1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
11 #include "mds_client.h"
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
45 struct ceph_reconnect_state
{
47 struct ceph_pagelist
*pagelist
;
51 static void __wake_requests(struct ceph_mds_client
*mdsc
,
52 struct list_head
*head
);
54 static const struct ceph_connection_operations mds_con_ops
;
62 * parse individual inode info
64 static int parse_reply_info_in(void **p
, void *end
,
65 struct ceph_mds_reply_info_in
*info
,
71 *p
+= sizeof(struct ceph_mds_reply_inode
) +
72 sizeof(*info
->in
->fragtree
.splits
) *
73 le32_to_cpu(info
->in
->fragtree
.nsplits
);
75 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
76 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
78 *p
+= info
->symlink_len
;
80 if (features
& CEPH_FEATURE_DIRLAYOUTHASH
)
81 ceph_decode_copy_safe(p
, end
, &info
->dir_layout
,
82 sizeof(info
->dir_layout
), bad
);
84 memset(&info
->dir_layout
, 0, sizeof(info
->dir_layout
));
86 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
87 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
88 info
->xattr_data
= *p
;
89 *p
+= info
->xattr_len
;
96 * parse a normal reply, which may contain a (dir+)dentry and/or a
99 static int parse_reply_info_trace(void **p
, void *end
,
100 struct ceph_mds_reply_info_parsed
*info
,
105 if (info
->head
->is_dentry
) {
106 err
= parse_reply_info_in(p
, end
, &info
->diri
, features
);
110 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
113 *p
+= sizeof(*info
->dirfrag
) +
114 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
115 if (unlikely(*p
> end
))
118 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
119 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
121 *p
+= info
->dname_len
;
123 *p
+= sizeof(*info
->dlease
);
126 if (info
->head
->is_target
) {
127 err
= parse_reply_info_in(p
, end
, &info
->targeti
, features
);
132 if (unlikely(*p
!= end
))
139 pr_err("problem parsing mds trace %d\n", err
);
144 * parse readdir results
146 static int parse_reply_info_dir(void **p
, void *end
,
147 struct ceph_mds_reply_info_parsed
*info
,
154 if (*p
+ sizeof(*info
->dir_dir
) > end
)
156 *p
+= sizeof(*info
->dir_dir
) +
157 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
161 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
162 num
= ceph_decode_32(p
);
163 info
->dir_end
= ceph_decode_8(p
);
164 info
->dir_complete
= ceph_decode_8(p
);
168 /* alloc large array */
170 info
->dir_in
= kcalloc(num
, sizeof(*info
->dir_in
) +
171 sizeof(*info
->dir_dname
) +
172 sizeof(*info
->dir_dname_len
) +
173 sizeof(*info
->dir_dlease
),
175 if (info
->dir_in
== NULL
) {
179 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
180 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
181 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
185 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
186 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
187 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
188 info
->dir_dname
[i
] = *p
;
189 *p
+= info
->dir_dname_len
[i
];
190 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
192 info
->dir_dlease
[i
] = *p
;
193 *p
+= sizeof(struct ceph_mds_reply_lease
);
196 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
], features
);
211 pr_err("problem parsing dir contents %d\n", err
);
216 * parse fcntl F_GETLK results
218 static int parse_reply_info_filelock(void **p
, void *end
,
219 struct ceph_mds_reply_info_parsed
*info
,
222 if (*p
+ sizeof(*info
->filelock_reply
) > end
)
225 info
->filelock_reply
= *p
;
226 *p
+= sizeof(*info
->filelock_reply
);
228 if (unlikely(*p
!= end
))
237 * parse create results
239 static int parse_reply_info_create(void **p
, void *end
,
240 struct ceph_mds_reply_info_parsed
*info
,
243 if (features
& CEPH_FEATURE_REPLY_CREATE_INODE
) {
245 info
->has_create_ino
= false;
247 info
->has_create_ino
= true;
248 info
->ino
= ceph_decode_64(p
);
252 if (unlikely(*p
!= end
))
261 * parse extra results
263 static int parse_reply_info_extra(void **p
, void *end
,
264 struct ceph_mds_reply_info_parsed
*info
,
267 if (info
->head
->op
== CEPH_MDS_OP_GETFILELOCK
)
268 return parse_reply_info_filelock(p
, end
, info
, features
);
269 else if (info
->head
->op
== CEPH_MDS_OP_READDIR
||
270 info
->head
->op
== CEPH_MDS_OP_LSSNAP
)
271 return parse_reply_info_dir(p
, end
, info
, features
);
272 else if (info
->head
->op
== CEPH_MDS_OP_CREATE
)
273 return parse_reply_info_create(p
, end
, info
, features
);
279 * parse entire mds reply
281 static int parse_reply_info(struct ceph_msg
*msg
,
282 struct ceph_mds_reply_info_parsed
*info
,
289 info
->head
= msg
->front
.iov_base
;
290 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
291 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
294 ceph_decode_32_safe(&p
, end
, len
, bad
);
296 ceph_decode_need(&p
, end
, len
, bad
);
297 err
= parse_reply_info_trace(&p
, p
+len
, info
, features
);
303 ceph_decode_32_safe(&p
, end
, len
, bad
);
305 ceph_decode_need(&p
, end
, len
, bad
);
306 err
= parse_reply_info_extra(&p
, p
+len
, info
, features
);
312 ceph_decode_32_safe(&p
, end
, len
, bad
);
313 info
->snapblob_len
= len
;
324 pr_err("mds parse_reply err %d\n", err
);
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
337 static const char *session_state_name(int s
)
340 case CEPH_MDS_SESSION_NEW
: return "new";
341 case CEPH_MDS_SESSION_OPENING
: return "opening";
342 case CEPH_MDS_SESSION_OPEN
: return "open";
343 case CEPH_MDS_SESSION_HUNG
: return "hung";
344 case CEPH_MDS_SESSION_CLOSING
: return "closing";
345 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
346 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
347 default: return "???";
351 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
353 if (atomic_inc_not_zero(&s
->s_ref
)) {
354 dout("mdsc get_session %p %d -> %d\n", s
,
355 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
358 dout("mdsc get_session %p 0 -- FAIL", s
);
363 void ceph_put_mds_session(struct ceph_mds_session
*s
)
365 dout("mdsc put_session %p %d -> %d\n", s
,
366 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
367 if (atomic_dec_and_test(&s
->s_ref
)) {
368 if (s
->s_auth
.authorizer
)
369 ceph_auth_destroy_authorizer(
370 s
->s_mdsc
->fsc
->client
->monc
.auth
,
371 s
->s_auth
.authorizer
);
377 * called under mdsc->mutex
379 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
382 struct ceph_mds_session
*session
;
384 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
386 session
= mdsc
->sessions
[mds
];
387 dout("lookup_mds_session %p %d\n", session
,
388 atomic_read(&session
->s_ref
));
389 get_session(session
);
393 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
395 if (mds
>= mdsc
->max_sessions
)
397 return mdsc
->sessions
[mds
];
400 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
401 struct ceph_mds_session
*s
)
403 if (s
->s_mds
>= mdsc
->max_sessions
||
404 mdsc
->sessions
[s
->s_mds
] != s
)
410 * create+register a new session for given mds.
411 * called under mdsc->mutex.
413 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
416 struct ceph_mds_session
*s
;
418 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
419 return ERR_PTR(-EINVAL
);
421 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
423 return ERR_PTR(-ENOMEM
);
426 s
->s_state
= CEPH_MDS_SESSION_NEW
;
429 mutex_init(&s
->s_mutex
);
431 ceph_con_init(&s
->s_con
, s
, &mds_con_ops
, &mdsc
->fsc
->client
->msgr
);
433 spin_lock_init(&s
->s_gen_ttl_lock
);
435 s
->s_cap_ttl
= jiffies
- 1;
437 spin_lock_init(&s
->s_cap_lock
);
438 s
->s_renew_requested
= 0;
440 INIT_LIST_HEAD(&s
->s_caps
);
443 atomic_set(&s
->s_ref
, 1);
444 INIT_LIST_HEAD(&s
->s_waiting
);
445 INIT_LIST_HEAD(&s
->s_unsafe
);
446 s
->s_num_cap_releases
= 0;
447 s
->s_cap_reconnect
= 0;
448 s
->s_cap_iterator
= NULL
;
449 INIT_LIST_HEAD(&s
->s_cap_releases
);
450 INIT_LIST_HEAD(&s
->s_cap_releases_done
);
451 INIT_LIST_HEAD(&s
->s_cap_flushing
);
452 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
454 dout("register_session mds%d\n", mds
);
455 if (mds
>= mdsc
->max_sessions
) {
456 int newmax
= 1 << get_count_order(mds
+1);
457 struct ceph_mds_session
**sa
;
459 dout("register_session realloc to %d\n", newmax
);
460 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
463 if (mdsc
->sessions
) {
464 memcpy(sa
, mdsc
->sessions
,
465 mdsc
->max_sessions
* sizeof(void *));
466 kfree(mdsc
->sessions
);
469 mdsc
->max_sessions
= newmax
;
471 mdsc
->sessions
[mds
] = s
;
472 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
474 ceph_con_open(&s
->s_con
, CEPH_ENTITY_TYPE_MDS
, mds
,
475 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
481 return ERR_PTR(-ENOMEM
);
485 * called under mdsc->mutex
487 static void __unregister_session(struct ceph_mds_client
*mdsc
,
488 struct ceph_mds_session
*s
)
490 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
491 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
492 mdsc
->sessions
[s
->s_mds
] = NULL
;
493 ceph_con_close(&s
->s_con
);
494 ceph_put_mds_session(s
);
498 * drop session refs in request.
