3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42 #include <linux/poison.h>
43 #include <linux/memblock.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
47 #include <asm/pgalloc.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pgtable.h>
55 #include <asm/uaccess.h>
57 #include <asm/machdep.h>
60 #include <asm/processor.h>
61 #include <asm/mmzone.h>
62 #include <asm/cputable.h>
63 #include <asm/sections.h>
64 #include <asm/system.h>
65 #include <asm/iommu.h>
66 #include <asm/abs_addr.h>
71 #ifdef CONFIG_PPC_STD_MMU_64
72 #if PGTABLE_RANGE > USER_VSID_RANGE
73 #warning Limited user VSID range means pagetable space is wasted
76 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
77 #warning TASK_SIZE is smaller than it needs to be.
79 #endif /* CONFIG_PPC_STD_MMU_64 */
81 phys_addr_t memstart_addr
= ~0;
82 phys_addr_t kernstart_addr
;
84 void free_initmem(void)
88 addr
= (unsigned long)__init_begin
;
89 for (; addr
< (unsigned long)__init_end
; addr
+= PAGE_SIZE
) {
90 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
91 ClearPageReserved(virt_to_page(addr
));
92 init_page_count(virt_to_page(addr
));
96 printk ("Freeing unused kernel memory: %luk freed\n",
97 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10);
100 #ifdef CONFIG_BLK_DEV_INITRD
101 void free_initrd_mem(unsigned long start
, unsigned long end
)
104 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
105 for (; start
< end
; start
+= PAGE_SIZE
) {
106 ClearPageReserved(virt_to_page(start
));
107 init_page_count(virt_to_page(start
));
114 static void pgd_ctor(void *addr
)
116 memset(addr
, 0, PGD_TABLE_SIZE
);
119 static void pmd_ctor(void *addr
)
121 memset(addr
, 0, PMD_TABLE_SIZE
);
124 struct kmem_cache
*pgtable_cache
[MAX_PGTABLE_INDEX_SIZE
];
127 * Create a kmem_cache() for pagetables. This is not used for PTE
128 * pages - they're linked to struct page, come from the normal free
129 * pages pool and have a different entry size (see real_pte_t) to
130 * everything else. Caches created by this function are used for all
131 * the higher level pagetables, and for hugepage pagetables.
133 void pgtable_cache_add(unsigned shift
, void (*ctor
)(void *))
136 unsigned long table_size
= sizeof(void *) << shift
;
137 unsigned long align
= table_size
;
139 /* When batching pgtable pointers for RCU freeing, we store
140 * the index size in the low bits. Table alignment must be
141 * big enough to fit it.
143 * Likewise, hugeapge pagetable pointers contain a (different)
144 * shift value in the low bits. All tables must be aligned so
145 * as to leave enough 0 bits in the address to contain it. */
146 unsigned long minalign
= max(MAX_PGTABLE_INDEX_SIZE
+ 1,
147 HUGEPD_SHIFT_MASK
+ 1);
148 struct kmem_cache
*new;
150 /* It would be nice if this was a BUILD_BUG_ON(), but at the
151 * moment, gcc doesn't seem to recognize is_power_of_2 as a
152 * constant expression, so so much for that. */
153 BUG_ON(!is_power_of_2(minalign
));
154 BUG_ON((shift
< 1) || (shift
> MAX_PGTABLE_INDEX_SIZE
));
156 if (PGT_CACHE(shift
))
157 return; /* Already have a cache of this size */
159 align
= max_t(unsigned long, align
, minalign
);
160 name
= kasprintf(GFP_KERNEL
, "pgtable-2^%d", shift
);
161 new = kmem_cache_create(name
, table_size
, align
, 0, ctor
);
162 PGT_CACHE(shift
) = new;
164 pr_debug("Allocated pgtable cache for order %d\n", shift
);
168 void pgtable_cache_init(void)
170 pgtable_cache_add(PGD_INDEX_SIZE
, pgd_ctor
);
171 pgtable_cache_add(PMD_INDEX_SIZE
, pmd_ctor
);
172 if (!PGT_CACHE(PGD_INDEX_SIZE
) || !PGT_CACHE(PMD_INDEX_SIZE
))
173 panic("Couldn't allocate pgtable caches");
175 /* In all current configs, when the PUD index exists it's the
176 * same size as either the pgd or pmd index. Verify that the
177 * initialization above has also created a PUD cache. This
178 * will need re-examiniation if we add new possibilities for
179 * the pagetable layout. */
180 BUG_ON(PUD_INDEX_SIZE
&& !PGT_CACHE(PUD_INDEX_SIZE
));
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
185 * Given an address within the vmemmap, determine the pfn of the page that
186 * represents the start of the section it is within. Note that we have to
187 * do this by hand as the proffered address may not be correctly aligned.
