net: lantiq: Use napi_complete_done()
[linux/fpc-iii.git] / mm / memory.c
blobcb7c940cf800c50b920899868cd5c5cee17e7f63
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
83 #include "internal.h"
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
109 * Randomize the address space (stacks, mmaps, brk, etc.).
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
117 #else
119 #endif
121 static int __init disable_randmaps(char *s)
123 randomize_va_space = 0;
124 return 1;
126 __setup("norandmaps", disable_randmaps);
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
131 unsigned long highest_memmap_pfn __read_mostly;
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
136 static int __init init_zero_pfn(void)
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
141 core_initcall(init_zero_pfn);
144 #if defined(SPLIT_RSS_COUNTING)
146 void sync_mm_rss(struct mm_struct *mm)
148 int i;
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
156 current->rss_stat.events = 0;
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
161 struct task_struct *task = current;
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct *task)
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
180 #else /* SPLIT_RSS_COUNTING */
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
185 static void check_sync_rss_stat(struct task_struct *task)
189 #endif /* SPLIT_RSS_COUNTING */
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
229 if (end - 1 > ceiling - 1)
230 return;
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
263 if (end - 1 > ceiling - 1)
264 return;
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
297 if (end - 1 > ceiling - 1)
298 return;
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
306 * This function frees user-level page tables of a process.
308 void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
312 pgd_t *pgd;
313 unsigned long next;
316 * The next few lines have given us lots of grief...
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
389 * Optimization: gather nearby vmas into one call down
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
401 vma = next;
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
439 int __pte_alloc_kernel(pmd_t *pmd)
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
445 smp_wmb(); /* See comment in __pte_alloc */
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
458 static inline void init_rss_vec(int *rss)
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
465 int i;
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
479 * The calling function must still handle the error.
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
508 nr_shown = 0;
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
555 * And for normal mappings this is false.
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
577 unsigned long pfn = pte_pfn(pte);
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588 if (pte_devmap(pte))
589 return NULL;
591 print_bad_pte(vma, addr, pte, NULL);
592 return NULL;
595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
612 if (is_zero_pfn(pfn))
613 return NULL;
615 check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
622 * NOTE! We still have PageReserved() pages in the page tables.
623 * eg. VDSO mappings can cause them to exist.
625 out:
626 return pfn_to_page(pfn);
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
633 unsigned long pfn = pmd_pfn(pmd);
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
655 if (pmd_devmap(pmd))
656 return NULL;
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
666 out:
667 return pfn_to_page(pfn);
669 #endif
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 unsigned long addr, int *rss)
682 unsigned long vm_flags = vma->vm_flags;
683 pte_t pte = *src_pte;
684 struct page *page;
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
688 swp_entry_t entry = pte_to_swp_entry(pte);
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
706 rss[mm_counter(page)]++;
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
711 * COW mappings require pages in both
712 * parent and child to be set to read.
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
750 goto out_set_pte;
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 ptep_set_wrprotect(src_mm, addr, src_pte);
759 pte = pte_wrprotect(pte);
763 * If it's a shared mapping, mark it clean in
764 * the child
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
773 page_dup_rmap(page, false);
774 rss[mm_counter(page)]++;
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
779 out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
781 return 0;
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
788 pte_t *orig_src_pte, *orig_dst_pte;
789 pte_t *src_pte, *dst_pte;
790 spinlock_t *src_ptl, *dst_ptl;
791 int progress = 0;
792 int rss[NR_MM_COUNTERS];
793 swp_entry_t entry = (swp_entry_t){0};
795 again:
796 init_rss_vec(rss);
798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 if (!dst_pte)
800 return -ENOMEM;
801 src_pte = pte_offset_map(src_pmd, addr);
802 src_ptl = pte_lockptr(src_mm, src_pmd);
803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
806 arch_enter_lazy_mmu_mode();
808 do {
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 break;
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
830 arch_leave_lazy_mmu_mode();
831 spin_unlock(src_ptl);
832 pte_unmap(orig_src_pte);
833 add_mm_rss_vec(dst_mm, rss);
834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 cond_resched();
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
842 if (addr != end)
843 goto again;
844 return 0;
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
862 int err;
863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 if (!dst_pud)
890 return -ENOMEM;
891 src_pud = pud_offset(src_p4d, addr);
892 do {
893 next = pud_addr_end(addr, end);
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
944 struct mmu_notifier_range range;
945 bool is_cow;
946 int ret;
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
966 ret = track_pfn_copy(vma);
967 if (ret)
968 return ret;
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
977 is_cow = is_cow_mapping(vma->vm_flags);
979 if (is_cow) {
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
982 mmu_notifier_invalidate_range_start(&range);
985 ret = 0;
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
999 if (is_cow)
1000 mmu_notifier_invalidate_range_end(&range);
1001 return ret;
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 struct vm_area_struct *vma, pmd_t *pmd,
1006 unsigned long addr, unsigned long end,
1007 struct zap_details *details)
1009 struct mm_struct *mm = tlb->mm;
1010 int force_flush = 0;
1011 int rss[NR_MM_COUNTERS];
1012 spinlock_t *ptl;
1013 pte_t *start_pte;
1014 pte_t *pte;
1015 swp_entry_t entry;
1017 tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019 init_rss_vec(rss);
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
1022 flush_tlb_batched_pending(mm);
1023 arch_enter_lazy_mmu_mode();
1024 do {
1025 pte_t ptent = *pte;
1026 if (pte_none(ptent))
1027 continue;
1029 if (need_resched())
1030 break;
1032 if (pte_present(ptent)) {
1033 struct page *page;
1035 page = vm_normal_page(vma, addr, ptent);
1036 if (unlikely(details) && page) {
1038 * unmap_shared_mapping_pages() wants to
1039 * invalidate cache without truncating:
1040 * unmap shared but keep private pages.
1042 if (details->check_mapping &&
1043 details->check_mapping != page_rmapping(page))
1044 continue;
1046 ptent = ptep_get_and_clear_full(mm, addr, pte,
1047 tlb->fullmm);
1048 tlb_remove_tlb_entry(tlb, pte, addr);
1049 if (unlikely(!page))
1050 continue;
1052 if (!PageAnon(page)) {
1053 if (pte_dirty(ptent)) {
1054 force_flush = 1;
1055 set_page_dirty(page);
1057 if (pte_young(ptent) &&
1058 likely(!(vma->vm_flags & VM_SEQ_READ)))
1059 mark_page_accessed(page);
1061 rss[mm_counter(page)]--;
1062 page_remove_rmap(page, false);
1063 if (unlikely(page_mapcount(page) < 0))
1064 print_bad_pte(vma, addr, ptent, page);
1065 if (unlikely(__tlb_remove_page(tlb, page))) {
1066 force_flush = 1;
1067 addr += PAGE_SIZE;
1068 break;
1070 continue;
1073 entry = pte_to_swp_entry(ptent);
1074 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075 struct page *page = device_private_entry_to_page(entry);
1077 if (unlikely(details && details->check_mapping)) {
1079 * unmap_shared_mapping_pages() wants to
1080 * invalidate cache without truncating:
1081 * unmap shared but keep private pages.
1083 if (details->check_mapping !=
1084 page_rmapping(page))
1085 continue;
1088 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089 rss[mm_counter(page)]--;
1090 page_remove_rmap(page, false);
1091 put_page(page);
1092 continue;
1095 /* If details->check_mapping, we leave swap entries. */
1096 if (unlikely(details))
1097 continue;
1099 if (!non_swap_entry(entry))
1100 rss[MM_SWAPENTS]--;
1101 else if (is_migration_entry(entry)) {
1102 struct page *page;
1104 page = migration_entry_to_page(entry);
1105 rss[mm_counter(page)]--;
1107 if (unlikely(!free_swap_and_cache(entry)))
1108 print_bad_pte(vma, addr, ptent, NULL);
1109 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110 } while (pte++, addr += PAGE_SIZE, addr != end);
1112 add_mm_rss_vec(mm, rss);
1113 arch_leave_lazy_mmu_mode();
1115 /* Do the actual TLB flush before dropping ptl */
1116 if (force_flush)
1117 tlb_flush_mmu_tlbonly(tlb);
1118 pte_unmap_unlock(start_pte, ptl);
1121 * If we forced a TLB flush (either due to running out of
1122 * batch buffers or because we needed to flush dirty TLB
1123 * entries before releasing the ptl), free the batched
1124 * memory too. Restart if we didn't do everything.
1126 if (force_flush) {
1127 force_flush = 0;
1128 tlb_flush_mmu(tlb);
1131 if (addr != end) {
1132 cond_resched();
1133 goto again;
1136 return addr;
1139 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140 struct vm_area_struct *vma, pud_t *pud,
1141 unsigned long addr, unsigned long end,
1142 struct zap_details *details)
1144 pmd_t *pmd;
1145 unsigned long next;
1147 pmd = pmd_offset(pud, addr);
1148 do {
1149 next = pmd_addr_end(addr, end);
1150 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151 if (next - addr != HPAGE_PMD_SIZE)
1152 __split_huge_pmd(vma, pmd, addr, false, NULL);
1153 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154 goto next;
1155 /* fall through */
1158 * Here there can be other concurrent MADV_DONTNEED or
1159 * trans huge page faults running, and if the pmd is
1160 * none or trans huge it can change under us. This is
1161 * because MADV_DONTNEED holds the mmap_sem in read
1162 * mode.
1164 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165 goto next;
1166 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167 next:
1168 cond_resched();
1169 } while (pmd++, addr = next, addr != end);
1171 return addr;
1174 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175 struct vm_area_struct *vma, p4d_t *p4d,
1176 unsigned long addr, unsigned long end,
1177 struct zap_details *details)
1179 pud_t *pud;
1180 unsigned long next;
1182 pud = pud_offset(p4d, addr);
1183 do {
1184 next = pud_addr_end(addr, end);
1185 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186 if (next - addr != HPAGE_PUD_SIZE) {
1187 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188 split_huge_pud(vma, pud, addr);
1189 } else if (zap_huge_pud(tlb, vma, pud, addr))
1190 goto next;
1191 /* fall through */
1193 if (pud_none_or_clear_bad(pud))
1194 continue;
1195 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196 next:
1197 cond_resched();
1198 } while (pud++, addr = next, addr != end);
1200 return addr;
1203 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, pgd_t *pgd,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1208 p4d_t *p4d;
1209 unsigned long next;
1211 p4d = p4d_offset(pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(p4d))
1215 continue;
1216 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217 } while (p4d++, addr = next, addr != end);
1219 return addr;
1222 void unmap_page_range(struct mmu_gather *tlb,
1223 struct vm_area_struct *vma,
1224 unsigned long addr, unsigned long end,
1225 struct zap_details *details)
1227 pgd_t *pgd;
1228 unsigned long next;
1230 BUG_ON(addr >= end);
1231 tlb_start_vma(tlb, vma);
1232 pgd = pgd_offset(vma->vm_mm, addr);
1233 do {
1234 next = pgd_addr_end(addr, end);
1235 if (pgd_none_or_clear_bad(pgd))
1236 continue;
1237 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238 } while (pgd++, addr = next, addr != end);
1239 tlb_end_vma(tlb, vma);
1243 static void unmap_single_vma(struct mmu_gather *tlb,
1244 struct vm_area_struct *vma, unsigned long start_addr,
1245 unsigned long end_addr,
1246 struct zap_details *details)
1248 unsigned long start = max(vma->vm_start, start_addr);
1249 unsigned long end;
1251 if (start >= vma->vm_end)
1252 return;
1253 end = min(vma->vm_end, end_addr);
1254 if (end <= vma->vm_start)
1255 return;
1257 if (vma->vm_file)
1258 uprobe_munmap(vma, start, end);
1260 if (unlikely(vma->vm_flags & VM_PFNMAP))
1261 untrack_pfn(vma, 0, 0);
1263 if (start != end) {
1264 if (unlikely(is_vm_hugetlb_page(vma))) {
1266 * It is undesirable to test vma->vm_file as it
1267 * should be non-null for valid hugetlb area.
1268 * However, vm_file will be NULL in the error
1269 * cleanup path of mmap_region. When
1270 * hugetlbfs ->mmap method fails,
1271 * mmap_region() nullifies vma->vm_file
1272 * before calling this function to clean up.
1273 * Since no pte has actually been setup, it is
1274 * safe to do nothing in this case.
1276 if (vma->vm_file) {
1277 i_mmap_lock_write(vma->vm_file->f_mapping);
1278 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279 i_mmap_unlock_write(vma->vm_file->f_mapping);
1281 } else
1282 unmap_page_range(tlb, vma, start, end, details);
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1293 * Unmap all pages in the vma list.
