3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
89 #include <linux/uaccess.h>
92 /* One semaphore structure for each semaphore in the system. */
94 int semval
; /* current value */
95 int sempid
; /* pid of last operation */
96 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter
; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const
; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime
; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp
;
104 /* One queue for each sleeping process in the system. */
106 struct list_head list
; /* queue of pending operations */
107 struct task_struct
*sleeper
; /* this process */
108 struct sem_undo
*undo
; /* undo structure */
109 int pid
; /* process id of requesting process */
110 int status
; /* completion status of operation */
111 struct sembuf
*sops
; /* array of pending operations */
112 struct sembuf
*blocking
; /* the operation that blocked */
113 int nsops
; /* number of operations */
114 int alter
; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
121 struct list_head list_proc
; /* per-process list: *
122 * all undos from one process
124 struct rcu_head rcu
; /* rcu struct for sem_undo */
125 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
126 struct list_head list_id
; /* per semaphore array list:
127 * all undos for one array */
128 int semid
; /* semaphore set identifier */
129 short *semadj
; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list
{
139 struct list_head list_proc
;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace
*, struct ipc_params
*);
148 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
158 * a) global sem_lock() for read/write
160 * sem_array.complex_count,
161 * sem_array.complex_mode
162 * sem_array.pending{_alter,_const},
165 * b) global or semaphore sem_lock() for read/write:
166 * sem_array.sem_base[i].pending_{const,alter}:
167 * sem_array.complex_mode (for read)
170 * sem_undo_list.list_proc:
171 * * undo_list->lock for write
175 #define sc_semmsl sem_ctls[0]
176 #define sc_semmns sem_ctls[1]
177 #define sc_semopm sem_ctls[2]
178 #define sc_semmni sem_ctls[3]
180 void sem_init_ns(struct ipc_namespace
*ns
)
182 ns
->sc_semmsl
= SEMMSL
;
183 ns
->sc_semmns
= SEMMNS
;
184 ns
->sc_semopm
= SEMOPM
;
185 ns
->sc_semmni
= SEMMNI
;
187 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
191 void sem_exit_ns(struct ipc_namespace
*ns
)
193 free_ipcs(ns
, &sem_ids(ns
), freeary
);
194 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
198 void __init
sem_init(void)
200 sem_init_ns(&init_ipc_ns
);
201 ipc_init_proc_interface("sysvipc/sem",
202 " key semid perms nsems uid gid cuid cgid otime ctime\n",
203 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
207 * unmerge_queues - unmerge queues, if possible.
208 * @sma: semaphore array
210 * The function unmerges the wait queues if complex_count is 0.
211 * It must be called prior to dropping the global semaphore array lock.
213 static void unmerge_queues(struct sem_array
*sma
)
215 struct sem_queue
*q
, *tq
;
217 /* complex operations still around? */
218 if (sma
->complex_count
)
221 * We will switch back to simple mode.
222 * Move all pending operation back into the per-semaphore
225 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
227 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
229 list_add_tail(&q
->list
, &curr
->pending_alter
);
231 INIT_LIST_HEAD(&sma
->pending_alter
);
235 * merge_queues - merge single semop queues into global queue
236 * @sma: semaphore array
238 * This function merges all per-semaphore queues into the global queue.
239 * It is necessary to achieve FIFO ordering for the pending single-sop
240 * operations when a multi-semop operation must sleep.
241 * Only the alter operations must be moved, the const operations can stay.
243 static void merge_queues(struct sem_array
*sma
)
246 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
247 struct sem
*sem
= sma
->sem_base
+ i
;
249 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
253 static void sem_rcu_free(struct rcu_head
*head
)
255 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
256 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
258 security_sem_free(sma
);
263 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
264 * are only control barriers.
265 * The code must pair with spin_unlock(&sem->lock) or
266 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
268 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
270 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
273 * Enter the mode suitable for non-simple operations:
274 * Caller must own sem_perm.lock.
276 static void complexmode_enter(struct sem_array
*sma
)
281 if (sma
->complex_mode
) {
282 /* We are already in complex_mode. Nothing to do */
286 /* We need a full barrier after seting complex_mode:
287 * The write to complex_mode must be visible
288 * before we read the first sem->lock spinlock state.
290 smp_store_mb(sma
->complex_mode
, true);
292 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
293 sem
= sma
->sem_base
+ i
;
294 spin_unlock_wait(&sem
->lock
);
296 ipc_smp_acquire__after_spin_is_unlocked();
300 * Try to leave the mode that disallows simple operations:
301 * Caller must own sem_perm.lock.
303 static void complexmode_tryleave(struct sem_array
*sma
)
305 if (sma
->complex_count
) {
306 /* Complex ops are sleeping.
307 * We must stay in complex mode
312 * Immediately after setting complex_mode to false,
313 * a simple op can start. Thus: all memory writes
314 * performed by the current operation must be visible
315 * before we set complex_mode to false.
317 smp_store_release(&sma
->complex_mode
, false);
320 #define SEM_GLOBAL_LOCK (-1)
322 * If the request contains only one semaphore operation, and there are
323 * no complex transactions pending, lock only the semaphore involved.
324 * Otherwise, lock the entire semaphore array, since we either have
325 * multiple semaphores in our own semops, or we need to look at
326 * semaphores from other pending complex operations.
328 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
334 /* Complex operation - acquire a full lock */
335 ipc_lock_object(&sma
->sem_perm
);
337 /* Prevent parallel simple ops */
338 complexmode_enter(sma
);
339 return SEM_GLOBAL_LOCK
;
343 * Only one semaphore affected - try to optimize locking.
344 * Optimized locking is possible if no complex operation
345 * is either enqueued or processed right now.
347 * Both facts are tracked by complex_mode.