500 * should be last request ref, or hold mdsc->mutex
502 static void put_request_session(struct ceph_mds_request
*req
)
504 if (req
->r_session
) {
505 ceph_put_mds_session(req
->r_session
);
506 req
->r_session
= NULL
;
510 void ceph_mdsc_release_request(struct kref
*kref
)
512 struct ceph_mds_request
*req
= container_of(kref
,
513 struct ceph_mds_request
,
516 ceph_msg_put(req
->r_request
);
518 ceph_msg_put(req
->r_reply
);
519 destroy_reply_info(&req
->r_reply_info
);
522 ceph_put_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
525 if (req
->r_locked_dir
)
526 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
527 if (req
->r_target_inode
)
528 iput(req
->r_target_inode
);
531 if (req
->r_old_dentry
) {
533 * track (and drop pins for) r_old_dentry_dir
534 * separately, since r_old_dentry's d_parent may have
535 * changed between the dir mutex being dropped and
536 * this request being freed.
538 ceph_put_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
540 dput(req
->r_old_dentry
);
541 iput(req
->r_old_dentry_dir
);
545 put_request_session(req
);
546 ceph_unreserve_caps(req
->r_mdsc
, &req
->r_caps_reservation
);
551 * lookup session, bump ref if found.
553 * called under mdsc->mutex.
555 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
558 struct ceph_mds_request
*req
;
559 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
562 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
563 if (tid
< req
->r_tid
)
565 else if (tid
> req
->r_tid
)
568 ceph_mdsc_get_request(req
);
575 static void __insert_request(struct ceph_mds_client
*mdsc
,
576 struct ceph_mds_request
*new)
578 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
579 struct rb_node
*parent
= NULL
;
580 struct ceph_mds_request
*req
= NULL
;
584 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
585 if (new->r_tid
< req
->r_tid
)
587 else if (new->r_tid
> req
->r_tid
)
593 rb_link_node(&new->r_node
, parent
, p
);
594 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
598 * Register an in-flight request, and assign a tid. Link to directory
599 * are modifying (if any).
601 * Called under mdsc->mutex.
603 static void __register_request(struct ceph_mds_client
*mdsc
,
604 struct ceph_mds_request
*req
,
607 req
->r_tid
= ++mdsc
->last_tid
;
609 ceph_reserve_caps(mdsc
, &req
->r_caps_reservation
,
611 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
612 ceph_mdsc_get_request(req
);
613 __insert_request(mdsc
, req
);
615 req
->r_uid
= current_fsuid();
616 req
->r_gid
= current_fsgid();
619 struct ceph_inode_info
*ci
= ceph_inode(dir
);
622 spin_lock(&ci
->i_unsafe_lock
);
623 req
->r_unsafe_dir
= dir
;
624 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
625 spin_unlock(&ci
->i_unsafe_lock
);
629 static void __unregister_request(struct ceph_mds_client
*mdsc
,
630 struct ceph_mds_request
*req
)
632 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
633 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
634 RB_CLEAR_NODE(&req
->r_node
);
636 if (req
->r_unsafe_dir
) {
637 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
639 spin_lock(&ci
->i_unsafe_lock
);
640 list_del_init(&req
->r_unsafe_dir_item
);
641 spin_unlock(&ci
->i_unsafe_lock
);
643 iput(req
->r_unsafe_dir
);
644 req
->r_unsafe_dir
= NULL
;
647 complete_all(&req
->r_safe_completion
);
649 ceph_mdsc_put_request(req
);
653 * Choose mds to send request to next. If there is a hint set in the
654 * request (e.g., due to a prior forward hint from the mds), use that.
655 * Otherwise, consult frag tree and/or caps to identify the
656 * appropriate mds. If all else fails, choose randomly.
658 * Called under mdsc->mutex.
660 static struct dentry
*get_nonsnap_parent(struct dentry
*dentry
)
663 * we don't need to worry about protecting the d_parent access
664 * here because we never renaming inside the snapped namespace
665 * except to resplice to another snapdir, and either the old or new
666 * result is a valid result.
668 while (!IS_ROOT(dentry
) && ceph_snap(dentry
->d_inode
) != CEPH_NOSNAP
)
669 dentry
= dentry
->d_parent
;
673 static int __choose_mds(struct ceph_mds_client
*mdsc
,
674 struct ceph_mds_request
*req
)
677 struct ceph_inode_info
*ci
;
678 struct ceph_cap
*cap
;
679 int mode
= req
->r_direct_mode
;
681 u32 hash
= req
->r_direct_hash
;
682 bool is_hash
= req
->r_direct_is_hash
;
685 * is there a specific mds we should try? ignore hint if we have
686 * no session and the mds is not up (active or recovering).
688 if (req
->r_resend_mds
>= 0 &&
689 (__have_session(mdsc
, req
->r_resend_mds
) ||
690 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
691 dout("choose_mds using resend_mds mds%d\n",
693 return req
->r_resend_mds
;
696 if (mode
== USE_RANDOM_MDS
)
701 inode
= req
->r_inode
;
702 } else if (req
->r_dentry
) {
703 /* ignore race with rename; old or new d_parent is okay */
704 struct dentry
*parent
= req
->r_dentry
->d_parent
;
705 struct inode
*dir
= parent
->d_inode
;
707 if (dir
->i_sb
!= mdsc
->fsc
->sb
) {
709 inode
= req
->r_dentry
->d_inode
;
710 } else if (ceph_snap(dir
) != CEPH_NOSNAP
) {
711 /* direct snapped/virtual snapdir requests
712 * based on parent dir inode */
713 struct dentry
*dn
= get_nonsnap_parent(parent
);
715 dout("__choose_mds using nonsnap parent %p\n", inode
);
718 inode
= req
->r_dentry
->d_inode
;
719 if (!inode
|| mode
== USE_AUTH_MDS
) {
722 hash
= ceph_dentry_hash(dir
, req
->r_dentry
);
728 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
732 ci
= ceph_inode(inode
);
734 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
735 struct ceph_inode_frag frag
;
738 ceph_choose_frag(ci
, hash
, &frag
, &found
);
740 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
743 /* choose a random replica */
744 get_random_bytes(&r
, 1);
747 dout("choose_mds %p %llx.%llx "
748 "frag %u mds%d (%d/%d)\n",
749 inode
, ceph_vinop(inode
),
752 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
753 CEPH_MDS_STATE_ACTIVE
)
757 /* since this file/dir wasn't known to be
758 * replicated, then we want to look for the
759 * authoritative mds. */
762 /* choose auth mds */
764 dout("choose_mds %p %llx.%llx "
765 "frag %u mds%d (auth)\n",
766 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
767 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
768 CEPH_MDS_STATE_ACTIVE
)
774 spin_lock(&ci
->i_ceph_lock
);
776 if (mode
== USE_AUTH_MDS
)
777 cap
= ci
->i_auth_cap
;
778 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
779 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
781 spin_unlock(&ci
->i_ceph_lock
);
784 mds
= cap
->session
->s_mds
;
785 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
786 inode
, ceph_vinop(inode
), mds
,
787 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
788 spin_unlock(&ci
->i_ceph_lock
);
792 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
793 dout("choose_mds chose random mds%d\n", mds
);
801 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
803 struct ceph_msg
*msg
;
804 struct ceph_mds_session_head
*h
;
806 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
,
809 pr_err("create_session_msg ENOMEM creating msg\n");
812 h
= msg
->front
.iov_base
;
813 h
->op
= cpu_to_le32(op
);
814 h
->seq
= cpu_to_le64(seq
);
819 * send session open request.
