4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 enum wb_reason reason
; /* why was writeback initiated? */
58 struct list_head list
; /* pending work list */
59 struct wb_completion
*done
; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
87 static inline struct inode
*wb_inode(struct list_head
*head
)
89 return list_entry(head
, struct inode
, i_io_list
);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
102 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
104 if (wb_has_dirty_io(wb
)) {
107 set_bit(WB_has_dirty_io
, &wb
->state
);
108 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
109 atomic_long_add(wb
->avg_write_bandwidth
,
110 &wb
->bdi
->tot_write_bandwidth
);
115 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
117 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
118 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
119 clear_bit(WB_has_dirty_io
, &wb
->state
);
120 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
121 &wb
->bdi
->tot_write_bandwidth
) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode
*inode
,
136 struct bdi_writeback
*wb
,
137 struct list_head
*head
)
139 assert_spin_locked(&wb
->list_lock
);
141 list_move(&inode
->i_io_list
, head
);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head
!= &wb
->b_dirty_time
)
145 return wb_io_lists_populated(wb
);
147 wb_io_lists_depopulated(wb
);
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode
*inode
,
160 struct bdi_writeback
*wb
)
162 assert_spin_locked(&wb
->list_lock
);
164 list_del_init(&inode
->i_io_list
);
165 wb_io_lists_depopulated(wb
);
168 static void wb_wakeup(struct bdi_writeback
*wb
)
170 spin_lock_bh(&wb
->work_lock
);
171 if (test_bit(WB_registered
, &wb
->state
))
172 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
173 spin_unlock_bh(&wb
->work_lock
);
176 static void wb_queue_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 trace_writeback_queue(wb
, work
);
181 spin_lock_bh(&wb
->work_lock
);
182 if (!test_bit(WB_registered
, &wb
->state
))
185 atomic_inc(&work
->done
->cnt
);
186 list_add_tail(&work
->list
, &wb
->work_list
);
187 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
189 spin_unlock_bh(&wb
->work_lock
);
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
203 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
204 struct wb_completion
*done
)
206 atomic_dec(&done
->cnt
); /* put down the initial count */
207 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
210 #ifdef CONFIG_CGROUP_WRITEBACK
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
226 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
228 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
229 struct bdi_writeback
*wb
= NULL
;
231 if (inode_cgwb_enabled(inode
)) {
232 struct cgroup_subsys_state
*memcg_css
;
235 memcg_css
= mem_cgroup_css_from_page(page
);
236 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css
= task_get_css(current
, memory_cgrp_id
);
240 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
252 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
264 static struct bdi_writeback
*
265 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
266 __releases(&inode
->i_lock
)
267 __acquires(&wb
->list_lock
)
270 struct bdi_writeback
*wb
= inode_to_wb(inode
);
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
279 spin_unlock(&inode
->i_lock
);
280 spin_lock(&wb
->list_lock
);
281 wb_put(wb
); /* not gonna deref it anymore */
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb
== inode
->i_wb
))
285 return wb
; /* @inode already has ref */
287 spin_unlock(&wb
->list_lock
);
289 spin_lock(&inode
->i_lock
);
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
300 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
301 __acquires(&wb
->list_lock
)
303 spin_lock(&inode
->i_lock
);
304 return locked_inode_to_wb_and_lock_list(inode
);
307 struct inode_switch_wbs_context
{
309 struct bdi_writeback
*new_wb
;
311 struct rcu_head rcu_head
;
312 struct work_struct work
;
315 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
317 struct inode_switch_wbs_context
*isw
=
318 container_of(work
, struct inode_switch_wbs_context
, work
);
319 struct inode
*inode
= isw
->inode
;
320 struct address_space
*mapping
= inode
->i_mapping
;
321 struct bdi_writeback
*old_wb
= inode
->i_wb
;
322 struct bdi_writeback
*new_wb
= isw
->new_wb
;
323 struct radix_tree_iter iter
;
324 bool switched
= false;
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 * gives us exclusion against all wb related operations on @inode
335 * including IO list manipulations and stat updates.
337 if (old_wb
< new_wb
) {
338 spin_lock(&old_wb
->list_lock
);
339 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
341 spin_lock(&new_wb
->list_lock
);
342 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
344 spin_lock(&inode
->i_lock
);
345 spin_lock_irq(&mapping
->tree_lock
);
348 * Once I_FREEING is visible under i_lock, the eviction path owns
349 * the inode and we shouldn't modify ->i_io_list.
351 if (unlikely(inode
->i_state
& I_FREEING
))
355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 * pages actually under underwriteback.
359 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
360 PAGECACHE_TAG_DIRTY
) {
361 struct page
*page
= radix_tree_deref_slot_protected(slot
,
362 &mapping
->tree_lock
);
363 if (likely(page
) && PageDirty(page
)) {
364 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
365 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
369 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
370 PAGECACHE_TAG_WRITEBACK
) {
371 struct page
*page
= radix_tree_deref_slot_protected(slot
,
372 &mapping
->tree_lock
);
374 WARN_ON_ONCE(!PageWriteback(page
));
375 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
376 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
383 * Transfer to @new_wb's IO list if necessary. The specific list
384 * @inode was on is ignored and the inode is put on ->b_dirty which
385 * is always correct including from ->b_dirty_time. The transfer
386 * preserves @inode->dirtied_when ordering.
388 if (!list_empty(&inode
->i_io_list
)) {
391 inode_io_list_del_locked(inode
, old_wb
);
392 inode
->i_wb
= new_wb
;
393 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
394 if (time_after_eq(inode
->dirtied_when
,
397 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
399 inode
->i_wb
= new_wb
;
402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 inode
->i_wb_frn_winner
= 0;
404 inode
->i_wb_frn_avg_time
= 0;
405 inode
->i_wb_frn_history
= 0;
409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 * ensures that the new wb is visible if they see !I_WB_SWITCH.
412 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
414 spin_unlock_irq(&mapping
->tree_lock
);
415 spin_unlock(&inode
->i_lock
);
416 spin_unlock(&new_wb
->list_lock
);
417 spin_unlock(&old_wb
->list_lock
);
429 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
431 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
432 struct inode_switch_wbs_context
, rcu_head
);
434 /* needs to grab bh-unsafe locks, bounce to work item */
435 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
436 schedule_work(&isw
->work
);
440 * inode_switch_wbs - change the wb association of an inode
441 * @inode: target inode
442 * @new_wb_id: ID of the new wb
444 * Switch @inode's wb association to the wb identified by @new_wb_id. The
445 * switching is performed asynchronously and may fail silently.
447 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
449 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
450 struct cgroup_subsys_state
*memcg_css
;
451 struct inode_switch_wbs_context
*isw
;
453 /* noop if seems to be already in progress */
454 if (inode
->i_state
& I_WB_SWITCH
)
457 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
461 /* find and pin the new wb */
463 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
465 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
470 /* while holding I_WB_SWITCH, no one else can update the association */
471 spin_lock(&inode
->i_lock
);
472 if (inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
473 inode_to_wb(inode
) == isw
->new_wb
) {
474 spin_unlock(&inode
->i_lock
);
477 inode
->i_state
|= I_WB_SWITCH
;
478 spin_unlock(&inode
->i_lock
);
484 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 * the RCU protected stat update paths to grab the mapping's
486 * tree_lock so that stat transfer can synchronize against them.
