138 * set and go into memory reserves if necessary.
3140 struct page *page;
3142 if (local_flags & __GFP_WAIT)
3143 local_irq_enable();
3144 kmem_flagcheck(cache, flags);
3145 page = kmem_getpages(cache, local_flags, numa_mem_id());
3146 if (local_flags & __GFP_WAIT)
3147 local_irq_disable();
3148 if (page) {
3150 * Insert into the appropriate per node queues
3152 nid = page_to_nid(page);
3153 if (cache_grow(cache, flags, nid, page)) {
3154 obj = ____cache_alloc_node(cache,
3155 flags | GFP_THISNODE, nid);
3156 if (!obj)
3158 * Another processor may allocate the
3159 * objects in the slab since we are
3160 * not holding any locks.
3162 goto retry;
3163 } else {
3164 /* cache_grow already freed obj */
3165 obj = NULL;
3170 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3171 goto retry_cpuset;
3172 return obj;
3176 * A interface to enable slab creation on nodeid
3178 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3179 int nodeid)
3181 struct list_head *entry;
3182 struct page *page;
3183 struct kmem_cache_node *n;
3184 void *obj;
3185 int x;
3187 VM_BUG_ON(nodeid > num_online_nodes());
3188 n = cachep->node[nodeid];
3189 BUG_ON(!n);
3191 retry:
3192 check_irq_off();
3193 spin_lock(&n->list_lock);
3194 entry = n->slabs_partial.next;
3195 if (entry == &n->slabs_partial) {
3196 n->free_touched = 1;
3197 entry = n->slabs_free.next;
3198 if (entry == &n->slabs_free)
3199 goto must_grow;
3202 page = list_entry(entry, struct page, lru);
3203 check_spinlock_acquired_node(cachep, nodeid);
3205 STATS_INC_NODEALLOCS(cachep);
3206 STATS_INC_ACTIVE(cachep);
3207 STATS_SET_HIGH(cachep);
3209 BUG_ON(page->active == cachep->num);
3211 obj = slab_get_obj(cachep, page, nodeid);
3212 n->free_objects--;
3213 /* move slabp to correct slabp list: */
3214 list_del(&page->lru);
3216 if (page->active == cachep->num)
3217 list_add(&page->lru, &n->slabs_full);
3218 else
3219 list_add(&page->lru, &n->slabs_partial);
3221 spin_unlock(&n->list_lock);
3222 goto done;
3224 must_grow:
3225 spin_unlock(&n->list_lock);
3226 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3227 if (x)
3228 goto retry;
3230 return fallback_alloc(cachep, flags);
3232 done:
3233 return obj;
3236 static __always_inline void *
3237 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3238 unsigned long caller)
3240 unsigned long save_flags;
3241 void *ptr;
3242 int slab_node = numa_mem_id();
3244 flags &= gfp_allowed_mask;
3246 lockdep_trace_alloc(flags);
3248 if (slab_should_failslab(cachep, flags))
3249 return NULL;
3251 cachep = memcg_kmem_get_cache(cachep, flags);
3253 cache_alloc_debugcheck_before(cachep, flags);
3254 local_irq_save(save_flags);
3256 if (nodeid == NUMA_NO_NODE)
3257 nodeid = slab_node;
3259 if (unlikely(!cachep->node[nodeid])) {
3260 /* Node not bootstrapped yet */
3261 ptr = fallback_alloc(cachep, flags);
3262 goto out;
3265 if (nodeid == slab_node) {
3267 * Use the locally cached objects if possible.
3268 * However ____cache_alloc does not allow fallback
3269 * to other nodes. It may fail while we still have
3270 * objects on other nodes available.
3272 ptr = ____cache_alloc(cachep, flags);
3273 if (ptr)
3274 goto out;
3276 /* ___cache_alloc_node can fall back to other nodes */
3277 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3278 out:
3279 local_irq_restore(save_flags);
3280 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3281 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3282 flags);
3284 if (likely(ptr)) {
3285 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3286 if (unlikely(flags & __GFP_ZERO))
3287 memset(ptr, 0, cachep->object_size);
3290 return ptr;
3293 static __always_inline void *
3294 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3296 void *objp;
3298 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3299 objp = alternate_node_alloc(cache, flags);
3300 if (objp)
3301 goto out;
3303 objp = ____cache_alloc(cache, flags);
3306 * We may just have run out of memory on the local node.