1295 * Only addresses between `start' and `end' will be unmapped.
1297 * The VMA list must be sorted in ascending virtual address order.
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns. So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1304 void unmap_vmas(struct mmu_gather *tlb,
1305 struct vm_area_struct *vma, unsigned long start_addr,
1306 unsigned long end_addr)
1308 struct mmu_notifier_range range;
1310 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311 start_addr, end_addr);
1312 mmu_notifier_invalidate_range_start(&range);
1313 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315 mmu_notifier_invalidate_range_end(&range);
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
1324 * Caller must protect the VMA list
1326 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327 unsigned long size)
1329 struct mmu_notifier_range range;
1330 struct mmu_gather tlb;
1332 lru_add_drain();
1333 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334 start, start + size);
1335 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336 update_hiwater_rss(vma->vm_mm);
1337 mmu_notifier_invalidate_range_start(&range);
1338 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340 mmu_notifier_invalidate_range_end(&range);
1341 tlb_finish_mmu(&tlb, start, range.end);
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1351 * The range must fit into one VMA.
1353 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354 unsigned long size, struct zap_details *details)
1356 struct mmu_notifier_range range;
1357 struct mmu_gather tlb;
1359 lru_add_drain();
1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 address, address + size);
1362 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 unmap_single_vma(&tlb, vma, address, range.end, details);
1366 mmu_notifier_invalidate_range_end(&range);
1367 tlb_finish_mmu(&tlb, address, range.end);
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1378 * The entire address range must be fully contained within the vma.
1381 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long size)
1384 if (address < vma->vm_start || address + size > vma->vm_end ||
1385 !(vma->vm_flags & VM_PFNMAP))
1386 return;
1388 zap_page_range_single(vma, address, size, NULL);
1390 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1392 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 spinlock_t **ptl)
1395 pgd_t *pgd;
1396 p4d_t *p4d;
1397 pud_t *pud;
1398 pmd_t *pmd;
1400 pgd = pgd_offset(mm, addr);
1401 p4d = p4d_alloc(mm, pgd, addr);
1402 if (!p4d)
1403 return NULL;
1404 pud = pud_alloc(mm, p4d, addr);
1405 if (!pud)
1406 return NULL;
1407 pmd = pmd_alloc(mm, pud, addr);
1408 if (!pmd)
1409 return NULL;
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1416 * This is the old fallback for page remapping.
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423 struct page *page, pgprot_t prot)
1425 struct mm_struct *mm = vma->vm_mm;
1426 int retval;
1427 pte_t *pte;
1428 spinlock_t *ptl;
1430 retval = -EINVAL;
1431 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432 goto out;
1433 retval = -ENOMEM;
1434 flush_dcache_page(page);
1435 pte = get_locked_pte(mm, addr, &ptl);
1436 if (!pte)
1437 goto out;
1438 retval = -EBUSY;
1439 if (!pte_none(*pte))
1440 goto out_unlock;
1442 /* Ok, finally just insert the thing.. */
1443 get_page(page);
1444 inc_mm_counter_fast(mm, mm_counter_file(page));
1445 page_add_file_rmap(page, false);
1446 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1448 retval = 0;
1449 out_unlock:
1450 pte_unmap_unlock(pte, ptl);
1451 out:
1452 return retval;
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1475 * The page does not need to be reserved.
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1482 * Return: %0 on success, negative error code otherwise.
1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485 struct page *page)
1487 if (addr < vma->vm_start || addr >= vma->vm_end)
1488 return -EFAULT;
1489 if (!page_count(page))
1490 return -EINVAL;
1491 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494 vma->vm_flags |= VM_MIXEDMAP;
1496 return insert_page(vma, addr, page, vma->vm_page_prot);
1498 EXPORT_SYMBOL(vm_insert_page);
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1507 * This allows drivers to map range of kernel pages into a user vma.
1509 * Return: 0 on success and error code otherwise.
1511 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512 unsigned long num, unsigned long offset)
1514 unsigned long count = vma_pages(vma);
1515 unsigned long uaddr = vma->vm_start;
1516 int ret, i;
1518 /* Fail if the user requested offset is beyond the end of the object */
1519 if (offset >= num)
1520 return -ENXIO;
1522 /* Fail if the user requested size exceeds available object size */
1523 if (count > num - offset)
1524 return -ENXIO;
1526 for (i = 0; i < count; i++) {
1527 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528 if (ret < 0)
1529 return ret;
1530 uaddr += PAGE_SIZE;
1533 return 0;
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present. Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1554 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555 unsigned long num)
1557 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1559 EXPORT_SYMBOL(vm_map_pages);
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1574 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575 unsigned long num)
1577 return __vm_map_pages(vma, pages, num, 0);
1579 EXPORT_SYMBOL(vm_map_pages_zero);
1581 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582 pfn_t pfn, pgprot_t prot, bool mkwrite)
1584 struct mm_struct *mm = vma->vm_mm;
1585 pte_t *pte, entry;
1586 spinlock_t *ptl;
1588 pte = get_locked_pte(mm, addr, &ptl);
1589 if (!pte)
1590 return VM_FAULT_OOM;
1591 if (!pte_none(*pte)) {
1592 if (mkwrite) {
1594 * For read faults on private mappings the PFN passed
1595 * in may not match the PFN we have mapped if the
1596 * mapped PFN is a writeable COW page. In the mkwrite
1597 * case we are creating a writable PTE for a shared
1598 * mapping and we expect the PFNs to match. If they
1599 * don't match, we are likely racing with block
1600 * allocation and mapping invalidation so just skip the
1601 * update.
1603 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605 goto out_unlock;
1607 entry = pte_mkyoung(*pte);
1608 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610 update_mmu_cache(vma, addr, pte);
1612 goto out_unlock;
1615 /* Ok, finally just insert the thing.. */
1616 if (pfn_t_devmap(pfn))
1617 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618 else
1619 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1621 if (mkwrite) {
1622 entry = pte_mkyoung(entry);
1623 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1626 set_pte_at(mm, addr, pte, entry);
1627 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1629 out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631 return VM_FAULT_NOPAGE;
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings. In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1649 * Context: Process context. May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1652 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653 unsigned long pfn, pgprot_t pgprot)
1656 * Technically, architectures with pte_special can avoid all these
1657 * restrictions (same for remap_pfn_range). However we would like
1658 * consistency in testing and feature parity among all, so we should
1659 * try to keep these invariants in place for everybody.
1661 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663 (VM_PFNMAP|VM_MIXEDMAP));
1664 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1667 if (addr < vma->vm_start || addr >= vma->vm_end)
1668 return VM_FAULT_SIGBUS;
1670 if (!pfn_modify_allowed(pfn, pgprot))
1671 return VM_FAULT_SIGBUS;
1673 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1675 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676 false);
1678 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1692 * vma cannot be a COW mapping.
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1697 * Context: Process context. May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701 unsigned long pfn)
1703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1705 EXPORT_SYMBOL(vmf_insert_pfn);
1707 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1709 /* these checks mirror the abort conditions in vm_normal_page */
1710 if (vma->vm_flags & VM_MIXEDMAP)
1711 return true;
1712 if (pfn_t_devmap(pfn))
1713 return true;
1714 if (pfn_t_special(pfn))
1715 return true;
1716 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717 return true;
1718 return false;
1721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722 unsigned long addr, pfn_t pfn, bool mkwrite)
1724 pgprot_t pgprot = vma->vm_page_prot;
1725 int err;
1727 BUG_ON(!vm_mixed_ok(vma, pfn));
1729 if (addr < vma->vm_start || addr >= vma->vm_end)
1730 return VM_FAULT_SIGBUS;
1732 track_pfn_insert(vma, &pgprot, pfn);
1734 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735 return VM_FAULT_SIGBUS;
1738 * If we don't have pte special, then we have to use the pfn_valid()
1739 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740 * refcount the page if pfn_valid is true (hence insert_page rather
1741 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1742 * without pte special, it would there be refcounted as a normal page.
1744 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746 struct page *page;
1749 * At this point we are committed to insert_page()
1750 * regardless of whether the caller specified flags that
1751 * result in pfn_t_has_page() == false.
1753 page = pfn_to_page(pfn_t_to_pfn(pfn));
1754 err = insert_page(vma, addr, page, pgprot);
1755 } else {
1756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1759 if (err == -ENOMEM)
1760 return VM_FAULT_OOM;
1761 if (err < 0 && err != -EBUSY)
1762 return VM_FAULT_SIGBUS;
1764 return VM_FAULT_NOPAGE;
1767 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768 pfn_t pfn)
1770 return __vm_insert_mixed(vma, addr, pfn, false);
1772 EXPORT_SYMBOL(vmf_insert_mixed);
1775 * If the insertion of PTE failed because someone else already added a
1776 * different entry in the mean time, we treat that as success as we assume
1777 * the same entry was actually inserted.
1779 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780 unsigned long addr, pfn_t pfn)
1782 return __vm_insert_mixed(vma, addr, pfn, true);
1784 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1791 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 unsigned long pfn, pgprot_t prot)
1795 pte_t *pte;
1796 spinlock_t *ptl;
1797 int err = 0;
1799 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800 if (!pte)
1801 return -ENOMEM;
1802 arch_enter_lazy_mmu_mode();
1803 do {
1804 BUG_ON(!pte_none(*pte));
1805 if (!pfn_modify_allowed(pfn, prot)) {
1806 err = -EACCES;
1807 break;
1809 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810 pfn++;
1811 } while (pte++, addr += PAGE_SIZE, addr != end);
1812 arch_leave_lazy_mmu_mode();
1813 pte_unmap_unlock(pte - 1, ptl);
1814 return err;
1817 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818 unsigned long addr, unsigned long end,
1819 unsigned long pfn, pgprot_t prot)
1821 pmd_t *pmd;
1822 unsigned long next;
1823 int err;
1825 pfn -= addr >> PAGE_SHIFT;
1826 pmd = pmd_alloc(mm, pud, addr);
1827 if (!pmd)
1828 return -ENOMEM;
1829 VM_BUG_ON(pmd_trans_huge(*pmd));
1830 do {
1831 next = pmd_addr_end(addr, end);
1832 err = remap_pte_range(mm, pmd, addr, next,
1833 pfn + (addr >> PAGE_SHIFT), prot);
1834 if (err)
1835 return err;
1836 } while (pmd++, addr = next, addr != end);
1837 return 0;
1840 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841 unsigned long addr, unsigned long end,
1842 unsigned long pfn, pgprot_t prot)
1844 pud_t *pud;
1845 unsigned long next;
1846 int err;
1848 pfn -= addr >> PAGE_SHIFT;
1849 pud = pud_alloc(mm, p4d, addr);
1850 if (!pud)
1851 return -ENOMEM;
1852 do {
1853 next = pud_addr_end(addr, end);
1854 err = remap_pmd_range(mm, pud, addr, next,
1855 pfn + (addr >> PAGE_SHIFT), prot);
1856 if (err)
1857 return err;
1858 } while (pud++, addr = next, addr != end);
1859 return 0;
1862 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863 unsigned long addr, unsigned long end,
1864 unsigned long pfn, pgprot_t prot)
1866 p4d_t *p4d;
1867 unsigned long next;
1868 int err;
1870 pfn -= addr >> PAGE_SHIFT;
1871 p4d = p4d_alloc(mm, pgd, addr);
1872 if (!p4d)
1873 return -ENOMEM;
1874 do {
1875 next = p4d_addr_end(addr, end);
1876 err = remap_pud_range(mm, p4d, addr, next,
1877 pfn + (addr >> PAGE_SHIFT), prot);
1878 if (err)
1879 return err;
1880 } while (p4d++, addr = next, addr != end);
1881 return 0;
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1892 * Note: this is only safe if the mm semaphore is held when called.
1894 * Return: %0 on success, negative error code otherwise.
1896 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897 unsigned long pfn, unsigned long size, pgprot_t prot)
1899 pgd_t *pgd;
1900 unsigned long next;
1901 unsigned long end = addr + PAGE_ALIGN(size);
1902 struct mm_struct *mm = vma->vm_mm;
1903 unsigned long remap_pfn = pfn;
1904 int err;
1907 * Physically remapped pages are special. Tell the
1908 * rest of the world about it:
1909 * VM_IO tells people not to look at these pages
1910 * (accesses can have side effects).
1911 * VM_PFNMAP tells the core MM that the base pages are just
1912 * raw PFN mappings, and do not have a "struct page" associated
1913 * with them.
