2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
24 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
26 struct memblock memblock __initdata_memblock
= {
27 .memory
.regions
= memblock_memory_init_regions
,
28 .memory
.cnt
= 1, /* empty dummy entry */
29 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
31 .reserved
.regions
= memblock_reserved_init_regions
,
32 .reserved
.cnt
= 1, /* empty dummy entry */
33 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
35 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
38 int memblock_debug __initdata_memblock
;
39 static int memblock_can_resize __initdata_memblock
;
40 static int memblock_memory_in_slab __initdata_memblock
= 0;
41 static int memblock_reserved_in_slab __initdata_memblock
= 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock
const char *
45 memblock_type_name(struct memblock_type
*type
)
47 if (type
== &memblock
.memory
)
49 else if (type
== &memblock
.reserved
)
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
58 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
62 * Address comparison utilities
64 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
65 phys_addr_t base2
, phys_addr_t size2
)
67 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
70 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
71 phys_addr_t base
, phys_addr_t size
)
75 for (i
= 0; i
< type
->cnt
; i
++) {
76 phys_addr_t rgnbase
= type
->regions
[i
].base
;
77 phys_addr_t rgnsize
= type
->regions
[i
].size
;
78 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
82 return (i
< type
->cnt
) ? i
: -1;
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
93 * Find @size free area aligned to @align in the specified range and node.
96 * Found address on success, %0 on failure.
98 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t start
,
99 phys_addr_t end
, phys_addr_t size
,
100 phys_addr_t align
, int nid
)
102 phys_addr_t this_start
, this_end
, cand
;
106 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
107 end
= memblock
.current_limit
;
109 /* avoid allocating the first page */
110 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
111 end
= max(start
, end
);
113 for_each_free_mem_range_reverse(i
, nid
, &this_start
, &this_end
, NULL
) {
114 this_start
= clamp(this_start
, start
, end
);
115 this_end
= clamp(this_end
, start
, end
);
120 cand
= round_down(this_end
- size
, align
);
121 if (cand
>= this_start
)
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
134 * Find @size free area aligned to @align in the specified range.
137 * Found address on success, %0 on failure.
139 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
140 phys_addr_t end
, phys_addr_t size
,
143 return memblock_find_in_range_node(start
, end
, size
, align
,
147 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
149 type
->total_size
-= type
->regions
[r
].size
;
150 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
151 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
154 /* Special case for empty arrays */
155 if (type
->cnt
== 0) {
156 WARN_ON(type
->total_size
!= 0);
158 type
->regions
[0].base
= 0;
159 type
->regions
[0].size
= 0;
160 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
164 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
167 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
170 *addr
= __pa(memblock
.reserved
.regions
);
172 return PAGE_ALIGN(sizeof(struct memblock_region
) *
173 memblock
.reserved
.max
);
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
189 * 0 on success, -1 on failure.
191 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
192 phys_addr_t new_area_start
,
193 phys_addr_t new_area_size
)
195 struct memblock_region
*new_array
, *old_array
;
196 phys_addr_t old_alloc_size
, new_alloc_size
;
197 phys_addr_t old_size
, new_size
, addr
;
198 int use_slab
= slab_is_available();
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
204 if (!memblock_can_resize
)
207 /* Calculate new doubled size */
208 old_size
= type
->max
* sizeof(struct memblock_region
);
209 new_size
= old_size
<< 1;
211 * We need to allocated new one align to PAGE_SIZE,
212 * so we can free them completely later.
214 old_alloc_size
= PAGE_ALIGN(old_size
);
215 new_alloc_size
= PAGE_ALIGN(new_size
);
217 /* Retrieve the slab flag */
218 if (type
== &memblock
.memory
)
219 in_slab
= &memblock_memory_in_slab
;
221 in_slab
= &memblock_reserved_in_slab
;
223 /* Try to find some space for it.