349 sem
= sma
->sem_base
+ sops
->sem_num
;
352 * Initial check for complex_mode. Just an optimization,
353 * no locking, no memory barrier.
355 if (!sma
->complex_mode
) {
357 * It appears that no complex operation is around.
358 * Acquire the per-semaphore lock.
360 spin_lock(&sem
->lock
);
364 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
365 * A full barrier is required: the write of sem->lock
366 * must be visible before the read is executed
370 if (!smp_load_acquire(&sma
->complex_mode
)) {
371 /* fast path successful! */
372 return sops
->sem_num
;
374 spin_unlock(&sem
->lock
);
377 /* slow path: acquire the full lock */
378 ipc_lock_object(&sma
->sem_perm
);
380 if (sma
->complex_count
== 0) {
382 * There is no complex operation, thus we can switch
383 * back to the fast path.
385 spin_lock(&sem
->lock
);
386 ipc_unlock_object(&sma
->sem_perm
);
387 return sops
->sem_num
;
389 /* Not a false alarm, thus complete the sequence for a
392 complexmode_enter(sma
);
393 return SEM_GLOBAL_LOCK
;
397 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
399 if (locknum
== SEM_GLOBAL_LOCK
) {
401 complexmode_tryleave(sma
);
402 ipc_unlock_object(&sma
->sem_perm
);
404 struct sem
*sem
= sma
->sem_base
+ locknum
;
405 spin_unlock(&sem
->lock
);
410 * sem_lock_(check_) routines are called in the paths where the rwsem
413 * The caller holds the RCU read lock.
415 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
416 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
418 struct kern_ipc_perm
*ipcp
;
419 struct sem_array
*sma
;
421 ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
423 return ERR_CAST(ipcp
);
425 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
426 *locknum
= sem_lock(sma
, sops
, nsops
);
428 /* ipc_rmid() may have already freed the ID while sem_lock
429 * was spinning: verify that the structure is still valid
431 if (ipc_valid_object(ipcp
))
432 return container_of(ipcp
, struct sem_array
, sem_perm
);
434 sem_unlock(sma
, *locknum
);
435 return ERR_PTR(-EINVAL
);
438 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
440 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
443 return ERR_CAST(ipcp
);
445 return container_of(ipcp
, struct sem_array
, sem_perm
);
448 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
451 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
454 return ERR_CAST(ipcp
);
456 return container_of(ipcp
, struct sem_array
, sem_perm
);
459 static inline void sem_lock_and_putref(struct sem_array
*sma
)
461 sem_lock(sma
, NULL
, -1);
462 ipc_rcu_putref(sma
, sem_rcu_free
);
465 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
467 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
471 * Lockless wakeup algorithm:
472 * Without the check/retry algorithm a lockless wakeup is possible:
473 * - queue.status is initialized to -EINTR before blocking.
474 * - wakeup is performed by
475 * * unlinking the queue entry from the pending list
476 * * setting queue.status to IN_WAKEUP
477 * This is the notification for the blocked thread that a
478 * result value is imminent.
479 * * call wake_up_process
480 * * set queue.status to the final value.
481 * - the previously blocked thread checks queue.status:
482 * * if it's IN_WAKEUP, then it must wait until the value changes
483 * * if it's not -EINTR, then the operation was completed by
484 * update_queue. semtimedop can return queue.status without
485 * performing any operation on the sem array.
486 * * otherwise it must acquire the spinlock and check what's up.
488 * The two-stage algorithm is necessary to protect against the following
490 * - if queue.status is set after wake_up_process, then the woken up idle
491 * thread could race forward and try (and fail) to acquire sma->lock
492 * before update_queue had a chance to set queue.status
493 * - if queue.status is written before wake_up_process and if the
494 * blocked process is woken up by a signal between writing
495 * queue.status and the wake_up_process, then the woken up
496 * process could return from semtimedop and die by calling
497 * sys_exit before wake_up_process is called. Then wake_up_process
498 * will oops, because the task structure is already invalid.
499 * (yes, this happened on s390 with sysv msg).
505 * newary - Create a new semaphore set
507 * @params: ptr to the structure that contains key, semflg and nsems
509 * Called with sem_ids.rwsem held (as a writer)
511 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
515 struct sem_array
*sma
;
517 key_t key
= params
->key
;
518 int nsems
= params
->u
.nsems
;
519 int semflg
= params
->flg
;
524 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
527 size
= sizeof(*sma
) + nsems
* sizeof(struct sem
);
528 sma
= ipc_rcu_alloc(size
);
532 memset(sma
, 0, size
);
534 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
535 sma
->sem_perm
.key
= key
;
537 sma
->sem_perm
.security
= NULL
;
538 retval
= security_sem_alloc(sma
);
540 ipc_rcu_putref(sma
, ipc_rcu_free
);
544 sma
->sem_base
= (struct sem
*) &sma
[1];
546 for (i
= 0; i
< nsems
; i
++) {
547 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
548 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
549 spin_lock_init(&sma
->sem_base
[i
].lock
);
552 sma
->complex_count
= 0;
553 sma
->complex_mode
= true; /* dropped by sem_unlock below */
554 INIT_LIST_HEAD(&sma
->pending_alter
);
555 INIT_LIST_HEAD(&sma
->pending_const
);
556 INIT_LIST_HEAD(&sma
->list_id
);
557 sma
->sem_nsems
= nsems
;
558 sma
->sem_ctime
= get_seconds();
560 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
562 ipc_rcu_putref(sma
, sem_rcu_free
);
565 ns
->used_sems
+= nsems
;
570 return sma
->sem_perm
.id
;
575 * Called with sem_ids.rwsem and ipcp locked.
577 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
579 struct sem_array
*sma
;
581 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
582 return security_sem_associate(sma
, semflg
);
586 * Called with sem_ids.rwsem and ipcp locked.