821 * called under mdsc->mutex
823 static int __open_session(struct ceph_mds_client
*mdsc
,
824 struct ceph_mds_session
*session
)
826 struct ceph_msg
*msg
;
828 int mds
= session
->s_mds
;
830 /* wait for mds to go active? */
831 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
832 dout("open_session to mds%d (%s)\n", mds
,
833 ceph_mds_state_name(mstate
));
834 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
835 session
->s_renew_requested
= jiffies
;
837 /* send connect message */
838 msg
= create_session_msg(CEPH_SESSION_REQUEST_OPEN
, session
->s_seq
);
841 ceph_con_send(&session
->s_con
, msg
);
846 * open sessions for any export targets for the given mds
848 * called under mdsc->mutex
850 static struct ceph_mds_session
*
851 __open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
853 struct ceph_mds_session
*session
;
855 session
= __ceph_lookup_mds_session(mdsc
, target
);
857 session
= register_session(mdsc
, target
);
861 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
862 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
863 __open_session(mdsc
, session
);
868 struct ceph_mds_session
*
869 ceph_mdsc_open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
871 struct ceph_mds_session
*session
;
873 dout("open_export_target_session to mds%d\n", target
);
875 mutex_lock(&mdsc
->mutex
);
876 session
= __open_export_target_session(mdsc
, target
);
877 mutex_unlock(&mdsc
->mutex
);
882 static void __open_export_target_sessions(struct ceph_mds_client
*mdsc
,
883 struct ceph_mds_session
*session
)
885 struct ceph_mds_info
*mi
;
886 struct ceph_mds_session
*ts
;
887 int i
, mds
= session
->s_mds
;
889 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
892 mi
= &mdsc
->mdsmap
->m_info
[mds
];
893 dout("open_export_target_sessions for mds%d (%d targets)\n",
894 session
->s_mds
, mi
->num_export_targets
);
896 for (i
= 0; i
< mi
->num_export_targets
; i
++) {
897 ts
= __open_export_target_session(mdsc
, mi
->export_targets
[i
]);
899 ceph_put_mds_session(ts
);
903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client
*mdsc
,
904 struct ceph_mds_session
*session
)
906 mutex_lock(&mdsc
->mutex
);
907 __open_export_target_sessions(mdsc
, session
);
908 mutex_unlock(&mdsc
->mutex
);
916 * Free preallocated cap messages assigned to this session
918 static void cleanup_cap_releases(struct ceph_mds_session
*session
)
920 struct ceph_msg
*msg
;
922 spin_lock(&session
->s_cap_lock
);
923 while (!list_empty(&session
->s_cap_releases
)) {
924 msg
= list_first_entry(&session
->s_cap_releases
,
925 struct ceph_msg
, list_head
);
926 list_del_init(&msg
->list_head
);
929 while (!list_empty(&session
->s_cap_releases_done
)) {
930 msg
= list_first_entry(&session
->s_cap_releases_done
,
931 struct ceph_msg
, list_head
);
932 list_del_init(&msg
->list_head
);
935 spin_unlock(&session
->s_cap_lock
);
939 * Helper to safely iterate over all caps associated with a session, with
940 * special care taken to handle a racing __ceph_remove_cap().
942 * Caller must hold session s_mutex.
944 static int iterate_session_caps(struct ceph_mds_session
*session
,
945 int (*cb
)(struct inode
*, struct ceph_cap
*,
949 struct ceph_cap
*cap
;
950 struct inode
*inode
, *last_inode
= NULL
;
951 struct ceph_cap
*old_cap
= NULL
;
954 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
955 spin_lock(&session
->s_cap_lock
);
956 p
= session
->s_caps
.next
;
957 while (p
!= &session
->s_caps
) {
958 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
959 inode
= igrab(&cap
->ci
->vfs_inode
);
964 session
->s_cap_iterator
= cap
;
965 spin_unlock(&session
->s_cap_lock
);
972 ceph_put_cap(session
->s_mdsc
, old_cap
);
976 ret
= cb(inode
, cap
, arg
);
979 spin_lock(&session
->s_cap_lock
);
981 if (cap
->ci
== NULL
) {
982 dout("iterate_session_caps finishing cap %p removal\n",
984 BUG_ON(cap
->session
!= session
);
985 list_del_init(&cap
->session_caps
);
986 session
->s_nr_caps
--;
988 old_cap
= cap
; /* put_cap it w/o locks held */
995 session
->s_cap_iterator
= NULL
;
996 spin_unlock(&session
->s_cap_lock
);
1001 ceph_put_cap(session
->s_mdsc
, old_cap
);
1006 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1009 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1012 dout("removing cap %p, ci is %p, inode is %p\n",
1013 cap
, ci
, &ci
->vfs_inode
);
1014 spin_lock(&ci
->i_ceph_lock
);
1015 __ceph_remove_cap(cap
, false);
1016 if (!__ceph_is_any_real_caps(ci
)) {
1017 struct ceph_mds_client
*mdsc
=
1018 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1020 spin_lock(&mdsc
->cap_dirty_lock
);
1021 if (!list_empty(&ci
->i_dirty_item
)) {
1022 pr_info(" dropping dirty %s state for %p %lld\n",
1023 ceph_cap_string(ci
->i_dirty_caps
),
1024 inode
, ceph_ino(inode
));
1025 ci
->i_dirty_caps
= 0;
1026 list_del_init(&ci
->i_dirty_item
);
1029 if (!list_empty(&ci
->i_flushing_item
)) {
1030 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1031 ceph_cap_string(ci
->i_flushing_caps
),
1032 inode
, ceph_ino(inode
));
1033 ci
->i_flushing_caps
= 0;
1034 list_del_init(&ci
->i_flushing_item
);
1035 mdsc
->num_cap_flushing
--;
1038 if (drop
&& ci
->i_wrbuffer_ref
) {
1039 pr_info(" dropping dirty data for %p %lld\n",
1040 inode
, ceph_ino(inode
));
1041 ci
->i_wrbuffer_ref
= 0;
1042 ci
->i_wrbuffer_ref_head
= 0;
1045 spin_unlock(&mdsc
->cap_dirty_lock
);
1047 spin_unlock(&ci
->i_ceph_lock
);
1054 * caller must hold session s_mutex
1056 static void remove_session_caps(struct ceph_mds_session
*session
)
1058 dout("remove_session_caps on %p\n", session
);
1059 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
1061 spin_lock(&session
->s_cap_lock
);
1062 if (session
->s_nr_caps
> 0) {
1063 struct super_block
*sb
= session
->s_mdsc
->fsc
->sb
;
1064 struct inode
*inode
;
1065 struct ceph_cap
*cap
, *prev
= NULL
;
1066 struct ceph_vino vino
;
1068 * iterate_session_caps() skips inodes that are being
1069 * deleted, we need to wait until deletions are complete.
1070 * __wait_on_freeing_inode() is designed for the job,
1071 * but it is not exported, so use lookup inode function
1074 while (!list_empty(&session
->s_caps
)) {
1075 cap
= list_entry(session
->s_caps
.next
,
1076 struct ceph_cap
, session_caps
);
1080 vino
= cap
->ci
->i_vino
;
1081 spin_unlock(&session
->s_cap_lock
);
1083 inode
= ceph_find_inode(sb
, vino
);
1086 spin_lock(&session
->s_cap_lock
);
1089 spin_unlock(&session
->s_cap_lock
);
1091 BUG_ON(session
->s_nr_caps
> 0);
1092 BUG_ON(!list_empty(&session
->s_cap_flushing
));
1093 cleanup_cap_releases(session
);
1097 * wake up any threads waiting on this session's caps. if the cap is
1098 * old (didn't get renewed on the client reconnect), remove it now.
1100 * caller must hold s_mutex.
1102 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1105 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1107 wake_up_all(&ci
->i_cap_wq
);
1109 spin_lock(&ci
->i_ceph_lock
);
1110 ci
->i_wanted_max_size
= 0;
1111 ci
->i_requested_max_size
= 0;
1112 spin_unlock(&ci
->i_ceph_lock
);
1117 static void wake_up_session_caps(struct ceph_mds_session
*session
,
1120 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
1121 iterate_session_caps(session
, wake_up_session_cb
,
1122 (void *)(unsigned long)reconnect
);
1126 * Send periodic message to MDS renewing all currently held caps. The
1127 * ack will reset the expiration for all caps from this session.