225 * WARNING: We assume that either slab_is_available() and we use it or
226 * we use MEMBLOCK for allocations. That means that this is unsafe to
227 * use when bootmem is currently active (unless bootmem itself is
228 * implemented on top of MEMBLOCK which isn't the case yet)
230 * This should however not be an issue for now, as we currently only
231 * call into MEMBLOCK while it's still active, or much later when slab
232 * is active for memory hotplug operations
235 new_array
= kmalloc(new_size
, GFP_KERNEL
);
236 addr
= new_array
? __pa(new_array
) : 0;
238 /* only exclude range when trying to double reserved.regions */
239 if (type
!= &memblock
.reserved
)
240 new_area_start
= new_area_size
= 0;
242 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
243 memblock
.current_limit
,
244 new_alloc_size
, PAGE_SIZE
);
245 if (!addr
&& new_area_size
)
246 addr
= memblock_find_in_range(0,
247 min(new_area_start
, memblock
.current_limit
),
248 new_alloc_size
, PAGE_SIZE
);
250 new_array
= addr
? __va(addr
) : NULL
;
253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254 memblock_type_name(type
), type
->max
, type
->max
* 2);
258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
260 (u64
)addr
+ new_size
- 1);
263 * Found space, we now need to move the array over before we add the
264 * reserved region since it may be our reserved array itself that is
267 memcpy(new_array
, type
->regions
, old_size
);
268 memset(new_array
+ type
->max
, 0, old_size
);
269 old_array
= type
->regions
;
270 type
->regions
= new_array
;
273 /* Free old array. We needn't free it if the array is the static one */
276 else if (old_array
!= memblock_memory_init_regions
&&
277 old_array
!= memblock_reserved_init_regions
)
278 memblock_free(__pa(old_array
), old_alloc_size
);
281 * Reserve the new array if that comes from the memblock. Otherwise, we
285 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
287 /* Update slab flag */
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
297 * Scan @type and merge neighboring compatible regions.
299 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
303 /* cnt never goes below 1 */
304 while (i
< type
->cnt
- 1) {
305 struct memblock_region
*this = &type
->regions
[i
];
306 struct memblock_region
*next
= &type
->regions
[i
+ 1];
308 if (this->base
+ this->size
!= next
->base
||
309 memblock_get_region_node(this) !=
310 memblock_get_region_node(next
)) {
311 BUG_ON(this->base
+ this->size
> next
->base
);
316 this->size
+= next
->size
;
317 /* move forward from next + 1, index of which is i + 2 */
318 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
324 * memblock_insert_region - insert new memblock region
325 * @type: memblock type to insert into
326 * @idx: index for the insertion point
327 * @base: base address of the new region
328 * @size: size of the new region
330 * Insert new memblock region [@base,@base+@size) into @type at @idx.
331 * @type must already have extra room to accomodate the new region.
333 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
334 int idx
, phys_addr_t base
,
335 phys_addr_t size
, int nid
)
337 struct memblock_region
*rgn
= &type
->regions
[idx
];
339 BUG_ON(type
->cnt
>= type
->max
);
340 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
343 memblock_set_region_node(rgn
, nid
);
345 type
->total_size
+= size
;
349 * memblock_add_region - add new memblock region
350 * @type: memblock type to add new region into
351 * @base: base address of the new region
352 * @size: size of the new region
353 * @nid: nid of the new region
355 * Add new memblock region [@base,@base+@size) into @type. The new region
356 * is allowed to overlap with existing ones - overlaps don't affect already
357 * existing regions. @type is guaranteed to be minimal (all neighbouring
358 * compatible regions are merged) after the addition.
361 * 0 on success, -errno on failure.
363 static int __init_memblock
memblock_add_region(struct memblock_type
*type
,
364 phys_addr_t base
, phys_addr_t size
, int nid
)
367 phys_addr_t obase
= base
;
368 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
374 /* special case for empty array */
375 if (type
->regions
[0].size
== 0) {
376 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
377 type
->regions
[0].base
= base
;
378 type
->regions
[0].size
= size
;
379 memblock_set_region_node(&type
->regions
[0], nid
);
380 type
->total_size
= size
;
385 * The following is executed twice. Once with %false @insert and
386 * then with %true. The first counts the number of regions needed
387 * to accomodate the new area. The second actually inserts them.
392 for (i
= 0; i
< type
->cnt
; i
++) {
393 struct memblock_region
*rgn
= &type
->regions
[i
];
394 phys_addr_t rbase
= rgn
->base
;
395 phys_addr_t rend
= rbase
+ rgn
->size
;
402 * @rgn overlaps. If it separates the lower part of new
403 * area, insert that portion.
408 memblock_insert_region(type
, i
++, base
,
411 /* area below @rend is dealt with, forget about it */
412 base
= min(rend
, end
);
415 /* insert the remaining portion */
419 memblock_insert_region(type
, i
, base
, end
- base
, nid
);
423 * If this was the first round, resize array and repeat for actual
424 * insertions; otherwise, merge and return.