3307 * ____cache_alloc_node() knows how to locate memory on other nodes
3309 if (!objp)
3310 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3312 out:
3313 return objp;
3315 #else
3317 static __always_inline void *
3318 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3320 return ____cache_alloc(cachep, flags);
3323 #endif /* CONFIG_NUMA */
3325 static __always_inline void *
3326 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3328 unsigned long save_flags;
3329 void *objp;
3331 flags &= gfp_allowed_mask;
3333 lockdep_trace_alloc(flags);
3335 if (slab_should_failslab(cachep, flags))
3336 return NULL;
3338 cachep = memcg_kmem_get_cache(cachep, flags);
3340 cache_alloc_debugcheck_before(cachep, flags);
3341 local_irq_save(save_flags);
3342 objp = __do_cache_alloc(cachep, flags);
3343 local_irq_restore(save_flags);
3344 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3345 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3346 flags);
3347 prefetchw(objp);
3349 if (likely(objp)) {
3350 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3351 if (unlikely(flags & __GFP_ZERO))
3352 memset(objp, 0, cachep->object_size);
3355 return objp;
3359 * Caller needs to acquire correct kmem_cache_node's list_lock
3361 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3362 int node)
3364 int i;
3365 struct kmem_cache_node *n;
3367 for (i = 0; i < nr_objects; i++) {
3368 void *objp;
3369 struct page *page;
3371 clear_obj_pfmemalloc(&objpp[i]);
3372 objp = objpp[i];
3374 page = virt_to_head_page(objp);
3375 n = cachep->node[node];
3376 list_del(&page->lru);
3377 check_spinlock_acquired_node(cachep, node);
3378 slab_put_obj(cachep, page, objp, node);
3379 STATS_DEC_ACTIVE(cachep);
3380 n->free_objects++;
3382 /* fixup slab chains */
3383 if (page->active == 0) {
3384 if (n->free_objects > n->free_limit) {
3385 n->free_objects -= cachep->num;
3386 /* No need to drop any previously held
3387 * lock here, even if we have a off-slab slab
3388 * descriptor it is guaranteed to come from
3389 * a different cache, refer to comments before
3390 * alloc_slabmgmt.
3392 slab_destroy(cachep, page);
3393 } else {
3394 list_add(&page->lru, &n->slabs_free);
3396 } else {
3397 /* Unconditionally move a slab to the end of the
3398 * partial list on free - maximum time for the
3399 * other objects to be freed, too.
3401 list_add_tail(&page->lru, &n->slabs_partial);
3406 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3408 int batchcount;
3409 struct kmem_cache_node *n;
3410 int node = numa_mem_id();
3412 batchcount = ac->batchcount;
3413 #if DEBUG
3414 BUG_ON(!batchcount || batchcount > ac->avail);
3415 #endif
3416 check_irq_off();
3417 n = cachep->node[node];
3418 spin_lock(&n->list_lock);
3419 if (n->shared) {
3420 struct array_cache *shared_array = n->shared;
3421 int max = shared_array->limit - shared_array->avail;
3422 if (max) {
3423 if (batchcount > max)
3424 batchcount = max;
3425 memcpy(&(shared_array->entry[shared_array->avail]),
3426 ac->entry, sizeof(void *) * batchcount);
3427 shared_array->avail += batchcount;
3428 goto free_done;
3432 free_block(cachep, ac->entry, batchcount, node);
3433 free_done:
3434 #if STATS
3436 int i = 0;
3437 struct list_head *p;
3439 p = n->slabs_free.next;
3440 while (p != &(n->slabs_free)) {
3441 struct page *page;
3443 page = list_entry(p, struct page, lru);
3444 BUG_ON(page->active);
3446 i++;
3447 p = p->next;
3449 STATS_SET_FREEABLE(cachep, i);
3451 #endif
3452 spin_unlock(&n->list_lock);
3453 ac->avail -= batchcount;
3454 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3458 * Release an obj back to its cache. If the obj has a constructed state, it must
3459 * be in this state _before_ it is released. Called with disabled ints.