1914 * VM_DONTEXPAND
1915 * Disable vma merging and expanding with mremap().
1916 * VM_DONTDUMP
1917 * Omit vma from core dump, even when VM_IO turned off.
1919 * There's a horrible special case to handle copy-on-write
1920 * behaviour that some programs depend on. We mark the "original"
1921 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922 * See vm_normal_page() for details.
1924 if (is_cow_mapping(vma->vm_flags)) {
1925 if (addr != vma->vm_start || end != vma->vm_end)
1926 return -EINVAL;
1927 vma->vm_pgoff = pfn;
1930 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931 if (err)
1932 return -EINVAL;
1934 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1936 BUG_ON(addr >= end);
1937 pfn -= addr >> PAGE_SHIFT;
1938 pgd = pgd_offset(mm, addr);
1939 flush_cache_range(vma, addr, end);
1940 do {
1941 next = pgd_addr_end(addr, end);
1942 err = remap_p4d_range(mm, pgd, addr, next,
1943 pfn + (addr >> PAGE_SHIFT), prot);
1944 if (err)
1945 break;
1946 } while (pgd++, addr = next, addr != end);
1948 if (err)
1949 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1951 return err;
1953 EXPORT_SYMBOL(remap_pfn_range);
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1968 * Return: %0 on success, negative error code otherwise.
1970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1972 unsigned long vm_len, pfn, pages;
1974 /* Check that the physical memory area passed in looks valid */
1975 if (start + len < start)
1976 return -EINVAL;
1978 * You *really* shouldn't map things that aren't page-aligned,
1979 * but we've historically allowed it because IO memory might
1980 * just have smaller alignment.
1982 len += start & ~PAGE_MASK;
1983 pfn = start >> PAGE_SHIFT;
1984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985 if (pfn + pages < pfn)
1986 return -EINVAL;
1988 /* We start the mapping 'vm_pgoff' pages into the area */
1989 if (vma->vm_pgoff > pages)
1990 return -EINVAL;
1991 pfn += vma->vm_pgoff;
1992 pages -= vma->vm_pgoff;
1994 /* Can we fit all of the mapping? */
1995 vm_len = vma->vm_end - vma->vm_start;
1996 if (vm_len >> PAGE_SHIFT > pages)
1997 return -EINVAL;
1999 /* Ok, let it rip */
2000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2002 EXPORT_SYMBOL(vm_iomap_memory);
2004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005 unsigned long addr, unsigned long end,
2006 pte_fn_t fn, void *data)
2008 pte_t *pte;
2009 int err;
2010 spinlock_t *uninitialized_var(ptl);
2012 pte = (mm == &init_mm) ?
2013 pte_alloc_kernel(pmd, addr) :
2014 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015 if (!pte)
2016 return -ENOMEM;
2018 BUG_ON(pmd_huge(*pmd));
2020 arch_enter_lazy_mmu_mode();
2022 do {
2023 err = fn(pte++, addr, data);
2024 if (err)
2025 break;
2026 } while (addr += PAGE_SIZE, addr != end);
2028 arch_leave_lazy_mmu_mode();
2030 if (mm != &init_mm)
2031 pte_unmap_unlock(pte-1, ptl);
2032 return err;
2035 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 unsigned long addr, unsigned long end,
2037 pte_fn_t fn, void *data)
2039 pmd_t *pmd;
2040 unsigned long next;
2041 int err;
2043 BUG_ON(pud_huge(*pud));
2045 pmd = pmd_alloc(mm, pud, addr);
2046 if (!pmd)
2047 return -ENOMEM;
2048 do {
2049 next = pmd_addr_end(addr, end);
2050 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051 if (err)
2052 break;
2053 } while (pmd++, addr = next, addr != end);
2054 return err;
2057 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2061 pud_t *pud;
2062 unsigned long next;
2063 int err;
2065 pud = pud_alloc(mm, p4d, addr);
2066 if (!pud)
2067 return -ENOMEM;
2068 do {
2069 next = pud_addr_end(addr, end);
2070 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071 if (err)
2072 break;
2073 } while (pud++, addr = next, addr != end);
2074 return err;
2077 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078 unsigned long addr, unsigned long end,
2079 pte_fn_t fn, void *data)
2081 p4d_t *p4d;
2082 unsigned long next;
2083 int err;
2085 p4d = p4d_alloc(mm, pgd, addr);
2086 if (!p4d)
2087 return -ENOMEM;
2088 do {
2089 next = p4d_addr_end(addr, end);
2090 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091 if (err)
2092 break;
2093 } while (p4d++, addr = next, addr != end);
2094 return err;
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2101 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102 unsigned long size, pte_fn_t fn, void *data)
2104 pgd_t *pgd;
2105 unsigned long next;
2106 unsigned long end = addr + size;
2107 int err;
2109 if (WARN_ON(addr >= end))
2110 return -EINVAL;
2112 pgd = pgd_offset(mm, addr);
2113 do {
2114 next = pgd_addr_end(addr, end);
2115 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116 if (err)
2117 break;
2118 } while (pgd++, addr = next, addr != end);
2120 return err;
2122 EXPORT_SYMBOL_GPL(apply_to_page_range);
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically. Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
2130 * and do_anonymous_page can safely check later on).
2132 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133 pte_t *page_table, pte_t orig_pte)
2135 int same = 1;
2136 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137 if (sizeof(pte_t) > sizeof(unsigned long)) {
2138 spinlock_t *ptl = pte_lockptr(mm, pmd);
2139 spin_lock(ptl);
2140 same = pte_same(*page_table, orig_pte);
2141 spin_unlock(ptl);
2143 #endif
2144 pte_unmap(page_table);
2145 return same;
2148 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2150 debug_dma_assert_idle(src);
2153 * If the source page was a PFN mapping, we don't have
2154 * a "struct page" for it. We do a best-effort copy by
2155 * just copying from the original user address. If that
2156 * fails, we just zero-fill it. Live with it.
2158 if (unlikely(!src)) {
2159 void *kaddr = kmap_atomic(dst);
2160 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2163 * This really shouldn't fail, because the page is there
2164 * in the page tables. But it might just be unreadable,
2165 * in which case we just give up and fill the result with
2166 * zeroes.
2168 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169 clear_page(kaddr);
2170 kunmap_atomic(kaddr);
2171 flush_dcache_page(dst);
2172 } else
2173 copy_user_highpage(dst, src, va, vma);
2176 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2178 struct file *vm_file = vma->vm_file;
2180 if (vm_file)
2181 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2184 * Special mappings (e.g. VDSO) do not have any file so fake
2185 * a default GFP_KERNEL for them.
2187 return GFP_KERNEL;
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2194 * We do this without the lock held, so that it can sleep if it needs to.
2196 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2198 vm_fault_t ret;
2199 struct page *page = vmf->page;
2200 unsigned int old_flags = vmf->flags;
2202 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2204 if (vmf->vma->vm_file &&
2205 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206 return VM_FAULT_SIGBUS;
2208 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209 /* Restore original flags so that caller is not surprised */
2210 vmf->flags = old_flags;
2211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212 return ret;
2213 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214 lock_page(page);
2215 if (!page->mapping) {
2216 unlock_page(page);
2217 return 0; /* retry */
2219 ret |= VM_FAULT_LOCKED;
2220 } else
2221 VM_BUG_ON_PAGE(!PageLocked(page), page);
2222 return ret;
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2228 * The function expects the page to be locked and unlocks it.
2230 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2232 struct vm_area_struct *vma = vmf->vma;
2233 struct address_space *mapping;
2234 struct page *page = vmf->page;
2235 bool dirtied;
2236 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2238 dirtied = set_page_dirty(page);
2239 VM_BUG_ON_PAGE(PageAnon(page), page);
2241 * Take a local copy of the address_space - page.mapping may be zeroed
2242 * by truncate after unlock_page(). The address_space itself remains
2243 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2244 * release semantics to prevent the compiler from undoing this copying.
2246 mapping = page_rmapping(page);
2247 unlock_page(page);
2249 if (!page_mkwrite)
2250 file_update_time(vma->vm_file);
2253 * Throttle page dirtying rate down to writeback speed.
2255 * mapping may be NULL here because some device drivers do not
2256 * set page.mapping but still dirty their pages
2258 * Drop the mmap_sem before waiting on IO, if we can. The file
2259 * is pinning the mapping, as per above.
2261 if ((dirtied || page_mkwrite) && mapping) {
2262 struct file *fpin;
2264 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2265 balance_dirty_pages_ratelimited(mapping);
2266 if (fpin) {
2267 fput(fpin);
2268 return VM_FAULT_RETRY;
2272 return 0;
2276 * Handle write page faults for pages that can be reused in the current vma
2278 * This can happen either due to the mapping being with the VM_SHARED flag,
2279 * or due to us being the last reference standing to the page. In either
2280 * case, all we need to do here is to mark the page as writable and update
2281 * any related book-keeping.
2283 static inline void wp_page_reuse(struct vm_fault *vmf)
2284 __releases(vmf->ptl)
2286 struct vm_area_struct *vma = vmf->vma;
2287 struct page *page = vmf->page;
2288 pte_t entry;
2290 * Clear the pages cpupid information as the existing
2291 * information potentially belongs to a now completely
2292 * unrelated process.
2294 if (page)
2295 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2297 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2298 entry = pte_mkyoung(vmf->orig_pte);
2299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2300 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2301 update_mmu_cache(vma, vmf->address, vmf->pte);
2302 pte_unmap_unlock(vmf->pte, vmf->ptl);
2306 * Handle the case of a page which we actually need to copy to a new page.
2308 * Called with mmap_sem locked and the old page referenced, but
2309 * without the ptl held.
2311 * High level logic flow:
2313 * - Allocate a page, copy the content of the old page to the new one.
2314 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2315 * - Take the PTL. If the pte changed, bail out and release the allocated page
2316 * - If the pte is still the way we remember it, update the page table and all
2317 * relevant references. This includes dropping the reference the page-table
2318 * held to the old page, as well as updating the rmap.
2319 * - In any case, unlock the PTL and drop the reference we took to the old page.
2321 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2323 struct vm_area_struct *vma = vmf->vma;
2324 struct mm_struct *mm = vma->vm_mm;
2325 struct page *old_page = vmf->page;
2326 struct page *new_page = NULL;
2327 pte_t entry;
2328 int page_copied = 0;
2329 struct mem_cgroup *memcg;
2330 struct mmu_notifier_range range;
2332 if (unlikely(anon_vma_prepare(vma)))
2333 goto oom;
2335 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2336 new_page = alloc_zeroed_user_highpage_movable(vma,
2337 vmf->address);
2338 if (!new_page)
2339 goto oom;
2340 } else {
2341 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2342 vmf->address);
2343 if (!new_page)
2344 goto oom;
2345 cow_user_page(new_page, old_page, vmf->address, vma);
2348 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2349 goto oom_free_new;
2351 __SetPageUptodate(new_page);
2353 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2354 vmf->address & PAGE_MASK,
2355 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2356 mmu_notifier_invalidate_range_start(&range);
2359 * Re-check the pte - we dropped the lock
2361 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2362 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2363 if (old_page) {
2364 if (!PageAnon(old_page)) {
2365 dec_mm_counter_fast(mm,
2366 mm_counter_file(old_page));
2367 inc_mm_counter_fast(mm, MM_ANONPAGES);
2369 } else {
2370 inc_mm_counter_fast(mm, MM_ANONPAGES);
2372 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2373 entry = mk_pte(new_page, vma->vm_page_prot);
2374 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2376 * Clear the pte entry and flush it first, before updating the
2377 * pte with the new entry. This will avoid a race condition
2378 * seen in the presence of one thread doing SMC and another
2379 * thread doing COW.
2381 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2382 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2383 mem_cgroup_commit_charge(new_page, memcg, false, false);
2384 lru_cache_add_active_or_unevictable(new_page, vma);
2386 * We call the notify macro here because, when using secondary
2387 * mmu page tables (such as kvm shadow page tables), we want the
2388 * new page to be mapped directly into the secondary page table.
2390 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2391 update_mmu_cache(vma, vmf->address, vmf->pte);
2392 if (old_page) {
2394 * Only after switching the pte to the new page may
2395 * we remove the mapcount here. Otherwise another
2396 * process may come and find the rmap count decremented
2397 * before the pte is switched to the new page, and
2398 * "reuse" the old page writing into it while our pte
2399 * here still points into it and can be read by other
2400 * threads.
2402 * The critical issue is to order this
2403 * page_remove_rmap with the ptp_clear_flush above.