427 while (type
->cnt
+ nr_new
> type
->max
)
428 if (memblock_double_array(type
, obase
, size
) < 0)
433 memblock_merge_regions(type
);
438 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
441 return memblock_add_region(&memblock
.memory
, base
, size
, nid
);
444 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
446 return memblock_add_region(&memblock
.memory
, base
, size
, MAX_NUMNODES
);
450 * memblock_isolate_range - isolate given range into disjoint memblocks
451 * @type: memblock type to isolate range for
452 * @base: base of range to isolate
453 * @size: size of range to isolate
454 * @start_rgn: out parameter for the start of isolated region
455 * @end_rgn: out parameter for the end of isolated region
457 * Walk @type and ensure that regions don't cross the boundaries defined by
458 * [@base,@base+@size). Crossing regions are split at the boundaries,
459 * which may create at most two more regions. The index of the first
460 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
463 * 0 on success, -errno on failure.
465 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
466 phys_addr_t base
, phys_addr_t size
,
467 int *start_rgn
, int *end_rgn
)
469 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
472 *start_rgn
= *end_rgn
= 0;
477 /* we'll create at most two more regions */
478 while (type
->cnt
+ 2 > type
->max
)
479 if (memblock_double_array(type
, base
, size
) < 0)
482 for (i
= 0; i
< type
->cnt
; i
++) {
483 struct memblock_region
*rgn
= &type
->regions
[i
];
484 phys_addr_t rbase
= rgn
->base
;
485 phys_addr_t rend
= rbase
+ rgn
->size
;
494 * @rgn intersects from below. Split and continue
495 * to process the next region - the new top half.
498 rgn
->size
-= base
- rbase
;
499 type
->total_size
-= base
- rbase
;
500 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
501 memblock_get_region_node(rgn
));
502 } else if (rend
> end
) {
504 * @rgn intersects from above. Split and redo the
505 * current region - the new bottom half.
508 rgn
->size
-= end
- rbase
;
509 type
->total_size
-= end
- rbase
;
510 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
511 memblock_get_region_node(rgn
));
513 /* @rgn is fully contained, record it */
523 static int __init_memblock
__memblock_remove(struct memblock_type
*type
,
524 phys_addr_t base
, phys_addr_t size
)
526 int start_rgn
, end_rgn
;
529 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
533 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
534 memblock_remove_region(type
, i
);
538 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
540 return __memblock_remove(&memblock
.memory
, base
, size
);
543 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
545 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
546 (unsigned long long)base
,
547 (unsigned long long)base
+ size
,
550 return __memblock_remove(&memblock
.reserved
, base
, size
);
553 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
555 struct memblock_type
*_rgn
= &memblock
.reserved
;
557 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
558 (unsigned long long)base
,
559 (unsigned long long)base
+ size
,
562 return memblock_add_region(_rgn
, base
, size
, MAX_NUMNODES
);
566 * __next_free_mem_range - next function for for_each_free_mem_range()
567 * @idx: pointer to u64 loop variable
568 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
569 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
570 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
571 * @out_nid: ptr to int for nid of the range, can be %NULL
573 * Find the first free area from *@idx which matches @nid, fill the out
574 * parameters, and update *@idx for the next iteration. The lower 32bit of
575 * *@idx contains index into memory region and the upper 32bit indexes the
576 * areas before each reserved region. For example, if reserved regions
577 * look like the following,
579 * 0:[0-16), 1:[32-48), 2:[128-130)
581 * The upper 32bit indexes the following regions.
583 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
585 * As both region arrays are sorted, the function advances the two indices
586 * in lockstep and returns each intersection.
588 void __init_memblock
__next_free_mem_range(u64
*idx
, int nid
,
589 phys_addr_t
*out_start
,
590 phys_addr_t
*out_end
, int *out_nid
)
592 struct memblock_type
*mem
= &memblock
.memory
;
593 struct memblock_type
*rsv
= &memblock
.reserved
;
594 int mi
= *idx
& 0xffffffff;
597 for ( ; mi
< mem
->cnt
; mi
++) {
598 struct memblock_region
*m
= &mem
->regions
[mi
];
599 phys_addr_t m_start
= m
->base
;
600 phys_addr_t m_end
= m
->base
+ m
->size
;
602 /* only memory regions are associated with nodes, check it */
603 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
606 /* scan areas before each reservation for intersection */
607 for ( ; ri
< rsv
->cnt
+ 1; ri
++) {
608 struct memblock_region
*r
= &rsv
->regions
[ri
];
609 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
610 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
612 /* if ri advanced past mi, break out to advance mi */
613 if (r_start
>= m_end
)
615 /* if the two regions intersect, we're done */
616 if (m_start
< r_end
) {
618 *out_start
= max(m_start
, r_start
);
620 *out_end
= min(m_end
, r_end
);
622 *out_nid
= memblock_get_region_node(m
);
624 * The region which ends first is advanced
625 * for the next iteration.