1129 * caller holds s_mutex
1131 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
1132 struct ceph_mds_session
*session
)
1134 struct ceph_msg
*msg
;
1137 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
1138 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
1139 pr_info("mds%d caps stale\n", session
->s_mds
);
1140 session
->s_renew_requested
= jiffies
;
1142 /* do not try to renew caps until a recovering mds has reconnected
1143 * with its clients. */
1144 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
1145 if (state
< CEPH_MDS_STATE_RECONNECT
) {
1146 dout("send_renew_caps ignoring mds%d (%s)\n",
1147 session
->s_mds
, ceph_mds_state_name(state
));
1151 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
1152 ceph_mds_state_name(state
));
1153 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
1154 ++session
->s_renew_seq
);
1157 ceph_con_send(&session
->s_con
, msg
);
1161 static int send_flushmsg_ack(struct ceph_mds_client
*mdsc
,
1162 struct ceph_mds_session
*session
, u64 seq
)
1164 struct ceph_msg
*msg
;
1166 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1167 session
->s_mds
, session_state_name(session
->s_state
), seq
);
1168 msg
= create_session_msg(CEPH_SESSION_FLUSHMSG_ACK
, seq
);
1171 ceph_con_send(&session
->s_con
, msg
);
1177 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1179 * Called under session->s_mutex
1181 static void renewed_caps(struct ceph_mds_client
*mdsc
,
1182 struct ceph_mds_session
*session
, int is_renew
)
1187 spin_lock(&session
->s_cap_lock
);
1188 was_stale
= is_renew
&& time_after_eq(jiffies
, session
->s_cap_ttl
);
1190 session
->s_cap_ttl
= session
->s_renew_requested
+
1191 mdsc
->mdsmap
->m_session_timeout
*HZ
;
1194 if (time_before(jiffies
, session
->s_cap_ttl
)) {
1195 pr_info("mds%d caps renewed\n", session
->s_mds
);
1198 pr_info("mds%d caps still stale\n", session
->s_mds
);
1201 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1202 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
1203 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
1204 spin_unlock(&session
->s_cap_lock
);
1207 wake_up_session_caps(session
, 0);
1211 * send a session close request
1213 static int request_close_session(struct ceph_mds_client
*mdsc
,
1214 struct ceph_mds_session
*session
)
1216 struct ceph_msg
*msg
;
1218 dout("request_close_session mds%d state %s seq %lld\n",
1219 session
->s_mds
, session_state_name(session
->s_state
),
1221 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
1224 ceph_con_send(&session
->s_con
, msg
);
1229 * Called with s_mutex held.
1231 static int __close_session(struct ceph_mds_client
*mdsc
,
1232 struct ceph_mds_session
*session
)
1234 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
1236 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
1237 return request_close_session(mdsc
, session
);
1241 * Trim old(er) caps.
1243 * Because we can't cache an inode without one or more caps, we do
1244 * this indirectly: if a cap is unused, we prune its aliases, at which
1245 * point the inode will hopefully get dropped to.
1247 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1248 * memory pressure from the MDS, though, so it needn't be perfect.
1250 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1252 struct ceph_mds_session
*session
= arg
;
1253 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1254 int used
, wanted
, oissued
, mine
;
1256 if (session
->s_trim_caps
<= 0)
1259 spin_lock(&ci
->i_ceph_lock
);
1260 mine
= cap
->issued
| cap
->implemented
;
1261 used
= __ceph_caps_used(ci
);
1262 wanted
= __ceph_caps_file_wanted(ci
);
1263 oissued
= __ceph_caps_issued_other(ci
, cap
);
1265 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1266 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1267 ceph_cap_string(used
), ceph_cap_string(wanted
));
1268 if (cap
== ci
->i_auth_cap
) {
1269 if (ci
->i_dirty_caps
| ci
->i_flushing_caps
)
1271 if ((used
| wanted
) & CEPH_CAP_ANY_WR
)
1274 if ((used
| wanted
) & ~oissued
& mine
)
1275 goto out
; /* we need these caps */
1277 session
->s_trim_caps
--;
1279 /* we aren't the only cap.. just remove us */
1280 __ceph_remove_cap(cap
, true);
1282 /* try to drop referring dentries */
1283 spin_unlock(&ci
->i_ceph_lock
);
1284 d_prune_aliases(inode
);
1285 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1286 inode
, cap
, atomic_read(&inode
->i_count
));
1291 spin_unlock(&ci
->i_ceph_lock
);
1296 * Trim session cap count down to some max number.
1298 static int trim_caps(struct ceph_mds_client
*mdsc
,
1299 struct ceph_mds_session
*session
,
1302 int trim_caps
= session
->s_nr_caps
- max_caps
;
1304 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1305 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1306 if (trim_caps
> 0) {
1307 session
->s_trim_caps
= trim_caps
;
1308 iterate_session_caps(session
, trim_caps_cb
, session
);
1309 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1310 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1311 trim_caps
- session
->s_trim_caps
);
1312 session
->s_trim_caps
= 0;
1318 * Allocate cap_release messages. If there is a partially full message
1319 * in the queue, try to allocate enough to cover it's remainder, so that
1320 * we can send it immediately.
1322 * Called under s_mutex.
1324 int ceph_add_cap_releases(struct ceph_mds_client
*mdsc
,
1325 struct ceph_mds_session
*session
)
1327 struct ceph_msg
*msg
, *partial
= NULL
;
1328 struct ceph_mds_cap_release
*head
;
1330 int extra
= mdsc
->fsc
->mount_options
->cap_release_safety
;
1333 dout("add_cap_releases %p mds%d extra %d\n", session
, session
->s_mds
,
1336 spin_lock(&session
->s_cap_lock
);
1338 if (!list_empty(&session
->s_cap_releases
)) {
1339 msg
= list_first_entry(&session
->s_cap_releases
,
1342 head
= msg
->front
.iov_base
;
1343 num
= le32_to_cpu(head
->num
);
1345 dout(" partial %p with (%d/%d)\n", msg
, num
,
1346 (int)CEPH_CAPS_PER_RELEASE
);
1347 extra
+= CEPH_CAPS_PER_RELEASE
- num
;
1351 while (session
->s_num_cap_releases
< session
->s_nr_caps
+ extra
) {
1352 spin_unlock(&session
->s_cap_lock
);
1353 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
, PAGE_CACHE_SIZE
,
1357 dout("add_cap_releases %p msg %p now %d\n", session
, msg
,
1358 (int)msg
->front
.iov_len
);
1359 head
= msg
->front
.iov_base
;
1360 head
->num
= cpu_to_le32(0);
1361 msg
->front
.iov_len
= sizeof(*head
);
1362 spin_lock(&session
->s_cap_lock
);
1363 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1364 session
->s_num_cap_releases
+= CEPH_CAPS_PER_RELEASE
;
1368 head
= partial
->front
.iov_base
;
1369 num
= le32_to_cpu(head
->num
);
1370 dout(" queueing partial %p with %d/%d\n", partial
, num
,
1371 (int)CEPH_CAPS_PER_RELEASE
);
1372 list_move_tail(&partial
->list_head
,
1373 &session
->s_cap_releases_done
);
1374 session
->s_num_cap_releases
-= CEPH_CAPS_PER_RELEASE
- num
;
1377 spin_unlock(&session
->s_cap_lock
);
1383 * flush all dirty inode data to disk.
1385 * returns true if we've flushed through want_flush_seq
1387 static int check_cap_flush(struct ceph_mds_client
*mdsc
, u64 want_flush_seq
)
1391 dout("check_cap_flush want %lld\n", want_flush_seq
);
1392 mutex_lock(&mdsc
->mutex
);
1393 for (mds
= 0; ret
&& mds
< mdsc
->max_sessions
; mds
++) {
1394 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1398 get_session(session
);
1399 mutex_unlock(&mdsc
->mutex
);
1401 mutex_lock(&session
->s_mutex
);
1402 if (!list_empty(&session
->s_cap_flushing
)) {
1403 struct ceph_inode_info
*ci
=
1404 list_entry(session
->s_cap_flushing
.next
,
1405 struct ceph_inode_info
,
1407 struct inode
*inode
= &ci
->vfs_inode
;
1409 spin_lock(&ci
->i_ceph_lock
);
1410 if (ci
->i_cap_flush_seq
<= want_flush_seq
) {
1411 dout("check_cap_flush still flushing %p "
1412 "seq %lld <= %lld to mds%d\n", inode
,
1413 ci
->i_cap_flush_seq
, want_flush_seq
,
1417 spin_unlock(&ci
->i_ceph_lock
);
1419 mutex_unlock(&session
->s_mutex
);
1420 ceph_put_mds_session(session
);
1424 mutex_lock(&mdsc
->mutex
);
1427 mutex_unlock(&mdsc
->mutex
);
1428 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq
);
1433 * called under s_mutex
1435 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1436 struct ceph_mds_session
*session
)
1438 struct ceph_msg
*msg
;
1440 dout("send_cap_releases mds%d\n", session
->s_mds
);
1441 spin_lock(&session
->s_cap_lock
);
1442 while (!list_empty(&session
->s_cap_releases_done
)) {
1443 msg
= list_first_entry(&session
->s_cap_releases_done
,
1444 struct ceph_msg
, list_head
);
1445 list_del_init(&msg
->list_head
);
1446 spin_unlock(&session
->s_cap_lock
);
1447 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1448 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1449 ceph_con_send(&session
->s_con
, msg
);
1450 spin_lock(&session
->s_cap_lock
);
1452 spin_unlock(&session
->s_cap_lock
);
1455 static void discard_cap_releases(struct ceph_mds_client
*mdsc
,
1456 struct ceph_mds_session
*session
)
1458 struct ceph_msg
*msg
;
1459 struct ceph_mds_cap_release
*head
;
1462 dout("discard_cap_releases mds%d\n", session
->s_mds
);
1464 /* zero out the in-progress message */
1465 msg
= list_first_entry(&session
->s_cap_releases
,
1466 struct ceph_msg
, list_head
);
1467 head
= msg
->front
.iov_base
;
1468 num
= le32_to_cpu(head
->num
);
1469 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
, num
);
1470 head
->num
= cpu_to_le32(0);
1471 msg
->front
.iov_len
= sizeof(*head
);
1472 session
->s_num_cap_releases
+= num
;
1474 /* requeue completed messages */
1475 while (!list_empty(&session
->s_cap_releases_done
)) {
1476 msg
= list_first_entry(&session
->s_cap_releases_done
,
1477 struct ceph_msg
, list_head
);
1478 list_del_init(&msg
->list_head
);
1480 head
= msg
->front
.iov_base
;
1481 num
= le32_to_cpu(head
->num
);
1482 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
,
1484 session
->s_num_cap_releases
+= num
;
1485 head
->num
= cpu_to_le32(0);
1486 msg
->front
.iov_len
= sizeof(*head
);
1487 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1496 * Create an mds request.