588 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
589 struct ipc_params
*params
)
591 struct sem_array
*sma
;
593 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
594 if (params
->u
.nsems
> sma
->sem_nsems
)
600 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
602 struct ipc_namespace
*ns
;
603 static const struct ipc_ops sem_ops
= {
605 .associate
= sem_security
,
606 .more_checks
= sem_more_checks
,
608 struct ipc_params sem_params
;
610 ns
= current
->nsproxy
->ipc_ns
;
612 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
615 sem_params
.key
= key
;
616 sem_params
.flg
= semflg
;
617 sem_params
.u
.nsems
= nsems
;
619 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
623 * perform_atomic_semop - Perform (if possible) a semaphore operation
624 * @sma: semaphore array
625 * @q: struct sem_queue that describes the operation
627 * Returns 0 if the operation was possible.
628 * Returns 1 if the operation is impossible, the caller must sleep.
629 * Negative values are error codes.
631 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
633 int result
, sem_op
, nsops
, pid
;
643 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
644 curr
= sma
->sem_base
+ sop
->sem_num
;
645 sem_op
= sop
->sem_op
;
646 result
= curr
->semval
;
648 if (!sem_op
&& result
)
657 if (sop
->sem_flg
& SEM_UNDO
) {
658 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
659 /* Exceeding the undo range is an error. */
660 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
662 un
->semadj
[sop
->sem_num
] = undo
;
665 curr
->semval
= result
;
670 while (sop
>= sops
) {
671 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
684 if (sop
->sem_flg
& IPC_NOWAIT
)
691 while (sop
>= sops
) {
692 sem_op
= sop
->sem_op
;
693 sma
->sem_base
[sop
->sem_num
].semval
-= sem_op
;
694 if (sop
->sem_flg
& SEM_UNDO
)
695 un
->semadj
[sop
->sem_num
] += sem_op
;
702 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
703 * @q: queue entry that must be signaled
704 * @error: Error value for the signal
706 * Prepare the wake-up of the queue entry q.
708 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
709 struct sem_queue
*q
, int error
)
711 if (list_empty(pt
)) {
713 * Hold preempt off so that we don't get preempted and have the
714 * wakee busy-wait until we're scheduled back on.
718 q
->status
= IN_WAKEUP
;
721 list_add_tail(&q
->list
, pt
);
725 * wake_up_sem_queue_do - do the actual wake-up
726 * @pt: list of tasks to be woken up
728 * Do the actual wake-up.
729 * The function is called without any locks held, thus the semaphore array
730 * could be destroyed already and the tasks can disappear as soon as the
731 * status is set to the actual return code.
733 static void wake_up_sem_queue_do(struct list_head
*pt
)
735 struct sem_queue
*q
, *t
;
738 did_something
= !list_empty(pt
);
739 list_for_each_entry_safe(q
, t
, pt
, list
) {
740 wake_up_process(q
->sleeper
);
741 /* q can disappear immediately after writing q->status. */
749 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
753 sma
->complex_count
--;
756 /** check_restart(sma, q)
757 * @sma: semaphore array
758 * @q: the operation that just completed
760 * update_queue is O(N^2) when it restarts scanning the whole queue of
761 * waiting operations. Therefore this function checks if the restart is
762 * really necessary. It is called after a previously waiting operation
763 * modified the array.
764 * Note that wait-for-zero operations are handled without restart.
766 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
768 /* pending complex alter operations are too difficult to analyse */
769 if (!list_empty(&sma
->pending_alter
))
772 /* we were a sleeping complex operation. Too difficult */
776 /* It is impossible that someone waits for the new value:
777 * - complex operations always restart.
778 * - wait-for-zero are handled seperately.
779 * - q is a previously sleeping simple operation that
780 * altered the array. It must be a decrement, because
781 * simple increments never sleep.
782 * - If there are older (higher priority) decrements
783 * in the queue, then they have observed the original
784 * semval value and couldn't proceed. The operation
785 * decremented to value - thus they won't proceed either.
791 * wake_const_ops - wake up non-alter tasks
792 * @sma: semaphore array.
793 * @semnum: semaphore that was modified.
794 * @pt: list head for the tasks that must be woken up.
796 * wake_const_ops must be called after a semaphore in a semaphore array
797 * was set to 0. If complex const operations are pending, wake_const_ops must
798 * be called with semnum = -1, as well as with the number of each modified
800 * The tasks that must be woken up are added to @pt. The return code
801 * is stored in q->pid.
802 * The function returns 1 if at least one operation was completed successfully.
804 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
805 struct list_head
*pt
)
808 struct list_head
*walk
;
809 struct list_head
*pending_list
;
810 int semop_completed
= 0;
813 pending_list
= &sma
->pending_const
;
815 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
817 walk
= pending_list
->next
;
818 while (walk
!= pending_list
) {
821 q
= container_of(walk
, struct sem_queue
, list
);
824 error
= perform_atomic_semop(sma
, q
);
827 /* operation completed, remove from queue & wakeup */
829 unlink_queue(sma
, q
);
831 wake_up_sem_queue_prepare(pt
, q
, error
);
836 return semop_completed
;
840 * do_smart_wakeup_zero - wakeup all wait for zero tasks
841 * @sma: semaphore array
842 * @sops: operations that were performed
843 * @nsops: number of operations
844 * @pt: list head of the tasks that must be woken up.
846 * Checks all required queue for wait-for-zero operations, based
847 * on the actual changes that were performed on the semaphore array.
848 * The function returns 1 if at least one operation was completed successfully.
850 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
851 int nsops
, struct list_head
*pt
)
854 int semop_completed
= 0;
857 /* first: the per-semaphore queues, if known */
859 for (i
= 0; i
< nsops
; i
++) {
860 int num
= sops
[i
].sem_num
;
862 if (sma
->sem_base
[num
].semval
== 0) {
864 semop_completed
|= wake_const_ops(sma
, num
, pt
);
869 * No sops means modified semaphores not known.