487 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
489 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500 * @wbc: writeback_control of interest
501 * @inode: target inode
503 * @inode is locked and about to be written back under the control of @wbc.
504 * Record @inode's writeback context into @wbc and unlock the i_lock. On
505 * writeback completion, wbc_detach_inode() should be called. This is used
506 * to track the cgroup writeback context.
508 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
511 if (!inode_cgwb_enabled(inode
)) {
512 spin_unlock(&inode
->i_lock
);
516 wbc
->wb
= inode_to_wb(inode
);
519 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
520 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
521 wbc
->wb_tcand_id
= 0;
523 wbc
->wb_lcand_bytes
= 0;
524 wbc
->wb_tcand_bytes
= 0;
527 spin_unlock(&inode
->i_lock
);
530 * A dying wb indicates that the memcg-blkcg mapping has changed
531 * and a new wb is already serving the memcg. Switch immediately.
533 if (unlikely(wb_dying(wbc
->wb
)))
534 inode_switch_wbs(inode
, wbc
->wb_id
);
538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539 * @wbc: writeback_control of the just finished writeback
541 * To be called after a writeback attempt of an inode finishes and undoes
542 * wbc_attach_and_unlock_inode(). Can be called under any context.
544 * As concurrent write sharing of an inode is expected to be very rare and
545 * memcg only tracks page ownership on first-use basis severely confining
546 * the usefulness of such sharing, cgroup writeback tracks ownership
547 * per-inode. While the support for concurrent write sharing of an inode
548 * is deemed unnecessary, an inode being written to by different cgroups at
549 * different points in time is a lot more common, and, more importantly,
550 * charging only by first-use can too readily lead to grossly incorrect
551 * behaviors (single foreign page can lead to gigabytes of writeback to be
552 * incorrectly attributed).
554 * To resolve this issue, cgroup writeback detects the majority dirtier of
555 * an inode and transfers the ownership to it. To avoid unnnecessary
556 * oscillation, the detection mechanism keeps track of history and gives
557 * out the switch verdict only if the foreign usage pattern is stable over
558 * a certain amount of time and/or writeback attempts.
560 * On each writeback attempt, @wbc tries to detect the majority writer
561 * using Boyer-Moore majority vote algorithm. In addition to the byte
562 * count from the majority voting, it also counts the bytes written for the
563 * current wb and the last round's winner wb (max of last round's current
564 * wb, the winner from two rounds ago, and the last round's majority
565 * candidate). Keeping track of the historical winner helps the algorithm
566 * to semi-reliably detect the most active writer even when it's not the
569 * Once the winner of the round is determined, whether the winner is
570 * foreign or not and how much IO time the round consumed is recorded in
571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
572 * over a certain threshold, the switch verdict is given.
574 void wbc_detach_inode(struct writeback_control
*wbc
)
576 struct bdi_writeback
*wb
= wbc
->wb
;
577 struct inode
*inode
= wbc
->inode
;
578 unsigned long avg_time
, max_bytes
, max_time
;
585 history
= inode
->i_wb_frn_history
;
586 avg_time
= inode
->i_wb_frn_avg_time
;
588 /* pick the winner of this round */
589 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
590 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
592 max_bytes
= wbc
->wb_bytes
;
593 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
594 max_id
= wbc
->wb_lcand_id
;
595 max_bytes
= wbc
->wb_lcand_bytes
;
597 max_id
= wbc
->wb_tcand_id
;
598 max_bytes
= wbc
->wb_tcand_bytes
;
602 * Calculate the amount of IO time the winner consumed and fold it
603 * into the running average kept per inode. If the consumed IO
604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 * deciding whether to switch or not. This is to prevent one-off
606 * small dirtiers from skewing the verdict.
608 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
609 wb
->avg_write_bandwidth
);
611 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
612 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
614 avg_time
= max_time
; /* immediate catch up on first run */
616 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
620 * The switch verdict is reached if foreign wb's consume
621 * more than a certain proportion of IO time in a
622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
623 * history mask where each bit represents one sixteenth of
624 * the period. Determine the number of slots to shift into
625 * history from @max_time.
627 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
628 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
630 if (wbc
->wb_id
!= max_id
)
631 history
|= (1U << slots
) - 1;
634 * Switch if the current wb isn't the consistent winner.
635 * If there are multiple closely competing dirtiers, the
636 * inode may switch across them repeatedly over time, which
637 * is okay. The main goal is avoiding keeping an inode on
638 * the wrong wb for an extended period of time.
640 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
641 inode_switch_wbs(inode
, max_id
);
645 * Multiple instances of this function may race to update the
646 * following fields but we don't mind occassional inaccuracies.
648 inode
->i_wb_frn_winner
= max_id
;
649 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
650 inode
->i_wb_frn_history
= history
;
657 * wbc_account_io - account IO issued during writeback
658 * @wbc: writeback_control of the writeback in progress
659 * @page: page being written out
660 * @bytes: number of bytes being written out
662 * @bytes from @page are about to written out during the writeback
663 * controlled by @wbc. Keep the book for foreign inode detection. See
664 * wbc_detach_inode().
666 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
672 * pageout() path doesn't attach @wbc to the inode being written
673 * out. This is intentional as we don't want the function to block
674 * behind a slow cgroup. Ultimately, we want pageout() to kick off
675 * regular writeback instead of writing things out itself.
680 id
= mem_cgroup_css_from_page(page
)->id
;
682 if (id
== wbc
->wb_id
) {
683 wbc
->wb_bytes
+= bytes
;
687 if (id
== wbc
->wb_lcand_id
)
688 wbc
->wb_lcand_bytes
+= bytes
;
690 /* Boyer-Moore majority vote algorithm */
691 if (!wbc
->wb_tcand_bytes
)
692 wbc
->wb_tcand_id
= id
;
693 if (id
== wbc
->wb_tcand_id
)
694 wbc
->wb_tcand_bytes
+= bytes
;
696 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
698 EXPORT_SYMBOL_GPL(wbc_account_io
);
701 * inode_congested - test whether an inode is congested
702 * @inode: inode to test for congestion (may be NULL)
703 * @cong_bits: mask of WB_[a]sync_congested bits to test
705 * Tests whether @inode is congested. @cong_bits is the mask of congestion
706 * bits to test and the return value is the mask of set bits.
708 * If cgroup writeback is enabled for @inode, the congestion state is
709 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
710 * associated with @inode is congested; otherwise, the root wb's congestion
713 * @inode is allowed to be NULL as this function is often called on
714 * mapping->host which is NULL for the swapper space.
716 int inode_congested(struct inode
*inode
, int cong_bits
)
719 * Once set, ->i_wb never becomes NULL while the inode is alive.