631 *idx
= (u32
)mi
| (u64
)ri
<< 32;
637 /* signal end of iteration */
642 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
643 * @idx: pointer to u64 loop variable
644 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
645 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
646 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
647 * @out_nid: ptr to int for nid of the range, can be %NULL
649 * Reverse of __next_free_mem_range().
651 void __init_memblock
__next_free_mem_range_rev(u64
*idx
, int nid
,
652 phys_addr_t
*out_start
,
653 phys_addr_t
*out_end
, int *out_nid
)
655 struct memblock_type
*mem
= &memblock
.memory
;
656 struct memblock_type
*rsv
= &memblock
.reserved
;
657 int mi
= *idx
& 0xffffffff;
660 if (*idx
== (u64
)ULLONG_MAX
) {
665 for ( ; mi
>= 0; mi
--) {
666 struct memblock_region
*m
= &mem
->regions
[mi
];
667 phys_addr_t m_start
= m
->base
;
668 phys_addr_t m_end
= m
->base
+ m
->size
;
670 /* only memory regions are associated with nodes, check it */
671 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
674 /* scan areas before each reservation for intersection */
675 for ( ; ri
>= 0; ri
--) {
676 struct memblock_region
*r
= &rsv
->regions
[ri
];
677 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
678 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
680 /* if ri advanced past mi, break out to advance mi */
681 if (r_end
<= m_start
)
683 /* if the two regions intersect, we're done */
684 if (m_end
> r_start
) {
686 *out_start
= max(m_start
, r_start
);
688 *out_end
= min(m_end
, r_end
);
690 *out_nid
= memblock_get_region_node(m
);
692 if (m_start
>= r_start
)
696 *idx
= (u32
)mi
| (u64
)ri
<< 32;
705 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
707 * Common iterator interface used to define for_each_mem_range().
709 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
710 unsigned long *out_start_pfn
,
711 unsigned long *out_end_pfn
, int *out_nid
)
713 struct memblock_type
*type
= &memblock
.memory
;
714 struct memblock_region
*r
;
716 while (++*idx
< type
->cnt
) {
717 r
= &type
->regions
[*idx
];
719 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
721 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
724 if (*idx
>= type
->cnt
) {
730 *out_start_pfn
= PFN_UP(r
->base
);
732 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
738 * memblock_set_node - set node ID on memblock regions
739 * @base: base of area to set node ID for
740 * @size: size of area to set node ID for
741 * @nid: node ID to set
743 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
744 * Regions which cross the area boundaries are split as necessary.
747 * 0 on success, -errno on failure.
749 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
752 struct memblock_type
*type
= &memblock
.memory
;
753 int start_rgn
, end_rgn
;
756 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
760 for (i
= start_rgn
; i
< end_rgn
; i
++)
761 memblock_set_region_node(&type
->regions
[i
], nid
);
763 memblock_merge_regions(type
);
766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
768 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
769 phys_addr_t align
, phys_addr_t max_addr
,
774 /* align @size to avoid excessive fragmentation on reserved array */
775 size
= round_up(size
, align
);
777 found
= memblock_find_in_range_node(0, max_addr
, size
, align
, nid
);
778 if (found
&& !memblock_reserve(found
, size
))
784 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
786 return memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
789 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
791 return memblock_alloc_base_nid(size
, align
, max_addr
, MAX_NUMNODES
);
794 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
798 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
801 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
802 (unsigned long long) size
, (unsigned long long) max_addr
);
807 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
809 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
812 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
814 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
818 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
823 * Remaining API functions
826 phys_addr_t __init
memblock_phys_mem_size(void)
828 return memblock
.memory
.total_size
;
832 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
834 return memblock
.memory
.regions
[0].base
;
837 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
839 int idx
= memblock
.memory
.cnt
- 1;
841 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
844 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
847 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
852 /* find out max address */
853 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
854 struct memblock_region
*r
= &memblock
.memory
.regions
[i
];
856 if (limit
<= r
->size
) {
857 max_addr
= r
->base
+ limit
;
863 /* truncate both memory and reserved regions */
864 __memblock_remove(&memblock
.memory
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
865 __memblock_remove(&memblock
.reserved
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
868 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
870 unsigned int left
= 0, right
= type
->cnt
;
873 unsigned int mid
= (right
+ left
) / 2;
875 if (addr
< type
->regions
[mid
].base
)
877 else if (addr
>= (type
->regions
[mid
].base
+
878 type
->regions
[mid
].size
))
882 } while (left
< right
);
886 int __init
memblock_is_reserved(phys_addr_t addr
)
888 return memblock_search(&memblock
.reserved
, addr
) != -1;
891 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
893 return memblock_search(&memblock
.memory
, addr
) != -1;
897 * memblock_is_region_memory - check if a region is a subset of memory
898 * @base: base of region to check
899 * @size: size of region to check
901 * Check if the region [@base, @base+@size) is a subset of a memory block.