870 * Assume all were changed.
872 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
873 if (sma
->sem_base
[i
].semval
== 0) {
875 semop_completed
|= wake_const_ops(sma
, i
, pt
);
880 * If one of the modified semaphores got 0,
881 * then check the global queue, too.
884 semop_completed
|= wake_const_ops(sma
, -1, pt
);
886 return semop_completed
;
891 * update_queue - look for tasks that can be completed.
892 * @sma: semaphore array.
893 * @semnum: semaphore that was modified.
894 * @pt: list head for the tasks that must be woken up.
896 * update_queue must be called after a semaphore in a semaphore array
897 * was modified. If multiple semaphores were modified, update_queue must
898 * be called with semnum = -1, as well as with the number of each modified
900 * The tasks that must be woken up are added to @pt. The return code
901 * is stored in q->pid.
902 * The function internally checks if const operations can now succeed.
904 * The function return 1 if at least one semop was completed successfully.
906 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
909 struct list_head
*walk
;
910 struct list_head
*pending_list
;
911 int semop_completed
= 0;
914 pending_list
= &sma
->pending_alter
;
916 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
919 walk
= pending_list
->next
;
920 while (walk
!= pending_list
) {
923 q
= container_of(walk
, struct sem_queue
, list
);
926 /* If we are scanning the single sop, per-semaphore list of
927 * one semaphore and that semaphore is 0, then it is not
928 * necessary to scan further: simple increments
929 * that affect only one entry succeed immediately and cannot
930 * be in the per semaphore pending queue, and decrements
931 * cannot be successful if the value is already 0.
933 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
936 error
= perform_atomic_semop(sma
, q
);
938 /* Does q->sleeper still need to sleep? */
942 unlink_queue(sma
, q
);
948 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
949 restart
= check_restart(sma
, q
);
952 wake_up_sem_queue_prepare(pt
, q
, error
);
956 return semop_completed
;
960 * set_semotime - set sem_otime
961 * @sma: semaphore array
962 * @sops: operations that modified the array, may be NULL
964 * sem_otime is replicated to avoid cache line trashing.
965 * This function sets one instance to the current time.
967 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
970 sma
->sem_base
[0].sem_otime
= get_seconds();
972 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
978 * do_smart_update - optimized update_queue
979 * @sma: semaphore array
980 * @sops: operations that were performed
981 * @nsops: number of operations
982 * @otime: force setting otime
983 * @pt: list head of the tasks that must be woken up.
985 * do_smart_update() does the required calls to update_queue and wakeup_zero,
986 * based on the actual changes that were performed on the semaphore array.
987 * Note that the function does not do the actual wake-up: the caller is
988 * responsible for calling wake_up_sem_queue_do(@pt).
989 * It is safe to perform this call after dropping all locks.
991 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
992 int otime
, struct list_head
*pt
)
996 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
998 if (!list_empty(&sma
->pending_alter
)) {
999 /* semaphore array uses the global queue - just process it. */
1000 otime
|= update_queue(sma
, -1, pt
);
1004 * No sops, thus the modified semaphores are not
1007 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1008 otime
|= update_queue(sma
, i
, pt
);
1011 * Check the semaphores that were increased:
1012 * - No complex ops, thus all sleeping ops are
1014 * - if we decreased the value, then any sleeping
1015 * semaphore ops wont be able to run: If the
1016 * previous value was too small, then the new
1017 * value will be too small, too.
1019 for (i
= 0; i
< nsops
; i
++) {
1020 if (sops
[i
].sem_op
> 0) {
1021 otime
|= update_queue(sma
,
1022 sops
[i
].sem_num
, pt
);
1028 set_semotime(sma
, sops
);
1032 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1034 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1037 struct sembuf
*sop
= q
->blocking
;
1040 * Linux always (since 0.99.10) reported a task as sleeping on all
1041 * semaphores. This violates SUS, therefore it was changed to the
1042 * standard compliant behavior.
1043 * Give the administrators a chance to notice that an application
1044 * might misbehave because it relies on the Linux behavior.
1046 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1047 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1048 current
->comm
, task_pid_nr(current
));
1050 if (sop
->sem_num
!= semnum
)
1053 if (count_zero
&& sop
->sem_op
== 0)
1055 if (!count_zero
&& sop
->sem_op
< 0)
1061 /* The following counts are associated to each semaphore:
1062 * semncnt number of tasks waiting on semval being nonzero
1063 * semzcnt number of tasks waiting on semval being zero
1065 * Per definition, a task waits only on the semaphore of the first semop
1066 * that cannot proceed, even if additional operation would block, too.
1068 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1071 struct list_head
*l
;
1072 struct sem_queue
*q
;
1076 /* First: check the simple operations. They are easy to evaluate */
1078 l
= &sma
->sem_base
[semnum
].pending_const
;
1080 l
= &sma
->sem_base
[semnum
].pending_alter
;
1082 list_for_each_entry(q
, l
, list
) {
1083 /* all task on a per-semaphore list sleep on exactly
1089 /* Then: check the complex operations. */
1090 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1091 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1094 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1095 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1101 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1102 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1103 * remains locked on exit.