2404 * Those stores are ordered by (if nothing else,)
2405 * the barrier present in the atomic_add_negative
2406 * in page_remove_rmap.
2408 * Then the TLB flush in ptep_clear_flush ensures that
2409 * no process can access the old page before the
2410 * decremented mapcount is visible. And the old page
2411 * cannot be reused until after the decremented
2412 * mapcount is visible. So transitively, TLBs to
2413 * old page will be flushed before it can be reused.
2415 page_remove_rmap(old_page, false);
2418 /* Free the old page.. */
2419 new_page = old_page;
2420 page_copied = 1;
2421 } else {
2422 mem_cgroup_cancel_charge(new_page, memcg, false);
2425 if (new_page)
2426 put_page(new_page);
2428 pte_unmap_unlock(vmf->pte, vmf->ptl);
2430 * No need to double call mmu_notifier->invalidate_range() callback as
2431 * the above ptep_clear_flush_notify() did already call it.
2433 mmu_notifier_invalidate_range_only_end(&range);
2434 if (old_page) {
2436 * Don't let another task, with possibly unlocked vma,
2437 * keep the mlocked page.
2439 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2440 lock_page(old_page); /* LRU manipulation */
2441 if (PageMlocked(old_page))
2442 munlock_vma_page(old_page);
2443 unlock_page(old_page);
2445 put_page(old_page);
2447 return page_copied ? VM_FAULT_WRITE : 0;
2448 oom_free_new:
2449 put_page(new_page);
2450 oom:
2451 if (old_page)
2452 put_page(old_page);
2453 return VM_FAULT_OOM;
2457 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2458 * writeable once the page is prepared
2460 * @vmf: structure describing the fault
2462 * This function handles all that is needed to finish a write page fault in a
2463 * shared mapping due to PTE being read-only once the mapped page is prepared.
2464 * It handles locking of PTE and modifying it.
2466 * The function expects the page to be locked or other protection against
2467 * concurrent faults / writeback (such as DAX radix tree locks).
2469 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2470 * we acquired PTE lock.
2472 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2474 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2475 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2476 &vmf->ptl);
2478 * We might have raced with another page fault while we released the
2479 * pte_offset_map_lock.
2481 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2482 pte_unmap_unlock(vmf->pte, vmf->ptl);
2483 return VM_FAULT_NOPAGE;
2485 wp_page_reuse(vmf);
2486 return 0;
2490 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2491 * mapping
2493 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2495 struct vm_area_struct *vma = vmf->vma;
2497 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2498 vm_fault_t ret;
2500 pte_unmap_unlock(vmf->pte, vmf->ptl);
2501 vmf->flags |= FAULT_FLAG_MKWRITE;
2502 ret = vma->vm_ops->pfn_mkwrite(vmf);
2503 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2504 return ret;
2505 return finish_mkwrite_fault(vmf);
2507 wp_page_reuse(vmf);
2508 return VM_FAULT_WRITE;
2511 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2512 __releases(vmf->ptl)
2514 struct vm_area_struct *vma = vmf->vma;
2515 vm_fault_t ret = VM_FAULT_WRITE;
2517 get_page(vmf->page);
2519 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2520 vm_fault_t tmp;
2522 pte_unmap_unlock(vmf->pte, vmf->ptl);
2523 tmp = do_page_mkwrite(vmf);
2524 if (unlikely(!tmp || (tmp &
2525 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2526 put_page(vmf->page);
2527 return tmp;
2529 tmp = finish_mkwrite_fault(vmf);
2530 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2531 unlock_page(vmf->page);
2532 put_page(vmf->page);
2533 return tmp;
2535 } else {
2536 wp_page_reuse(vmf);
2537 lock_page(vmf->page);
2539 ret |= fault_dirty_shared_page(vmf);
2540 put_page(vmf->page);
2542 return ret;
2546 * This routine handles present pages, when users try to write
2547 * to a shared page. It is done by copying the page to a new address
2548 * and decrementing the shared-page counter for the old page.
2550 * Note that this routine assumes that the protection checks have been
2551 * done by the caller (the low-level page fault routine in most cases).
2552 * Thus we can safely just mark it writable once we've done any necessary
2553 * COW.
2555 * We also mark the page dirty at this point even though the page will
2556 * change only once the write actually happens. This avoids a few races,
2557 * and potentially makes it more efficient.
2559 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2560 * but allow concurrent faults), with pte both mapped and locked.
2561 * We return with mmap_sem still held, but pte unmapped and unlocked.
2563 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2564 __releases(vmf->ptl)
2566 struct vm_area_struct *vma = vmf->vma;
2568 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2569 if (!vmf->page) {
2571 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2572 * VM_PFNMAP VMA.
2574 * We should not cow pages in a shared writeable mapping.
2575 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2577 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2578 (VM_WRITE|VM_SHARED))
2579 return wp_pfn_shared(vmf);
2581 pte_unmap_unlock(vmf->pte, vmf->ptl);
2582 return wp_page_copy(vmf);
2586 * Take out anonymous pages first, anonymous shared vmas are
2587 * not dirty accountable.
2589 if (PageAnon(vmf->page)) {
2590 int total_map_swapcount;
2591 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2592 page_count(vmf->page) != 1))
2593 goto copy;
2594 if (!trylock_page(vmf->page)) {
2595 get_page(vmf->page);
2596 pte_unmap_unlock(vmf->pte, vmf->ptl);
2597 lock_page(vmf->page);
2598 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2599 vmf->address, &vmf->ptl);
2600 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2601 unlock_page(vmf->page);
2602 pte_unmap_unlock(vmf->pte, vmf->ptl);
2603 put_page(vmf->page);
2604 return 0;
2606 put_page(vmf->page);
2608 if (PageKsm(vmf->page)) {
2609 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2610 vmf->address);
2611 unlock_page(vmf->page);
2612 if (!reused)
2613 goto copy;
2614 wp_page_reuse(vmf);
2615 return VM_FAULT_WRITE;
2617 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2618 if (total_map_swapcount == 1) {
2620 * The page is all ours. Move it to
2621 * our anon_vma so the rmap code will
2622 * not search our parent or siblings.
2623 * Protected against the rmap code by
2624 * the page lock.
2626 page_move_anon_rmap(vmf->page, vma);
2628 unlock_page(vmf->page);
2629 wp_page_reuse(vmf);
2630 return VM_FAULT_WRITE;
2632 unlock_page(vmf->page);
2633 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2634 (VM_WRITE|VM_SHARED))) {
2635 return wp_page_shared(vmf);
2637 copy:
2639 * Ok, we need to copy. Oh, well..
2641 get_page(vmf->page);
2643 pte_unmap_unlock(vmf->pte, vmf->ptl);
2644 return wp_page_copy(vmf);
2647 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2648 unsigned long start_addr, unsigned long end_addr,
2649 struct zap_details *details)
2651 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2654 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2655 struct zap_details *details)
2657 struct vm_area_struct *vma;
2658 pgoff_t vba, vea, zba, zea;
2660 vma_interval_tree_foreach(vma, root,
2661 details->first_index, details->last_index) {
2663 vba = vma->vm_pgoff;
2664 vea = vba + vma_pages(vma) - 1;
2665 zba = details->first_index;
2666 if (zba < vba)
2667 zba = vba;
2668 zea = details->last_index;
2669 if (zea > vea)
2670 zea = vea;
2672 unmap_mapping_range_vma(vma,
2673 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2674 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2675 details);
2680 * unmap_mapping_pages() - Unmap pages from processes.
2681 * @mapping: The address space containing pages to be unmapped.
2682 * @start: Index of first page to be unmapped.
2683 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2684 * @even_cows: Whether to unmap even private COWed pages.
2686 * Unmap the pages in this address space from any userspace process which
2687 * has them mmaped. Generally, you want to remove COWed pages as well when
2688 * a file is being truncated, but not when invalidating pages from the page
2689 * cache.
2691 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2692 pgoff_t nr, bool even_cows)
2694 struct zap_details details = { };
2696 details.check_mapping = even_cows ? NULL : mapping;
2697 details.first_index = start;
2698 details.last_index = start + nr - 1;
2699 if (details.last_index < details.first_index)
2700 details.last_index = ULONG_MAX;
2702 i_mmap_lock_write(mapping);
2703 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2704 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2705 i_mmap_unlock_write(mapping);
2709 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2710 * address_space corresponding to the specified byte range in the underlying
2711 * file.
2713 * @mapping: the address space containing mmaps to be unmapped.
2714 * @holebegin: byte in first page to unmap, relative to the start of
2715 * the underlying file. This will be rounded down to a PAGE_SIZE
2716 * boundary. Note that this is different from truncate_pagecache(), which
2717 * must keep the partial page. In contrast, we must get rid of
2718 * partial pages.
2719 * @holelen: size of prospective hole in bytes. This will be rounded
2720 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2721 * end of the file.
2722 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2723 * but 0 when invalidating pagecache, don't throw away private data.
2725 void unmap_mapping_range(struct address_space *mapping,
2726 loff_t const holebegin, loff_t const holelen, int even_cows)
2728 pgoff_t hba = holebegin >> PAGE_SHIFT;
2729 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2731 /* Check for overflow. */
2732 if (sizeof(holelen) > sizeof(hlen)) {
2733 long long holeend =
2734 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2735 if (holeend & ~(long long)ULONG_MAX)
2736 hlen = ULONG_MAX - hba + 1;
2739 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2741 EXPORT_SYMBOL(unmap_mapping_range);
2744 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2745 * but allow concurrent faults), and pte mapped but not yet locked.
2746 * We return with pte unmapped and unlocked.
2748 * We return with the mmap_sem locked or unlocked in the same cases
2749 * as does filemap_fault().
2751 vm_fault_t do_swap_page(struct vm_fault *vmf)
2753 struct vm_area_struct *vma = vmf->vma;
2754 struct page *page = NULL, *swapcache;
2755 struct mem_cgroup *memcg;
2756 swp_entry_t entry;
2757 pte_t pte;
2758 int locked;
2759 int exclusive = 0;
2760 vm_fault_t ret = 0;
2762 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2763 goto out;
2765 entry = pte_to_swp_entry(vmf->orig_pte);
2766 if (unlikely(non_swap_entry(entry))) {
2767 if (is_migration_entry(entry)) {
2768 migration_entry_wait(vma->vm_mm, vmf->pmd,
2769 vmf->address);
2770 } else if (is_device_private_entry(entry)) {
2771 vmf->page = device_private_entry_to_page(entry);
2772 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2773 } else if (is_hwpoison_entry(entry)) {
2774 ret = VM_FAULT_HWPOISON;
2775 } else {
2776 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2777 ret = VM_FAULT_SIGBUS;
2779 goto out;
2783 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2784 page = lookup_swap_cache(entry, vma, vmf->address);
2785 swapcache = page;
2787 if (!page) {
2788 struct swap_info_struct *si = swp_swap_info(entry);
2790 if (si->flags & SWP_SYNCHRONOUS_IO &&
2791 __swap_count(entry) == 1) {
2792 /* skip swapcache */
2793 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2794 vmf->address);
2795 if (page) {
2796 __SetPageLocked(page);
2797 __SetPageSwapBacked(page);
2798 set_page_private(page, entry.val);
2799 lru_cache_add_anon(page);
2800 swap_readpage(page, true);
2802 } else {
2803 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2804 vmf);
2805 swapcache = page;
2808 if (!page) {
2810 * Back out if somebody else faulted in this pte
2811 * while we released the pte lock.
2813 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2814 vmf->address, &vmf->ptl);
2815 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2816 ret = VM_FAULT_OOM;
2817 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2818 goto unlock;
2821 /* Had to read the page from swap area: Major fault */
2822 ret = VM_FAULT_MAJOR;
2823 count_vm_event(PGMAJFAULT);
2824 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2825 } else if (PageHWPoison(page)) {
2827 * hwpoisoned dirty swapcache pages are kept for killing
2828 * owner processes (which may be unknown at hwpoison time)
2830 ret = VM_FAULT_HWPOISON;
2831 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2832 goto out_release;
2835 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2837 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2838 if (!locked) {
2839 ret |= VM_FAULT_RETRY;
2840 goto out_release;
2844 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2845 * release the swapcache from under us. The page pin, and pte_same
2846 * test below, are not enough to exclude that. Even if it is still
2847 * swapcache, we need to check that the page's swap has not changed.