720 * Start transaction iff ->i_wb is visible.
722 if (inode
&& inode_to_wb_is_valid(inode
)) {
723 struct bdi_writeback
*wb
;
724 bool locked
, congested
;
726 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
727 congested
= wb_congested(wb
, cong_bits
);
728 unlocked_inode_to_wb_end(inode
, locked
);
732 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
734 EXPORT_SYMBOL_GPL(inode_congested
);
737 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
738 * @wb: target bdi_writeback to split @nr_pages to
739 * @nr_pages: number of pages to write for the whole bdi
741 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
742 * relation to the total write bandwidth of all wb's w/ dirty inodes on
745 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
747 unsigned long this_bw
= wb
->avg_write_bandwidth
;
748 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
750 if (nr_pages
== LONG_MAX
)
754 * This may be called on clean wb's and proportional distribution
755 * may not make sense, just use the original @nr_pages in those
756 * cases. In general, we wanna err on the side of writing more.
758 if (!tot_bw
|| this_bw
>= tot_bw
)
761 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
765 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
766 * @bdi: target backing_dev_info
767 * @base_work: wb_writeback_work to issue
768 * @skip_if_busy: skip wb's which already have writeback in progress
770 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
771 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
772 * distributed to the busy wbs according to each wb's proportion in the
773 * total active write bandwidth of @bdi.
775 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
776 struct wb_writeback_work
*base_work
,
779 struct bdi_writeback
*last_wb
= NULL
;
780 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
781 struct bdi_writeback
, bdi_node
);
786 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
787 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
788 struct wb_writeback_work fallback_work
;
789 struct wb_writeback_work
*work
;
797 /* SYNC_ALL writes out I_DIRTY_TIME too */
798 if (!wb_has_dirty_io(wb
) &&
799 (base_work
->sync_mode
== WB_SYNC_NONE
||
800 list_empty(&wb
->b_dirty_time
)))
802 if (skip_if_busy
&& writeback_in_progress(wb
))
805 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
807 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
810 work
->nr_pages
= nr_pages
;
812 wb_queue_work(wb
, work
);
816 /* alloc failed, execute synchronously using on-stack fallback */
817 work
= &fallback_work
;
819 work
->nr_pages
= nr_pages
;
821 work
->done
= &fallback_work_done
;
823 wb_queue_work(wb
, work
);
826 * Pin @wb so that it stays on @bdi->wb_list. This allows
827 * continuing iteration from @wb after dropping and
828 * regrabbing rcu read lock.
834 wb_wait_for_completion(bdi
, &fallback_work_done
);
843 #else /* CONFIG_CGROUP_WRITEBACK */
845 static struct bdi_writeback
*
846 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
847 __releases(&inode
->i_lock
)
848 __acquires(&wb
->list_lock
)
850 struct bdi_writeback
*wb
= inode_to_wb(inode
);
852 spin_unlock(&inode
->i_lock
);
853 spin_lock(&wb
->list_lock
);
857 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
858 __acquires(&wb
->list_lock
)
860 struct bdi_writeback
*wb
= inode_to_wb(inode
);
862 spin_lock(&wb
->list_lock
);
866 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
871 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
872 struct wb_writeback_work
*base_work
,
877 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
878 base_work
->auto_free
= 0;
879 wb_queue_work(&bdi
->wb
, base_work
);
883 #endif /* CONFIG_CGROUP_WRITEBACK */
885 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
886 bool range_cyclic
, enum wb_reason reason
)
888 struct wb_writeback_work
*work
;
890 if (!wb_has_dirty_io(wb
))
894 * This is WB_SYNC_NONE writeback, so if allocation fails just
895 * wakeup the thread for old dirty data writeback
897 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
899 trace_writeback_nowork(wb
);
904 work
->sync_mode
= WB_SYNC_NONE
;
905 work
->nr_pages
= nr_pages
;
906 work
->range_cyclic
= range_cyclic
;
907 work
->reason
= reason
;
910 wb_queue_work(wb
, work
);
914 * wb_start_background_writeback - start background writeback
915 * @wb: bdi_writback to write from
918 * This makes sure WB_SYNC_NONE background writeback happens. When
919 * this function returns, it is only guaranteed that for given wb
920 * some IO is happening if we are over background dirty threshold.
921 * Caller need not hold sb s_umount semaphore.
923 void wb_start_background_writeback(struct bdi_writeback
*wb
)
926 * We just wake up the flusher thread. It will perform background
927 * writeback as soon as there is no other work to do.
929 trace_writeback_wake_background(wb
);
934 * Remove the inode from the writeback list it is on.
936 void inode_io_list_del(struct inode
*inode
)
938 struct bdi_writeback
*wb
;
940 wb
= inode_to_wb_and_lock_list(inode
);
941 inode_io_list_del_locked(inode
, wb
);
942 spin_unlock(&wb
->list_lock
);
946 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
947 * furthest end of its superblock's dirty-inode list.
949 * Before stamping the inode's ->dirtied_when, we check to see whether it is
950 * already the most-recently-dirtied inode on the b_dirty list. If that is
951 * the case then the inode must have been redirtied while it was being written
952 * out and we don't reset its dirtied_when.
954 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
956 if (!list_empty(&wb
->b_dirty
)) {
959 tail
= wb_inode(wb
->b_dirty
.next
);
960 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
961 inode
->dirtied_when
= jiffies
;
963 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
967 * requeue inode for re-scanning after bdi->b_io list is exhausted.
969 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
971 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
974 static void inode_sync_complete(struct inode
*inode
)
976 inode
->i_state
&= ~I_SYNC
;
977 /* If inode is clean an unused, put it into LRU now... */
978 inode_add_lru(inode
);
979 /* Waiters must see I_SYNC cleared before being woken up */
981 wake_up_bit(&inode
->i_state
, __I_SYNC
);
984 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
986 bool ret
= time_after(inode
->dirtied_when
, t
);
989 * For inodes being constantly redirtied, dirtied_when can get stuck.
990 * It _appears_ to be in the future, but is actually in distant past.
991 * This test is necessary to prevent such wrapped-around relative times
992 * from permanently stopping the whole bdi writeback.
994 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
999 #define EXPIRE_DIRTY_ATIME 0x0001
1002 * Move expired (dirtied before work->older_than_this) dirty inodes from
1003 * @delaying_queue to @dispatch_queue.