1105 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1107 struct sem_undo
*un
, *tu
;
1108 struct sem_queue
*q
, *tq
;
1109 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1110 struct list_head tasks
;
1113 /* Free the existing undo structures for this semaphore set. */
1114 ipc_assert_locked_object(&sma
->sem_perm
);
1115 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1116 list_del(&un
->list_id
);
1117 spin_lock(&un
->ulp
->lock
);
1119 list_del_rcu(&un
->list_proc
);
1120 spin_unlock(&un
->ulp
->lock
);
1124 /* Wake up all pending processes and let them fail with EIDRM. */
1125 INIT_LIST_HEAD(&tasks
);
1126 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1127 unlink_queue(sma
, q
);
1128 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1131 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1132 unlink_queue(sma
, q
);
1133 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1135 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1136 struct sem
*sem
= sma
->sem_base
+ i
;
1137 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1138 unlink_queue(sma
, q
);
1139 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1141 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1142 unlink_queue(sma
, q
);
1143 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1147 /* Remove the semaphore set from the IDR */
1149 sem_unlock(sma
, -1);
1152 wake_up_sem_queue_do(&tasks
);
1153 ns
->used_sems
-= sma
->sem_nsems
;
1154 ipc_rcu_putref(sma
, sem_rcu_free
);
1157 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1161 return copy_to_user(buf
, in
, sizeof(*in
));
1164 struct semid_ds out
;
1166 memset(&out
, 0, sizeof(out
));
1168 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1170 out
.sem_otime
= in
->sem_otime
;
1171 out
.sem_ctime
= in
->sem_ctime
;
1172 out
.sem_nsems
= in
->sem_nsems
;
1174 return copy_to_user(buf
, &out
, sizeof(out
));
1181 static time_t get_semotime(struct sem_array
*sma
)
1186 res
= sma
->sem_base
[0].sem_otime
;
1187 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1188 time_t to
= sma
->sem_base
[i
].sem_otime
;
1196 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1197 int cmd
, int version
, void __user
*p
)
1200 struct sem_array
*sma
;
1206 struct seminfo seminfo
;
1209 err
= security_sem_semctl(NULL
, cmd
);
1213 memset(&seminfo
, 0, sizeof(seminfo
));
1214 seminfo
.semmni
= ns
->sc_semmni
;
1215 seminfo
.semmns
= ns
->sc_semmns
;
1216 seminfo
.semmsl
= ns
->sc_semmsl
;
1217 seminfo
.semopm
= ns
->sc_semopm
;
1218 seminfo
.semvmx
= SEMVMX
;
1219 seminfo
.semmnu
= SEMMNU
;
1220 seminfo
.semmap
= SEMMAP
;
1221 seminfo
.semume
= SEMUME
;
1222 down_read(&sem_ids(ns
).rwsem
);
1223 if (cmd
== SEM_INFO
) {
1224 seminfo
.semusz
= sem_ids(ns
).in_use
;
1225 seminfo
.semaem
= ns
->used_sems
;
1227 seminfo
.semusz
= SEMUSZ
;
1228 seminfo
.semaem
= SEMAEM
;
1230 max_id
= ipc_get_maxid(&sem_ids(ns
));
1231 up_read(&sem_ids(ns
).rwsem
);
1232 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1234 return (max_id
< 0) ? 0 : max_id
;
1239 struct semid64_ds tbuf
;
1242 memset(&tbuf
, 0, sizeof(tbuf
));
1245 if (cmd
== SEM_STAT
) {
1246 sma
= sem_obtain_object(ns
, semid
);
1251 id
= sma
->sem_perm
.id
;
1253 sma
= sem_obtain_object_check(ns
, semid
);
1261 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1264 err
= security_sem_semctl(sma
, cmd
);
1268 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1269 tbuf
.sem_otime
= get_semotime(sma
);
1270 tbuf
.sem_ctime
= sma
->sem_ctime
;
1271 tbuf
.sem_nsems
= sma
->sem_nsems
;
1273 if (copy_semid_to_user(p
, &tbuf
, version
))
1285 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1288 struct sem_undo
*un
;
1289 struct sem_array
*sma
;
1292 struct list_head tasks
;
1294 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1295 /* big-endian 64bit */
1298 /* 32bit or little-endian 64bit */
1302 if (val
> SEMVMX
|| val
< 0)
1305 INIT_LIST_HEAD(&tasks
);
1308 sma
= sem_obtain_object_check(ns
, semid
);
1311 return PTR_ERR(sma
);
1314 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1320 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1325 err
= security_sem_semctl(sma
, SETVAL
);
1331 sem_lock(sma
, NULL
, -1);
1333 if (!ipc_valid_object(&sma
->sem_perm
)) {
1334 sem_unlock(sma
, -1);
1339 curr
= &sma
->sem_base
[semnum
];
1341 ipc_assert_locked_object(&sma
->sem_perm
);
1342 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1343 un
->semadj
[semnum
] = 0;
1346 curr
->sempid
= task_tgid_vnr(current
);
1347 sma
->sem_ctime
= get_seconds();
1348 /* maybe some queued-up processes were waiting for this */
1349 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1350 sem_unlock(sma
, -1);
1352 wake_up_sem_queue_do(&tasks
);
1356 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1357 int cmd
, void __user
*p
)
1359 struct sem_array
*sma
;
1362 ushort fast_sem_io
[SEMMSL_FAST
];
1363 ushort
*sem_io
= fast_sem_io
;
1364 struct list_head tasks
;
1366 INIT_LIST_HEAD(&tasks
);
1369 sma
= sem_obtain_object_check(ns
, semid
);
1372 return PTR_ERR(sma
);
1375 nsems
= sma
->sem_nsems
;
1378 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1379 goto out_rcu_wakeup
;
1381 err
= security_sem_semctl(sma
, cmd
);
1383 goto out_rcu_wakeup
;
1389 ushort __user
*array
= p
;
1392 sem_lock(sma
, NULL
, -1);
1393 if (!ipc_valid_object(&sma
->sem_perm
)) {
1397 if (nsems
> SEMMSL_FAST
) {
1398 if (!ipc_rcu_getref(sma
)) {
1402 sem_unlock(sma
, -1);
1404 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1405 if (sem_io
== NULL
) {
1406 ipc_rcu_putref(sma
, sem_rcu_free
);
1411 sem_lock_and_putref(sma
);
1412 if (!ipc_valid_object(&sma
->sem_perm
)) {
1417 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1418 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1419 sem_unlock(sma
, -1);
1422 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1429 struct sem_undo
*un
;
1431 if (!ipc_rcu_getref(sma
)) {
1433 goto out_rcu_wakeup
;
1437 if (nsems
> SEMMSL_FAST