1498 struct ceph_mds_request
*
1499 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1501 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1504 return ERR_PTR(-ENOMEM
);
1506 mutex_init(&req
->r_fill_mutex
);
1508 req
->r_started
= jiffies
;
1509 req
->r_resend_mds
= -1;
1510 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1512 kref_init(&req
->r_kref
);
1513 INIT_LIST_HEAD(&req
->r_wait
);
1514 init_completion(&req
->r_completion
);
1515 init_completion(&req
->r_safe_completion
);
1516 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1519 req
->r_direct_mode
= mode
;
1524 * return oldest (lowest) request, tid in request tree, 0 if none.
1526 * called under mdsc->mutex.
1528 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1530 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1532 return rb_entry(rb_first(&mdsc
->request_tree
),
1533 struct ceph_mds_request
, r_node
);
1536 static u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1538 struct ceph_mds_request
*req
= __get_oldest_req(mdsc
);
1546 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1547 * on build_path_from_dentry in fs/cifs/dir.c.
1549 * If @stop_on_nosnap, generate path relative to the first non-snapped
1552 * Encode hidden .snap dirs as a double /, i.e.
1553 * foo/.snap/bar -> foo//bar
1555 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1558 struct dentry
*temp
;
1564 return ERR_PTR(-EINVAL
);
1568 seq
= read_seqbegin(&rename_lock
);
1570 for (temp
= dentry
; !IS_ROOT(temp
);) {
1571 struct inode
*inode
= temp
->d_inode
;
1572 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1573 len
++; /* slash only */
1574 else if (stop_on_nosnap
&& inode
&&
1575 ceph_snap(inode
) == CEPH_NOSNAP
)
1578 len
+= 1 + temp
->d_name
.len
;
1579 temp
= temp
->d_parent
;
1583 len
--; /* no leading '/' */
1585 path
= kmalloc(len
+1, GFP_NOFS
);
1587 return ERR_PTR(-ENOMEM
);
1589 path
[pos
] = 0; /* trailing null */
1591 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1592 struct inode
*inode
;
1594 spin_lock(&temp
->d_lock
);
1595 inode
= temp
->d_inode
;
1596 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1597 dout("build_path path+%d: %p SNAPDIR\n",
1599 } else if (stop_on_nosnap
&& inode
&&
1600 ceph_snap(inode
) == CEPH_NOSNAP
) {
1601 spin_unlock(&temp
->d_lock
);
1604 pos
-= temp
->d_name
.len
;
1606 spin_unlock(&temp
->d_lock
);
1609 strncpy(path
+ pos
, temp
->d_name
.name
,
1612 spin_unlock(&temp
->d_lock
);
1615 temp
= temp
->d_parent
;
1618 if (pos
!= 0 || read_seqretry(&rename_lock
, seq
)) {
1619 pr_err("build_path did not end path lookup where "
1620 "expected, namelen is %d, pos is %d\n", len
, pos
);
1621 /* presumably this is only possible if racing with a
1622 rename of one of the parent directories (we can not
1623 lock the dentries above us to prevent this, but
1624 retrying should be harmless) */
1629 *base
= ceph_ino(temp
->d_inode
);
1631 dout("build_path on %p %d built %llx '%.*s'\n",
1632 dentry
, d_count(dentry
), *base
, len
, path
);
1636 static int build_dentry_path(struct dentry
*dentry
,
1637 const char **ppath
, int *ppathlen
, u64
*pino
,
1642 if (ceph_snap(dentry
->d_parent
->d_inode
) == CEPH_NOSNAP
) {
1643 *pino
= ceph_ino(dentry
->d_parent
->d_inode
);
1644 *ppath
= dentry
->d_name
.name
;
1645 *ppathlen
= dentry
->d_name
.len
;
1648 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1650 return PTR_ERR(path
);
1656 static int build_inode_path(struct inode
*inode
,
1657 const char **ppath
, int *ppathlen
, u64
*pino
,
1660 struct dentry
*dentry
;
1663 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1664 *pino
= ceph_ino(inode
);
1668 dentry
= d_find_alias(inode
);
1669 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1672 return PTR_ERR(path
);
1679 * request arguments may be specified via an inode *, a dentry *, or
1680 * an explicit ino+path.
1682 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1683 const char *rpath
, u64 rino
,
1684 const char **ppath
, int *pathlen
,
1685 u64
*ino
, int *freepath
)
1690 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1691 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1693 } else if (rdentry
) {
1694 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1695 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1697 } else if (rpath
|| rino
) {
1700 *pathlen
= rpath
? strlen(rpath
) : 0;
1701 dout(" path %.*s\n", *pathlen
, rpath
);
1708 * called under mdsc->mutex
1710 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1711 struct ceph_mds_request
*req
,
1714 struct ceph_msg
*msg
;
1715 struct ceph_mds_request_head
*head
;
1716 const char *path1
= NULL
;
1717 const char *path2
= NULL
;
1718 u64 ino1
= 0, ino2
= 0;
1719 int pathlen1
= 0, pathlen2
= 0;
1720 int freepath1
= 0, freepath2
= 0;
1726 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1727 req
->r_path1
, req
->r_ino1
.ino
,
1728 &path1
, &pathlen1
, &ino1
, &freepath1
);
1734 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1735 req
->r_path2
, req
->r_ino2
.ino
,
1736 &path2
, &pathlen2
, &ino2
, &freepath2
);
1742 len
= sizeof(*head
) +
1743 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
));
1745 /* calculate (max) length for cap releases */
1746 len
+= sizeof(struct ceph_mds_request_release
) *
1747 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1748 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1749 if (req
->r_dentry_drop
)
1750 len
+= req
->r_dentry
->d_name
.len
;
1751 if (req
->r_old_dentry_drop
)
1752 len
+= req
->r_old_dentry
->d_name
.len
;
1754 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
, false);
1756 msg
= ERR_PTR(-ENOMEM
);
1760 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1762 head
= msg
->front
.iov_base
;
1763 p
= msg
->front
.iov_base
+ sizeof(*head
);
1764 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1766 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1767 head
->op
= cpu_to_le32(req
->r_op
);
1768 head
->caller_uid
= cpu_to_le32(from_kuid(&init_user_ns
, req
->r_uid
));
1769 head
->caller_gid
= cpu_to_le32(from_kgid(&init_user_ns
, req
->r_gid
));
1770 head
->args
= req
->r_args
;
1772 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1773 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1775 /* make note of release offset, in case we need to replay */
1776 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
1780 if (req
->r_inode_drop
)
1781 releases
+= ceph_encode_inode_release(&p
,
1782 req
->r_inode
? req
->r_inode
: req
->r_dentry
->d_inode
,
1783 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1784 if (req
->r_dentry_drop
)
1785 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1786 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1787 if (req
->r_old_dentry_drop
)
1788 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1789 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1790 if (req
->r_old_inode_drop
)
1791 releases
+= ceph_encode_inode_release(&p
,
1792 req
->r_old_dentry
->d_inode
,
1793 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1794 head
->num_releases
= cpu_to_le16(releases
);
1797 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
1798 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1800 if (req
->r_data_len
) {
1801 /* outbound data set only by ceph_sync_setxattr() */
1802 BUG_ON(!req
->r_pages
);
1803 ceph_msg_data_add_pages(msg
, req
->r_pages
, req
->r_data_len
, 0);
1806 msg
->hdr
.data_len
= cpu_to_le32(req
->r_data_len
);
1807 msg
->hdr
.data_off
= cpu_to_le16(0);
1811 kfree((char *)path2
);
1814 kfree((char *)path1
);
1820 * called under mdsc->mutex if error, under no mutex if
1823 static void complete_request(struct ceph_mds_client
*mdsc
,
1824 struct ceph_mds_request
*req
)
1826 if (req
->r_callback
)
1827 req
->r_callback(mdsc
, req
);
1829 complete_all(&req
->r_completion
);
1833 * called under mdsc->mutex
1835 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
1836 struct ceph_mds_request
*req
,
1839 struct ceph_mds_request_head
*rhead
;
1840 struct ceph_msg
*msg
;
1845 struct ceph_cap
*cap
=
1846 ceph_get_cap_for_mds(ceph_inode(req
->r_inode
), mds
);
1849 req
->r_sent_on_mseq
= cap
->mseq
;
1851 req
->r_sent_on_mseq
= -1;
1853 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
1854 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
1856 if (req
->r_got_unsafe
) {
1858 * Replay. Do not regenerate message (and rebuild
1859 * paths, etc.); just use the original message.