2849 if (unlikely((!PageSwapCache(page) ||
2850 page_private(page) != entry.val)) && swapcache)
2851 goto out_page;
2853 page = ksm_might_need_to_copy(page, vma, vmf->address);
2854 if (unlikely(!page)) {
2855 ret = VM_FAULT_OOM;
2856 page = swapcache;
2857 goto out_page;
2860 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2861 &memcg, false)) {
2862 ret = VM_FAULT_OOM;
2863 goto out_page;
2867 * Back out if somebody else already faulted in this pte.
2869 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2870 &vmf->ptl);
2871 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2872 goto out_nomap;
2874 if (unlikely(!PageUptodate(page))) {
2875 ret = VM_FAULT_SIGBUS;
2876 goto out_nomap;
2880 * The page isn't present yet, go ahead with the fault.
2882 * Be careful about the sequence of operations here.
2883 * To get its accounting right, reuse_swap_page() must be called
2884 * while the page is counted on swap but not yet in mapcount i.e.
2885 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2886 * must be called after the swap_free(), or it will never succeed.
2889 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2890 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2891 pte = mk_pte(page, vma->vm_page_prot);
2892 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2893 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2894 vmf->flags &= ~FAULT_FLAG_WRITE;
2895 ret |= VM_FAULT_WRITE;
2896 exclusive = RMAP_EXCLUSIVE;
2898 flush_icache_page(vma, page);
2899 if (pte_swp_soft_dirty(vmf->orig_pte))
2900 pte = pte_mksoft_dirty(pte);
2901 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2902 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2903 vmf->orig_pte = pte;
2905 /* ksm created a completely new copy */
2906 if (unlikely(page != swapcache && swapcache)) {
2907 page_add_new_anon_rmap(page, vma, vmf->address, false);
2908 mem_cgroup_commit_charge(page, memcg, false, false);
2909 lru_cache_add_active_or_unevictable(page, vma);
2910 } else {
2911 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2912 mem_cgroup_commit_charge(page, memcg, true, false);
2913 activate_page(page);
2916 swap_free(entry);
2917 if (mem_cgroup_swap_full(page) ||
2918 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2919 try_to_free_swap(page);
2920 unlock_page(page);
2921 if (page != swapcache && swapcache) {
2923 * Hold the lock to avoid the swap entry to be reused
2924 * until we take the PT lock for the pte_same() check
2925 * (to avoid false positives from pte_same). For
2926 * further safety release the lock after the swap_free
2927 * so that the swap count won't change under a
2928 * parallel locked swapcache.
2930 unlock_page(swapcache);
2931 put_page(swapcache);
2934 if (vmf->flags & FAULT_FLAG_WRITE) {
2935 ret |= do_wp_page(vmf);
2936 if (ret & VM_FAULT_ERROR)
2937 ret &= VM_FAULT_ERROR;
2938 goto out;
2941 /* No need to invalidate - it was non-present before */
2942 update_mmu_cache(vma, vmf->address, vmf->pte);
2943 unlock:
2944 pte_unmap_unlock(vmf->pte, vmf->ptl);
2945 out:
2946 return ret;
2947 out_nomap:
2948 mem_cgroup_cancel_charge(page, memcg, false);
2949 pte_unmap_unlock(vmf->pte, vmf->ptl);
2950 out_page:
2951 unlock_page(page);
2952 out_release:
2953 put_page(page);
2954 if (page != swapcache && swapcache) {
2955 unlock_page(swapcache);
2956 put_page(swapcache);
2958 return ret;
2962 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2963 * but allow concurrent faults), and pte mapped but not yet locked.
2964 * We return with mmap_sem still held, but pte unmapped and unlocked.
2966 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2968 struct vm_area_struct *vma = vmf->vma;
2969 struct mem_cgroup *memcg;
2970 struct page *page;
2971 vm_fault_t ret = 0;
2972 pte_t entry;
2974 /* File mapping without ->vm_ops ? */
2975 if (vma->vm_flags & VM_SHARED)
2976 return VM_FAULT_SIGBUS;
2979 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2980 * pte_offset_map() on pmds where a huge pmd might be created
2981 * from a different thread.
2983 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2984 * parallel threads are excluded by other means.
2986 * Here we only have down_read(mmap_sem).
2988 if (pte_alloc(vma->vm_mm, vmf->pmd))
2989 return VM_FAULT_OOM;
2991 /* See the comment in pte_alloc_one_map() */
2992 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2993 return 0;
2995 /* Use the zero-page for reads */
2996 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2997 !mm_forbids_zeropage(vma->vm_mm)) {
2998 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2999 vma->vm_page_prot));
3000 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3001 vmf->address, &vmf->ptl);
3002 if (!pte_none(*vmf->pte))
3003 goto unlock;
3004 ret = check_stable_address_space(vma->vm_mm);
3005 if (ret)
3006 goto unlock;
3007 /* Deliver the page fault to userland, check inside PT lock */
3008 if (userfaultfd_missing(vma)) {
3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 return handle_userfault(vmf, VM_UFFD_MISSING);
3012 goto setpte;
3015 /* Allocate our own private page. */
3016 if (unlikely(anon_vma_prepare(vma)))
3017 goto oom;
3018 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3019 if (!page)
3020 goto oom;
3022 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3023 false))
3024 goto oom_free_page;
3027 * The memory barrier inside __SetPageUptodate makes sure that
3028 * preceeding stores to the page contents become visible before
3029 * the set_pte_at() write.
3031 __SetPageUptodate(page);
3033 entry = mk_pte(page, vma->vm_page_prot);
3034 if (vma->vm_flags & VM_WRITE)
3035 entry = pte_mkwrite(pte_mkdirty(entry));
3037 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3038 &vmf->ptl);
3039 if (!pte_none(*vmf->pte))
3040 goto release;
3042 ret = check_stable_address_space(vma->vm_mm);
3043 if (ret)
3044 goto release;
3046 /* Deliver the page fault to userland, check inside PT lock */
3047 if (userfaultfd_missing(vma)) {
3048 pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 mem_cgroup_cancel_charge(page, memcg, false);
3050 put_page(page);
3051 return handle_userfault(vmf, VM_UFFD_MISSING);
3054 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3055 page_add_new_anon_rmap(page, vma, vmf->address, false);
3056 mem_cgroup_commit_charge(page, memcg, false, false);
3057 lru_cache_add_active_or_unevictable(page, vma);
3058 setpte:
3059 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3061 /* No need to invalidate - it was non-present before */
3062 update_mmu_cache(vma, vmf->address, vmf->pte);
3063 unlock:
3064 pte_unmap_unlock(vmf->pte, vmf->ptl);
3065 return ret;
3066 release:
3067 mem_cgroup_cancel_charge(page, memcg, false);
3068 put_page(page);
3069 goto unlock;
3070 oom_free_page:
3071 put_page(page);
3072 oom:
3073 return VM_FAULT_OOM;
3077 * The mmap_sem must have been held on entry, and may have been
3078 * released depending on flags and vma->vm_ops->fault() return value.
3079 * See filemap_fault() and __lock_page_retry().
3081 static vm_fault_t __do_fault(struct vm_fault *vmf)
3083 struct vm_area_struct *vma = vmf->vma;
3084 vm_fault_t ret;
3087 * Preallocate pte before we take page_lock because this might lead to
3088 * deadlocks for memcg reclaim which waits for pages under writeback:
3089 * lock_page(A)
3090 * SetPageWriteback(A)
3091 * unlock_page(A)
3092 * lock_page(B)
3093 * lock_page(B)
3094 * pte_alloc_pne
3095 * shrink_page_list
3096 * wait_on_page_writeback(A)
3097 * SetPageWriteback(B)
3098 * unlock_page(B)
3099 * # flush A, B to clear the writeback
3101 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3102 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3103 if (!vmf->prealloc_pte)
3104 return VM_FAULT_OOM;
3105 smp_wmb(); /* See comment in __pte_alloc() */
3108 ret = vma->vm_ops->fault(vmf);
3109 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3110 VM_FAULT_DONE_COW)))
3111 return ret;
3113 if (unlikely(PageHWPoison(vmf->page))) {
3114 if (ret & VM_FAULT_LOCKED)
3115 unlock_page(vmf->page);
3116 put_page(vmf->page);
3117 vmf->page = NULL;
3118 return VM_FAULT_HWPOISON;
3121 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3122 lock_page(vmf->page);
3123 else
3124 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3126 return ret;
3130 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3131 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3132 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3133 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3135 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3137 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3140 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3142 struct vm_area_struct *vma = vmf->vma;
3144 if (!pmd_none(*vmf->pmd))
3145 goto map_pte;
3146 if (vmf->prealloc_pte) {
3147 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3148 if (unlikely(!pmd_none(*vmf->pmd))) {
3149 spin_unlock(vmf->ptl);
3150 goto map_pte;
3153 mm_inc_nr_ptes(vma->vm_mm);
3154 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3155 spin_unlock(vmf->ptl);
3156 vmf->prealloc_pte = NULL;
3157 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3158 return VM_FAULT_OOM;
3160 map_pte:
3162 * If a huge pmd materialized under us just retry later. Use
3163 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3164 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3165 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3166 * running immediately after a huge pmd fault in a different thread of
3167 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3168 * All we have to ensure is that it is a regular pmd that we can walk
3169 * with pte_offset_map() and we can do that through an atomic read in
3170 * C, which is what pmd_trans_unstable() provides.
3172 if (pmd_devmap_trans_unstable(vmf->pmd))
3173 return VM_FAULT_NOPAGE;
3176 * At this point we know that our vmf->pmd points to a page of ptes
3177 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3178 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3179 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3180 * be valid and we will re-check to make sure the vmf->pte isn't
3181 * pte_none() under vmf->ptl protection when we return to
3182 * alloc_set_pte().
3184 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3185 &vmf->ptl);
3186 return 0;
3189 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3190 static void deposit_prealloc_pte(struct vm_fault *vmf)
3192 struct vm_area_struct *vma = vmf->vma;
3194 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3196 * We are going to consume the prealloc table,
3197 * count that as nr_ptes.
3199 mm_inc_nr_ptes(vma->vm_mm);
3200 vmf->prealloc_pte = NULL;
3203 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3205 struct vm_area_struct *vma = vmf->vma;
3206 bool write = vmf->flags & FAULT_FLAG_WRITE;
3207 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3208 pmd_t entry;
3209 int i;
3210 vm_fault_t ret;
3212 if (!transhuge_vma_suitable(vma, haddr))
3213 return VM_FAULT_FALLBACK;
3215 ret = VM_FAULT_FALLBACK;
3216 page = compound_head(page);
3219 * Archs like ppc64 need additonal space to store information
3220 * related to pte entry. Use the preallocated table for that.
3222 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3223 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3224 if (!vmf->prealloc_pte)
3225 return VM_FAULT_OOM;
3226 smp_wmb(); /* See comment in __pte_alloc() */
3229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3230 if (unlikely(!pmd_none(*vmf->pmd)))
3231 goto out;
3233 for (i = 0; i < HPAGE_PMD_NR; i++)
3234 flush_icache_page(vma, page + i);
3236 entry = mk_huge_pmd(page, vma->vm_page_prot);
3237 if (write)
3238 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3240 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3241 page_add_file_rmap(page, true);
3243 * deposit and withdraw with pmd lock held
3245 if (arch_needs_pgtable_deposit())
3246 deposit_prealloc_pte(vmf);
3248 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3250 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3252 /* fault is handled */
3253 ret = 0;
3254 count_vm_event(THP_FILE_MAPPED);
3255 out:
3256 spin_unlock(vmf->ptl);
3257 return ret;
3259 #else
3260 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3262 BUILD_BUG();
3263 return 0;
3265 #endif
3268 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3269 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3271 * @vmf: fault environment
3272 * @memcg: memcg to charge page (only for private mappings)
3273 * @page: page to map
3275 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3276 * return.
3278 * Target users are page handler itself and implementations of
3279 * vm_ops->map_pages.
3281 * Return: %0 on success, %VM_FAULT_ code in case of error.