3461 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3462 unsigned long caller)
3464 struct array_cache *ac = cpu_cache_get(cachep);
3466 check_irq_off();
3467 kmemleak_free_recursive(objp, cachep->flags);
3468 objp = cache_free_debugcheck(cachep, objp, caller);
3470 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3473 * Skip calling cache_free_alien() when the platform is not numa.
3474 * This will avoid cache misses that happen while accessing slabp (which
3475 * is per page memory reference) to get nodeid. Instead use a global
3476 * variable to skip the call, which is mostly likely to be present in
3477 * the cache.
3479 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3480 return;
3482 if (likely(ac->avail < ac->limit)) {
3483 STATS_INC_FREEHIT(cachep);
3484 } else {
3485 STATS_INC_FREEMISS(cachep);
3486 cache_flusharray(cachep, ac);
3489 ac_put_obj(cachep, ac, objp);
3493 * kmem_cache_alloc - Allocate an object
3494 * @cachep: The cache to allocate from.
3495 * @flags: See kmalloc().
3497 * Allocate an object from this cache. The flags are only relevant
3498 * if the cache has no available objects.
3500 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3502 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3504 trace_kmem_cache_alloc(_RET_IP_, ret,
3505 cachep->object_size, cachep->size, flags);
3507 return ret;
3509 EXPORT_SYMBOL(kmem_cache_alloc);
3511 #ifdef CONFIG_TRACING
3512 void *
3513 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3515 void *ret;
3517 ret = slab_alloc(cachep, flags, _RET_IP_);
3519 trace_kmalloc(_RET_IP_, ret,
3520 size, cachep->size, flags);
3521 return ret;
3523 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3524 #endif
3526 #ifdef CONFIG_NUMA
3528 * kmem_cache_alloc_node - Allocate an object on the specified node
3529 * @cachep: The cache to allocate from.
3530 * @flags: See kmalloc().
3531 * @nodeid: node number of the target node.
3533 * Identical to kmem_cache_alloc but it will allocate memory on the given
3534 * node, which can improve the performance for cpu bound structures.
3536 * Fallback to other node is possible if __GFP_THISNODE is not set.
3538 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3540 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3542 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3543 cachep->object_size, cachep->size,
3544 flags, nodeid);
3546 return ret;
3548 EXPORT_SYMBOL(kmem_cache_alloc_node);
3550 #ifdef CONFIG_TRACING
3551 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3552 gfp_t flags,
3553 int nodeid,
3554 size_t size)
3556 void *ret;
3558 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3560 trace_kmalloc_node(_RET_IP_, ret,
3561 size, cachep->size,
3562 flags, nodeid);
3563 return ret;
3565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3566 #endif
3568 static __always_inline void *
3569 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3571 struct kmem_cache *cachep;
3573 cachep = kmalloc_slab(size, flags);
3574 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3575 return cachep;
3576 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3579 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3580 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3582 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3584 EXPORT_SYMBOL(__kmalloc_node);
3586 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3587 int node, unsigned long caller)
3589 return __do_kmalloc_node(size, flags, node, caller);
3591 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3592 #else
3593 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3595 return __do_kmalloc_node(size, flags, node, 0);
3597 EXPORT_SYMBOL(__kmalloc_node);
3598 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3599 #endif /* CONFIG_NUMA */
3602 * __do_kmalloc - allocate memory
3603 * @size: how many bytes of memory are required.
3604 * @flags: the type of memory to allocate (see kmalloc).
3605 * @caller: function caller for debug tracking of the caller
3607 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3608 unsigned long caller)
3610 struct kmem_cache *cachep;
3611 void *ret;
3613 cachep = kmalloc_slab(size, flags);
3614 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3615 return cachep;
3616 ret = slab_alloc(cachep, flags, caller);
3618 trace_kmalloc(caller, ret,
3619 size, cachep->size, flags);
3621 return ret;
3625 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3626 void *__kmalloc(size_t size, gfp_t flags)
3628 return __do_kmalloc(size, flags, _RET_IP_);
3630 EXPORT_SYMBOL(__kmalloc);
3632 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3634 return __do_kmalloc(size, flags, caller);
3636 EXPORT_SYMBOL(__kmalloc_track_caller);
3638 #else
3639 void *__kmalloc(size_t size, gfp_t flags)
3641 return __do_kmalloc(size, flags, 0);
3643 EXPORT_SYMBOL(__kmalloc);
3644 #endif
3647 * kmem_cache_free - Deallocate an object
3648 * @cachep: The cache the allocation was from.