) {
1438 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1439 if (sem_io
== NULL
) {
1440 ipc_rcu_putref(sma
, sem_rcu_free
);
1445 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1446 ipc_rcu_putref(sma
, sem_rcu_free
);
1451 for (i
= 0; i
< nsems
; i
++) {
1452 if (sem_io
[i
] > SEMVMX
) {
1453 ipc_rcu_putref(sma
, sem_rcu_free
);
1459 sem_lock_and_putref(sma
);
1460 if (!ipc_valid_object(&sma
->sem_perm
)) {
1465 for (i
= 0; i
< nsems
; i
++)
1466 sma
->sem_base
[i
].semval
= sem_io
[i
];
1468 ipc_assert_locked_object(&sma
->sem_perm
);
1469 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1470 for (i
= 0; i
< nsems
; i
++)
1473 sma
->sem_ctime
= get_seconds();
1474 /* maybe some queued-up processes were waiting for this */
1475 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1479 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1482 if (semnum
< 0 || semnum
>= nsems
)
1483 goto out_rcu_wakeup
;
1485 sem_lock(sma
, NULL
, -1);
1486 if (!ipc_valid_object(&sma
->sem_perm
)) {
1490 curr
= &sma
->sem_base
[semnum
];
1500 err
= count_semcnt(sma
, semnum
, 0);
1503 err
= count_semcnt(sma
, semnum
, 1);
1508 sem_unlock(sma
, -1);
1511 wake_up_sem_queue_do(&tasks
);
1513 if (sem_io
!= fast_sem_io
)
1514 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1518 static inline unsigned long
1519 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1523 if (copy_from_user(out
, buf
, sizeof(*out
)))
1528 struct semid_ds tbuf_old
;
1530 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1533 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1534 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1535 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1545 * This function handles some semctl commands which require the rwsem
1546 * to be held in write mode.
1547 * NOTE: no locks must be held, the rwsem is taken inside this function.
1549 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1550 int cmd
, int version
, void __user
*p
)
1552 struct sem_array
*sma
;
1554 struct semid64_ds semid64
;
1555 struct kern_ipc_perm
*ipcp
;
1557 if (cmd
== IPC_SET
) {
1558 if (copy_semid_from_user(&semid64
, p
, version
))
1562 down_write(&sem_ids(ns
).rwsem
);
1565 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1566 &semid64
.sem_perm
, 0);
1568 err
= PTR_ERR(ipcp
);
1572 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1574 err
= security_sem_semctl(sma
, cmd
);
1580 sem_lock(sma
, NULL
, -1);
1581 /* freeary unlocks the ipc object and rcu */
1585 sem_lock(sma
, NULL
, -1);
1586 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1589 sma
->sem_ctime
= get_seconds();
1597 sem_unlock(sma
, -1);
1601 up_write(&sem_ids(ns
).rwsem
);
1605 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1608 struct ipc_namespace
*ns
;
1609 void __user
*p
= (void __user
*)arg
;
1614 version
= ipc_parse_version(&cmd
);
1615 ns
= current
->nsproxy
->ipc_ns
;
1622 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1629 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1631 return semctl_setval(ns
, semid
, semnum
, arg
);
1634 return semctl_down(ns
, semid
, cmd
, version
, p
);
1640 /* If the task doesn't already have a undo_list, then allocate one
1641 * here. We guarantee there is only one thread using this undo list,
1642 * and current is THE ONE
1644 * If this allocation and assignment succeeds, but later
1645 * portions of this code fail, there is no need to free the sem_undo_list.
1646 * Just let it stay associated with the task, and it'll be freed later
1649 * This can block, so callers must hold no locks.
1651 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1653 struct sem_undo_list
*undo_list
;
1655 undo_list
= current
->sysvsem
.undo_list
;
1657 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1658 if (undo_list
== NULL
)
1660 spin_lock_init(&undo_list
->lock
);
1661 atomic_set(&undo_list
->refcnt
, 1);
1662 INIT_LIST_HEAD(&undo_list
->list_proc
);
1664 current
->sysvsem
.undo_list
= undo_list
;
1666 *undo_listp
= undo_list
;
1670 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1672 struct sem_undo
*un
;
1674 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1675 if (un
->semid
== semid
)
1681 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1683 struct sem_undo
*un
;
1685 assert_spin_locked(&ulp
->lock
);
1687 un
= __lookup_undo(ulp
, semid
);
1689 list_del_rcu(&un
->list_proc
);
1690 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1696 * find_alloc_undo - lookup (and if not present create) undo array
1698 * @semid: semaphore array id
1700 * The function looks up (and if not present creates) the undo structure.
1701 * The size of the undo structure depends on the size of the semaphore
1702 * array, thus the alloc path is not that straightforward.
1703 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1704 * performs a rcu_read_lock().
1706 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1708 struct sem_array
*sma
;
1709 struct sem_undo_list
*ulp
;
1710 struct sem_undo
*un
, *new;
1713 error
= get_undo_list(&ulp
);
1715 return ERR_PTR(error
);
1718 spin_lock(&ulp
->lock
);
1719 un
= lookup_undo(ulp
, semid
);
1720 spin_unlock(&ulp
->lock
);
1721 if (likely(un
!= NULL
))
1724 /* no undo structure around - allocate one. */
1725 /* step 1: figure out the size of the semaphore array */
1726 sma
= sem_obtain_object_check(ns
, semid
);
1729 return ERR_CAST(sma
);
1732 nsems
= sma
->sem_nsems
;
1733 if (!ipc_rcu_getref(sma
)) {
1735 un
= ERR_PTR(-EIDRM
);
1740 /* step 2: allocate new undo structure */
1741 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1743 ipc_rcu_putref(sma
, sem_rcu_free
);
1744 return ERR_PTR(-ENOMEM
);
1747 /* step 3: Acquire the lock on semaphore array */
1749 sem_lock_and_putref(sma
);
1750 if (!ipc_valid_object(&sma
->sem_perm
)) {
1751 sem_unlock(sma
, -1);
1754 un
= ERR_PTR(-EIDRM
);
1757 spin_lock(&ulp
->lock
);
1760 * step 4: check for races: did someone else allocate the undo struct?