1860 * Rebuilding paths will break for renames because
1861 * d_move mangles the src name.
1863 msg
= req
->r_request
;
1864 rhead
= msg
->front
.iov_base
;
1866 flags
= le32_to_cpu(rhead
->flags
);
1867 flags
|= CEPH_MDS_FLAG_REPLAY
;
1868 rhead
->flags
= cpu_to_le32(flags
);
1870 if (req
->r_target_inode
)
1871 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
1873 rhead
->num_retry
= req
->r_attempts
- 1;
1875 /* remove cap/dentry releases from message */
1876 rhead
->num_releases
= 0;
1877 msg
->hdr
.front_len
= cpu_to_le32(req
->r_request_release_offset
);
1878 msg
->front
.iov_len
= req
->r_request_release_offset
;
1882 if (req
->r_request
) {
1883 ceph_msg_put(req
->r_request
);
1884 req
->r_request
= NULL
;
1886 msg
= create_request_message(mdsc
, req
, mds
);
1888 req
->r_err
= PTR_ERR(msg
);
1889 complete_request(mdsc
, req
);
1890 return PTR_ERR(msg
);
1892 req
->r_request
= msg
;
1894 rhead
= msg
->front
.iov_base
;
1895 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
1896 if (req
->r_got_unsafe
)
1897 flags
|= CEPH_MDS_FLAG_REPLAY
;
1898 if (req
->r_locked_dir
)
1899 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
1900 rhead
->flags
= cpu_to_le32(flags
);
1901 rhead
->num_fwd
= req
->r_num_fwd
;
1902 rhead
->num_retry
= req
->r_attempts
- 1;
1905 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
1910 * send request, or put it on the appropriate wait list.
1912 static int __do_request(struct ceph_mds_client
*mdsc
,
1913 struct ceph_mds_request
*req
)
1915 struct ceph_mds_session
*session
= NULL
;
1919 if (req
->r_err
|| req
->r_got_result
) {
1921 __unregister_request(mdsc
, req
);
1925 if (req
->r_timeout
&&
1926 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
1927 dout("do_request timed out\n");
1932 put_request_session(req
);
1934 mds
= __choose_mds(mdsc
, req
);
1936 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
1937 dout("do_request no mds or not active, waiting for map\n");
1938 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
1942 /* get, open session */
1943 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1945 session
= register_session(mdsc
, mds
);
1946 if (IS_ERR(session
)) {
1947 err
= PTR_ERR(session
);
1951 req
->r_session
= get_session(session
);
1953 dout("do_request mds%d session %p state %s\n", mds
, session
,
1954 session_state_name(session
->s_state
));
1955 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
1956 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
1957 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
1958 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
1959 __open_session(mdsc
, session
);
1960 list_add(&req
->r_wait
, &session
->s_waiting
);
1965 req
->r_resend_mds
= -1; /* forget any previous mds hint */
1967 if (req
->r_request_started
== 0) /* note request start time */
1968 req
->r_request_started
= jiffies
;
1970 err
= __prepare_send_request(mdsc
, req
, mds
);
1972 ceph_msg_get(req
->r_request
);
1973 ceph_con_send(&session
->s_con
, req
->r_request
);
1977 ceph_put_mds_session(session
);
1983 complete_request(mdsc
, req
);
1988 * called under mdsc->mutex
1990 static void __wake_requests(struct ceph_mds_client
*mdsc
,
1991 struct list_head
*head
)
1993 struct ceph_mds_request
*req
;
1994 LIST_HEAD(tmp_list
);
1996 list_splice_init(head
, &tmp_list
);
1998 while (!list_empty(&tmp_list
)) {
1999 req
= list_entry(tmp_list
.next
,
2000 struct ceph_mds_request
, r_wait
);
2001 list_del_init(&req
->r_wait
);
2002 dout(" wake request %p tid %llu\n", req
, req
->r_tid
);
2003 __do_request(mdsc
, req
);
2008 * Wake up threads with requests pending for @mds, so that they can
2009 * resubmit their requests to a possibly different mds.
2011 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
2013 struct ceph_mds_request
*req
;
2016 dout("kick_requests mds%d\n", mds
);
2017 for (p
= rb_first(&mdsc
->request_tree
); p
; p
= rb_next(p
)) {
2018 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
2019 if (req
->r_got_unsafe
)
2021 if (req
->r_session
&&
2022 req
->r_session
->s_mds
== mds
) {
2023 dout(" kicking tid %llu\n", req
->r_tid
);
2024 __do_request(mdsc
, req
);
2029 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
2030 struct ceph_mds_request
*req
)
2032 dout("submit_request on %p\n", req
);
2033 mutex_lock(&mdsc
->mutex
);
2034 __register_request(mdsc
, req
, NULL
);
2035 __do_request(mdsc
, req
);
2036 mutex_unlock(&mdsc
->mutex
);
2040 * Synchrously perform an mds request. Take care of all of the
2041 * session setup, forwarding, retry details.
2043 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
2045 struct ceph_mds_request
*req
)
2049 dout("do_request on %p\n", req
);
2051 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2053 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
2054 if (req
->r_locked_dir
)
2055 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
2056 if (req
->r_old_dentry
)
2057 ceph_get_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
2061 mutex_lock(&mdsc
->mutex
);
2062 __register_request(mdsc
, req
, dir
);
2063 __do_request(mdsc
, req
);
2067 __unregister_request(mdsc
, req
);
2068 dout("do_request early error %d\n", err
);
2073 mutex_unlock(&mdsc
->mutex
);
2074 dout("do_request waiting\n");
2075 if (req
->r_timeout
) {
2076 err
= (long)wait_for_completion_killable_timeout(
2077 &req
->r_completion
, req
->r_timeout
);
2081 err
= wait_for_completion_killable(&req
->r_completion
);
2083 dout("do_request waited, got %d\n", err
);
2084 mutex_lock(&mdsc
->mutex
);
2086 /* only abort if we didn't race with a real reply */
2087 if (req
->r_got_result
) {
2088 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
2089 } else if (err
< 0) {
2090 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
2093 * ensure we aren't running concurrently with
2094 * ceph_fill_trace or ceph_readdir_prepopulate, which
2095 * rely on locks (dir mutex) held by our caller.
2097 mutex_lock(&req
->r_fill_mutex
);
2099 req
->r_aborted
= true;
2100 mutex_unlock(&req
->r_fill_mutex
);
2102 if (req
->r_locked_dir
&&
2103 (req
->r_op
& CEPH_MDS_OP_WRITE
))
2104 ceph_invalidate_dir_request(req
);
2110 mutex_unlock(&mdsc
->mutex
);
2111 dout("do_request %p done, result %d\n", req
, err
);
2116 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2117 * namespace request.
2119 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
2121 struct inode
*inode
= req
->r_locked_dir
;
2123 dout("invalidate_dir_request %p (complete, lease(s))\n", inode
);
2125 ceph_dir_clear_complete(inode
);
2127 ceph_invalidate_dentry_lease(req
->r_dentry
);
2128 if (req
->r_old_dentry
)
2129 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
2135 * We take the session mutex and parse and process the reply immediately.
2136 * This preserves the logical ordering of replies, capabilities, etc., sent
2137 * by the MDS as they are applied to our local cache.