1005 static int move_expired_inodes(struct list_head
*delaying_queue
,
1006 struct list_head
*dispatch_queue
,
1008 struct wb_writeback_work
*work
)
1010 unsigned long *older_than_this
= NULL
;
1011 unsigned long expire_time
;
1013 struct list_head
*pos
, *node
;
1014 struct super_block
*sb
= NULL
;
1015 struct inode
*inode
;
1019 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1020 older_than_this
= work
->older_than_this
;
1021 else if (!work
->for_sync
) {
1022 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1023 older_than_this
= &expire_time
;
1025 while (!list_empty(delaying_queue
)) {
1026 inode
= wb_inode(delaying_queue
->prev
);
1027 if (older_than_this
&&
1028 inode_dirtied_after(inode
, *older_than_this
))
1030 list_move(&inode
->i_io_list
, &tmp
);
1032 if (flags
& EXPIRE_DIRTY_ATIME
)
1033 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1034 if (sb_is_blkdev_sb(inode
->i_sb
))
1036 if (sb
&& sb
!= inode
->i_sb
)
1041 /* just one sb in list, splice to dispatch_queue and we're done */
1043 list_splice(&tmp
, dispatch_queue
);
1047 /* Move inodes from one superblock together */
1048 while (!list_empty(&tmp
)) {
1049 sb
= wb_inode(tmp
.prev
)->i_sb
;
1050 list_for_each_prev_safe(pos
, node
, &tmp
) {
1051 inode
= wb_inode(pos
);
1052 if (inode
->i_sb
== sb
)
1053 list_move(&inode
->i_io_list
, dispatch_queue
);
1061 * Queue all expired dirty inodes for io, eldest first.
1063 * newly dirtied b_dirty b_io b_more_io
1064 * =============> gf edc BA
1066 * newly dirtied b_dirty b_io b_more_io
1067 * =============> g fBAedc
1069 * +--> dequeue for IO
1071 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1075 assert_spin_locked(&wb
->list_lock
);
1076 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1077 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1078 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1079 EXPIRE_DIRTY_ATIME
, work
);
1081 wb_io_lists_populated(wb
);
1082 trace_writeback_queue_io(wb
, work
, moved
);
1085 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1089 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1090 trace_writeback_write_inode_start(inode
, wbc
);
1091 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1092 trace_writeback_write_inode(inode
, wbc
);
1099 * Wait for writeback on an inode to complete. Called with i_lock held.
1100 * Caller must make sure inode cannot go away when we drop i_lock.
1102 static void __inode_wait_for_writeback(struct inode
*inode
)
1103 __releases(inode
->i_lock
)
1104 __acquires(inode
->i_lock
)
1106 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1107 wait_queue_head_t
*wqh
;
1109 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1110 while (inode
->i_state
& I_SYNC
) {
1111 spin_unlock(&inode
->i_lock
);
1112 __wait_on_bit(wqh
, &wq
, bit_wait
,
1113 TASK_UNINTERRUPTIBLE
);
1114 spin_lock(&inode
->i_lock
);
1119 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1121 void inode_wait_for_writeback(struct inode
*inode
)
1123 spin_lock(&inode
->i_lock
);
1124 __inode_wait_for_writeback(inode
);
1125 spin_unlock(&inode
->i_lock
);
1129 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1130 * held and drops it. It is aimed for callers not holding any inode reference
1131 * so once i_lock is dropped, inode can go away.
1133 static void inode_sleep_on_writeback(struct inode
*inode
)
1134 __releases(inode
->i_lock
)
1137 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1140 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1141 sleep
= inode
->i_state
& I_SYNC
;
1142 spin_unlock(&inode
->i_lock
);
1145 finish_wait(wqh
, &wait
);
1149 * Find proper writeback list for the inode depending on its current state and
1150 * possibly also change of its state while we were doing writeback. Here we
1151 * handle things such as livelock prevention or fairness of writeback among
1152 * inodes. This function can be called only by flusher thread - noone else
1153 * processes all inodes in writeback lists and requeueing inodes behind flusher
1154 * thread's back can have unexpected consequences.
1156 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1157 struct writeback_control
*wbc
)
1159 if (inode
->i_state
& I_FREEING
)
1163 * Sync livelock prevention. Each inode is tagged and synced in one
1164 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1165 * the dirty time to prevent enqueue and sync it again.
1167 if ((inode
->i_state
& I_DIRTY
) &&
1168 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1169 inode
->dirtied_when
= jiffies
;
1171 if (wbc
->pages_skipped
) {
1173 * writeback is not making progress due to locked
1174 * buffers. Skip this inode for now.
1176 redirty_tail(inode
, wb
);
1180 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1182 * We didn't write back all the pages. nfs_writepages()
1183 * sometimes bales out without doing anything.
1185 if (wbc
->nr_to_write
<= 0) {
1186 /* Slice used up. Queue for next turn. */
1187 requeue_io(inode
, wb
);
1190 * Writeback blocked by something other than
1191 * congestion. Delay the inode for some time to
1192 * avoid spinning on the CPU (100% iowait)
1193 * retrying writeback of the dirty page/inode
1194 * that cannot be performed immediately.
1196 redirty_tail(inode
, wb
);
1198 } else if (inode
->i_state
& I_DIRTY
) {
1200 * Filesystems can dirty the inode during writeback operations,
1201 * such as delayed allocation during submission or metadata
1202 * updates after data IO completion.
1204 redirty_tail(inode
, wb
);
1205 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1206 inode
->dirtied_when
= jiffies
;
1207 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1209 /* The inode is clean. Remove from writeback lists. */
1210 inode_io_list_del_locked(inode
, wb
);
1215 * Write out an inode and its dirty pages. Do not update the writeback list
1216 * linkage. That is left to the caller. The caller is also responsible for
1217 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1220 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1222 struct address_space
*mapping
= inode
->i_mapping
;
1223 long nr_to_write
= wbc
->nr_to_write
;
1227 WARN_ON(!(inode
->i_state
& I_SYNC
));
1229 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1231 ret
= do_writepages(mapping
, wbc
);
1234 * Make sure to wait on the data before writing out the metadata.
1235 * This is important for filesystems that modify metadata on data
1236 * I/O completion. We don't do it for sync(2) writeback because it has a
1237 * separate, external IO completion path and ->sync_fs for guaranteeing
1238 * inode metadata is written back correctly.
1240 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1241 int err
= filemap_fdatawait(mapping
);
1247 * Some filesystems may redirty the inode during the writeback
1248 * due to delalloc, clear dirty metadata flags right before
1251 spin_lock(&inode
->i_lock
);
1253 dirty
= inode
->i_state
& I_DIRTY
;
1254 if (inode
->i_state
& I_DIRTY_TIME
) {
1255 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1256 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1257 unlikely(time_after(jiffies
,
1258 (inode
->dirtied_time_when
+
1259 dirtytime_expire_interval
* HZ
)))) {
1260 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1261 trace_writeback_lazytime(inode
);
1264 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1265 inode
->i_state
&= ~dirty
;
1268 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1269 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1270 * either they see the I_DIRTY bits cleared or we see the dirtied
1273 * I_DIRTY_PAGES is always cleared together above even if @mapping
1274 * still has dirty pages. The flag is reinstated after smp_mb() if
1275 * necessary. This guarantees that either __mark_inode_dirty()
1276 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1280 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1281 inode
->i_state
|= I_DIRTY_PAGES
;
1283 spin_unlock(&inode
->i_lock
);
1285 if (dirty
& I_DIRTY_TIME
)
1286 mark_inode_dirty_sync(inode
);
1287 /* Don't write the inode if only I_DIRTY_PAGES was set */
1288 if (dirty
& ~I_DIRTY_PAGES
) {
1289 int err
= write_inode(inode
, wbc
);
1293 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1298 * Write out an inode's dirty pages. Either the caller has an active reference
1299 * on the inode or the inode has I_WILL_FREE set.