3283 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3284 struct page *page)
3286 struct vm_area_struct *vma = vmf->vma;
3287 bool write = vmf->flags & FAULT_FLAG_WRITE;
3288 pte_t entry;
3289 vm_fault_t ret;
3291 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3292 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3293 /* THP on COW? */
3294 VM_BUG_ON_PAGE(memcg, page);
3296 ret = do_set_pmd(vmf, page);
3297 if (ret != VM_FAULT_FALLBACK)
3298 return ret;
3301 if (!vmf->pte) {
3302 ret = pte_alloc_one_map(vmf);
3303 if (ret)
3304 return ret;
3307 /* Re-check under ptl */
3308 if (unlikely(!pte_none(*vmf->pte)))
3309 return VM_FAULT_NOPAGE;
3311 flush_icache_page(vma, page);
3312 entry = mk_pte(page, vma->vm_page_prot);
3313 if (write)
3314 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3315 /* copy-on-write page */
3316 if (write && !(vma->vm_flags & VM_SHARED)) {
3317 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3318 page_add_new_anon_rmap(page, vma, vmf->address, false);
3319 mem_cgroup_commit_charge(page, memcg, false, false);
3320 lru_cache_add_active_or_unevictable(page, vma);
3321 } else {
3322 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3323 page_add_file_rmap(page, false);
3325 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3327 /* no need to invalidate: a not-present page won't be cached */
3328 update_mmu_cache(vma, vmf->address, vmf->pte);
3330 return 0;
3335 * finish_fault - finish page fault once we have prepared the page to fault
3337 * @vmf: structure describing the fault
3339 * This function handles all that is needed to finish a page fault once the
3340 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3341 * given page, adds reverse page mapping, handles memcg charges and LRU
3342 * addition.
3344 * The function expects the page to be locked and on success it consumes a
3345 * reference of a page being mapped (for the PTE which maps it).
3347 * Return: %0 on success, %VM_FAULT_ code in case of error.
3349 vm_fault_t finish_fault(struct vm_fault *vmf)
3351 struct page *page;
3352 vm_fault_t ret = 0;
3354 /* Did we COW the page? */
3355 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3356 !(vmf->vma->vm_flags & VM_SHARED))
3357 page = vmf->cow_page;
3358 else
3359 page = vmf->page;
3362 * check even for read faults because we might have lost our CoWed
3363 * page
3365 if (!(vmf->vma->vm_flags & VM_SHARED))
3366 ret = check_stable_address_space(vmf->vma->vm_mm);
3367 if (!ret)
3368 ret = alloc_set_pte(vmf, vmf->memcg, page);
3369 if (vmf->pte)
3370 pte_unmap_unlock(vmf->pte, vmf->ptl);
3371 return ret;
3374 static unsigned long fault_around_bytes __read_mostly =
3375 rounddown_pow_of_two(65536);
3377 #ifdef CONFIG_DEBUG_FS
3378 static int fault_around_bytes_get(void *data, u64 *val)
3380 *val = fault_around_bytes;
3381 return 0;
3385 * fault_around_bytes must be rounded down to the nearest page order as it's
3386 * what do_fault_around() expects to see.
3388 static int fault_around_bytes_set(void *data, u64 val)
3390 if (val / PAGE_SIZE > PTRS_PER_PTE)
3391 return -EINVAL;
3392 if (val > PAGE_SIZE)
3393 fault_around_bytes = rounddown_pow_of_two(val);
3394 else
3395 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3396 return 0;
3398 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3399 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3401 static int __init fault_around_debugfs(void)
3403 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3404 &fault_around_bytes_fops);
3405 return 0;
3407 late_initcall(fault_around_debugfs);
3408 #endif
3411 * do_fault_around() tries to map few pages around the fault address. The hope
3412 * is that the pages will be needed soon and this will lower the number of
3413 * faults to handle.
3415 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3416 * not ready to be mapped: not up-to-date, locked, etc.
3418 * This function is called with the page table lock taken. In the split ptlock
3419 * case the page table lock only protects only those entries which belong to
3420 * the page table corresponding to the fault address.
3422 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3423 * only once.
3425 * fault_around_bytes defines how many bytes we'll try to map.
3426 * do_fault_around() expects it to be set to a power of two less than or equal
3427 * to PTRS_PER_PTE.
3429 * The virtual address of the area that we map is naturally aligned to
3430 * fault_around_bytes rounded down to the machine page size
3431 * (and therefore to page order). This way it's easier to guarantee
3432 * that we don't cross page table boundaries.
3434 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3436 unsigned long address = vmf->address, nr_pages, mask;
3437 pgoff_t start_pgoff = vmf->pgoff;
3438 pgoff_t end_pgoff;
3439 int off;
3440 vm_fault_t ret = 0;
3442 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3443 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3445 vmf->address = max(address & mask, vmf->vma->vm_start);
3446 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3447 start_pgoff -= off;
3450 * end_pgoff is either the end of the page table, the end of
3451 * the vma or nr_pages from start_pgoff, depending what is nearest.
3453 end_pgoff = start_pgoff -
3454 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3455 PTRS_PER_PTE - 1;
3456 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3457 start_pgoff + nr_pages - 1);
3459 if (pmd_none(*vmf->pmd)) {
3460 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3461 if (!vmf->prealloc_pte)
3462 goto out;
3463 smp_wmb(); /* See comment in __pte_alloc() */
3466 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3468 /* Huge page is mapped? Page fault is solved */
3469 if (pmd_trans_huge(*vmf->pmd)) {
3470 ret = VM_FAULT_NOPAGE;
3471 goto out;
3474 /* ->map_pages() haven't done anything useful. Cold page cache? */
3475 if (!vmf->pte)
3476 goto out;
3478 /* check if the page fault is solved */
3479 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3480 if (!pte_none(*vmf->pte))
3481 ret = VM_FAULT_NOPAGE;
3482 pte_unmap_unlock(vmf->pte, vmf->ptl);
3483 out:
3484 vmf->address = address;
3485 vmf->pte = NULL;
3486 return ret;
3489 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3491 struct vm_area_struct *vma = vmf->vma;
3492 vm_fault_t ret = 0;
3495 * Let's call ->map_pages() first and use ->fault() as fallback
3496 * if page by the offset is not ready to be mapped (cold cache or
3497 * something).
3499 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3500 ret = do_fault_around(vmf);
3501 if (ret)
3502 return ret;
3505 ret = __do_fault(vmf);
3506 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3507 return ret;
3509 ret |= finish_fault(vmf);
3510 unlock_page(vmf->page);
3511 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3512 put_page(vmf->page);
3513 return ret;
3516 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3518 struct vm_area_struct *vma = vmf->vma;
3519 vm_fault_t ret;
3521 if (unlikely(anon_vma_prepare(vma)))
3522 return VM_FAULT_OOM;
3524 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3525 if (!vmf->cow_page)
3526 return VM_FAULT_OOM;
3528 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3529 &vmf->memcg, false)) {
3530 put_page(vmf->cow_page);
3531 return VM_FAULT_OOM;
3534 ret = __do_fault(vmf);
3535 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3536 goto uncharge_out;
3537 if (ret & VM_FAULT_DONE_COW)
3538 return ret;
3540 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3541 __SetPageUptodate(vmf->cow_page);
3543 ret |= finish_fault(vmf);
3544 unlock_page(vmf->page);
3545 put_page(vmf->page);
3546 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3547 goto uncharge_out;
3548 return ret;
3549 uncharge_out:
3550 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3551 put_page(vmf->cow_page);
3552 return ret;
3555 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3557 struct vm_area_struct *vma = vmf->vma;
3558 vm_fault_t ret, tmp;
3560 ret = __do_fault(vmf);
3561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3562 return ret;
3565 * Check if the backing address space wants to know that the page is
3566 * about to become writable
3568 if (vma->vm_ops->page_mkwrite) {
3569 unlock_page(vmf->page);
3570 tmp = do_page_mkwrite(vmf);
3571 if (unlikely(!tmp ||
3572 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3573 put_page(vmf->page);
3574 return tmp;
3578 ret |= finish_fault(vmf);
3579 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3580 VM_FAULT_RETRY))) {
3581 unlock_page(vmf->page);
3582 put_page(vmf->page);
3583 return ret;
3586 ret |= fault_dirty_shared_page(vmf);
3587 return ret;
3591 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3592 * but allow concurrent faults).
3593 * The mmap_sem may have been released depending on flags and our
3594 * return value. See filemap_fault() and __lock_page_or_retry().
3595 * If mmap_sem is released, vma may become invalid (for example
3596 * by other thread calling munmap()).
3598 static vm_fault_t do_fault(struct vm_fault *vmf)
3600 struct vm_area_struct *vma = vmf->vma;
3601 struct mm_struct *vm_mm = vma->vm_mm;
3602 vm_fault_t ret;
3605 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3607 if (!vma->vm_ops->fault) {
3609 * If we find a migration pmd entry or a none pmd entry, which
3610 * should never happen, return SIGBUS
3612 if (unlikely(!pmd_present(*vmf->pmd)))
3613 ret = VM_FAULT_SIGBUS;
3614 else {
3615 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3616 vmf->pmd,
3617 vmf->address,
3618 &vmf->ptl);
3620 * Make sure this is not a temporary clearing of pte
3621 * by holding ptl and checking again. A R/M/W update
3622 * of pte involves: take ptl, clearing the pte so that
3623 * we don't have concurrent modification by hardware
3624 * followed by an update.
3626 if (unlikely(pte_none(*vmf->pte)))
3627 ret = VM_FAULT_SIGBUS;
3628 else
3629 ret = VM_FAULT_NOPAGE;
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
3633 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3634 ret = do_read_fault(vmf);
3635 else if (!(vma->vm_flags & VM_SHARED))
3636 ret = do_cow_fault(vmf);
3637 else
3638 ret = do_shared_fault(vmf);
3640 /* preallocated pagetable is unused: free it */
3641 if (vmf->prealloc_pte) {
3642 pte_free(vm_mm, vmf->prealloc_pte);
3643 vmf->prealloc_pte = NULL;
3645 return ret;
3648 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3649 unsigned long addr, int page_nid,
3650 int *flags)
3652 get_page(page);
3654 count_vm_numa_event(NUMA_HINT_FAULTS);
3655 if (page_nid == numa_node_id()) {
3656 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3657 *flags |= TNF_FAULT_LOCAL;
3660 return mpol_misplaced(page, vma, addr);
3663 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3665 struct vm_area_struct *vma = vmf->vma;
3666 struct page *page = NULL;
3667 int page_nid = NUMA_NO_NODE;
3668 int last_cpupid;
3669 int target_nid;
3670 bool migrated = false;
3671 pte_t pte, old_pte;
3672 bool was_writable = pte_savedwrite(vmf->orig_pte);
3673 int flags = 0;
3676 * The "pte" at this point cannot be used safely without
3677 * validation through pte_unmap_same(). It's of NUMA type but
3678 * the pfn may be screwed if the read is non atomic.
3680 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3681 spin_lock(vmf->ptl);
3682 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3683 pte_unmap_unlock(vmf->pte, vmf->ptl);
3684 goto out;
3688 * Make it present again, Depending on how arch implementes non
3689 * accessible ptes, some can allow access by kernel mode.
3691 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3692 pte = pte_modify(old_pte, vma->vm_page_prot);
3693 pte = pte_mkyoung(pte);
3694 if (was_writable)
3695 pte = pte_mkwrite(pte);
3696 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3697 update_mmu_cache(vma, vmf->address, vmf->pte);
3699 page = vm_normal_page(vma, vmf->address, pte);
3700 if (!page) {
3701 pte_unmap_unlock(vmf->pte, vmf->ptl);
3702 return 0;
3705 /* TODO: handle PTE-mapped THP */
3706 if (PageCompound(page)) {
3707 pte_unmap_unlock(vmf->pte, vmf->ptl);
3708 return 0;
3712 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3713 * much anyway since they can be in shared cache state. This misses
3714 * the case where a mapping is writable but the process never writes
3715 * to it but pte_write gets cleared during protection updates and
3716 * pte_dirty has unpredictable behaviour between PTE scan updates,
3717 * background writeback, dirty balancing and application behaviour.
