2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
16 * I. Board Compatibility
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
28 * Sample code (2 revisions) is available at Infineon.
30 * II. Board-specific settings
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
37 * Sharing of the PCI interrupt line for this board is possible.
39 * III. Driver operation
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mystery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
69 * - use polling at high irq/s,
70 * - performance analysis,
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
94 #include <linux/slab.h>
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <linux/uaccess.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
114 static const char version
[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex
);
120 static u32 dscc4_pci_config_store
[16];
123 #define DRV_NAME "dscc4"
127 /* Module parameters */
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug
, int, 0);
133 MODULE_PARM_DESC(debug
,"Enable/disable extra messages");
134 module_param(quartz
, int, 0);
135 MODULE_PARM_DESC(quartz
,"If present, on-board quartz frequency (Hz)");
149 u32 jiffies
; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 /* FWIW, datasheet calls that "dummy" and says that card
151 * never looks at it; neither does the driver */
162 #define DUMMY_SKB_SIZE 64
164 #define TX_RING_SIZE 32
165 #define RX_RING_SIZE 32
166 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
169 #define TX_TIMEOUT (HZ/10)
170 #define DSCC4_HZ_MAX 33000000
171 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
172 #define dev_per_card 4
173 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
175 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
176 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
179 * Given the operating range of Linux HDLC, the 2 defines below could be
180 * made simpler. However they are a fine reminder for the limitations of
181 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
183 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
186 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
188 struct dscc4_pci_priv
{
192 struct pci_dev
*pdev
;
194 struct dscc4_dev_priv
*root
;
195 dma_addr_t iqcfg_dma
;
199 struct dscc4_dev_priv
{
200 struct sk_buff
*rx_skbuff
[RX_RING_SIZE
];
201 struct sk_buff
*tx_skbuff
[TX_RING_SIZE
];
208 /* FIXME: check all the volatile are required */
209 volatile u32 tx_current
;
214 volatile u32 tx_dirty
;
219 dma_addr_t tx_fd_dma
;
220 dma_addr_t rx_fd_dma
;
224 u32 scc_regs
[SCC_REGISTERS_MAX
]; /* Cf errata DS5 p.4 */
226 struct dscc4_pci_priv
*pci_priv
;
233 unsigned short encoding
;
234 unsigned short parity
;
235 struct net_device
*dev
;
236 sync_serial_settings settings
;
237 void __iomem
*base_addr
;
238 u32 __pad
__attribute__ ((aligned (4)));
241 /* GLOBAL registers definitions */
262 /* SCC registers definitions */
263 #define SCC_START 0x0100
264 #define SCC_OFFSET 0x80
276 #define GPDATA 0x0404
280 #define EncodingMask 0x00700000
281 #define CrcMask 0x00000003
283 #define IntRxScc0 0x10000000
284 #define IntTxScc0 0x01000000
286 #define TxPollCmd 0x00000400
287 #define RxActivate 0x08000000
288 #define MTFi 0x04000000
289 #define Rdr 0x00400000
290 #define Rdt 0x00200000
291 #define Idr 0x00100000
292 #define Idt 0x00080000
293 #define TxSccRes 0x01000000
294 #define RxSccRes 0x00010000
295 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
296 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
298 #define Ccr0ClockMask 0x0000003f
299 #define Ccr1LoopMask 0x00000200
300 #define IsrMask 0x000fffff
301 #define BrrExpMask 0x00000f00
302 #define BrrMultMask 0x0000003f
303 #define EncodingMask 0x00700000
304 #define Hold cpu_to_le32(0x40000000)
305 #define SccBusy 0x10000000
306 #define PowerUp 0x80000000
307 #define Vis 0x00001000
308 #define FrameOk (FrameVfr | FrameCrc)
309 #define FrameVfr 0x80
310 #define FrameRdo 0x40
311 #define FrameCrc 0x20
312 #define FrameRab 0x10
313 #define FrameAborted cpu_to_le32(0x00000200)
314 #define FrameEnd cpu_to_le32(0x80000000)
315 #define DataComplete cpu_to_le32(0x40000000)
316 #define LengthCheck 0x00008000
317 #define SccEvt 0x02000000
318 #define NoAck 0x00000200
319 #define Action 0x00000001
320 #define HiDesc cpu_to_le32(0x20000000)
323 #define RxEvt 0xf0000000
324 #define TxEvt 0x0f000000
325 #define Alls 0x00040000
326 #define Xdu 0x00010000
327 #define Cts 0x00004000
328 #define Xmr 0x00002000
329 #define Xpr 0x00001000
330 #define Rdo 0x00000080
331 #define Rfs 0x00000040
332 #define Cd 0x00000004
333 #define Rfo 0x00000002
334 #define Flex 0x00000001
336 /* DMA core events */
337 #define Cfg 0x00200000
338 #define Hi 0x00040000
339 #define Fi 0x00020000
340 #define Err 0x00010000
341 #define Arf 0x00000002
342 #define ArAck 0x00000001
345 #define Ready 0x00000000
346 #define NeedIDR 0x00000001
347 #define NeedIDT 0x00000002
348 #define RdoSet 0x00000004
349 #define FakeReset 0x00000008
351 /* Don't mask RDO. Ever. */
353 #define EventsMask 0xfffeef7f
355 #define EventsMask 0xfffa8f7a
358 /* Functions prototypes */
359 static void dscc4_rx_irq(struct dscc4_pci_priv
*, struct dscc4_dev_priv
*);
360 static void dscc4_tx_irq(struct dscc4_pci_priv
*, struct dscc4_dev_priv
*);
361 static int dscc4_found1(struct pci_dev
*, void __iomem
*ioaddr
);
362 static int dscc4_init_one(struct pci_dev
*, const struct pci_device_id
*ent
);
363 static int dscc4_open(struct net_device
*);
364 static netdev_tx_t
dscc4_start_xmit(struct sk_buff
*,
365 struct net_device
*);
366 static int dscc4_close(struct net_device
*);
367 static int dscc4_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
368 static int dscc4_init_ring(struct net_device
*);
369 static void dscc4_release_ring(struct dscc4_dev_priv
*);
370 static void dscc4_tx_timeout(struct net_device
*);
371 static irqreturn_t
dscc4_irq(int irq
, void *dev_id
);
372 static int dscc4_hdlc_attach(struct net_device
*, unsigned short, unsigned short);
373 static int dscc4_set_iface(struct dscc4_dev_priv
*, struct net_device
*);
375 static int dscc4_tx_poll(struct dscc4_dev_priv
*, struct net_device
*);
378 static inline struct dscc4_dev_priv
*dscc4_priv(struct net_device
*dev
)
380 return dev_to_hdlc(dev
)->priv
;
383 static inline struct net_device
*dscc4_to_dev(struct dscc4_dev_priv
*p
)
388 static void scc_patchl(u32 mask
, u32 value
, struct dscc4_dev_priv
*dpriv
,
389 struct net_device
*dev
, int offset
)
393 /* Cf scc_writel for concern regarding thread-safety */
394 state
= dpriv
->scc_regs
[offset
>> 2];
397 dpriv
->scc_regs
[offset
>> 2] = state
;
398 writel(state
, dpriv
->base_addr
+ SCC_REG_START(dpriv
) + offset
);
401 static void scc_writel(u32 bits
, struct dscc4_dev_priv
*dpriv
,
402 struct net_device
*dev
, int offset
)
406 * As of 2002/02/16, there are no thread racing for access.