1301 * This function is designed to be called for writing back one inode which
1302 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1303 * and does more profound writeback list handling in writeback_sb_inodes().
1306 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1307 struct writeback_control
*wbc
)
1311 spin_lock(&inode
->i_lock
);
1312 if (!atomic_read(&inode
->i_count
))
1313 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1315 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1317 if (inode
->i_state
& I_SYNC
) {
1318 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1321 * It's a data-integrity sync. We must wait. Since callers hold
1322 * inode reference or inode has I_WILL_FREE set, it cannot go
1325 __inode_wait_for_writeback(inode
);
1327 WARN_ON(inode
->i_state
& I_SYNC
);
1329 * Skip inode if it is clean and we have no outstanding writeback in
1330 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1331 * function since flusher thread may be doing for example sync in
1332 * parallel and if we move the inode, it could get skipped. So here we
1333 * make sure inode is on some writeback list and leave it there unless
1334 * we have completely cleaned the inode.
1336 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1337 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1338 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1340 inode
->i_state
|= I_SYNC
;
1341 wbc_attach_and_unlock_inode(wbc
, inode
);
1343 ret
= __writeback_single_inode(inode
, wbc
);
1345 wbc_detach_inode(wbc
);
1346 spin_lock(&wb
->list_lock
);
1347 spin_lock(&inode
->i_lock
);
1349 * If inode is clean, remove it from writeback lists. Otherwise don't
1350 * touch it. See comment above for explanation.
1352 if (!(inode
->i_state
& I_DIRTY_ALL
))
1353 inode_io_list_del_locked(inode
, wb
);
1354 spin_unlock(&wb
->list_lock
);
1355 inode_sync_complete(inode
);
1357 spin_unlock(&inode
->i_lock
);
1361 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1362 struct wb_writeback_work
*work
)
1367 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1368 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1369 * here avoids calling into writeback_inodes_wb() more than once.
1371 * The intended call sequence for WB_SYNC_ALL writeback is:
1374 * writeback_sb_inodes() <== called only once
1375 * write_cache_pages() <== called once for each inode
1376 * (quickly) tag currently dirty pages
1377 * (maybe slowly) sync all tagged pages
1379 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1382 pages
= min(wb
->avg_write_bandwidth
/ 2,
1383 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1384 pages
= min(pages
, work
->nr_pages
);
1385 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1386 MIN_WRITEBACK_PAGES
);
1393 * Write a portion of b_io inodes which belong to @sb.
1395 * Return the number of pages and/or inodes written.
1397 * NOTE! This is called with wb->list_lock held, and will
1398 * unlock and relock that for each inode it ends up doing
1401 static long writeback_sb_inodes(struct super_block
*sb
,
1402 struct bdi_writeback
*wb
,
1403 struct wb_writeback_work
*work
)
1405 struct writeback_control wbc
= {
1406 .sync_mode
= work
->sync_mode
,
1407 .tagged_writepages
= work
->tagged_writepages
,
1408 .for_kupdate
= work
->for_kupdate
,
1409 .for_background
= work
->for_background
,
1410 .for_sync
= work
->for_sync
,
1411 .range_cyclic
= work
->range_cyclic
,
1413 .range_end
= LLONG_MAX
,
1415 unsigned long start_time
= jiffies
;
1417 long wrote
= 0; /* count both pages and inodes */
1419 while (!list_empty(&wb
->b_io
)) {
1420 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1422 if (inode
->i_sb
!= sb
) {
1425 * We only want to write back data for this
1426 * superblock, move all inodes not belonging
1427 * to it back onto the dirty list.
1429 redirty_tail(inode
, wb
);
1434 * The inode belongs to a different superblock.
1435 * Bounce back to the caller to unpin this and
1436 * pin the next superblock.
1442 * Don't bother with new inodes or inodes being freed, first
1443 * kind does not need periodic writeout yet, and for the latter
1444 * kind writeout is handled by the freer.
1446 spin_lock(&inode
->i_lock
);
1447 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1448 spin_unlock(&inode
->i_lock
);
1449 redirty_tail(inode
, wb
);
1452 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1454 * If this inode is locked for writeback and we are not
1455 * doing writeback-for-data-integrity, move it to
1456 * b_more_io so that writeback can proceed with the
1457 * other inodes on s_io.
1459 * We'll have another go at writing back this inode
1460 * when we completed a full scan of b_io.
1462 spin_unlock(&inode
->i_lock
);
1463 requeue_io(inode
, wb
);
1464 trace_writeback_sb_inodes_requeue(inode
);
1467 spin_unlock(&wb
->list_lock
);
1470 * We already requeued the inode if it had I_SYNC set and we
1471 * are doing WB_SYNC_NONE writeback. So this catches only the
1474 if (inode
->i_state
& I_SYNC
) {
1475 /* Wait for I_SYNC. This function drops i_lock... */
1476 inode_sleep_on_writeback(inode
);
1477 /* Inode may be gone, start again */
1478 spin_lock(&wb
->list_lock
);
1481 inode
->i_state
|= I_SYNC
;
1482 wbc_attach_and_unlock_inode(&wbc
, inode
);
1484 write_chunk
= writeback_chunk_size(wb
, work
);
1485 wbc
.nr_to_write
= write_chunk
;
1486 wbc
.pages_skipped
= 0;
1489 * We use I_SYNC to pin the inode in memory. While it is set
1490 * evict_inode() will wait so the inode cannot be freed.
1492 __writeback_single_inode(inode
, &wbc
);
1494 wbc_detach_inode(&wbc
);
1495 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1496 wrote
+= write_chunk
- wbc
.nr_to_write
;
1498 if (need_resched()) {
1500 * We're trying to balance between building up a nice
1501 * long list of IOs to improve our merge rate, and
1502 * getting those IOs out quickly for anyone throttling
1503 * in balance_dirty_pages(). cond_resched() doesn't
1504 * unplug, so get our IOs out the door before we
1507 blk_flush_plug(current
);
1512 spin_lock(&wb
->list_lock
);
1513 spin_lock(&inode
->i_lock
);
1514 if (!(inode
->i_state
& I_DIRTY_ALL
))
1516 requeue_inode(inode
, wb
, &wbc
);
1517 inode_sync_complete(inode
);
1518 spin_unlock(&inode
->i_lock
);
1521 * bail out to wb_writeback() often enough to check
1522 * background threshold and other termination conditions.