2139 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
2141 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2142 struct ceph_mds_request
*req
;
2143 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
2144 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
2147 int mds
= session
->s_mds
;
2149 if (msg
->front
.iov_len
< sizeof(*head
)) {
2150 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2155 /* get request, session */
2156 tid
= le64_to_cpu(msg
->hdr
.tid
);
2157 mutex_lock(&mdsc
->mutex
);
2158 req
= __lookup_request(mdsc
, tid
);
2160 dout("handle_reply on unknown tid %llu\n", tid
);
2161 mutex_unlock(&mdsc
->mutex
);
2164 dout("handle_reply %p\n", req
);
2166 /* correct session? */
2167 if (req
->r_session
!= session
) {
2168 pr_err("mdsc_handle_reply got %llu on session mds%d"
2169 " not mds%d\n", tid
, session
->s_mds
,
2170 req
->r_session
? req
->r_session
->s_mds
: -1);
2171 mutex_unlock(&mdsc
->mutex
);
2176 if ((req
->r_got_unsafe
&& !head
->safe
) ||
2177 (req
->r_got_safe
&& head
->safe
)) {
2178 pr_warning("got a dup %s reply on %llu from mds%d\n",
2179 head
->safe
? "safe" : "unsafe", tid
, mds
);
2180 mutex_unlock(&mdsc
->mutex
);
2183 if (req
->r_got_safe
&& !head
->safe
) {
2184 pr_warning("got unsafe after safe on %llu from mds%d\n",
2186 mutex_unlock(&mdsc
->mutex
);
2190 result
= le32_to_cpu(head
->result
);
2194 * if we're not talking to the authority, send to them
2195 * if the authority has changed while we weren't looking,
2196 * send to new authority
2197 * Otherwise we just have to return an ESTALE
2199 if (result
== -ESTALE
) {
2200 dout("got ESTALE on request %llu", req
->r_tid
);
2201 if (req
->r_direct_mode
!= USE_AUTH_MDS
) {
2202 dout("not using auth, setting for that now");
2203 req
->r_direct_mode
= USE_AUTH_MDS
;
2204 __do_request(mdsc
, req
);
2205 mutex_unlock(&mdsc
->mutex
);
2208 int mds
= __choose_mds(mdsc
, req
);
2209 if (mds
>= 0 && mds
!= req
->r_session
->s_mds
) {
2210 dout("but auth changed, so resending");
2211 __do_request(mdsc
, req
);
2212 mutex_unlock(&mdsc
->mutex
);
2216 dout("have to return ESTALE on request %llu", req
->r_tid
);
2221 req
->r_got_safe
= true;
2222 __unregister_request(mdsc
, req
);
2224 if (req
->r_got_unsafe
) {
2226 * We already handled the unsafe response, now do the
2227 * cleanup. No need to examine the response; the MDS
2228 * doesn't include any result info in the safe
2229 * response. And even if it did, there is nothing
2230 * useful we could do with a revised return value.
2232 dout("got safe reply %llu, mds%d\n", tid
, mds
);
2233 list_del_init(&req
->r_unsafe_item
);
2235 /* last unsafe request during umount? */
2236 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
2237 complete_all(&mdsc
->safe_umount_waiters
);
2238 mutex_unlock(&mdsc
->mutex
);
2242 req
->r_got_unsafe
= true;
2243 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
2246 dout("handle_reply tid %lld result %d\n", tid
, result
);
2247 rinfo
= &req
->r_reply_info
;
2248 err
= parse_reply_info(msg
, rinfo
, session
->s_con
.peer_features
);
2249 mutex_unlock(&mdsc
->mutex
);
2251 mutex_lock(&session
->s_mutex
);
2253 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds
, tid
);
2259 if (rinfo
->snapblob_len
) {
2260 down_write(&mdsc
->snap_rwsem
);
2261 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
2262 rinfo
->snapblob
+ rinfo
->snapblob_len
,
2263 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
);
2264 downgrade_write(&mdsc
->snap_rwsem
);
2266 down_read(&mdsc
->snap_rwsem
);
2269 /* insert trace into our cache */
2270 mutex_lock(&req
->r_fill_mutex
);
2271 err
= ceph_fill_trace(mdsc
->fsc
->sb
, req
, req
->r_session
);
2273 if (result
== 0 && (req
->r_op
== CEPH_MDS_OP_READDIR
||
2274 req
->r_op
== CEPH_MDS_OP_LSSNAP
))
2275 ceph_readdir_prepopulate(req
, req
->r_session
);
2276 ceph_unreserve_caps(mdsc
, &req
->r_caps_reservation
);
2278 mutex_unlock(&req
->r_fill_mutex
);
2280 up_read(&mdsc
->snap_rwsem
);
2282 mutex_lock(&mdsc
->mutex
);
2283 if (!req
->r_aborted
) {
2289 req
->r_got_result
= true;
2292 dout("reply arrived after request %lld was aborted\n", tid
);
2294 mutex_unlock(&mdsc
->mutex
);
2296 ceph_add_cap_releases(mdsc
, req
->r_session
);
2297 mutex_unlock(&session
->s_mutex
);
2299 /* kick calling process */
2300 complete_request(mdsc
, req
);
2302 ceph_mdsc_put_request(req
);
2309 * handle mds notification that our request has been forwarded.
2311 static void handle_forward(struct ceph_mds_client
*mdsc
,
2312 struct ceph_mds_session
*session
,
2313 struct ceph_msg
*msg
)
2315 struct ceph_mds_request
*req
;
2316 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2320 void *p
= msg
->front
.iov_base
;
2321 void *end
= p
+ msg
->front
.iov_len
;
2323 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2324 next_mds
= ceph_decode_32(&p
);
2325 fwd_seq
= ceph_decode_32(&p
);
2327 mutex_lock(&mdsc
->mutex
);
2328 req
= __lookup_request(mdsc
, tid
);
2330 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2331 goto out
; /* dup reply? */
2334 if (req
->r_aborted
) {
2335 dout("forward tid %llu aborted, unregistering\n", tid
);
2336 __unregister_request(mdsc
, req
);
2337 } else if (fwd_seq
<= req
->r_num_fwd
) {
2338 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2339 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2341 /* resend. forward race not possible; mds would drop */
2342 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2344 BUG_ON(req
->r_got_result
);
2345 req
->r_num_fwd
= fwd_seq
;
2346 req
->r_resend_mds
= next_mds
;
2347 put_request_session(req
);
2348 __do_request(mdsc
, req
);
2350 ceph_mdsc_put_request(req
);
2352 mutex_unlock(&mdsc
->mutex
);
2356 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2360 * handle a mds session control message
2362 static void handle_session(struct ceph_mds_session
*session
,
2363 struct ceph_msg
*msg
)
2365 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2368 int mds
= session
->s_mds
;
2369 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2373 if (msg
->front
.iov_len
!= sizeof(*h
))
2375 op
= le32_to_cpu(h
->op
);
2376 seq
= le64_to_cpu(h
->seq
);
2378 mutex_lock(&mdsc
->mutex
);
2379 if (op
== CEPH_SESSION_CLOSE
)
2380 __unregister_session(mdsc
, session
);
2381 /* FIXME: this ttl calculation is generous */
2382 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2383 mutex_unlock(&mdsc
->mutex
);
2385 mutex_lock(&session
->s_mutex
);
2387 dout("handle_session mds%d %s %p state %s seq %llu\n",
2388 mds
, ceph_session_op_name(op
), session
,
2389 session_state_name(session
->s_state
), seq
);
2391 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2392 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2393 pr_info("mds%d came back\n", session
->s_mds
);
2397 case CEPH_SESSION_OPEN
:
2398 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2399 pr_info("mds%d reconnect success\n", session
->s_mds
);
2400 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2401 renewed_caps(mdsc
, session
, 0);
2404 __close_session(mdsc
, session
);
2407 case CEPH_SESSION_RENEWCAPS
:
2408 if (session
->s_renew_seq
== seq
)
2409 renewed_caps(mdsc
, session
, 1);
2412 case CEPH_SESSION_CLOSE
:
2413 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2414 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2415 remove_session_caps(session
);
2416 wake
= 1; /* for good measure */
2417 wake_up_all(&mdsc
->session_close_wq
);
2418 kick_requests(mdsc
, mds
);
2421 case CEPH_SESSION_STALE
:
2422 pr_info("mds%d caps went stale, renewing\n",
2424 spin_lock(&session
->s_gen_ttl_lock
);
2425 session
->s_cap_gen
++;
2426 session
->s_cap_ttl
= jiffies
- 1;
2427 spin_unlock(&session
->s_gen_ttl_lock
);
2428 send_renew_caps(mdsc
, session
);
2431 case CEPH_SESSION_RECALL_STATE
:
2432 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2435 case CEPH_SESSION_FLUSHMSG
:
2436 send_flushmsg_ack(mdsc
, session
, seq
);
2440 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2444 mutex_unlock(&session
->s_mutex
);
2446 mutex_lock(&mdsc
->mutex
);
2447 __wake_requests(mdsc
, &session
->s_waiting
);
2448 mutex_unlock(&mdsc
->mutex
);
2453 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2454 (int)msg
->front
.iov_len
);
2461 * called under session->mutex.
2463 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2464 struct ceph_mds_session
*session
)
2466 struct ceph_mds_request
*req
, *nreq
;
2469 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2471 mutex_lock(&mdsc
->mutex
);
2472 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2473 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
);
2475 ceph_msg_get(req
->r_request
);
2476 ceph_con_send(&session
->s_con
, req
->r_request
);
2479 mutex_unlock(&mdsc
->mutex
);
2483 * Encode information about a cap for a reconnect with the MDS.