408 dpriv
->scc_regs
[offset
>> 2] = bits
;
409 writel(bits
, dpriv
->base_addr
+ SCC_REG_START(dpriv
) + offset
);
412 static inline u32
scc_readl(struct dscc4_dev_priv
*dpriv
, int offset
)
414 return dpriv
->scc_regs
[offset
>> 2];
417 static u32
scc_readl_star(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
419 /* Cf errata DS5 p.4 */
420 readl(dpriv
->base_addr
+ SCC_REG_START(dpriv
) + STAR
);
421 return readl(dpriv
->base_addr
+ SCC_REG_START(dpriv
) + STAR
);
424 static inline void dscc4_do_tx(struct dscc4_dev_priv
*dpriv
,
425 struct net_device
*dev
)
427 dpriv
->ltda
= dpriv
->tx_fd_dma
+
428 ((dpriv
->tx_current
-1)%TX_RING_SIZE
)*sizeof(struct TxFD
);
429 writel(dpriv
->ltda
, dpriv
->base_addr
+ CH0LTDA
+ dpriv
->dev_id
*4);
430 /* Flush posted writes *NOW* */
431 readl(dpriv
->base_addr
+ CH0LTDA
+ dpriv
->dev_id
*4);
434 static inline void dscc4_rx_update(struct dscc4_dev_priv
*dpriv
,
435 struct net_device
*dev
)
437 dpriv
->lrda
= dpriv
->rx_fd_dma
+
438 ((dpriv
->rx_dirty
- 1)%RX_RING_SIZE
)*sizeof(struct RxFD
);
439 writel(dpriv
->lrda
, dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
442 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv
*dpriv
)
444 return dpriv
->tx_current
== dpriv
->tx_dirty
;
447 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv
*dpriv
,
448 struct net_device
*dev
)
450 return readl(dpriv
->base_addr
+ CH0FTDA
+ dpriv
->dev_id
*4) == dpriv
->ltda
;
453 static int state_check(u32 state
, struct dscc4_dev_priv
*dpriv
,
454 struct net_device
*dev
, const char *msg
)
459 if (SOURCE_ID(state
) != dpriv
->dev_id
) {
460 printk(KERN_DEBUG
"%s (%s): Source Id=%d, state=%08x\n",
461 dev
->name
, msg
, SOURCE_ID(state
), state
);
464 if (state
& 0x0df80c00) {
465 printk(KERN_DEBUG
"%s (%s): state=%08x (UFO alert)\n",
466 dev
->name
, msg
, state
);
473 static void dscc4_tx_print(struct net_device
*dev
,
474 struct dscc4_dev_priv
*dpriv
,
477 printk(KERN_DEBUG
"%s: tx_current=%02d tx_dirty=%02d (%s)\n",
478 dev
->name
, dpriv
->tx_current
, dpriv
->tx_dirty
, msg
);
481 static void dscc4_release_ring(struct dscc4_dev_priv
*dpriv
)
483 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
484 struct TxFD
*tx_fd
= dpriv
->tx_fd
;
485 struct RxFD
*rx_fd
= dpriv
->rx_fd
;
486 struct sk_buff
**skbuff
;
489 dma_free_coherent(d
, TX_TOTAL_SIZE
, tx_fd
, dpriv
->tx_fd_dma
);
490 dma_free_coherent(d
, RX_TOTAL_SIZE
, rx_fd
, dpriv
->rx_fd_dma
);
492 skbuff
= dpriv
->tx_skbuff
;
493 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
495 dma_unmap_single(d
, le32_to_cpu(tx_fd
->data
),
496 (*skbuff
)->len
, DMA_TO_DEVICE
);
497 dev_kfree_skb(*skbuff
);
503 skbuff
= dpriv
->rx_skbuff
;
504 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
506 dma_unmap_single(d
, le32_to_cpu(rx_fd
->data
),
507 RX_MAX(HDLC_MAX_MRU
),
509 dev_kfree_skb(*skbuff
);
516 static inline int try_get_rx_skb(struct dscc4_dev_priv
*dpriv
,
517 struct net_device
*dev
)
519 unsigned int dirty
= dpriv
->rx_dirty
%RX_RING_SIZE
;
520 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
521 struct RxFD
*rx_fd
= dpriv
->rx_fd
+ dirty
;
522 const int len
= RX_MAX(HDLC_MAX_MRU
);
526 skb
= dev_alloc_skb(len
);
530 skb
->protocol
= hdlc_type_trans(skb
, dev
);
531 addr
= dma_map_single(d
, skb
->data
, len
, DMA_FROM_DEVICE
);
532 if (dma_mapping_error(d
, addr
))
535 dpriv
->rx_skbuff
[dirty
] = skb
;
536 rx_fd
->data
= cpu_to_le32(addr
);
540 dev_kfree_skb_any(skb
);
547 * IRQ/thread/whatever safe
549 static int dscc4_wait_ack_cec(struct dscc4_dev_priv
*dpriv
,
550 struct net_device
*dev
, char *msg
)
555 if (!(scc_readl_star(dpriv
, dev
) & SccBusy
)) {
556 printk(KERN_DEBUG
"%s: %s ack (%d try)\n", dev
->name
,
560 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
563 netdev_err(dev
, "%s timeout\n", msg
);
565 return (i
>= 0) ? i
: -EAGAIN
;
568 static int dscc4_do_action(struct net_device
*dev
, char *msg
)
570 void __iomem
*ioaddr
= dscc4_priv(dev
)->base_addr
;
573 writel(Action
, ioaddr
+ GCMDR
);
576 u32 state
= readl(ioaddr
);
579 netdev_dbg(dev
, "%s ack\n", msg
);
580 writel(ArAck
, ioaddr
);
582 } else if (state
& Arf
) {
583 netdev_err(dev
, "%s failed\n", msg
);
590 netdev_err(dev
, "%s timeout\n", msg
);
595 static inline int dscc4_xpr_ack(struct dscc4_dev_priv
*dpriv
)
597 int cur
= dpriv
->iqtx_current
%IRQ_RING_SIZE
;
601 if (!(dpriv
->flags
& (NeedIDR
| NeedIDT
)) ||
602 (dpriv
->iqtx
[cur
] & cpu_to_le32(Xpr
)))
605 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
608 return (i
>= 0 ) ? i
: -EAGAIN
;
611 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
612 static void dscc4_rx_reset(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
616 spin_lock_irqsave(&dpriv
->pci_priv
->lock
, flags
);
617 /* Cf errata DS5 p.6 */
618 writel(0x00000000, dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
619 scc_patchl(PowerUp
, 0, dpriv
, dev
, CCR0
);
620 readl(dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
621 writel(MTFi
|Rdr
, dpriv
->base_addr
+ dpriv
->dev_id
*0x0c + CH0CFG
);
622 writel(Action
, dpriv
->base_addr
+ GCMDR
);
623 spin_unlock_irqrestore(&dpriv
->pci_priv
->lock
, flags
);
629 static void dscc4_tx_reset(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
633 /* Cf errata DS5 p.7 */
634 scc_patchl(PowerUp
, 0, dpriv
, dev
, CCR0
);
635 scc_writel(0x00050000, dpriv
, dev
, CCR2
);
637 * Must be longer than the time required to fill the fifo.