1762 un
= lookup_undo(ulp
, semid
);
1767 /* step 5: initialize & link new undo structure */
1768 new->semadj
= (short *) &new[1];
1771 assert_spin_locked(&ulp
->lock
);
1772 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1773 ipc_assert_locked_object(&sma
->sem_perm
);
1774 list_add(&new->list_id
, &sma
->list_id
);
1778 spin_unlock(&ulp
->lock
);
1779 sem_unlock(sma
, -1);
1786 * get_queue_result - retrieve the result code from sem_queue
1787 * @q: Pointer to queue structure
1789 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1790 * q->status, then we must loop until the value is replaced with the final
1791 * value: This may happen if a task is woken up by an unrelated event (e.g.
1792 * signal) and in parallel the task is woken up by another task because it got
1793 * the requested semaphores.
1795 * The function can be called with or without holding the semaphore spinlock.
1797 static int get_queue_result(struct sem_queue
*q
)
1802 while (unlikely(error
== IN_WAKEUP
)) {
1810 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1811 unsigned, nsops
, const struct timespec __user
*, timeout
)
1813 int error
= -EINVAL
;
1814 struct sem_array
*sma
;
1815 struct sembuf fast_sops
[SEMOPM_FAST
];
1816 struct sembuf
*sops
= fast_sops
, *sop
;
1817 struct sem_undo
*un
;
1818 int undos
= 0, alter
= 0, max
, locknum
;
1819 struct sem_queue queue
;
1820 unsigned long jiffies_left
= 0;
1821 struct ipc_namespace
*ns
;
1822 struct list_head tasks
;
1824 ns
= current
->nsproxy
->ipc_ns
;
1826 if (nsops
< 1 || semid
< 0)
1828 if (nsops
> ns
->sc_semopm
)
1830 if (nsops
> SEMOPM_FAST
) {
1831 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1835 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1840 struct timespec _timeout
;
1841 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1845 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1846 _timeout
.tv_nsec
>= 1000000000L) {
1850 jiffies_left
= timespec_to_jiffies(&_timeout
);
1853 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1854 if (sop
->sem_num
>= max
)
1856 if (sop
->sem_flg
& SEM_UNDO
)
1858 if (sop
->sem_op
!= 0)
1862 INIT_LIST_HEAD(&tasks
);
1865 /* On success, find_alloc_undo takes the rcu_read_lock */
1866 un
= find_alloc_undo(ns
, semid
);
1868 error
= PTR_ERR(un
);
1876 sma
= sem_obtain_object_check(ns
, semid
);
1879 error
= PTR_ERR(sma
);
1884 if (max
>= sma
->sem_nsems
)
1885 goto out_rcu_wakeup
;
1888 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1889 goto out_rcu_wakeup
;
1891 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1893 goto out_rcu_wakeup
;
1896 locknum
= sem_lock(sma
, sops
, nsops
);
1898 * We eventually might perform the following check in a lockless
1899 * fashion, considering ipc_valid_object() locking constraints.
1900 * If nsops == 1 and there is no contention for sem_perm.lock, then
1901 * only a per-semaphore lock is held and it's OK to proceed with the
1902 * check below. More details on the fine grained locking scheme
1903 * entangled here and why it's RMID race safe on comments at sem_lock()
1905 if (!ipc_valid_object(&sma
->sem_perm
))
1906 goto out_unlock_free
;
1908 * semid identifiers are not unique - find_alloc_undo may have
1909 * allocated an undo structure, it was invalidated by an RMID
1910 * and now a new array with received the same id. Check and fail.
1911 * This case can be detected checking un->semid. The existence of
1912 * "un" itself is guaranteed by rcu.
1914 if (un
&& un
->semid
== -1)
1915 goto out_unlock_free
;
1918 queue
.nsops
= nsops
;
1920 queue
.pid
= task_tgid_vnr(current
);
1921 queue
.alter
= alter
;
1923 error
= perform_atomic_semop(sma
, &queue
);
1925 /* If the operation was successful, then do
1926 * the required updates.
1929 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1931 set_semotime(sma
, sops
);
1934 goto out_unlock_free
;
1936 /* We need to sleep on this operation, so we put the current
1937 * task into the pending queue and go to sleep.
1942 curr
= &sma
->sem_base
[sops
->sem_num
];
1945 if (sma
->complex_count
) {
1946 list_add_tail(&queue
.list
,
1947 &sma
->pending_alter
);
1950 list_add_tail(&queue
.list
,
1951 &curr
->pending_alter
);
1954 list_add_tail(&queue
.list
, &curr
->pending_const
);
1957 if (!sma
->complex_count
)
1961 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1963 list_add_tail(&queue
.list
, &sma
->pending_const
);
1965 sma
->complex_count
++;
1968 queue
.status
= -EINTR
;
1969 queue
.sleeper
= current
;
1972 __set_current_state(TASK_INTERRUPTIBLE
);
1973 sem_unlock(sma
, locknum
);
1977 jiffies_left
= schedule_timeout(jiffies_left
);
1981 error
= get_queue_result(&queue
);
1983 if (error
!= -EINTR
) {
1984 /* fast path: update_queue already obtained all requested
1986 * Perform a smp_mb(): User space could assume that semop()
1987 * is a memory barrier: Without the mb(), the cpu could
1988 * speculatively read in user space stale data that was
1989 * overwritten by the previous owner of the semaphore.