3649 * @objp: The previously allocated object.
3651 * Free an object which was previously allocated from this
3652 * cache.
3654 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3656 unsigned long flags;
3657 cachep = cache_from_obj(cachep, objp);
3658 if (!cachep)
3659 return;
3661 local_irq_save(flags);
3662 debug_check_no_locks_freed(objp, cachep->object_size);
3663 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3664 debug_check_no_obj_freed(objp, cachep->object_size);
3665 __cache_free(cachep, objp, _RET_IP_);
3666 local_irq_restore(flags);
3668 trace_kmem_cache_free(_RET_IP_, objp);
3670 EXPORT_SYMBOL(kmem_cache_free);
3673 * kfree - free previously allocated memory
3674 * @objp: pointer returned by kmalloc.
3676 * If @objp is NULL, no operation is performed.
3678 * Don't free memory not originally allocated by kmalloc()
3679 * or you will run into trouble.
3681 void kfree(const void *objp)
3683 struct kmem_cache *c;
3684 unsigned long flags;
3686 trace_kfree(_RET_IP_, objp);
3688 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3689 return;
3690 local_irq_save(flags);
3691 kfree_debugcheck(objp);
3692 c = virt_to_cache(objp);
3693 debug_check_no_locks_freed(objp, c->object_size);
3695 debug_check_no_obj_freed(objp, c->object_size);
3696 __cache_free(c, (void *)objp, _RET_IP_);
3697 local_irq_restore(flags);
3699 EXPORT_SYMBOL(kfree);
3702 * This initializes kmem_cache_node or resizes various caches for all nodes.
3704 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3706 int node;
3707 struct kmem_cache_node *n;
3708 struct array_cache *new_shared;
3709 struct array_cache **new_alien = NULL;
3711 for_each_online_node(node) {
3713 if (use_alien_caches) {
3714 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3715 if (!new_alien)
3716 goto fail;
3719 new_shared = NULL;
3720 if (cachep->shared) {
3721 new_shared = alloc_arraycache(node,
3722 cachep->shared*cachep->batchcount,
3723 0xbaadf00d, gfp);
3724 if (!new_shared) {
3725 free_alien_cache(new_alien);
3726 goto fail;
3730 n = cachep->node[node];
3731 if (n) {
3732 struct array_cache *shared = n->shared;
3734 spin_lock_irq(&n->list_lock);
3736 if (shared)
3737 free_block(cachep, shared->entry,
3738 shared->avail, node);
3740 n->shared = new_shared;
3741 if (!n->alien) {
3742 n->alien = new_alien;
3743 new_alien = NULL;
3745 n->free_limit = (1 + nr_cpus_node(node)) *
3746 cachep->batchcount + cachep->num;
3747 spin_unlock_irq(&n->list_lock);
3748 kfree(shared);
3749 free_alien_cache(new_alien);
3750 continue;
3752 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3753 if (!n) {
3754 free_alien_cache(new_alien);
3755 kfree(new_shared);
3756 goto fail;
3759 kmem_cache_node_init(n);
3760 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3761 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3762 n->shared = new_shared;
3763 n->alien = new_alien;
3764 n->free_limit = (1 + nr_cpus_node(node)) *
3765 cachep->batchcount + cachep->num;
3766 cachep->node[node] = n;
3768 return 0;
3770 fail:
3771 if (!cachep->list.next) {
3772 /* Cache is not active yet. Roll back what we did */
3773 node--;
3774 while (node >= 0) {
3775 if (cachep->node[node]) {
3776 n = cachep->node[node];
3778 kfree(n->shared);
3779 free_alien_cache(n->alien);
3780 kfree(n);
3781 cachep->node[node] = NULL;
3783 node--;
3786 return -ENOMEM;
3789 struct ccupdate_struct {
3790 struct kmem_cache *cachep;
3791 struct array_cache *new[0];
3794 static void do_ccupdate_local(void *info)
3796 struct ccupdate_struct *new = info;
3797 struct array_cache *old;
3799 check_irq_off();
3800 old = cpu_cache_get(new->cachep);
3802 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3803 new->new[smp_processor_id()] = old;
3806 /* Always called with the slab_mutex held */
3807 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3808 int batchcount, int shared, gfp_t gfp)