639 while (!dscc4_tx_quiescent(dpriv
, dev
) && ++i
) {
644 writel(MTFi
|Rdt
, dpriv
->base_addr
+ dpriv
->dev_id
*0x0c + CH0CFG
);
645 if (dscc4_do_action(dev
, "Rdt") < 0)
646 netdev_err(dev
, "Tx reset failed\n");
650 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
651 static inline void dscc4_rx_skb(struct dscc4_dev_priv
*dpriv
,
652 struct net_device
*dev
)
654 struct RxFD
*rx_fd
= dpriv
->rx_fd
+ dpriv
->rx_current
%RX_RING_SIZE
;
655 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
659 skb
= dpriv
->rx_skbuff
[dpriv
->rx_current
++%RX_RING_SIZE
];
661 printk(KERN_DEBUG
"%s: skb=0 (%s)\n", dev
->name
, __func__
);
664 pkt_len
= TO_SIZE(le32_to_cpu(rx_fd
->state2
));
665 dma_unmap_single(d
, le32_to_cpu(rx_fd
->data
),
666 RX_MAX(HDLC_MAX_MRU
), DMA_FROM_DEVICE
);
667 if ((skb
->data
[--pkt_len
] & FrameOk
) == FrameOk
) {
668 dev
->stats
.rx_packets
++;
669 dev
->stats
.rx_bytes
+= pkt_len
;
670 skb_put(skb
, pkt_len
);
671 if (netif_running(dev
))
672 skb
->protocol
= hdlc_type_trans(skb
, dev
);
675 if (skb
->data
[pkt_len
] & FrameRdo
)
676 dev
->stats
.rx_fifo_errors
++;
677 else if (!(skb
->data
[pkt_len
] & FrameCrc
))
678 dev
->stats
.rx_crc_errors
++;
679 else if ((skb
->data
[pkt_len
] & (FrameVfr
| FrameRab
)) !=
680 (FrameVfr
| FrameRab
))
681 dev
->stats
.rx_length_errors
++;
682 dev
->stats
.rx_errors
++;
683 dev_kfree_skb_irq(skb
);
686 while ((dpriv
->rx_dirty
- dpriv
->rx_current
) % RX_RING_SIZE
) {
687 if (try_get_rx_skb(dpriv
, dev
) < 0)
691 dscc4_rx_update(dpriv
, dev
);
692 rx_fd
->state2
= 0x00000000;
693 rx_fd
->end
= cpu_to_le32(0xbabeface);
696 static void dscc4_free1(struct pci_dev
*pdev
)
698 struct dscc4_pci_priv
*ppriv
;
699 struct dscc4_dev_priv
*root
;
702 ppriv
= pci_get_drvdata(pdev
);
705 for (i
= 0; i
< dev_per_card
; i
++)
706 unregister_hdlc_device(dscc4_to_dev(root
+ i
));
708 for (i
= 0; i
< dev_per_card
; i
++)
709 free_netdev(root
[i
].dev
);
714 static int dscc4_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
716 struct dscc4_pci_priv
*priv
;
717 struct dscc4_dev_priv
*dpriv
;
718 void __iomem
*ioaddr
;
721 printk(KERN_DEBUG
"%s", version
);
723 rc
= pci_enable_device(pdev
);
727 rc
= pci_request_region(pdev
, 0, "registers");
729 pr_err("can't reserve MMIO region (regs)\n");
732 rc
= pci_request_region(pdev
, 1, "LBI interface");
734 pr_err("can't reserve MMIO region (lbi)\n");
735 goto err_free_mmio_region_1
;
738 ioaddr
= pci_ioremap_bar(pdev
, 0);
740 pr_err("cannot remap MMIO region %llx @ %llx\n",
741 (unsigned long long)pci_resource_len(pdev
, 0),
742 (unsigned long long)pci_resource_start(pdev
, 0));
744 goto err_free_mmio_regions_2
;
746 printk(KERN_DEBUG
"Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
747 (unsigned long long)pci_resource_start(pdev
, 0),
748 (unsigned long long)pci_resource_start(pdev
, 1), pdev
->irq
);
750 /* Cf errata DS5 p.2 */
751 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xf8);
752 pci_set_master(pdev
);
754 rc
= dscc4_found1(pdev
, ioaddr
);
758 priv
= pci_get_drvdata(pdev
);
760 rc
= request_irq(pdev
->irq
, dscc4_irq
, IRQF_SHARED
, DRV_NAME
, priv
->root
);
762 pr_warn("IRQ %d busy\n", pdev
->irq
);
766 /* power up/little endian/dma core controlled via lrda/ltda */
767 writel(0x00000001, ioaddr
+ GMODE
);
768 /* Shared interrupt queue */
772 bits
= (IRQ_RING_SIZE
>> 5) - 1;
776 writel(bits
, ioaddr
+ IQLENR0
);
778 /* Global interrupt queue */
779 writel((u32
)(((IRQ_RING_SIZE
>> 5) - 1) << 20), ioaddr
+ IQLENR1
);
783 priv
->iqcfg
= (__le32
*)dma_alloc_coherent(&pdev
->dev
,
784 IRQ_RING_SIZE
*sizeof(__le32
), &priv
->iqcfg_dma
, GFP_KERNEL
);
787 writel(priv
->iqcfg_dma
, ioaddr
+ IQCFG
);
790 * SCC 0-3 private rx/tx irq structures
791 * IQRX/TXi needs to be set soon. Learned it the hard way...
793 for (i
= 0; i
< dev_per_card
; i
++) {
794 dpriv
= priv
->root
+ i
;
795 dpriv
->iqtx
= (__le32
*)dma_alloc_coherent(&pdev
->dev
,
796 IRQ_RING_SIZE
*sizeof(u32
), &dpriv
->iqtx_dma
,
799 goto err_free_iqtx_6
;
800 writel(dpriv
->iqtx_dma
, ioaddr
+ IQTX0
+ i
*4);
802 for (i
= 0; i
< dev_per_card
; i
++) {
803 dpriv
= priv
->root
+ i
;
804 dpriv
->iqrx
= (__le32
*)dma_alloc_coherent(&pdev
->dev
,
805 IRQ_RING_SIZE
*sizeof(u32
), &dpriv
->iqrx_dma
,
808 goto err_free_iqrx_7
;
809 writel(dpriv
->iqrx_dma
, ioaddr
+ IQRX0
+ i
*4);
812 /* Cf application hint. Beware of hard-lock condition on threshold. */
813 writel(0x42104000, ioaddr
+ FIFOCR1
);
814 //writel(0x9ce69800, ioaddr + FIFOCR2);
815 writel(0xdef6d800, ioaddr
+ FIFOCR2
);
816 //writel(0x11111111, ioaddr + FIFOCR4);
817 writel(0x18181818, ioaddr
+ FIFOCR4
);
818 // FIXME: should depend on the chipset revision
819 writel(0x0000000e, ioaddr
+ FIFOCR3
);
821 writel(0xff200001, ioaddr
+ GCMDR
);
829 dpriv
= priv
->root
+ i
;
830 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
),
831 dpriv
->iqrx
, dpriv
->iqrx_dma
);
836 dpriv
= priv
->root
+ i
;
837 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
),
838 dpriv
->iqtx
, dpriv
->iqtx_dma
);
840 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
), priv
->iqcfg
,
843 free_irq(pdev
->irq
, priv
->root
);
848 err_free_mmio_regions_2
:
849 pci_release_region(pdev
, 1);
850 err_free_mmio_region_1
:
851 pci_release_region(pdev
, 0);
853 pci_disable_device(pdev
);
858 * Let's hope the default values are decent enough to protect my
859 * feet from the user's gun - Ueimor
861 static void dscc4_init_registers(struct dscc4_dev_priv
*dpriv
,
862 struct net_device
*dev
)
864 /* No interrupts, SCC core disabled. Let's relax */
865 scc_writel(0x00000000, dpriv
, dev
, CCR0
);
867 scc_writel(LengthCheck
| (HDLC_MAX_MRU
>> 5), dpriv
, dev
, RLCR
);
870 * No address recognition/crc-CCITT/cts enabled
871 * Shared flags transmission disabled - cf errata DS5 p.11
872 * Carrier detect disabled - cf errata p.14
873 * FIXME: carrier detection/polarity may be handled more gracefully.