3719 if (!pte_write(pte))
3720 flags |= TNF_NO_GROUP;
3723 * Flag if the page is shared between multiple address spaces. This
3724 * is later used when determining whether to group tasks together
3726 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3727 flags |= TNF_SHARED;
3729 last_cpupid = page_cpupid_last(page);
3730 page_nid = page_to_nid(page);
3731 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3732 &flags);
3733 pte_unmap_unlock(vmf->pte, vmf->ptl);
3734 if (target_nid == NUMA_NO_NODE) {
3735 put_page(page);
3736 goto out;
3739 /* Migrate to the requested node */
3740 migrated = migrate_misplaced_page(page, vma, target_nid);
3741 if (migrated) {
3742 page_nid = target_nid;
3743 flags |= TNF_MIGRATED;
3744 } else
3745 flags |= TNF_MIGRATE_FAIL;
3747 out:
3748 if (page_nid != NUMA_NO_NODE)
3749 task_numa_fault(last_cpupid, page_nid, 1, flags);
3750 return 0;
3753 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3755 if (vma_is_anonymous(vmf->vma))
3756 return do_huge_pmd_anonymous_page(vmf);
3757 if (vmf->vma->vm_ops->huge_fault)
3758 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3759 return VM_FAULT_FALLBACK;
3762 /* `inline' is required to avoid gcc 4.1.2 build error */
3763 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3765 if (vma_is_anonymous(vmf->vma))
3766 return do_huge_pmd_wp_page(vmf, orig_pmd);
3767 if (vmf->vma->vm_ops->huge_fault)
3768 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3770 /* COW handled on pte level: split pmd */
3771 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3772 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3774 return VM_FAULT_FALLBACK;
3777 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3779 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3782 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3785 /* No support for anonymous transparent PUD pages yet */
3786 if (vma_is_anonymous(vmf->vma))
3787 return VM_FAULT_FALLBACK;
3788 if (vmf->vma->vm_ops->huge_fault)
3789 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3790 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3791 return VM_FAULT_FALLBACK;
3794 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3796 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3797 /* No support for anonymous transparent PUD pages yet */
3798 if (vma_is_anonymous(vmf->vma))
3799 return VM_FAULT_FALLBACK;
3800 if (vmf->vma->vm_ops->huge_fault)
3801 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3803 return VM_FAULT_FALLBACK;
3807 * These routines also need to handle stuff like marking pages dirty
3808 * and/or accessed for architectures that don't do it in hardware (most
3809 * RISC architectures). The early dirtying is also good on the i386.
3811 * There is also a hook called "update_mmu_cache()" that architectures
3812 * with external mmu caches can use to update those (ie the Sparc or
3813 * PowerPC hashed page tables that act as extended TLBs).
3815 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3816 * concurrent faults).
3818 * The mmap_sem may have been released depending on flags and our return value.
3819 * See filemap_fault() and __lock_page_or_retry().
3821 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3823 pte_t entry;
3825 if (unlikely(pmd_none(*vmf->pmd))) {
3827 * Leave __pte_alloc() until later: because vm_ops->fault may
3828 * want to allocate huge page, and if we expose page table
3829 * for an instant, it will be difficult to retract from
3830 * concurrent faults and from rmap lookups.
3832 vmf->pte = NULL;
3833 } else {
3834 /* See comment in pte_alloc_one_map() */
3835 if (pmd_devmap_trans_unstable(vmf->pmd))
3836 return 0;
3838 * A regular pmd is established and it can't morph into a huge
3839 * pmd from under us anymore at this point because we hold the
3840 * mmap_sem read mode and khugepaged takes it in write mode.
3841 * So now it's safe to run pte_offset_map().
3843 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3844 vmf->orig_pte = *vmf->pte;
3847 * some architectures can have larger ptes than wordsize,
3848 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3849 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3850 * accesses. The code below just needs a consistent view
3851 * for the ifs and we later double check anyway with the
3852 * ptl lock held. So here a barrier will do.
3854 barrier();
3855 if (pte_none(vmf->orig_pte)) {
3856 pte_unmap(vmf->pte);
3857 vmf->pte = NULL;
3861 if (!vmf->pte) {
3862 if (vma_is_anonymous(vmf->vma))
3863 return do_anonymous_page(vmf);
3864 else
3865 return do_fault(vmf);
3868 if (!pte_present(vmf->orig_pte))
3869 return do_swap_page(vmf);
3871 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3872 return do_numa_page(vmf);
3874 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3875 spin_lock(vmf->ptl);
3876 entry = vmf->orig_pte;
3877 if (unlikely(!pte_same(*vmf->pte, entry)))
3878 goto unlock;
3879 if (vmf->flags & FAULT_FLAG_WRITE) {
3880 if (!pte_write(entry))
3881 return do_wp_page(vmf);
3882 entry = pte_mkdirty(entry);
3884 entry = pte_mkyoung(entry);
3885 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3886 vmf->flags & FAULT_FLAG_WRITE)) {
3887 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3888 } else {
3890 * This is needed only for protection faults but the arch code
3891 * is not yet telling us if this is a protection fault or not.
3892 * This still avoids useless tlb flushes for .text page faults
3893 * with threads.
3895 if (vmf->flags & FAULT_FLAG_WRITE)
3896 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3898 unlock:
3899 pte_unmap_unlock(vmf->pte, vmf->ptl);
3900 return 0;
3904 * By the time we get here, we already hold the mm semaphore
3906 * The mmap_sem may have been released depending on flags and our
3907 * return value. See filemap_fault() and __lock_page_or_retry().
3909 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3910 unsigned long address, unsigned int flags)
3912 struct vm_fault vmf = {
3913 .vma = vma,
3914 .address = address & PAGE_MASK,
3915 .flags = flags,
3916 .pgoff = linear_page_index(vma, address),
3917 .gfp_mask = __get_fault_gfp_mask(vma),
3919 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3920 struct mm_struct *mm = vma->vm_mm;
3921 pgd_t *pgd;
3922 p4d_t *p4d;
3923 vm_fault_t ret;
3925 pgd = pgd_offset(mm, address);
3926 p4d = p4d_alloc(mm, pgd, address);
3927 if (!p4d)
3928 return VM_FAULT_OOM;
3930 vmf.pud = pud_alloc(mm, p4d, address);
3931 if (!vmf.pud)
3932 return VM_FAULT_OOM;
3933 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3934 ret = create_huge_pud(&vmf);
3935 if (!(ret & VM_FAULT_FALLBACK))
3936 return ret;
3937 } else {
3938 pud_t orig_pud = *vmf.pud;
3940 barrier();
3941 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3943 /* NUMA case for anonymous PUDs would go here */
3945 if (dirty && !pud_write(orig_pud)) {
3946 ret = wp_huge_pud(&vmf, orig_pud);
3947 if (!(ret & VM_FAULT_FALLBACK))
3948 return ret;
3949 } else {
3950 huge_pud_set_accessed(&vmf, orig_pud);
3951 return 0;
3956 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3957 if (!vmf.pmd)
3958 return VM_FAULT_OOM;
3959 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3960 ret = create_huge_pmd(&vmf);
3961 if (!(ret & VM_FAULT_FALLBACK))
3962 return ret;
3963 } else {
3964 pmd_t orig_pmd = *vmf.pmd;
3966 barrier();
3967 if (unlikely(is_swap_pmd(orig_pmd))) {
3968 VM_BUG_ON(thp_migration_supported() &&
3969 !is_pmd_migration_entry(orig_pmd));
3970 if (is_pmd_migration_entry(orig_pmd))
3971 pmd_migration_entry_wait(mm, vmf.pmd);
3972 return 0;
3974 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3975 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3976 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3978 if (dirty && !pmd_write(orig_pmd)) {
3979 ret = wp_huge_pmd(&vmf, orig_pmd);
3980 if (!(ret & VM_FAULT_FALLBACK))
3981 return ret;
3982 } else {
3983 huge_pmd_set_accessed(&vmf, orig_pmd);
3984 return 0;
3989 return handle_pte_fault(&vmf);
3993 * By the time we get here, we already hold the mm semaphore
3995 * The mmap_sem may have been released depending on flags and our
3996 * return value. See filemap_fault() and __lock_page_or_retry().
3998 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3999 unsigned int flags)
4001 vm_fault_t ret;
4003 __set_current_state(TASK_RUNNING);
4005 count_vm_event(PGFAULT);
4006 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4008 /* do counter updates before entering really critical section. */
4009 check_sync_rss_stat(current);
4011 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4012 flags & FAULT_FLAG_INSTRUCTION,
4013 flags & FAULT_FLAG_REMOTE))
4014 return VM_FAULT_SIGSEGV;
4017 * Enable the memcg OOM handling for faults triggered in user
4018 * space. Kernel faults are handled more gracefully.
4020 if (flags & FAULT_FLAG_USER)
4021 mem_cgroup_enter_user_fault();
4023 if (unlikely(is_vm_hugetlb_page(vma)))
4024 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4025 else
4026 ret = __handle_mm_fault(vma, address, flags);
4028 if (flags & FAULT_FLAG_USER) {
4029 mem_cgroup_exit_user_fault();
4031 * The task may have entered a memcg OOM situation but
4032 * if the allocation error was handled gracefully (no
4033 * VM_FAULT_OOM), there is no need to kill anything.
4034 * Just clean up the OOM state peacefully.
4036 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4037 mem_cgroup_oom_synchronize(false);
4040 return ret;
4042 EXPORT_SYMBOL_GPL(handle_mm_fault);
4044 #ifndef __PAGETABLE_P4D_FOLDED
4046 * Allocate p4d page table.
4047 * We've already handled the fast-path in-line.
4049 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4051 p4d_t *new = p4d_alloc_one(mm, address);
4052 if (!new)
4053 return -ENOMEM;
4055 smp_wmb(); /* See comment in __pte_alloc */
4057 spin_lock(&mm->page_table_lock);
4058 if (pgd_present(*pgd)) /* Another has populated it */
4059 p4d_free(mm, new);
4060 else
4061 pgd_populate(mm, pgd, new);
4062 spin_unlock(&mm->page_table_lock);
4063 return 0;
4065 #endif /* __PAGETABLE_P4D_FOLDED */
4067 #ifndef __PAGETABLE_PUD_FOLDED
4069 * Allocate page upper directory.
4070 * We've already handled the fast-path in-line.
4072 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4074 pud_t *new = pud_alloc_one(mm, address);
4075 if (!new)
4076 return -ENOMEM;
4078 smp_wmb(); /* See comment in __pte_alloc */
4080 spin_lock(&mm->page_table_lock);
4081 #ifndef __ARCH_HAS_5LEVEL_HACK
4082 if (!p4d_present(*p4d)) {
4083 mm_inc_nr_puds(mm);
4084 p4d_populate(mm, p4d, new);
4085 } else /* Another has populated it */
4086 pud_free(mm, new);
4087 #else
4088 if (!pgd_present(*p4d)) {
4089 mm_inc_nr_puds(mm);
4090 pgd_populate(mm, p4d, new);
4091 } else /* Another has populated it */
4092 pud_free(mm, new);
4093 #endif /* __ARCH_HAS_5LEVEL_HACK */
4094 spin_unlock(&mm->page_table_lock);
4095 return 0;
4097 #endif /* __PAGETABLE_PUD_FOLDED */
4099 #ifndef __PAGETABLE_PMD_FOLDED
4101 * Allocate page middle directory.
4102 * We've already handled the fast-path in-line.
4104 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4106 spinlock_t *ptl;
4107 pmd_t *new = pmd_alloc_one(mm, address);
4108 if (!new)
4109 return -ENOMEM;
4111 smp_wmb(); /* See comment in __pte_alloc */
4113 ptl = pud_lock(mm, pud);
4114 #ifndef __ARCH_HAS_4LEVEL_HACK
4115 if (!pud_present(*pud)) {
4116 mm_inc_nr_pmds(mm);
4117 pud_populate(mm, pud, new);
4118 } else /* Another has populated it */
4119 pmd_free(mm, new);
4120 #else
4121 if (!pgd_present(*pud)) {
4122 mm_inc_nr_pmds(mm);
4123 pgd_populate(mm, pud, new);
4124 } else /* Another has populated it */
4125 pmd_free(mm, new);
4126 #endif /* __ARCH_HAS_4LEVEL_HACK */
4127 spin_unlock(ptl);
4128 return 0;
4130 #endif /* __PAGETABLE_PMD_FOLDED */
4132 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4133 struct mmu_notifier_range *range,
4134 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4136 pgd_t *pgd;
4137 p4d_t *p4d;
4138 pud_t *pud;
4139 pmd_t *pmd;
4140 pte_t *ptep;
4142 pgd = pgd_offset(mm, address);
4143 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4144 goto out;
4146 p4d = p4d_offset(pgd, address);
4147 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4148 goto out;
4150 pud = pud_offset(p4d, address);
4151 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4152 goto out;
4154 pmd = pmd_offset(pud, address);
4155 VM_BUG_ON(pmd_trans_huge(*pmd));
4157 if (pmd_huge(*pmd)) {
4158 if (!pmdpp)
4159 goto out;
4161 if (range) {
4162 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4163 NULL, mm, address & PMD_MASK,
4164 (address & PMD_MASK) + PMD_SIZE);
4165 mmu_notifier_invalidate_range_start(range);
4167 *ptlp = pmd_lock(mm, pmd);
4168 if (pmd_huge(*pmd)) {
4169 *pmdpp = pmd;
4170 return 0;
4172 spin_unlock(*ptlp);
4173 if (range)
4174 mmu_notifier_invalidate_range_end(range);
4177 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4178 goto out;
4180 if (range) {
4181 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4182 address & PAGE_MASK,
4183 (address & PAGE_MASK) + PAGE_SIZE);
4184 mmu_notifier_invalidate_range_start(range);
4186 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4187 if (!pte_present(*ptep))
4188 goto unlock;
4189 *ptepp = ptep;
4190 return 0;
4191 unlock:
4192 pte_unmap_unlock(ptep, *ptlp);
4193 if (range)
4194 mmu_notifier_invalidate_range_end(range);
4195 out:
4196 return -EINVAL;
4199 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4200 pte_t **ptepp, spinlock_t **ptlp)
4202 int res;
4204 /* (void) is needed to make gcc happy */
4205 (void) __cond_lock(*ptlp,
4206 !(res = __follow_pte_pmd(mm, address, NULL,
4207 ptepp, NULL, ptlp)));
4208 return res;
4211 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4212 struct mmu_notifier_range *range,
4213 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4215 int res;
4217 /* (void) is needed to make gcc happy */
4218 (void) __cond_lock(*ptlp,
4219 !(res = __follow_pte_pmd(mm, address, range,
4220 ptepp, pmdpp, ptlp)));
4221 return res;
4223 EXPORT_SYMBOL(follow_pte_pmd);
4226 * follow_pfn - look up PFN at a user virtual address
4227 * @vma: memory mapping
4228 * @address: user virtual address
4229 * @pfn: location to store found PFN
4231 * Only IO mappings and raw PFN mappings are allowed.