188 * Subtraction of non-aligned pointers produces undefined results.
190 static unsigned long __meminit
vmemmap_section_start(unsigned long page
)
192 unsigned long offset
= page
- ((unsigned long)(vmemmap
));
194 /* Return the pfn of the start of the section. */
195 return (offset
/ sizeof(struct page
)) & PAGE_SECTION_MASK
;
199 * Check if this vmemmap page is already initialised. If any section
200 * which overlaps this vmemmap page is initialised then this page is
201 * initialised already.
203 static int __meminit
vmemmap_populated(unsigned long start
, int page_size
)
205 unsigned long end
= start
+ page_size
;
207 for (; start
< end
; start
+= (PAGES_PER_SECTION
* sizeof(struct page
)))
208 if (pfn_valid(vmemmap_section_start(start
)))
214 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
216 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
217 * the vmalloc space using normal page tables, though the size of
218 * pages encoded in the PTEs can be different
221 #ifdef CONFIG_PPC_BOOK3E
222 static void __meminit
vmemmap_create_mapping(unsigned long start
,
223 unsigned long page_size
,
226 /* Create a PTE encoding without page size */
227 unsigned long i
, flags
= _PAGE_PRESENT
| _PAGE_ACCESSED
|
230 /* PTEs only contain page size encodings up to 32M */
231 BUG_ON(mmu_psize_defs
[mmu_vmemmap_psize
].enc
> 0xf);
233 /* Encode the size in the PTE */
234 flags
|= mmu_psize_defs
[mmu_vmemmap_psize
].enc
<< 8;
236 /* For each PTE for that area, map things. Note that we don't
237 * increment phys because all PTEs are of the large size and
238 * thus must have the low bits clear
240 for (i
= 0; i
< page_size
; i
+= PAGE_SIZE
)
241 BUG_ON(map_kernel_page(start
+ i
, phys
, flags
));
243 #else /* CONFIG_PPC_BOOK3E */
244 static void __meminit
vmemmap_create_mapping(unsigned long start
,
245 unsigned long page_size
,
248 int mapped
= htab_bolt_mapping(start
, start
+ page_size
, phys
,
249 PAGE_KERNEL
, mmu_vmemmap_psize
,
253 #endif /* CONFIG_PPC_BOOK3E */
255 struct vmemmap_backing
*vmemmap_list
;
257 static __meminit
struct vmemmap_backing
* vmemmap_list_alloc(int node
)
259 static struct vmemmap_backing
*next
;
262 /* allocate a page when required and hand out chunks */
263 if (!next
|| !num_left
) {
264 next
= vmemmap_alloc_block(PAGE_SIZE
, node
);
265 if (unlikely(!next
)) {
269 num_left
= PAGE_SIZE
/ sizeof(struct vmemmap_backing
);
277 static __meminit
void vmemmap_list_populate(unsigned long phys
,
281 struct vmemmap_backing
*vmem_back
;
283 vmem_back
= vmemmap_list_alloc(node
);
284 if (unlikely(!vmem_back
)) {
289 vmem_back
->phys
= phys
;
290 vmem_back
->virt_addr
= start
;
291 vmem_back
->list
= vmemmap_list
;
293 vmemmap_list
= vmem_back
;
296 int __meminit
vmemmap_populate(struct page
*start_page
,
297 unsigned long nr_pages
, int node
)
299 unsigned long start
= (unsigned long)start_page
;
300 unsigned long end
= (unsigned long)(start_page
+ nr_pages
);
301 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
303 /* Align to the page size of the linear mapping. */
304 start
= _ALIGN_DOWN(start
, page_size
);
306 pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
307 start_page
, nr_pages
, node
);
308 pr_debug(" -> map %lx..%lx\n", start
, end
);
310 for (; start
< end
; start
+= page_size
) {
313 if (vmemmap_populated(start
, page_size
))
316 p
= vmemmap_alloc_block(page_size
, node
);
320 vmemmap_list_populate(__pa(p
), start
, node
);
322 pr_debug(" * %016lx..%016lx allocated at %p\n",
323 start
, start
+ page_size
, p
);
325 vmemmap_create_mapping(start
, page_size
, __pa(p
));
330 #endif /* CONFIG_SPARSEMEM_VMEMMAP */