875 scc_writel(0x02408000, dpriv
, dev
, CCR1
);
877 /* crc not forwarded - Cf errata DS5 p.11 */
878 scc_writel(0x00050008 & ~RxActivate
, dpriv
, dev
, CCR2
);
880 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
883 static inline int dscc4_set_quartz(struct dscc4_dev_priv
*dpriv
, int hz
)
887 if ((hz
< 0) || (hz
> DSCC4_HZ_MAX
))
890 dpriv
->pci_priv
->xtal_hz
= hz
;
895 static const struct net_device_ops dscc4_ops
= {
896 .ndo_open
= dscc4_open
,
897 .ndo_stop
= dscc4_close
,
898 .ndo_start_xmit
= hdlc_start_xmit
,
899 .ndo_do_ioctl
= dscc4_ioctl
,
900 .ndo_tx_timeout
= dscc4_tx_timeout
,
903 static int dscc4_found1(struct pci_dev
*pdev
, void __iomem
*ioaddr
)
905 struct dscc4_pci_priv
*ppriv
;
906 struct dscc4_dev_priv
*root
;
907 int i
, ret
= -ENOMEM
;
909 root
= kcalloc(dev_per_card
, sizeof(*root
), GFP_KERNEL
);
913 for (i
= 0; i
< dev_per_card
; i
++) {
914 root
[i
].dev
= alloc_hdlcdev(root
+ i
);
919 ppriv
= kzalloc(sizeof(*ppriv
), GFP_KERNEL
);
924 spin_lock_init(&ppriv
->lock
);
926 for (i
= 0; i
< dev_per_card
; i
++) {
927 struct dscc4_dev_priv
*dpriv
= root
+ i
;
928 struct net_device
*d
= dscc4_to_dev(dpriv
);
929 hdlc_device
*hdlc
= dev_to_hdlc(d
);
931 d
->base_addr
= (unsigned long)ioaddr
;
933 d
->netdev_ops
= &dscc4_ops
;
934 d
->watchdog_timeo
= TX_TIMEOUT
;
935 SET_NETDEV_DEV(d
, &pdev
->dev
);
938 dpriv
->pci_priv
= ppriv
;
939 dpriv
->base_addr
= ioaddr
;
940 spin_lock_init(&dpriv
->lock
);
942 hdlc
->xmit
= dscc4_start_xmit
;
943 hdlc
->attach
= dscc4_hdlc_attach
;
945 dscc4_init_registers(dpriv
, d
);
946 dpriv
->parity
= PARITY_CRC16_PR0_CCITT
;
947 dpriv
->encoding
= ENCODING_NRZ
;
949 ret
= dscc4_init_ring(d
);
953 ret
= register_hdlc_device(d
);
955 pr_err("unable to register\n");
956 dscc4_release_ring(dpriv
);
961 ret
= dscc4_set_quartz(root
, quartz
);
965 pci_set_drvdata(pdev
, ppriv
);
970 dscc4_release_ring(root
+ i
);
971 unregister_hdlc_device(dscc4_to_dev(root
+ i
));
977 free_netdev(root
[i
].dev
);
983 static void dscc4_tx_timeout(struct net_device
*dev
)
985 /* FIXME: something is missing there */
988 static int dscc4_loopback_check(struct dscc4_dev_priv
*dpriv
)
990 sync_serial_settings
*settings
= &dpriv
->settings
;
992 if (settings
->loopback
&& (settings
->clock_type
!= CLOCK_INT
)) {
993 struct net_device
*dev
= dscc4_to_dev(dpriv
);
995 netdev_info(dev
, "loopback requires clock\n");
1001 #ifdef CONFIG_DSCC4_PCI_RST
1003 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1004 * so as to provide a safe way to reset the asic while not the whole machine
1007 * This code doesn't need to be efficient. Keep It Simple
1009 static void dscc4_pci_reset(struct pci_dev
*pdev
, void __iomem
*ioaddr
)
1013 mutex_lock(&dscc4_mutex
);
1014 for (i
= 0; i
< 16; i
++)
1015 pci_read_config_dword(pdev
, i
<< 2, dscc4_pci_config_store
+ i
);
1017 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1018 writel(0x001c0000, ioaddr
+ GMODE
);
1019 /* Configure GPIO port as output */
1020 writel(0x0000ffff, ioaddr
+ GPDIR
);
1021 /* Disable interruption */
1022 writel(0x0000ffff, ioaddr
+ GPIM
);
1024 writel(0x0000ffff, ioaddr
+ GPDATA
);
1025 writel(0x00000000, ioaddr
+ GPDATA
);
1027 /* Flush posted writes */
1028 readl(ioaddr
+ GSTAR
);
1030 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
1032 for (i
= 0; i
< 16; i
++)
1033 pci_write_config_dword(pdev
, i
<< 2, dscc4_pci_config_store
[i
]);
1034 mutex_unlock(&dscc4_mutex
);
1037 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1038 #endif /* CONFIG_DSCC4_PCI_RST */
1040 static int dscc4_open(struct net_device
*dev
)
1042 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1045 if ((dscc4_loopback_check(dpriv
) < 0))
1048 if ((ret
= hdlc_open(dev
)))
1052 * Due to various bugs, there is no way to reliably reset a
1053 * specific port (manufacturer's dependent special PCI #RST wiring
1054 * apart: it affects all ports). Thus the device goes in the best
1055 * silent mode possible at dscc4_close() time and simply claims to
1056 * be up if it's opened again. It still isn't possible to change
1057 * the HDLC configuration without rebooting but at least the ports
1058 * can be up/down ifconfig'ed without killing the host.
1060 if (dpriv
->flags
& FakeReset
) {
1061 dpriv
->flags
&= ~FakeReset
;
1062 scc_patchl(0, PowerUp
, dpriv
, dev
, CCR0
);
1063 scc_patchl(0, 0x00050000, dpriv
, dev
, CCR2
);
1064 scc_writel(EventsMask
, dpriv
, dev
, IMR
);
1065 netdev_info(dev
, "up again\n");
1069 /* IDT+IDR during XPR */
1070 dpriv
->flags
= NeedIDR
| NeedIDT
;
1072 scc_patchl(0, PowerUp
| Vis
, dpriv
, dev
, CCR0
);
1075 * The following is a bit paranoid...
1077 * NB: the datasheet "...CEC will stay active if the SCC is in
1078 * power-down mode or..." and CCR2.RAC = 1 are two different
1081 if (scc_readl_star(dpriv
, dev
) & SccBusy
) {
1082 netdev_err(dev
, "busy - try later\n");
1086 netdev_info(dev
, "available - good\n");
1088 scc_writel(EventsMask
, dpriv
, dev
, IMR
);
1090 /* Posted write is flushed in the wait_ack loop */
1091 scc_writel(TxSccRes
| RxSccRes
, dpriv
, dev
, CMDR
);
1093 if ((ret
= dscc4_wait_ack_cec(dpriv
, dev
, "Cec")) < 0)
1094 goto err_disable_scc_events
;
1097 * I would expect XPR near CE completion (before ? after ?).
1098 * At worst, this code won't see a late XPR and people
1099 * will have to re-issue an ifconfig (this is harmless).
1100 * WARNING, a really missing XPR usually means a hardware
1101 * reset is needed. Suggestions anyone ?