1525 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1527 if (work
->nr_pages
<= 0)
1534 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1535 struct wb_writeback_work
*work
)
1537 unsigned long start_time
= jiffies
;
1540 while (!list_empty(&wb
->b_io
)) {
1541 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1542 struct super_block
*sb
= inode
->i_sb
;
1544 if (!trylock_super(sb
)) {
1546 * trylock_super() may fail consistently due to
1547 * s_umount being grabbed by someone else. Don't use
1548 * requeue_io() to avoid busy retrying the inode/sb.
1550 redirty_tail(inode
, wb
);
1553 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1554 up_read(&sb
->s_umount
);
1556 /* refer to the same tests at the end of writeback_sb_inodes */
1558 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1560 if (work
->nr_pages
<= 0)
1564 /* Leave any unwritten inodes on b_io */
1568 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1569 enum wb_reason reason
)
1571 struct wb_writeback_work work
= {
1572 .nr_pages
= nr_pages
,
1573 .sync_mode
= WB_SYNC_NONE
,
1577 struct blk_plug plug
;
1579 blk_start_plug(&plug
);
1580 spin_lock(&wb
->list_lock
);
1581 if (list_empty(&wb
->b_io
))
1582 queue_io(wb
, &work
);
1583 __writeback_inodes_wb(wb
, &work
);
1584 spin_unlock(&wb
->list_lock
);
1585 blk_finish_plug(&plug
);
1587 return nr_pages
- work
.nr_pages
;
1591 * Explicit flushing or periodic writeback of "old" data.
1593 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1594 * dirtying-time in the inode's address_space. So this periodic writeback code
1595 * just walks the superblock inode list, writing back any inodes which are
1596 * older than a specific point in time.
1598 * Try to run once per dirty_writeback_interval. But if a writeback event
1599 * takes longer than a dirty_writeback_interval interval, then leave a
1602 * older_than_this takes precedence over nr_to_write. So we'll only write back
1603 * all dirty pages if they are all attached to "old" mappings.
1605 static long wb_writeback(struct bdi_writeback
*wb
,
1606 struct wb_writeback_work
*work
)
1608 unsigned long wb_start
= jiffies
;
1609 long nr_pages
= work
->nr_pages
;
1610 unsigned long oldest_jif
;
1611 struct inode
*inode
;
1613 struct blk_plug plug
;
1615 oldest_jif
= jiffies
;
1616 work
->older_than_this
= &oldest_jif
;
1618 blk_start_plug(&plug
);
1619 spin_lock(&wb
->list_lock
);
1622 * Stop writeback when nr_pages has been consumed
1624 if (work
->nr_pages
<= 0)
1628 * Background writeout and kupdate-style writeback may
1629 * run forever. Stop them if there is other work to do
1630 * so that e.g. sync can proceed. They'll be restarted
1631 * after the other works are all done.
1633 if ((work
->for_background
|| work
->for_kupdate
) &&
1634 !list_empty(&wb
->work_list
))
1638 * For background writeout, stop when we are below the
1639 * background dirty threshold
1641 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1645 * Kupdate and background works are special and we want to
1646 * include all inodes that need writing. Livelock avoidance is
1647 * handled by these works yielding to any other work so we are
1650 if (work
->for_kupdate
) {
1651 oldest_jif
= jiffies
-
1652 msecs_to_jiffies(dirty_expire_interval
* 10);
1653 } else if (work
->for_background
)
1654 oldest_jif
= jiffies
;
1656 trace_writeback_start(wb
, work
);
1657 if (list_empty(&wb
->b_io
))
1660 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1662 progress
= __writeback_inodes_wb(wb
, work
);
1663 trace_writeback_written(wb
, work
);
1665 wb_update_bandwidth(wb
, wb_start
);
1668 * Did we write something? Try for more
1670 * Dirty inodes are moved to b_io for writeback in batches.
1671 * The completion of the current batch does not necessarily
1672 * mean the overall work is done. So we keep looping as long
1673 * as made some progress on cleaning pages or inodes.
1678 * No more inodes for IO, bail
1680 if (list_empty(&wb
->b_more_io
))
1683 * Nothing written. Wait for some inode to
1684 * become available for writeback. Otherwise
1685 * we'll just busyloop.
1687 if (!list_empty(&wb
->b_more_io
)) {
1688 trace_writeback_wait(wb
, work
);
1689 inode
= wb_inode(wb
->b_more_io
.prev
);
1690 spin_lock(&inode
->i_lock
);
1691 spin_unlock(&wb
->list_lock
);
1692 /* This function drops i_lock... */
1693 inode_sleep_on_writeback(inode
);
1694 spin_lock(&wb
->list_lock
);
1697 spin_unlock(&wb
->list_lock
);
1698 blk_finish_plug(&plug
);
1700 return nr_pages
- work
->nr_pages
;
1704 * Return the next wb_writeback_work struct that hasn't been processed yet.
1706 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1708 struct wb_writeback_work
*work
= NULL
;
1710 spin_lock_bh(&wb
->work_lock
);
1711 if (!list_empty(&wb
->work_list
)) {
1712 work
= list_entry(wb
->work_list
.next
,
1713 struct wb_writeback_work
, list
);
1714 list_del_init(&work
->list
);
1716 spin_unlock_bh(&wb
->work_lock
);
1721 * Add in the number of potentially dirty inodes, because each inode
1722 * write can dirty pagecache in the underlying blockdev.
1724 static unsigned long get_nr_dirty_pages(void)
1726 return global_page_state(NR_FILE_DIRTY
) +
1727 global_page_state(NR_UNSTABLE_NFS
) +
1728 get_nr_dirty_inodes();
1731 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1733 if (wb_over_bg_thresh(wb
)) {
1735 struct wb_writeback_work work
= {
1736 .nr_pages
= LONG_MAX
,
1737 .sync_mode
= WB_SYNC_NONE
,
1738 .for_background
= 1,
1740 .reason
= WB_REASON_BACKGROUND
,
1743 return wb_writeback(wb
, &work
);
1749 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1751 unsigned long expired
;
1755 * When set to zero, disable periodic writeback
1757 if (!dirty_writeback_interval
)
1760 expired
= wb
->last_old_flush
+
1761 msecs_to_jiffies(dirty_writeback_interval
* 10);
1762 if (time_before(jiffies
, expired
))
1765 wb
->last_old_flush
= jiffies
;
1766 nr_pages
= get_nr_dirty_pages();
1769 struct wb_writeback_work work
= {
1770 .nr_pages
= nr_pages
,
1771 .sync_mode
= WB_SYNC_NONE
,
1774 .reason
= WB_REASON_PERIODIC
,
1777 return wb_writeback(wb
, &work
);
1784 * Retrieve work items and do the writeback they describe
1786 static long wb_do_writeback(struct bdi_writeback
*wb
)
1788 struct wb_writeback_work
*work
;
1791 set_bit(WB_writeback_running
, &wb
->state
);
1792 while ((work
= get_next_work_item(wb
)) != NULL
) {
1793 struct wb_completion
*done
= work
->done
;
1795 trace_writeback_exec(wb
, work
);
1797 wrote
+= wb_writeback(wb
, work
);
1799 if (work
->auto_free
)
1801 if (done
&& atomic_dec_and_test(&done
->cnt
))
1802 wake_up_all(&wb
->bdi
->wb_waitq
);
1806 * Check for periodic writeback, kupdated() style
1808 wrote
+= wb_check_old_data_flush(wb
);
1809 wrote
+= wb_check_background_flush(wb
);
1810 clear_bit(WB_writeback_running
, &wb
->state
);
1816 * Handle writeback of dirty data for the device backed by this bdi. Also
1817 * reschedules periodically and does kupdated style flushing.