3810 struct ccupdate_struct *new;
3811 int i;
3813 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3814 gfp);
3815 if (!new)
3816 return -ENOMEM;
3818 for_each_online_cpu(i) {
3819 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3820 batchcount, gfp);
3821 if (!new->new[i]) {
3822 for (i--; i >= 0; i--)
3823 kfree(new->new[i]);
3824 kfree(new);
3825 return -ENOMEM;
3828 new->cachep = cachep;
3830 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3832 check_irq_on();
3833 cachep->batchcount = batchcount;
3834 cachep->limit = limit;
3835 cachep->shared = shared;
3837 for_each_online_cpu(i) {
3838 struct array_cache *ccold = new->new[i];
3839 if (!ccold)
3840 continue;
3841 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3842 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3843 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3844 kfree(ccold);
3846 kfree(new);
3847 return alloc_kmem_cache_node(cachep, gfp);
3850 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3851 int batchcount, int shared, gfp_t gfp)
3853 int ret;
3854 struct kmem_cache *c = NULL;
3855 int i = 0;
3857 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3859 if (slab_state < FULL)
3860 return ret;
3862 if ((ret < 0) || !is_root_cache(cachep))
3863 return ret;
3865 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3866 for_each_memcg_cache_index(i) {
3867 c = cache_from_memcg_idx(cachep, i);
3868 if (c)
3869 /* return value determined by the parent cache only */
3870 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3873 return ret;
3876 /* Called with slab_mutex held always */
3877 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3879 int err;
3880 int limit = 0;
3881 int shared = 0;
3882 int batchcount = 0;
3884 if (!is_root_cache(cachep)) {
3885 struct kmem_cache *root = memcg_root_cache(cachep);
3886 limit = root->limit;
3887 shared = root->shared;
3888 batchcount = root->batchcount;
3891 if (limit && shared && batchcount)
3892 goto skip_setup;
3894 * The head array serves three purposes:
3895 * - create a LIFO ordering, i.e. return objects that are cache-warm
3896 * - reduce the number of spinlock operations.
3897 * - reduce the number of linked list operations on the slab and
3898 * bufctl chains: array operations are cheaper.
3899 * The numbers are guessed, we should auto-tune as described by
3900 * Bonwick.
3902 if (cachep->size > 131072)
3903 limit = 1;
3904 else if (cachep->size > PAGE_SIZE)
3905 limit = 8;
3906 else if (cachep->size > 1024)
3907 limit = 24;
3908 else if (cachep->size > 256)
3909 limit = 54;
3910 else
3911 limit = 120;
3914 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3915 * allocation behaviour: Most allocs on one cpu, most free operations
3916 * on another cpu. For these cases, an efficient object passing between
3917 * cpus is necessary. This is provided by a shared array. The array
3918 * replaces Bonwick's magazine layer.
3919 * On uniprocessor, it's functionally equivalent (but less efficient)
3920 * to a larger limit. Thus disabled by default.
3922 shared = 0;
3923 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3924 shared = 8;
3926 #if DEBUG
3928 * With debugging enabled, large batchcount lead to excessively long
3929 * periods with disabled local interrupts. Limit the batchcount
3931 if (limit > 32)
3932 limit = 32;
3933 #endif
3934 batchcount = (limit + 1) / 2;
3935 skip_setup:
3936 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3937 if (err)
3938 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3939 cachep->name, -err);
3940 return err;
3944 * Drain an array if it contains any elements taking the node lock only if
3945 * necessary. Note that the node listlock also protects the array_cache
3946 * if drain_array() is used on the shared array.