1103 if ((ret
= dscc4_xpr_ack(dpriv
)) < 0) {
1104 pr_err("XPR timeout\n");
1105 goto err_disable_scc_events
;
1109 dscc4_tx_print(dev
, dpriv
, "Open");
1112 netif_start_queue(dev
);
1114 netif_carrier_on(dev
);
1118 err_disable_scc_events
:
1119 scc_writel(0xffffffff, dpriv
, dev
, IMR
);
1120 scc_patchl(PowerUp
| Vis
, 0, dpriv
, dev
, CCR0
);
1127 #ifdef DSCC4_POLLING
1128 static int dscc4_tx_poll(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
1130 /* FIXME: it's gonna be easy (TM), for sure */
1132 #endif /* DSCC4_POLLING */
1134 static netdev_tx_t
dscc4_start_xmit(struct sk_buff
*skb
,
1135 struct net_device
*dev
)
1137 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1138 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
1143 addr
= dma_map_single(d
, skb
->data
, skb
->len
, DMA_TO_DEVICE
);
1144 if (dma_mapping_error(d
, addr
)) {
1145 dev_kfree_skb_any(skb
);
1146 dev
->stats
.tx_dropped
++;
1147 return NETDEV_TX_OK
;
1150 next
= dpriv
->tx_current
%TX_RING_SIZE
;
1151 dpriv
->tx_skbuff
[next
] = skb
;
1152 tx_fd
= dpriv
->tx_fd
+ next
;
1153 tx_fd
->state
= FrameEnd
| TO_STATE_TX(skb
->len
);
1154 tx_fd
->data
= cpu_to_le32(addr
);
1155 tx_fd
->complete
= 0x00000000;
1156 tx_fd
->jiffies
= jiffies
;
1159 #ifdef DSCC4_POLLING
1160 spin_lock(&dpriv
->lock
);
1161 while (dscc4_tx_poll(dpriv
, dev
));
1162 spin_unlock(&dpriv
->lock
);
1166 dscc4_tx_print(dev
, dpriv
, "Xmit");
1167 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1168 if (!((++dpriv
->tx_current
- dpriv
->tx_dirty
)%TX_RING_SIZE
))
1169 netif_stop_queue(dev
);
1171 if (dscc4_tx_quiescent(dpriv
, dev
))
1172 dscc4_do_tx(dpriv
, dev
);
1174 return NETDEV_TX_OK
;
1177 static int dscc4_close(struct net_device
*dev
)
1179 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1181 netif_stop_queue(dev
);
1183 scc_patchl(PowerUp
| Vis
, 0, dpriv
, dev
, CCR0
);
1184 scc_patchl(0x00050000, 0, dpriv
, dev
, CCR2
);
1185 scc_writel(0xffffffff, dpriv
, dev
, IMR
);
1187 dpriv
->flags
|= FakeReset
;
1194 static inline int dscc4_check_clock_ability(int port
)
1198 #ifdef CONFIG_DSCC4_PCISYNC
1206 * DS1 p.137: "There are a total of 13 different clocking modes..."
1209 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1210 * Clock mode 3b _should_ work but the testing seems to make this point
1211 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1212 * This is supposed to provide least surprise "DTE like" behavior.
1213 * - if line rate is specified, clocks are assumed to be locally generated.
1214 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1215 * between these it automagically done according on the required frequency
1216 * scaling. Of course some rounding may take place.
1217 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1218 * appropriate external clocking device for testing.
1219 * - no time-slot/clock mode 5: shameless laziness.
1221 * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1223 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1224 * won't pass the init sequence. For example, straight back-to-back DTE without
1225 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1228 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1231 * Clock mode related bits of CCR0:
1232 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1233 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1234 * | | +-------- High Speed: say 0
1235 * | | | +-+-+-- Clock Mode: 0..7
1238 * x|x|5|4|3|2|1|0| lower bits
1240 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1241 * +-+-+-+------------------ M (0..15)
1242 * | | | | +-+-+-+-+-+-- N (0..63)
1243 * 0 0 0 0 | | | | 0 0 | | | | | |
1244 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1245 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1248 static int dscc4_set_clock(struct net_device
*dev
, u32
*bps
, u32
*state
)
1250 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1254 *state
&= ~Ccr0ClockMask
;
1255 if (*bps
) { /* Clock generated - required for DCE */
1256 u32 n
= 0, m
= 0, divider
;
1259 xtal
= dpriv
->pci_priv
->xtal_hz
;
1262 if (dscc4_check_clock_ability(dpriv
->dev_id
) < 0)
1264 divider
= xtal
/ *bps
;
1265 if (divider
> BRR_DIVIDER_MAX
) {
1267 *state
|= 0x00000036; /* Clock mode 6b (BRG/16) */
1269 *state
|= 0x00000037; /* Clock mode 7b (BRG) */
1270 if (divider
>> 22) {
1273 } else if (divider
) {
1274 /* Extraction of the 6 highest weighted bits */
1276 while (0xffffffc0 & divider
) {
1284 if (!(*state
& 0x00000001)) /* ?b mode mask => clock mode 6b */
1286 *bps
= xtal
/ divider
;
1289 * External clock - DTE
1290 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1291 * Nothing more to be done
1295 scc_writel(brr
, dpriv
, dev
, BRR
);
1301 static int dscc4_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1303 sync_serial_settings __user
*line
= ifr
->ifr_settings
.ifs_ifsu
.sync
;
1304 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1305 const size_t size
= sizeof(dpriv
->settings
);
1308 if (dev
->flags
& IFF_UP
)
1311 if (cmd
!= SIOCWANDEV
)
1314 switch(ifr
->ifr_settings
.type
) {
1316 ifr
->ifr_settings
.type
= IF_IFACE_SYNC_SERIAL
;
1317 if (ifr
->ifr_settings
.size
< size
) {
1318 ifr
->ifr_settings
.size
= size
; /* data size wanted */
1321 if (copy_to_user(line
, &dpriv
->settings
, size
))
1325 case IF_IFACE_SYNC_SERIAL
:
1326 if (!capable(CAP_NET_ADMIN
))
1329 if (dpriv
->flags
& FakeReset
) {
1330 netdev_info(dev
, "please reset the device before this command\n");
1333 if (copy_from_user(&dpriv
->settings
, line
, size
))
1335 ret
= dscc4_set_iface(dpriv
, dev
);
1339 ret
= hdlc_ioctl(dev
, ifr
, cmd
);
1346 static int dscc4_match(const struct thingie
*p
, int value
)
1350 for (i
= 0; p
[i
].define
!= -1; i
++) {
1351 if (value
== p
[i
].define
)
1354 if (p
[i
].define
== -1)