4233 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4235 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4236 unsigned long *pfn)
4238 int ret = -EINVAL;
4239 spinlock_t *ptl;
4240 pte_t *ptep;
4242 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4243 return ret;
4245 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4246 if (ret)
4247 return ret;
4248 *pfn = pte_pfn(*ptep);
4249 pte_unmap_unlock(ptep, ptl);
4250 return 0;
4252 EXPORT_SYMBOL(follow_pfn);
4254 #ifdef CONFIG_HAVE_IOREMAP_PROT
4255 int follow_phys(struct vm_area_struct *vma,
4256 unsigned long address, unsigned int flags,
4257 unsigned long *prot, resource_size_t *phys)
4259 int ret = -EINVAL;
4260 pte_t *ptep, pte;
4261 spinlock_t *ptl;
4263 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4264 goto out;
4266 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4267 goto out;
4268 pte = *ptep;
4270 if ((flags & FOLL_WRITE) && !pte_write(pte))
4271 goto unlock;
4273 *prot = pgprot_val(pte_pgprot(pte));
4274 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4276 ret = 0;
4277 unlock:
4278 pte_unmap_unlock(ptep, ptl);
4279 out:
4280 return ret;
4283 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4284 void *buf, int len, int write)
4286 resource_size_t phys_addr;
4287 unsigned long prot = 0;
4288 void __iomem *maddr;
4289 int offset = addr & (PAGE_SIZE-1);
4291 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4292 return -EINVAL;
4294 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4295 if (!maddr)
4296 return -ENOMEM;
4298 if (write)
4299 memcpy_toio(maddr + offset, buf, len);
4300 else
4301 memcpy_fromio(buf, maddr + offset, len);
4302 iounmap(maddr);
4304 return len;
4306 EXPORT_SYMBOL_GPL(generic_access_phys);
4307 #endif
4310 * Access another process' address space as given in mm. If non-NULL, use the
4311 * given task for page fault accounting.
4313 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4314 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4316 struct vm_area_struct *vma;
4317 void *old_buf = buf;
4318 int write = gup_flags & FOLL_WRITE;
4320 if (down_read_killable(&mm->mmap_sem))
4321 return 0;
4323 /* ignore errors, just check how much was successfully transferred */
4324 while (len) {
4325 int bytes, ret, offset;
4326 void *maddr;
4327 struct page *page = NULL;
4329 ret = get_user_pages_remote(tsk, mm, addr, 1,
4330 gup_flags, &page, &vma, NULL);
4331 if (ret <= 0) {
4332 #ifndef CONFIG_HAVE_IOREMAP_PROT
4333 break;
4334 #else
4336 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4337 * we can access using slightly different code.
4339 vma = find_vma(mm, addr);
4340 if (!vma || vma->vm_start > addr)
4341 break;
4342 if (vma->vm_ops && vma->vm_ops->access)
4343 ret = vma->vm_ops->access(vma, addr, buf,
4344 len, write);
4345 if (ret <= 0)
4346 break;
4347 bytes = ret;
4348 #endif
4349 } else {
4350 bytes = len;
4351 offset = addr & (PAGE_SIZE-1);
4352 if (bytes > PAGE_SIZE-offset)
4353 bytes = PAGE_SIZE-offset;
4355 maddr = kmap(page);
4356 if (write) {
4357 copy_to_user_page(vma, page, addr,
4358 maddr + offset, buf, bytes);
4359 set_page_dirty_lock(page);
4360 } else {
4361 copy_from_user_page(vma, page, addr,
4362 buf, maddr + offset, bytes);
4364 kunmap(page);
4365 put_page(page);
4367 len -= bytes;
4368 buf += bytes;
4369 addr += bytes;
4371 up_read(&mm->mmap_sem);
4373 return buf - old_buf;
4377 * access_remote_vm - access another process' address space
4378 * @mm: the mm_struct of the target address space
4379 * @addr: start address to access
4380 * @buf: source or destination buffer
4381 * @len: number of bytes to transfer
4382 * @gup_flags: flags modifying lookup behaviour
4384 * The caller must hold a reference on @mm.
4386 * Return: number of bytes copied from source to destination.
4388 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4389 void *buf, int len, unsigned int gup_flags)
4391 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4395 * Access another process' address space.
4396 * Source/target buffer must be kernel space,
4397 * Do not walk the page table directly, use get_user_pages
4399 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4400 void *buf, int len, unsigned int gup_flags)
4402 struct mm_struct *mm;
4403 int ret;
4405 mm = get_task_mm(tsk);
4406 if (!mm)
4407 return 0;
4409 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4411 mmput(mm);
4413 return ret;
4415 EXPORT_SYMBOL_GPL(access_process_vm);
4418 * Print the name of a VMA.
4420 void print_vma_addr(char *prefix, unsigned long ip)
4422 struct mm_struct *mm = current->mm;
4423 struct vm_area_struct *vma;
4426 * we might be running from an atomic context so we cannot sleep
4428 if (!down_read_trylock(&mm->mmap_sem))
4429 return;
4431 vma = find_vma(mm, ip);
4432 if (vma && vma->vm_file) {
4433 struct file *f = vma->vm_file;
4434 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4435 if (buf) {
4436 char *p;
4438 p = file_path(f, buf, PAGE_SIZE);
4439 if (IS_ERR(p))
4440 p = "?";
4441 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4442 vma->vm_start,
4443 vma->vm_end - vma->vm_start);
4444 free_page((unsigned long)buf);
4447 up_read(&mm->mmap_sem);
4450 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4451 void __might_fault(const char *file, int line)
4454 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4455 * holding the mmap_sem, this is safe because kernel memory doesn't
4456 * get paged out, therefore we'll never actually fault, and the
4457 * below annotations will generate false positives.
4459 if (uaccess_kernel())
4460 return;
4461 if (pagefault_disabled())
4462 return;
4463 __might_sleep(file, line, 0);
4464 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4465 if (current->mm)
4466 might_lock_read(&current->mm->mmap_sem);
4467 #endif
4469 EXPORT_SYMBOL(__might_fault);
4470 #endif
4472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4474 * Process all subpages of the specified huge page with the specified
4475 * operation. The target subpage will be processed last to keep its
4476 * cache lines hot.
4478 static inline void process_huge_page(
4479 unsigned long addr_hint, unsigned int pages_per_huge_page,
4480 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4481 void *arg)
4483 int i, n, base, l;
4484 unsigned long addr = addr_hint &
4485 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4487 /* Process target subpage last to keep its cache lines hot */
4488 might_sleep();
4489 n = (addr_hint - addr) / PAGE_SIZE;
4490 if (2 * n <= pages_per_huge_page) {
4491 /* If target subpage in first half of huge page */
4492 base = 0;
4493 l = n;
4494 /* Process subpages at the end of huge page */
4495 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4496 cond_resched();
4497 process_subpage(addr + i * PAGE_SIZE, i, arg);
4499 } else {
4500 /* If target subpage in second half of huge page */
4501 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4502 l = pages_per_huge_page - n;
4503 /* Process subpages at the begin of huge page */
4504 for (i = 0; i < base; i++) {
4505 cond_resched();
4506 process_subpage(addr + i * PAGE_SIZE, i, arg);
4510 * Process remaining subpages in left-right-left-right pattern
4511 * towards the target subpage
4513 for (i = 0; i < l; i++) {
4514 int left_idx = base + i;
4515 int right_idx = base + 2 * l - 1 - i;
4517 cond_resched();
4518 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4519 cond_resched();
4520 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4524 static void clear_gigantic_page(struct page *page,
4525 unsigned long addr,
4526 unsigned int pages_per_huge_page)
4528 int i;
4529 struct page *p = page;
4531 might_sleep();
4532 for (i = 0; i < pages_per_huge_page;
4533 i++, p = mem_map_next(p, page, i)) {
4534 cond_resched();
4535 clear_user_highpage(p, addr + i * PAGE_SIZE);
4539 static void clear_subpage(unsigned long addr, int idx, void *arg)
4541 struct page *page = arg;
4543 clear_user_highpage(page + idx, addr);
4546 void clear_huge_page(struct page *page,
4547 unsigned long addr_hint, unsigned int pages_per_huge_page)
4549 unsigned long addr = addr_hint &
4550 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4552 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4553 clear_gigantic_page(page, addr, pages_per_huge_page);
4554 return;
4557 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4560 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4561 unsigned long addr,
4562 struct vm_area_struct *vma,
4563 unsigned int pages_per_huge_page)
4565 int i;
4566 struct page *dst_base = dst;
4567 struct page *src_base = src;
4569 for (i = 0; i < pages_per_huge_page; ) {
4570 cond_resched();
4571 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4573 i++;
4574 dst = mem_map_next(dst, dst_base, i);
4575 src = mem_map_next(src, src_base, i);
4579 struct copy_subpage_arg {
4580 struct page *dst;
4581 struct page *src;
4582 struct vm_area_struct *vma;
4585 static void copy_subpage(unsigned long addr, int idx, void *arg)
4587 struct copy_subpage_arg *copy_arg = arg;
4589 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4590 addr, copy_arg->vma);
4593 void copy_user_huge_page(struct page *dst, struct page *src,
4594 unsigned long addr_hint, struct vm_area_struct *vma,
4595 unsigned int pages_per_huge_page)
4597 unsigned long addr = addr_hint &
4598 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4599 struct copy_subpage_arg arg = {
4600 .dst = dst,
4601 .src = src,
4602 .vma = vma,
4605 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4606 copy_user_gigantic_page(dst, src, addr, vma,
4607 pages_per_huge_page);
4608 return;
4611 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4614 long copy_huge_page_from_user(struct page *dst_page,
4615 const void __user *usr_src,
4616 unsigned int pages_per_huge_page,
4617 bool allow_pagefault)
4619 void *src = (void *)usr_src;
4620 void *page_kaddr;
4621 unsigned long i, rc = 0;
4622 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4624 for (i = 0; i < pages_per_huge_page; i++) {
4625 if (allow_pagefault)
4626 page_kaddr = kmap(dst_page + i);
4627 else
4628 page_kaddr = kmap_atomic(dst_page + i);
4629 rc = copy_from_user(page_kaddr,
4630 (const void __user *)(src + i * PAGE_SIZE),
4631 PAGE_SIZE);
4632 if (allow_pagefault)
4633 kunmap(dst_page + i);
4634 else
4635 kunmap_atomic(page_kaddr);
4637 ret_val -= (PAGE_SIZE - rc);
4638 if (rc)
4639 break;
4641 cond_resched();
4643 return ret_val;
4645 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4647 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4649 static struct kmem_cache *page_ptl_cachep;
4651 void __init ptlock_cache_init(void)
4653 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4654 SLAB_PANIC, NULL);
4657 bool ptlock_alloc(struct page *page)
4659 spinlock_t *ptl;
4661 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4662 if (!ptl)
4663 return false;
4664 page->ptl = ptl;
4665 return true;
4668 void ptlock_free(struct page *page)
4670 kmem_cache_free(page_ptl_cachep, page->ptl);
4672 #endif