904 * 0 if false, non-zero if true
906 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
908 int idx
= memblock_search(&memblock
.memory
, base
);
909 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
913 return memblock
.memory
.regions
[idx
].base
<= base
&&
914 (memblock
.memory
.regions
[idx
].base
+
915 memblock
.memory
.regions
[idx
].size
) >= end
;
919 * memblock_is_region_reserved - check if a region intersects reserved memory
920 * @base: base of region to check
921 * @size: size of region to check
923 * Check if the region [@base, @base+@size) intersects a reserved memory block.
926 * 0 if false, non-zero if true
928 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
930 memblock_cap_size(base
, &size
);
931 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
934 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
937 phys_addr_t start
, end
, orig_start
, orig_end
;
938 struct memblock_type
*mem
= &memblock
.memory
;
940 for (i
= 0; i
< mem
->cnt
; i
++) {
941 orig_start
= mem
->regions
[i
].base
;
942 orig_end
= mem
->regions
[i
].base
+ mem
->regions
[i
].size
;
943 start
= round_up(orig_start
, align
);
944 end
= round_down(orig_end
, align
);
946 if (start
== orig_start
&& end
== orig_end
)
950 mem
->regions
[i
].base
= start
;
951 mem
->regions
[i
].size
= end
- start
;
953 memblock_remove_region(mem
, i
);
959 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
961 memblock
.current_limit
= limit
;
964 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
966 unsigned long long base
, size
;
969 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
971 for (i
= 0; i
< type
->cnt
; i
++) {
972 struct memblock_region
*rgn
= &type
->regions
[i
];
973 char nid_buf
[32] = "";
977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
978 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
979 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
980 memblock_get_region_node(rgn
));
982 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
983 name
, i
, base
, base
+ size
- 1, size
, nid_buf
);
987 void __init_memblock
__memblock_dump_all(void)
989 pr_info("MEMBLOCK configuration:\n");
990 pr_info(" memory size = %#llx reserved size = %#llx\n",
991 (unsigned long long)memblock
.memory
.total_size
,
992 (unsigned long long)memblock
.reserved
.total_size
);
994 memblock_dump(&memblock
.memory
, "memory");
995 memblock_dump(&memblock
.reserved
, "reserved");
998 void __init
memblock_allow_resize(void)
1000 memblock_can_resize
= 1;
1003 static int __init
early_memblock(char *p
)
1005 if (p
&& strstr(p
, "debug"))
1009 early_param("memblock", early_memblock
);
1011 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1013 static int memblock_debug_show(struct seq_file
*m
, void *private)
1015 struct memblock_type
*type
= m
->private;
1016 struct memblock_region
*reg
;
1019 for (i
= 0; i
< type
->cnt
; i
++) {
1020 reg
= &type
->regions
[i
];
1021 seq_printf(m
, "%4d: ", i
);
1022 if (sizeof(phys_addr_t
) == 4)
1023 seq_printf(m
, "0x%08lx..0x%08lx\n",
1024 (unsigned long)reg
->base
,
1025 (unsigned long)(reg
->base
+ reg
->size
- 1));
1027 seq_printf(m
, "0x%016llx..0x%016llx\n",
1028 (unsigned long long)reg
->base
,
1029 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1035 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1037 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1040 static const struct file_operations memblock_debug_fops
= {
1041 .open
= memblock_debug_open
,
1043 .llseek
= seq_lseek
,
1044 .release
= single_release
,
1047 static int __init
memblock_init_debugfs(void)
1049 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1052 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1053 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1057 __initcall(memblock_init_debugfs
);
1059 #endif /* CONFIG_DEBUG_FS */