1360 static int dscc4_clock_setting(struct dscc4_dev_priv
*dpriv
,
1361 struct net_device
*dev
)
1363 sync_serial_settings
*settings
= &dpriv
->settings
;
1364 int ret
= -EOPNOTSUPP
;
1367 bps
= settings
->clock_rate
;
1368 state
= scc_readl(dpriv
, CCR0
);
1369 if (dscc4_set_clock(dev
, &bps
, &state
) < 0)
1371 if (bps
) { /* DCE */
1372 printk(KERN_DEBUG
"%s: generated RxClk (DCE)\n", dev
->name
);
1373 if (settings
->clock_rate
!= bps
) {
1374 printk(KERN_DEBUG
"%s: clock adjusted (%08d -> %08d)\n",
1375 dev
->name
, settings
->clock_rate
, bps
);
1376 settings
->clock_rate
= bps
;
1379 state
|= PowerUp
| Vis
;
1380 printk(KERN_DEBUG
"%s: external RxClk (DTE)\n", dev
->name
);
1382 scc_writel(state
, dpriv
, dev
, CCR0
);
1388 static int dscc4_encoding_setting(struct dscc4_dev_priv
*dpriv
,
1389 struct net_device
*dev
)
1391 static const struct thingie encoding
[] = {
1392 { ENCODING_NRZ
, 0x00000000 },
1393 { ENCODING_NRZI
, 0x00200000 },
1394 { ENCODING_FM_MARK
, 0x00400000 },
1395 { ENCODING_FM_SPACE
, 0x00500000 },
1396 { ENCODING_MANCHESTER
, 0x00600000 },
1401 i
= dscc4_match(encoding
, dpriv
->encoding
);
1403 scc_patchl(EncodingMask
, encoding
[i
].bits
, dpriv
, dev
, CCR0
);
1409 static int dscc4_loopback_setting(struct dscc4_dev_priv
*dpriv
,
1410 struct net_device
*dev
)
1412 sync_serial_settings
*settings
= &dpriv
->settings
;
1415 state
= scc_readl(dpriv
, CCR1
);
1416 if (settings
->loopback
) {
1417 printk(KERN_DEBUG
"%s: loopback\n", dev
->name
);
1418 state
|= 0x00000100;
1420 printk(KERN_DEBUG
"%s: normal\n", dev
->name
);
1421 state
&= ~0x00000100;
1423 scc_writel(state
, dpriv
, dev
, CCR1
);
1427 static int dscc4_crc_setting(struct dscc4_dev_priv
*dpriv
,
1428 struct net_device
*dev
)
1430 static const struct thingie crc
[] = {
1431 { PARITY_CRC16_PR0_CCITT
, 0x00000010 },
1432 { PARITY_CRC16_PR1_CCITT
, 0x00000000 },
1433 { PARITY_CRC32_PR0_CCITT
, 0x00000011 },
1434 { PARITY_CRC32_PR1_CCITT
, 0x00000001 }
1438 i
= dscc4_match(crc
, dpriv
->parity
);
1440 scc_patchl(CrcMask
, crc
[i
].bits
, dpriv
, dev
, CCR1
);
1446 static int dscc4_set_iface(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
1449 int (*action
)(struct dscc4_dev_priv
*, struct net_device
*);
1450 } *p
, do_setting
[] = {
1451 { dscc4_encoding_setting
},
1452 { dscc4_clock_setting
},
1453 { dscc4_loopback_setting
},
1454 { dscc4_crc_setting
},
1459 for (p
= do_setting
; p
->action
; p
++) {
1460 if ((ret
= p
->action(dpriv
, dev
)) < 0)
1466 static irqreturn_t
dscc4_irq(int irq
, void *token
)
1468 struct dscc4_dev_priv
*root
= token
;
1469 struct dscc4_pci_priv
*priv
;
1470 struct net_device
*dev
;
1471 void __iomem
*ioaddr
;
1473 unsigned long flags
;
1476 priv
= root
->pci_priv
;
1477 dev
= dscc4_to_dev(root
);
1479 spin_lock_irqsave(&priv
->lock
, flags
);
1481 ioaddr
= root
->base_addr
;
1483 state
= readl(ioaddr
+ GSTAR
);
1489 printk(KERN_DEBUG
"%s: GSTAR = 0x%08x\n", DRV_NAME
, state
);
1490 writel(state
, ioaddr
+ GSTAR
);
1493 netdev_err(dev
, "failure (Arf). Harass the maintainer\n");
1499 printk(KERN_DEBUG
"%s: CfgIV\n", DRV_NAME
);
1500 if (priv
->iqcfg
[priv
->cfg_cur
++%IRQ_RING_SIZE
] & cpu_to_le32(Arf
))
1501 netdev_err(dev
, "CFG failed\n");
1502 if (!(state
&= ~Cfg
))
1505 if (state
& RxEvt
) {
1506 i
= dev_per_card
- 1;
1508 dscc4_rx_irq(priv
, root
+ i
);
1512 if (state
& TxEvt
) {
1513 i
= dev_per_card
- 1;
1515 dscc4_tx_irq(priv
, root
+ i
);
1520 spin_unlock_irqrestore(&priv
->lock
, flags
);
1521 return IRQ_RETVAL(handled
);
1524 static void dscc4_tx_irq(struct dscc4_pci_priv
*ppriv
,
1525 struct dscc4_dev_priv
*dpriv
)
1527 struct net_device
*dev
= dscc4_to_dev(dpriv
);
1532 cur
= dpriv
->iqtx_current
%IRQ_RING_SIZE
;
1533 state
= le32_to_cpu(dpriv
->iqtx
[cur
]);
1536 printk(KERN_DEBUG
"%s: Tx ISR = 0x%08x\n", dev
->name
,
1538 if ((debug
> 1) && (loop
> 1))
1539 printk(KERN_DEBUG
"%s: Tx irq loop=%d\n", dev
->name
, loop
);
1540 if (loop
&& netif_queue_stopped(dev
))
1541 if ((dpriv
->tx_current
- dpriv
->tx_dirty
)%TX_RING_SIZE
)
1542 netif_wake_queue(dev
);
1544 if (netif_running(dev
) && dscc4_tx_quiescent(dpriv
, dev
) &&
1545 !dscc4_tx_done(dpriv
))
1546 dscc4_do_tx(dpriv
, dev
);
1550 dpriv
->iqtx
[cur
] = 0;
1551 dpriv
->iqtx_current
++;
1553 if (state_check(state
, dpriv
, dev
, "Tx") < 0)
1556 if (state
& SccEvt
) {
1558 struct sk_buff
*skb
;
1562 dscc4_tx_print(dev
, dpriv
, "Alls");
1564 * DataComplete can't be trusted for Tx completion.
1567 cur
= dpriv
->tx_dirty
%TX_RING_SIZE
;
1568 tx_fd
= dpriv
->tx_fd
+ cur
;
1569 skb
= dpriv
->tx_skbuff
[cur
];
1571 dma_unmap_single(&ppriv
->pdev
->dev
,
1572 le32_to_cpu(tx_fd
->data
),
1573 skb
->len
, DMA_TO_DEVICE
);
1574 if (tx_fd
->state
& FrameEnd
) {
1575 dev
->stats
.tx_packets
++;
1576 dev
->stats
.tx_bytes
+= skb
->len
;
1578 dev_kfree_skb_irq(skb
);
1579 dpriv
->tx_skbuff
[cur
] = NULL
;
1583 netdev_err(dev
, "Tx: NULL skb %d\n",
1587 * If the driver ends sending crap on the wire, it
1588 * will be way easier to diagnose than the (not so)
1589 * random freeze induced by null sized tx frames.
1591 tx_fd
->data
= tx_fd
->next
;
1592 tx_fd
->state
= FrameEnd
| TO_STATE_TX(2*DUMMY_SKB_SIZE
);
1593 tx_fd
->complete
= 0x00000000;
1596 if (!(state
&= ~Alls
))
1600 * Transmit Data Underrun
1603 netdev_err(dev
, "Tx Data Underrun. Ask maintainer\n");
1604 dpriv
->flags
= NeedIDT
;
1607 dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
+ CH0CFG
);
1608 writel(Action
, dpriv
->base_addr
+ GCMDR
);
1612 netdev_info(dev
, "CTS transition\n");
1613 if (!(state
&= ~Cts
)) /* DEBUG */
1617 /* Frame needs to be sent again - FIXME */
1618 netdev_err(dev
, "Tx ReTx. Ask maintainer\n");
1619 if (!(state
&= ~Xmr
)) /* DEBUG */
1623 void __iomem
*scc_addr
;
1628 * - the busy condition happens (sometimes);
1629 * - it doesn't seem to make the handler unreliable.