1819 void wb_workfn(struct work_struct
*work
)
1821 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1822 struct bdi_writeback
, dwork
);
1825 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1826 current
->flags
|= PF_SWAPWRITE
;
1828 if (likely(!current_is_workqueue_rescuer() ||
1829 !test_bit(WB_registered
, &wb
->state
))) {
1831 * The normal path. Keep writing back @wb until its
1832 * work_list is empty. Note that this path is also taken
1833 * if @wb is shutting down even when we're running off the
1834 * rescuer as work_list needs to be drained.
1837 pages_written
= wb_do_writeback(wb
);
1838 trace_writeback_pages_written(pages_written
);
1839 } while (!list_empty(&wb
->work_list
));
1842 * bdi_wq can't get enough workers and we're running off
1843 * the emergency worker. Don't hog it. Hopefully, 1024 is
1844 * enough for efficient IO.
1846 pages_written
= writeback_inodes_wb(wb
, 1024,
1847 WB_REASON_FORKER_THREAD
);
1848 trace_writeback_pages_written(pages_written
);
1851 if (!list_empty(&wb
->work_list
))
1852 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
1853 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1854 wb_wakeup_delayed(wb
);
1856 current
->flags
&= ~PF_SWAPWRITE
;
1860 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1863 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1865 struct backing_dev_info
*bdi
;
1868 nr_pages
= get_nr_dirty_pages();
1871 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1872 struct bdi_writeback
*wb
;
1874 if (!bdi_has_dirty_io(bdi
))
1877 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1878 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1885 * Wake up bdi's periodically to make sure dirtytime inodes gets
1886 * written back periodically. We deliberately do *not* check the
1887 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1888 * kernel to be constantly waking up once there are any dirtytime
1889 * inodes on the system. So instead we define a separate delayed work
1890 * function which gets called much more rarely. (By default, only
1891 * once every 12 hours.)
1893 * If there is any other write activity going on in the file system,
1894 * this function won't be necessary. But if the only thing that has
1895 * happened on the file system is a dirtytime inode caused by an atime
1896 * update, we need this infrastructure below to make sure that inode
1897 * eventually gets pushed out to disk.
1899 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
1900 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
1902 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
1904 struct backing_dev_info
*bdi
;
1907 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1908 struct bdi_writeback
*wb
;
1910 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1911 if (!list_empty(&wb
->b_dirty_time
))
1915 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1918 static int __init
start_dirtytime_writeback(void)
1920 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1923 __initcall(start_dirtytime_writeback
);
1925 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
1926 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1930 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
1931 if (ret
== 0 && write
)
1932 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
1936 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1938 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1939 struct dentry
*dentry
;
1940 const char *name
= "?";
1942 dentry
= d_find_alias(inode
);
1944 spin_lock(&dentry
->d_lock
);
1945 name
= (const char *) dentry
->d_name
.name
;
1948 "%s(%d): dirtied inode %lu (%s) on %s\n",
1949 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1950 name
, inode
->i_sb
->s_id
);
1952 spin_unlock(&dentry
->d_lock
);
1959 * __mark_inode_dirty - internal function
1960 * @inode: inode to mark
1961 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1962 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1963 * mark_inode_dirty_sync.
1965 * Put the inode on the super block's dirty list.
1967 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1968 * dirty list only if it is hashed or if it refers to a blockdev.
1969 * If it was not hashed, it will never be added to the dirty list
1970 * even if it is later hashed, as it will have been marked dirty already.
1972 * In short, make sure you hash any inodes _before_ you start marking
1975 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1976 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1977 * the kernel-internal blockdev inode represents the dirtying time of the
1978 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1979 * page->mapping->host, so the page-dirtying time is recorded in the internal
1982 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1984 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1985 struct super_block
*sb
= inode
->i_sb
;
1988 trace_writeback_mark_inode_dirty(inode
, flags
);
1991 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1992 * dirty the inode itself
1994 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
1995 trace_writeback_dirty_inode_start(inode
, flags
);
1997 if (sb
->s_op
->dirty_inode
)
1998 sb
->s_op
->dirty_inode(inode
, flags
);
2000 trace_writeback_dirty_inode(inode
, flags
);
2002 if (flags
& I_DIRTY_INODE
)
2003 flags
&= ~I_DIRTY_TIME
;
2004 dirtytime
= flags
& I_DIRTY_TIME
;
2007 * Paired with smp_mb() in __writeback_single_inode() for the
2008 * following lockless i_state test. See there for details.
2012 if (((inode
->i_state
& flags
) == flags
) ||
2013 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2016 if (unlikely(block_dump
))
2017 block_dump___mark_inode_dirty(inode
);
2019 spin_lock(&inode
->i_lock
);
2020 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2021 goto out_unlock_inode
;
2022 if ((inode
->i_state
& flags
) != flags
) {
2023 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2025 inode_attach_wb(inode
, NULL
);
2027 if (flags
& I_DIRTY_INODE
)
2028 inode
->i_state
&= ~I_DIRTY_TIME
;
2029 inode
->i_state
|= flags
;
2032 * If the inode is being synced, just update its dirty state.
2033 * The unlocker will place the inode on the appropriate
2034 * superblock list, based upon its state.
2036 if (inode
->i_state
& I_SYNC
)
2037 goto out_unlock_inode
;
2040 * Only add valid (hashed) inodes to the superblock's
2041 * dirty list. Add blockdev inodes as well.
2043 if (!S_ISBLK(inode
->i_mode
)) {
2044 if (inode_unhashed(inode
))
2045 goto out_unlock_inode
;
2047 if (inode
->i_state
& I_FREEING
)
2048 goto out_unlock_inode
;
2051 * If the inode was already on b_dirty/b_io/b_more_io, don't
2052 * reposition it (that would break b_dirty time-ordering).