1997 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
2000 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
2002 error
= get_queue_result(&queue
);
2005 * Array removed? If yes, leave without sem_unlock().
2014 * If queue.status != -EINTR we are woken up by another process.
2015 * Leave without unlink_queue(), but with sem_unlock().
2017 if (error
!= -EINTR
)
2018 goto out_unlock_free
;
2021 * If an interrupt occurred we have to clean up the queue
2023 if (timeout
&& jiffies_left
== 0)
2027 * If the wakeup was spurious, just retry
2029 if (error
== -EINTR
&& !signal_pending(current
))
2032 unlink_queue(sma
, &queue
);
2035 sem_unlock(sma
, locknum
);
2038 wake_up_sem_queue_do(&tasks
);
2040 if (sops
!= fast_sops
)
2045 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2048 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2051 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2052 * parent and child tasks.
2055 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2057 struct sem_undo_list
*undo_list
;
2060 if (clone_flags
& CLONE_SYSVSEM
) {
2061 error
= get_undo_list(&undo_list
);
2064 atomic_inc(&undo_list
->refcnt
);
2065 tsk
->sysvsem
.undo_list
= undo_list
;
2067 tsk
->sysvsem
.undo_list
= NULL
;
2073 * add semadj values to semaphores, free undo structures.
2074 * undo structures are not freed when semaphore arrays are destroyed
2075 * so some of them may be out of date.
2076 * IMPLEMENTATION NOTE: There is some confusion over whether the
2077 * set of adjustments that needs to be done should be done in an atomic
2078 * manner or not. That is, if we are attempting to decrement the semval
2079 * should we queue up and wait until we can do so legally?
2080 * The original implementation attempted to do this (queue and wait).
2081 * The current implementation does not do so. The POSIX standard
2082 * and SVID should be consulted to determine what behavior is mandated.
2084 void exit_sem(struct task_struct
*tsk
)
2086 struct sem_undo_list
*ulp
;
2088 ulp
= tsk
->sysvsem
.undo_list
;
2091 tsk
->sysvsem
.undo_list
= NULL
;
2093 if (!atomic_dec_and_test(&ulp
->refcnt
))
2097 struct sem_array
*sma
;
2098 struct sem_undo
*un
;
2099 struct list_head tasks
;
2103 un
= list_entry_rcu(ulp
->list_proc
.next
,
2104 struct sem_undo
, list_proc
);
2105 if (&un
->list_proc
== &ulp
->list_proc
) {
2107 * We must wait for freeary() before freeing this ulp,
2108 * in case we raced with last sem_undo. There is a small
2109 * possibility where we exit while freeary() didn't
2110 * finish unlocking sem_undo_list.
2112 spin_unlock_wait(&ulp
->lock
);
2116 spin_lock(&ulp
->lock
);
2118 spin_unlock(&ulp
->lock
);
2120 /* exit_sem raced with IPC_RMID, nothing to do */
2126 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2127 /* exit_sem raced with IPC_RMID, nothing to do */
2133 sem_lock(sma
, NULL
, -1);
2134 /* exit_sem raced with IPC_RMID, nothing to do */
2135 if (!ipc_valid_object(&sma
->sem_perm
)) {
2136 sem_unlock(sma
, -1);
2140 un
= __lookup_undo(ulp
, semid
);
2142 /* exit_sem raced with IPC_RMID+semget() that created
2143 * exactly the same semid. Nothing to do.
2145 sem_unlock(sma
, -1);
2150 /* remove un from the linked lists */
2151 ipc_assert_locked_object(&sma
->sem_perm
);
2152 list_del(&un
->list_id
);
2154 /* we are the last process using this ulp, acquiring ulp->lock
2155 * isn't required. Besides that, we are also protected against
2156 * IPC_RMID as we hold sma->sem_perm lock now
2158 list_del_rcu(&un
->list_proc
);
2160 /* perform adjustments registered in un */
2161 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2162 struct sem
*semaphore
= &sma
->sem_base
[i
];
2163 if (un
->semadj
[i
]) {
2164 semaphore
->semval
+= un
->semadj
[i
];
2166 * Range checks of the new semaphore value,
2167 * not defined by sus:
2168 * - Some unices ignore the undo entirely
2169 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2170 * - some cap the value (e.g. FreeBSD caps
2171 * at 0, but doesn't enforce SEMVMX)
2173 * Linux caps the semaphore value, both at 0
2176 * Manfred <manfred@colorfullife.com>
2178 if (semaphore
->semval
< 0)
2179 semaphore
->semval
= 0;
2180 if (semaphore
->semval
> SEMVMX
)
2181 semaphore
->semval
= SEMVMX
;
2182 semaphore
->sempid
= task_tgid_vnr(current
);
2185 /* maybe some queued-up processes were waiting for this */
2186 INIT_LIST_HEAD(&tasks
);
2187 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2188 sem_unlock(sma
, -1);
2190 wake_up_sem_queue_do(&tasks
);
2197 #ifdef CONFIG_PROC_FS
2198 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2200 struct user_namespace
*user_ns
= seq_user_ns(s
);
2201 struct sem_array
*sma
= it
;
2205 * The proc interface isn't aware of sem_lock(), it calls
2206 * ipc_lock_object() directly (in sysvipc_find_ipc).
2207 * In order to stay compatible with sem_lock(), we must
2208 * enter / leave complex_mode.
2210 complexmode_enter(sma
);
2212 sem_otime
= get_semotime(sma
);
2215 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2220 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2221 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2222 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2223 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2227 complexmode_tryleave(sma
);