3948 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3949 struct array_cache *ac, int force, int node)
3951 int tofree;
3953 if (!ac || !ac->avail)
3954 return;
3955 if (ac->touched && !force) {
3956 ac->touched = 0;
3957 } else {
3958 spin_lock_irq(&n->list_lock);
3959 if (ac->avail) {
3960 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3961 if (tofree > ac->avail)
3962 tofree = (ac->avail + 1) / 2;
3963 free_block(cachep, ac->entry, tofree, node);
3964 ac->avail -= tofree;
3965 memmove(ac->entry, &(ac->entry[tofree]),
3966 sizeof(void *) * ac->avail);
3968 spin_unlock_irq(&n->list_lock);
3973 * cache_reap - Reclaim memory from caches.
3974 * @w: work descriptor
3976 * Called from workqueue/eventd every few seconds.
3977 * Purpose:
3978 * - clear the per-cpu caches for this CPU.
3979 * - return freeable pages to the main free memory pool.
3981 * If we cannot acquire the cache chain mutex then just give up - we'll try
3982 * again on the next iteration.
3984 static void cache_reap(struct work_struct *w)
3986 struct kmem_cache *searchp;
3987 struct kmem_cache_node *n;
3988 int node = numa_mem_id();
3989 struct delayed_work *work = to_delayed_work(w);
3991 if (!mutex_trylock(&slab_mutex))
3992 /* Give up. Setup the next iteration. */
3993 goto out;
3995 list_for_each_entry(searchp, &slab_caches, list) {
3996 check_irq_on();
3999 * We only take the node lock if absolutely necessary and we
4000 * have established with reasonable certainty that
4001 * we can do some work if the lock was obtained.
4003 n = searchp->node[node];
4005 reap_alien(searchp, n);
4007 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4010 * These are racy checks but it does not matter
4011 * if we skip one check or scan twice.
4013 if (time_after(n->next_reap, jiffies))
4014 goto next;
4016 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4018 drain_array(searchp, n, n->shared, 0, node);
4020 if (n->free_touched)
4021 n->free_touched = 0;
4022 else {
4023 int freed;
4025 freed = drain_freelist(searchp, n, (n->free_limit +
4026 5 * searchp->num - 1) / (5 * searchp->num));
4027 STATS_ADD_REAPED(searchp, freed);
4029 next:
4030 cond_resched();
4032 check_irq_on();
4033 mutex_unlock(&slab_mutex);
4034 next_reap_node();
4035 out:
4036 /* Set up the next iteration */
4037 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4040 #ifdef CONFIG_SLABINFO
4041 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4043 struct page *page;
4044 unsigned long active_objs;
4045 unsigned long num_objs;
4046 unsigned long active_slabs = 0;
4047 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4048 const char *name;
4049 char *error = NULL;
4050 int node;
4051 struct kmem_cache_node *n;
4053 active_objs = 0;
4054 num_slabs = 0;
4055 for_each_online_node(node) {
4056 n = cachep->node[node];
4057 if (!n)
4058 continue;
4060 check_irq_on();
4061 spin_lock_irq(&n->list_lock);
4063 list_for_each_entry(page, &n->slabs_full, lru) {
4064 if (page->active != cachep->num && !error)
4065 error = "slabs_full accounting error";
4066 active_objs += cachep->num;
4067 active_slabs++;
4069 list_for_each_entry(page, &n->slabs_partial, lru) {
4070 if (page->active == cachep->num && !error)
4071 error = "slabs_partial accounting error";
4072 if (!page->active && !error)
4073 error = "slabs_partial accounting error";
4074 active_objs += page->active;
4075 active_slabs++;
4077 list_for_each_entry(page, &n->slabs_free, lru) {
4078 if (page->active && !error)
4079 error = "slabs_free accounting error";
4080 num_slabs++;
4082 free_objects += n->free_objects;
4083 if (n->shared)
4084 shared_avail += n->shared->avail;
4086 spin_unlock_irq(&n->list_lock);
4088 num_slabs += active_slabs;
4089 num_objs = num_slabs * cachep->num;
4090 if (num_objs - active_objs != free_objects && !error)
4091 error = "free_objects accounting error";