1631 for (i
= 1; i
; i
<<= 1) {
1632 if (!(scc_readl_star(dpriv
, dev
) & SccBusy
))
1636 netdev_info(dev
, "busy in irq\n");
1638 scc_addr
= dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
;
1639 /* Keep this order: IDT before IDR */
1640 if (dpriv
->flags
& NeedIDT
) {
1642 dscc4_tx_print(dev
, dpriv
, "Xpr");
1643 ring
= dpriv
->tx_fd_dma
+
1644 (dpriv
->tx_dirty
%TX_RING_SIZE
)*
1645 sizeof(struct TxFD
);
1646 writel(ring
, scc_addr
+ CH0BTDA
);
1647 dscc4_do_tx(dpriv
, dev
);
1648 writel(MTFi
| Idt
, scc_addr
+ CH0CFG
);
1649 if (dscc4_do_action(dev
, "IDT") < 0)
1651 dpriv
->flags
&= ~NeedIDT
;
1653 if (dpriv
->flags
& NeedIDR
) {
1654 ring
= dpriv
->rx_fd_dma
+
1655 (dpriv
->rx_current
%RX_RING_SIZE
)*
1656 sizeof(struct RxFD
);
1657 writel(ring
, scc_addr
+ CH0BRDA
);
1658 dscc4_rx_update(dpriv
, dev
);
1659 writel(MTFi
| Idr
, scc_addr
+ CH0CFG
);
1660 if (dscc4_do_action(dev
, "IDR") < 0)
1662 dpriv
->flags
&= ~NeedIDR
;
1664 /* Activate receiver and misc */
1665 scc_writel(0x08050008, dpriv
, dev
, CCR2
);
1668 if (!(state
&= ~Xpr
))
1673 netdev_info(dev
, "CD transition\n");
1674 if (!(state
&= ~Cd
)) /* DEBUG */
1677 } else { /* ! SccEvt */
1679 #ifdef DSCC4_POLLING
1680 while (!dscc4_tx_poll(dpriv
, dev
));
1682 netdev_info(dev
, "Tx Hi\n");
1686 netdev_info(dev
, "Tx ERR\n");
1687 dev
->stats
.tx_errors
++;
1694 static void dscc4_rx_irq(struct dscc4_pci_priv
*priv
,
1695 struct dscc4_dev_priv
*dpriv
)
1697 struct net_device
*dev
= dscc4_to_dev(dpriv
);
1702 cur
= dpriv
->iqrx_current
%IRQ_RING_SIZE
;
1703 state
= le32_to_cpu(dpriv
->iqrx
[cur
]);
1706 dpriv
->iqrx
[cur
] = 0;
1707 dpriv
->iqrx_current
++;
1709 if (state_check(state
, dpriv
, dev
, "Rx") < 0)
1712 if (!(state
& SccEvt
)){
1716 printk(KERN_DEBUG
"%s: Rx ISR = 0x%08x\n", dev
->name
,
1718 state
&= 0x00ffffff;
1719 if (state
& Err
) { /* Hold or reset */
1720 printk(KERN_DEBUG
"%s: Rx ERR\n", dev
->name
);
1721 cur
= dpriv
->rx_current
%RX_RING_SIZE
;
1722 rx_fd
= dpriv
->rx_fd
+ cur
;
1724 * Presume we're not facing a DMAC receiver reset.
1725 * As We use the rx size-filtering feature of the
1726 * DSCC4, the beginning of a new frame is waiting in
1727 * the rx fifo. I bet a Receive Data Overflow will
1728 * happen most of time but let's try and avoid it.
1729 * Btw (as for RDO) if one experiences ERR whereas
1730 * the system looks rather idle, there may be a
1731 * problem with latency. In this case, increasing
1732 * RX_RING_SIZE may help.
1734 //while (dpriv->rx_needs_refill) {
1735 while (!(rx_fd
->state1
& Hold
)) {
1738 if (!(cur
= cur
%RX_RING_SIZE
))
1739 rx_fd
= dpriv
->rx_fd
;
1741 //dpriv->rx_needs_refill--;
1742 try_get_rx_skb(dpriv
, dev
);
1745 rx_fd
->state1
&= ~Hold
;
1746 rx_fd
->state2
= 0x00000000;
1747 rx_fd
->end
= cpu_to_le32(0xbabeface);
1752 dscc4_rx_skb(dpriv
, dev
);
1755 if (state
& Hi
) { /* HI bit */
1756 netdev_info(dev
, "Rx Hi\n");
1760 } else { /* SccEvt */
1762 //FIXME: verifier la presence de tous les evenements
1765 const char *irq_name
;
1767 { 0x00008000, "TIN"},
1768 { 0x00000020, "RSC"},
1769 { 0x00000010, "PCE"},
1770 { 0x00000008, "PLLA"},
1774 for (evt
= evts
; evt
->irq_name
; evt
++) {
1775 if (state
& evt
->mask
) {
1776 printk(KERN_DEBUG
"%s: %s\n",
1777 dev
->name
, evt
->irq_name
);
1778 if (!(state
&= ~evt
->mask
))
1783 if (!(state
&= ~0x0000c03c))
1787 netdev_info(dev
, "CTS transition\n");
1788 if (!(state
&= ~Cts
)) /* DEBUG */
1792 * Receive Data Overflow (FIXME: fscked)
1796 void __iomem
*scc_addr
;
1800 // dscc4_rx_dump(dpriv);
1801 scc_addr
= dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
;
1803 scc_patchl(RxActivate
, 0, dpriv
, dev
, CCR2
);
1805 * This has no effect. Why ?
1806 * ORed with TxSccRes, one sees the CFG ack (for
1807 * the TX part only).
1809 scc_writel(RxSccRes
, dpriv
, dev
, CMDR
);
1810 dpriv
->flags
|= RdoSet
;
1813 * Let's try and save something in the received data.
1814 * rx_current must be incremented at least once to
1815 * avoid HOLD in the BRDA-to-be-pointed desc.
1818 cur
= dpriv
->rx_current
++%RX_RING_SIZE
;
1819 rx_fd
= dpriv
->rx_fd
+ cur
;
1820 if (!(rx_fd
->state2
& DataComplete
))
1822 if (rx_fd
->state2
& FrameAborted
) {
1823 dev
->stats
.rx_over_errors
++;
1824 rx_fd
->state1
|= Hold
;
1825 rx_fd
->state2
= 0x00000000;
1826 rx_fd
->end
= cpu_to_le32(0xbabeface);
1828 dscc4_rx_skb(dpriv
, dev
);
1832 if (dpriv
->flags
& RdoSet
)
1834 "%s: no RDO in Rx data\n", DRV_NAME
);
1836 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1838 * FIXME: must the reset be this violent ?
1840 #warning "FIXME: CH0BRDA"
1841 writel(dpriv
->rx_fd_dma
+
1842 (dpriv
->rx_current
%RX_RING_SIZE
)*
1843 sizeof(struct RxFD
), scc_addr
+ CH0BRDA
);
1844 writel(MTFi
|Rdr
|Idr
, scc_addr
+ CH0CFG
);
1845 if (dscc4_do_action(dev
, "RDR") < 0) {
1846 netdev_err(dev
, "RDO recovery failed(RDR)\n");
1849 writel(MTFi
|Idr
, scc_addr
+ CH0CFG
);
1850 if (dscc4_do_action(dev
, "IDR") < 0) {
1851 netdev_err(dev
, "RDO recovery failed(IDR)\n");
1856 scc_patchl(0, RxActivate
, dpriv
, dev
, CCR2
);
1860 netdev_info(dev
, "CD transition\n");
1861 if (!(state
&= ~Cd
)) /* DEBUG */
1865 printk(KERN_DEBUG
"%s: Flex. Ttttt...\n", DRV_NAME
);
1866 if (!(state
&= ~Flex
))
1873 * I had expected the following to work for the first descriptor
1874 * (tx_fd->state = 0xc0000000)
1875 * - Hold=1 (don't try and branch to the next descripto);
1876 * - No=0 (I want an empty data section, i.e. size=0);
1877 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1878 * It failed and locked solid. Thus the introduction of a dummy skb.