2055 struct bdi_writeback
*wb
;
2056 struct list_head
*dirty_list
;
2057 bool wakeup_bdi
= false;
2059 wb
= locked_inode_to_wb_and_lock_list(inode
);
2061 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2062 !test_bit(WB_registered
, &wb
->state
),
2063 "bdi-%s not registered\n", wb
->bdi
->name
);
2065 inode
->dirtied_when
= jiffies
;
2067 inode
->dirtied_time_when
= jiffies
;
2069 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2070 dirty_list
= &wb
->b_dirty
;
2072 dirty_list
= &wb
->b_dirty_time
;
2074 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2077 spin_unlock(&wb
->list_lock
);
2078 trace_writeback_dirty_inode_enqueue(inode
);
2081 * If this is the first dirty inode for this bdi,
2082 * we have to wake-up the corresponding bdi thread
2083 * to make sure background write-back happens
2086 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2087 wb_wakeup_delayed(wb
);
2092 spin_unlock(&inode
->i_lock
);
2094 #undef I_DIRTY_INODE
2096 EXPORT_SYMBOL(__mark_inode_dirty
);
2099 * The @s_sync_lock is used to serialise concurrent sync operations
2100 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2101 * Concurrent callers will block on the s_sync_lock rather than doing contending
2102 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2103 * has been issued up to the time this function is enter is guaranteed to be
2104 * completed by the time we have gained the lock and waited for all IO that is
2105 * in progress regardless of the order callers are granted the lock.
2107 static void wait_sb_inodes(struct super_block
*sb
)
2109 struct inode
*inode
, *old_inode
= NULL
;
2112 * We need to be protected against the filesystem going from
2113 * r/o to r/w or vice versa.
2115 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2117 mutex_lock(&sb
->s_sync_lock
);
2118 spin_lock(&sb
->s_inode_list_lock
);
2121 * Data integrity sync. Must wait for all pages under writeback,
2122 * because there may have been pages dirtied before our sync
2123 * call, but which had writeout started before we write it out.
2124 * In which case, the inode may not be on the dirty list, but
2125 * we still have to wait for that writeout.
2127 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
2128 struct address_space
*mapping
= inode
->i_mapping
;
2130 spin_lock(&inode
->i_lock
);
2131 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
2132 (mapping
->nrpages
== 0)) {
2133 spin_unlock(&inode
->i_lock
);
2137 spin_unlock(&inode
->i_lock
);
2138 spin_unlock(&sb
->s_inode_list_lock
);
2141 * We hold a reference to 'inode' so it couldn't have been
2142 * removed from s_inodes list while we dropped the
2143 * s_inode_list_lock. We cannot iput the inode now as we can
2144 * be holding the last reference and we cannot iput it under
2145 * s_inode_list_lock. So we keep the reference and iput it
2152 * We keep the error status of individual mapping so that
2153 * applications can catch the writeback error using fsync(2).
2154 * See filemap_fdatawait_keep_errors() for details.
2156 filemap_fdatawait_keep_errors(mapping
);
2160 spin_lock(&sb
->s_inode_list_lock
);
2162 spin_unlock(&sb
->s_inode_list_lock
);
2164 mutex_unlock(&sb
->s_sync_lock
);
2167 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2168 enum wb_reason reason
, bool skip_if_busy
)
2170 DEFINE_WB_COMPLETION_ONSTACK(done
);
2171 struct wb_writeback_work work
= {
2173 .sync_mode
= WB_SYNC_NONE
,
2174 .tagged_writepages
= 1,
2179 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2181 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2183 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2185 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2186 wb_wait_for_completion(bdi
, &done
);
2190 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2191 * @sb: the superblock
2192 * @nr: the number of pages to write
2193 * @reason: reason why some writeback work initiated
2195 * Start writeback on some inodes on this super_block. No guarantees are made
2196 * on how many (if any) will be written, and this function does not wait
2197 * for IO completion of submitted IO.
2199 void writeback_inodes_sb_nr(struct super_block
*sb
,
2201 enum wb_reason reason
)
2203 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2205 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2208 * writeback_inodes_sb - writeback dirty inodes from given super_block
2209 * @sb: the superblock
2210 * @reason: reason why some writeback work was initiated
2212 * Start writeback on some inodes on this super_block. No guarantees are made
2213 * on how many (if any) will be written, and this function does not wait
2214 * for IO completion of submitted IO.
2216 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2218 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2220 EXPORT_SYMBOL(writeback_inodes_sb
);
2223 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2224 * @sb: the superblock
2225 * @nr: the number of pages to write
2226 * @reason: the reason of writeback
2228 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2229 * Returns 1 if writeback was started, 0 if not.
2231 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2232 enum wb_reason reason
)
2234 if (!down_read_trylock(&sb
->s_umount
))
2237 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2238 up_read(&sb
->s_umount
);
2241 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2244 * try_to_writeback_inodes_sb - try to start writeback if none underway
2245 * @sb: the superblock
2246 * @reason: reason why some writeback work was initiated
2248 * Implement by try_to_writeback_inodes_sb_nr()
2249 * Returns 1 if writeback was started, 0 if not.
2251 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2253 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2255 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2258 * sync_inodes_sb - sync sb inode pages
2259 * @sb: the superblock
2261 * This function writes and waits on any dirty inode belonging to this
2264 void sync_inodes_sb(struct super_block
*sb
)
2266 DEFINE_WB_COMPLETION_ONSTACK(done
);
2267 struct wb_writeback_work work
= {
2269 .sync_mode
= WB_SYNC_ALL
,
2270 .nr_pages
= LONG_MAX
,
2273 .reason
= WB_REASON_SYNC
,
2276 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2279 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2280 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2281 * bdi_has_dirty() need to be written out too.
2283 if (bdi
== &noop_backing_dev_info
)
2285 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2287 bdi_split_work_to_wbs(bdi
, &work
, false);
2288 wb_wait_for_completion(bdi
, &done
);
2292 EXPORT_SYMBOL(sync_inodes_sb
);
2295 * write_inode_now - write an inode to disk
2296 * @inode: inode to write to disk
2297 * @sync: whether the write should be synchronous or not
2299 * This function commits an inode to disk immediately if it is dirty. This is
2300 * primarily needed by knfsd.
2302 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2304 int write_inode_now(struct inode
*inode
, int sync
)
2306 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
2307 struct writeback_control wbc
= {
2308 .nr_to_write
= LONG_MAX
,
2309 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2311 .range_end
= LLONG_MAX
,
2314 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2315 wbc
.nr_to_write
= 0;
2318 return writeback_single_inode(inode
, wb
, &wbc
);
2320 EXPORT_SYMBOL(write_inode_now
);
2323 * sync_inode - write an inode and its pages to disk.
2324 * @inode: the inode to sync
2325 * @wbc: controls the writeback mode
2327 * sync_inode() will write an inode and its pages to disk. It will also
2328 * correctly update the inode on its superblock's dirty inode lists and will
2329 * update inode->i_state.
2331 * The caller must have a ref on the inode.
2333 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2335 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
2337 EXPORT_SYMBOL(sync_inode
);
2340 * sync_inode_metadata - write an inode to disk
2341 * @inode: the inode to sync
2342 * @wait: wait for I/O to complete.
2344 * Write an inode to disk and adjust its dirty state after completion.
2346 * Note: only writes the actual inode, no associated data or other metadata.
2348 int sync_inode_metadata(struct inode
*inode
, int wait
)
2350 struct writeback_control wbc
= {
2351 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2352 .nr_to_write
= 0, /* metadata-only */
2355 return sync_inode(inode
, &wbc
);
2357 EXPORT_SYMBOL(sync_inode_metadata
);