4093 name = cachep->name;
4094 if (error)
4095 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4097 sinfo->active_objs = active_objs;
4098 sinfo->num_objs = num_objs;
4099 sinfo->active_slabs = active_slabs;
4100 sinfo->num_slabs = num_slabs;
4101 sinfo->shared_avail = shared_avail;
4102 sinfo->limit = cachep->limit;
4103 sinfo->batchcount = cachep->batchcount;
4104 sinfo->shared = cachep->shared;
4105 sinfo->objects_per_slab = cachep->num;
4106 sinfo->cache_order = cachep->gfporder;
4109 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4111 #if STATS
4112 { /* node stats */
4113 unsigned long high = cachep->high_mark;
4114 unsigned long allocs = cachep->num_allocations;
4115 unsigned long grown = cachep->grown;
4116 unsigned long reaped = cachep->reaped;
4117 unsigned long errors = cachep->errors;
4118 unsigned long max_freeable = cachep->max_freeable;
4119 unsigned long node_allocs = cachep->node_allocs;
4120 unsigned long node_frees = cachep->node_frees;
4121 unsigned long overflows = cachep->node_overflow;
4123 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4124 "%4lu %4lu %4lu %4lu %4lu",
4125 allocs, high, grown,
4126 reaped, errors, max_freeable, node_allocs,
4127 node_frees, overflows);
4129 /* cpu stats */
4131 unsigned long allochit = atomic_read(&cachep->allochit);
4132 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4133 unsigned long freehit = atomic_read(&cachep->freehit);
4134 unsigned long freemiss = atomic_read(&cachep->freemiss);
4136 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4137 allochit, allocmiss, freehit, freemiss);
4139 #endif
4142 #define MAX_SLABINFO_WRITE 128
4144 * slabinfo_write - Tuning for the slab allocator
4145 * @file: unused
4146 * @buffer: user buffer
4147 * @count: data length
4148 * @ppos: unused
4150 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4151 size_t count, loff_t *ppos)
4153 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4154 int limit, batchcount, shared, res;
4155 struct kmem_cache *cachep;
4157 if (count > MAX_SLABINFO_WRITE)
4158 return -EINVAL;
4159 if (copy_from_user(&kbuf, buffer, count))
4160 return -EFAULT;
4161 kbuf[MAX_SLABINFO_WRITE] = '\0';
4163 tmp = strchr(kbuf, ' ');
4164 if (!tmp)
4165 return -EINVAL;
4166 *tmp = '\0';
4167 tmp++;
4168 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4169 return -EINVAL;
4171 /* Find the cache in the chain of caches. */
4172 mutex_lock(&slab_mutex);
4173 res = -EINVAL;
4174 list_for_each_entry(cachep, &slab_caches, list) {
4175 if (!strcmp(cachep->name, kbuf)) {
4176 if (limit < 1 || batchcount < 1 ||
4177 batchcount > limit || shared < 0) {
4178 res = 0;
4179 } else {
4180 res = do_tune_cpucache(cachep, limit,
4181 batchcount, shared,
4182 GFP_KERNEL);
4184 break;
4187 mutex_unlock(&slab_mutex);
4188 if (res >= 0)
4189 res = count;
4190 return res;
4193 #ifdef CONFIG_DEBUG_SLAB_LEAK
4195 static void *leaks_start(struct seq_file *m, loff_t *pos)
4197 mutex_lock(&slab_mutex);
4198 return seq_list_start(&slab_caches, *pos);
4201 static inline int add_caller(unsigned long *n, unsigned long v)
4203 unsigned long *p;
4204 int l;
4205 if (!v)
4206 return 1;
4207 l = n[1];
4208 p = n + 2;
4209 while (l) {
4210 int i = l/2;
4211 unsigned long *q = p + 2 * i;
4212 if (*q == v) {
4213 q[1]++;
4214 return 1;
4216 if (*q > v) {
4217 l = i;
4218 } else {
4219 p = q + 2;
4220 l -= i + 1;
4223 if (++n[1] == n[0])
4224 return 0;
4225 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4226 p[0] = v;
4227 p[1] = 1;
4228 return 1;
4231 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4232 struct page *page)
4234 void *p;
4235 int i, j;
4237 if (n[0] == n[1])
4238 return;
4239 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4240 bool active = true;
4242 for (j = page->active; j < c->num; j++) {