1879 * Problem is acknowledged in errata sheet DS5. Joy :o/
1881 static struct sk_buff
*dscc4_init_dummy_skb(struct dscc4_dev_priv
*dpriv
)
1883 struct sk_buff
*skb
;
1885 skb
= dev_alloc_skb(DUMMY_SKB_SIZE
);
1887 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
1888 int last
= dpriv
->tx_dirty
%TX_RING_SIZE
;
1889 struct TxFD
*tx_fd
= dpriv
->tx_fd
+ last
;
1892 skb
->len
= DUMMY_SKB_SIZE
;
1893 skb_copy_to_linear_data(skb
, version
,
1894 strlen(version
) % DUMMY_SKB_SIZE
);
1895 addr
= dma_map_single(d
, skb
->data
, DUMMY_SKB_SIZE
,
1897 if (dma_mapping_error(d
, addr
)) {
1898 dev_kfree_skb_any(skb
);
1901 tx_fd
->state
= FrameEnd
| TO_STATE_TX(DUMMY_SKB_SIZE
);
1902 tx_fd
->data
= cpu_to_le32(addr
);
1903 dpriv
->tx_skbuff
[last
] = skb
;
1908 static int dscc4_init_ring(struct net_device
*dev
)
1910 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1911 struct device
*d
= &dpriv
->pci_priv
->pdev
->dev
;
1917 ring
= dma_alloc_coherent(d
, RX_TOTAL_SIZE
, &dpriv
->rx_fd_dma
,
1921 dpriv
->rx_fd
= rx_fd
= (struct RxFD
*) ring
;
1923 ring
= dma_alloc_coherent(d
, TX_TOTAL_SIZE
, &dpriv
->tx_fd_dma
,
1926 goto err_free_dma_rx
;
1927 dpriv
->tx_fd
= tx_fd
= (struct TxFD
*) ring
;
1929 memset(dpriv
->tx_skbuff
, 0, sizeof(struct sk_buff
*)*TX_RING_SIZE
);
1930 dpriv
->tx_dirty
= 0xffffffff;
1931 i
= dpriv
->tx_current
= 0;
1933 tx_fd
->state
= FrameEnd
| TO_STATE_TX(2*DUMMY_SKB_SIZE
);
1934 tx_fd
->complete
= 0x00000000;
1935 /* FIXME: NULL should be ok - to be tried */
1936 tx_fd
->data
= cpu_to_le32(dpriv
->tx_fd_dma
);
1937 (tx_fd
++)->next
= cpu_to_le32(dpriv
->tx_fd_dma
+
1938 (++i
%TX_RING_SIZE
)*sizeof(*tx_fd
));
1939 } while (i
< TX_RING_SIZE
);
1941 if (!dscc4_init_dummy_skb(dpriv
))
1942 goto err_free_dma_tx
;
1944 memset(dpriv
->rx_skbuff
, 0, sizeof(struct sk_buff
*)*RX_RING_SIZE
);
1945 i
= dpriv
->rx_dirty
= dpriv
->rx_current
= 0;
1947 /* size set by the host. Multiple of 4 bytes please */
1948 rx_fd
->state1
= HiDesc
;
1949 rx_fd
->state2
= 0x00000000;
1950 rx_fd
->end
= cpu_to_le32(0xbabeface);
1951 rx_fd
->state1
|= TO_STATE_RX(HDLC_MAX_MRU
);
1952 // FIXME: return value verifiee mais traitement suspect
1953 if (try_get_rx_skb(dpriv
, dev
) >= 0)
1955 (rx_fd
++)->next
= cpu_to_le32(dpriv
->rx_fd_dma
+
1956 (++i
%RX_RING_SIZE
)*sizeof(*rx_fd
));
1957 } while (i
< RX_RING_SIZE
);
1962 dma_free_coherent(d
, TX_TOTAL_SIZE
, ring
, dpriv
->tx_fd_dma
);
1964 dma_free_coherent(d
, RX_TOTAL_SIZE
, rx_fd
, dpriv
->rx_fd_dma
);
1969 static void dscc4_remove_one(struct pci_dev
*pdev
)
1971 struct dscc4_pci_priv
*ppriv
;
1972 struct dscc4_dev_priv
*root
;
1973 void __iomem
*ioaddr
;
1976 ppriv
= pci_get_drvdata(pdev
);
1979 ioaddr
= root
->base_addr
;
1981 dscc4_pci_reset(pdev
, ioaddr
);
1983 free_irq(pdev
->irq
, root
);
1984 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
), ppriv
->iqcfg
,
1986 for (i
= 0; i
< dev_per_card
; i
++) {
1987 struct dscc4_dev_priv
*dpriv
= root
+ i
;
1989 dscc4_release_ring(dpriv
);
1990 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
),
1991 dpriv
->iqrx
, dpriv
->iqrx_dma
);
1992 dma_free_coherent(&pdev
->dev
, IRQ_RING_SIZE
*sizeof(u32
),
1993 dpriv
->iqtx
, dpriv
->iqtx_dma
);
2000 pci_release_region(pdev
, 1);
2001 pci_release_region(pdev
, 0);
2003 pci_disable_device(pdev
);
2006 static int dscc4_hdlc_attach(struct net_device
*dev
, unsigned short encoding
,
2007 unsigned short parity
)
2009 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
2011 if (encoding
!= ENCODING_NRZ
&&
2012 encoding
!= ENCODING_NRZI
&&
2013 encoding
!= ENCODING_FM_MARK
&&
2014 encoding
!= ENCODING_FM_SPACE
&&
2015 encoding
!= ENCODING_MANCHESTER
)
2018 if (parity
!= PARITY_NONE
&&
2019 parity
!= PARITY_CRC16_PR0_CCITT
&&
2020 parity
!= PARITY_CRC16_PR1_CCITT
&&
2021 parity
!= PARITY_CRC32_PR0_CCITT
&&
2022 parity
!= PARITY_CRC32_PR1_CCITT
)
2025 dpriv
->encoding
= encoding
;
2026 dpriv
->parity
= parity
;
2031 static int __init
dscc4_setup(char *str
)
2033 int *args
[] = { &debug
, &quartz
, NULL
}, **p
= args
;
2035 while (*p
&& (get_option(&str
, *p
) == 2))
2040 __setup("dscc4.setup=", dscc4_setup
);
2043 static const struct pci_device_id dscc4_pci_tbl
[] = {
2044 { PCI_VENDOR_ID_SIEMENS
, PCI_DEVICE_ID_SIEMENS_DSCC4
,
2045 PCI_ANY_ID
, PCI_ANY_ID
, },
2048 MODULE_DEVICE_TABLE(pci
, dscc4_pci_tbl
);
2050 static struct pci_driver dscc4_driver
= {
2052 .id_table
= dscc4_pci_tbl
,
2053 .probe
= dscc4_init_one
,
2054 .remove
= dscc4_remove_one
,
2057 module_pci_driver(dscc4_driver
);