4243 /* Skip freed item */
4244 if (get_free_obj(page, j) == i) {
4245 active = false;
4246 break;
4249 if (!active)
4250 continue;
4252 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4253 return;
4257 static void show_symbol(struct seq_file *m, unsigned long address)
4259 #ifdef CONFIG_KALLSYMS
4260 unsigned long offset, size;
4261 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4263 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4264 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4265 if (modname[0])
4266 seq_printf(m, " [%s]", modname);
4267 return;
4269 #endif
4270 seq_printf(m, "%p", (void *)address);
4273 static int leaks_show(struct seq_file *m, void *p)
4275 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4276 struct page *page;
4277 struct kmem_cache_node *n;
4278 const char *name;
4279 unsigned long *x = m->private;
4280 int node;
4281 int i;
4283 if (!(cachep->flags & SLAB_STORE_USER))
4284 return 0;
4285 if (!(cachep->flags & SLAB_RED_ZONE))
4286 return 0;
4288 /* OK, we can do it */
4290 x[1] = 0;
4292 for_each_online_node(node) {
4293 n = cachep->node[node];
4294 if (!n)
4295 continue;
4297 check_irq_on();
4298 spin_lock_irq(&n->list_lock);
4300 list_for_each_entry(page, &n->slabs_full, lru)
4301 handle_slab(x, cachep, page);
4302 list_for_each_entry(page, &n->slabs_partial, lru)
4303 handle_slab(x, cachep, page);
4304 spin_unlock_irq(&n->list_lock);
4306 name = cachep->name;
4307 if (x[0] == x[1]) {
4308 /* Increase the buffer size */
4309 mutex_unlock(&slab_mutex);
4310 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4311 if (!m->private) {
4312 /* Too bad, we are really out */
4313 m->private = x;
4314 mutex_lock(&slab_mutex);
4315 return -ENOMEM;
4317 *(unsigned long *)m->private = x[0] * 2;
4318 kfree(x);
4319 mutex_lock(&slab_mutex);
4320 /* Now make sure this entry will be retried */
4321 m->count = m->size;
4322 return 0;
4324 for (i = 0; i < x[1]; i++) {
4325 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4326 show_symbol(m, x[2*i+2]);
4327 seq_putc(m, '\n');
4330 return 0;
4333 static const struct seq_operations slabstats_op = {
4334 .start = leaks_start,
4335 .next = slab_next,
4336 .stop = slab_stop,
4337 .show = leaks_show,
4340 static int slabstats_open(struct inode *inode, struct file *file)
4342 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4343 int ret = -ENOMEM;
4344 if (n) {
4345 ret = seq_open(file, &slabstats_op);
4346 if (!ret) {
4347 struct seq_file *m = file->private_data;
4348 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4349 m->private = n;
4350 n = NULL;
4352 kfree(n);
4354 return ret;
4357 static const struct file_operations proc_slabstats_operations = {
4358 .open = slabstats_open,
4359 .read = seq_read,
4360 .llseek = seq_lseek,
4361 .release = seq_release_private,
4363 #endif
4365 static int __init slab_proc_init(void)
4367 #ifdef CONFIG_DEBUG_SLAB_LEAK
4368 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4369 #endif
4370 return 0;
4372 module_init(slab_proc_init);
4373 #endif
4376 * ksize - get the actual amount of memory allocated for a given object
4377 * @objp: Pointer to the object
4379 * kmalloc may internally round up allocations and return more memory
4380 * than requested. ksize() can be used to determine the actual amount of
4381 * memory allocated. The caller may use this additional memory, even though
4382 * a smaller amount of memory was initially specified with the kmalloc call.
4383 * The caller must guarantee that objp points to a valid object previously
4384 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4385 * must not be freed during the duration of the call.
4387 size_t ksize(const void *objp)
4389 BUG_ON(!objp);
4390 if (unlikely(objp == ZERO_SIZE_PTR))
4391 return 0;
4393 return virt_to_cache(objp)->object_size;
4395 EXPORT_SYMBOL(ksize);