2485 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2489 struct ceph_mds_cap_reconnect v2
;
2490 struct ceph_mds_cap_reconnect_v1 v1
;
2493 struct ceph_inode_info
*ci
;
2494 struct ceph_reconnect_state
*recon_state
= arg
;
2495 struct ceph_pagelist
*pagelist
= recon_state
->pagelist
;
2499 struct dentry
*dentry
;
2503 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2504 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2505 ceph_cap_string(cap
->issued
));
2506 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2510 dentry
= d_find_alias(inode
);
2512 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2514 err
= PTR_ERR(path
);
2521 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2525 spin_lock(&ci
->i_ceph_lock
);
2526 cap
->seq
= 0; /* reset cap seq */
2527 cap
->issue_seq
= 0; /* and issue_seq */
2528 cap
->mseq
= 0; /* and migrate_seq */
2529 cap
->cap_gen
= cap
->session
->s_cap_gen
;
2531 if (recon_state
->flock
) {
2532 rec
.v2
.cap_id
= cpu_to_le64(cap
->cap_id
);
2533 rec
.v2
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2534 rec
.v2
.issued
= cpu_to_le32(cap
->issued
);
2535 rec
.v2
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2536 rec
.v2
.pathbase
= cpu_to_le64(pathbase
);
2537 rec
.v2
.flock_len
= 0;
2538 reclen
= sizeof(rec
.v2
);
2540 rec
.v1
.cap_id
= cpu_to_le64(cap
->cap_id
);
2541 rec
.v1
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2542 rec
.v1
.issued
= cpu_to_le32(cap
->issued
);
2543 rec
.v1
.size
= cpu_to_le64(inode
->i_size
);
2544 ceph_encode_timespec(&rec
.v1
.mtime
, &inode
->i_mtime
);
2545 ceph_encode_timespec(&rec
.v1
.atime
, &inode
->i_atime
);
2546 rec
.v1
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2547 rec
.v1
.pathbase
= cpu_to_le64(pathbase
);
2548 reclen
= sizeof(rec
.v1
);
2550 spin_unlock(&ci
->i_ceph_lock
);
2552 if (recon_state
->flock
) {
2553 int num_fcntl_locks
, num_flock_locks
;
2554 struct ceph_filelock
*flocks
;
2557 spin_lock(&inode
->i_lock
);
2558 ceph_count_locks(inode
, &num_fcntl_locks
, &num_flock_locks
);
2559 spin_unlock(&inode
->i_lock
);
2560 flocks
= kmalloc((num_fcntl_locks
+num_flock_locks
) *
2561 sizeof(struct ceph_filelock
), GFP_NOFS
);
2566 spin_lock(&inode
->i_lock
);
2567 err
= ceph_encode_locks_to_buffer(inode
, flocks
,
2570 spin_unlock(&inode
->i_lock
);
2578 * number of encoded locks is stable, so copy to pagelist
2580 rec
.v2
.flock_len
= cpu_to_le32(2*sizeof(u32
) +
2581 (num_fcntl_locks
+num_flock_locks
) *
2582 sizeof(struct ceph_filelock
));
2583 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2585 err
= ceph_locks_to_pagelist(flocks
, pagelist
,
2590 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2593 recon_state
->nr_caps
++;
2603 * If an MDS fails and recovers, clients need to reconnect in order to
2604 * reestablish shared state. This includes all caps issued through
2605 * this session _and_ the snap_realm hierarchy. Because it's not
2606 * clear which snap realms the mds cares about, we send everything we
2607 * know about.. that ensures we'll then get any new info the
2608 * recovering MDS might have.
2610 * This is a relatively heavyweight operation, but it's rare.
2612 * called with mdsc->mutex held.
2614 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2615 struct ceph_mds_session
*session
)
2617 struct ceph_msg
*reply
;
2619 int mds
= session
->s_mds
;
2622 struct ceph_pagelist
*pagelist
;
2623 struct ceph_reconnect_state recon_state
;
2625 pr_info("mds%d reconnect start\n", mds
);
2627 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2629 goto fail_nopagelist
;
2630 ceph_pagelist_init(pagelist
);
2632 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
, false);
2636 mutex_lock(&session
->s_mutex
);
2637 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2640 ceph_con_close(&session
->s_con
);
2641 ceph_con_open(&session
->s_con
,
2642 CEPH_ENTITY_TYPE_MDS
, mds
,
2643 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2645 /* replay unsafe requests */
2646 replay_unsafe_requests(mdsc
, session
);
2648 down_read(&mdsc
->snap_rwsem
);
2650 dout("session %p state %s\n", session
,
2651 session_state_name(session
->s_state
));
2653 spin_lock(&session
->s_gen_ttl_lock
);
2654 session
->s_cap_gen
++;
2655 spin_unlock(&session
->s_gen_ttl_lock
);
2657 spin_lock(&session
->s_cap_lock
);
2659 * notify __ceph_remove_cap() that we are composing cap reconnect.
2660 * If a cap get released before being added to the cap reconnect,
2661 * __ceph_remove_cap() should skip queuing cap release.
2663 session
->s_cap_reconnect
= 1;
2664 /* drop old cap expires; we're about to reestablish that state */
2665 discard_cap_releases(mdsc
, session
);
2666 spin_unlock(&session
->s_cap_lock
);
2668 /* traverse this session's caps */
2669 s_nr_caps
= session
->s_nr_caps
;
2670 err
= ceph_pagelist_encode_32(pagelist
, s_nr_caps
);
2674 recon_state
.nr_caps
= 0;
2675 recon_state
.pagelist
= pagelist
;
2676 recon_state
.flock
= session
->s_con
.peer_features
& CEPH_FEATURE_FLOCK
;
2677 err
= iterate_session_caps(session
, encode_caps_cb
, &recon_state
);
2681 spin_lock(&session
->s_cap_lock
);
2682 session
->s_cap_reconnect
= 0;
2683 spin_unlock(&session
->s_cap_lock
);
2686 * snaprealms. we provide mds with the ino, seq (version), and
2687 * parent for all of our realms. If the mds has any newer info,
2690 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2691 struct ceph_snap_realm
*realm
=
2692 rb_entry(p
, struct ceph_snap_realm
, node
);
2693 struct ceph_mds_snaprealm_reconnect sr_rec
;
2695 dout(" adding snap realm %llx seq %lld parent %llx\n",
2696 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2697 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2698 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2699 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2700 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2705 if (recon_state
.flock
)
2706 reply
->hdr
.version
= cpu_to_le16(2);
2708 /* raced with cap release? */
2709 if (s_nr_caps
!= recon_state
.nr_caps
) {
2710 struct page
*page
= list_first_entry(&pagelist
->head
,
2712 __le32
*addr
= kmap_atomic(page
);
2713 *addr
= cpu_to_le32(recon_state
.nr_caps
);
2714 kunmap_atomic(addr
);
2717 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2718 ceph_msg_data_add_pagelist(reply
, pagelist
);
2719 ceph_con_send(&session
->s_con
, reply
);
2721 mutex_unlock(&session
->s_mutex
);
2723 mutex_lock(&mdsc
->mutex
);
2724 __wake_requests(mdsc
, &session
->s_waiting
);
2725 mutex_unlock(&mdsc
->mutex
);
2727 up_read(&mdsc
->snap_rwsem
);
2731 ceph_msg_put(reply
);
2732 up_read(&mdsc
->snap_rwsem
);
2733 mutex_unlock(&session
->s_mutex
);
2735 ceph_pagelist_release(pagelist
);
2738 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
2744 * compare old and new mdsmaps, kicking requests
2745 * and closing out old connections as necessary
2747 * called under mdsc->mutex.
2749 static void check_new_map(struct ceph_mds_client
*mdsc
,
2750 struct ceph_mdsmap
*newmap
,
2751 struct ceph_mdsmap
*oldmap
)
2754 int oldstate
, newstate
;
2755 struct ceph_mds_session
*s
;
2757 dout("check_new_map new %u old %u\n",
2758 newmap
->m_epoch
, oldmap
->m_epoch
);
2760 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2761 if (mdsc
->sessions
[i
] == NULL
)
2763 s
= mdsc
->sessions
[i
];
2764 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
2765 newstate
= ceph_mdsmap_get_state(newmap
, i
);
2767 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2768 i
, ceph_mds_state_name(oldstate
),
2769 ceph_mdsmap_is_laggy(oldmap
, i
) ? " (laggy)" : "",
2770 ceph_mds_state_name(newstate
),
2771 ceph_mdsmap_is_laggy(newmap
, i
) ? " (laggy)" : "",
2772 session_state_name(s
->s_state
));
2774 if (i
>= newmap
->m_max_mds
||
2775 memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
2776 ceph_mdsmap_get_addr(newmap
, i
),
2777 sizeof(struct ceph_entity_addr
))) {
2778 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
2779 /* the session never opened, just close it
2781 __wake_requests(mdsc
, &s
->s_waiting
);
2782 __unregister_session(mdsc
, s
);
2785 mutex_unlock(&mdsc
->mutex
);
2786 mutex_lock(&s
->s_mutex
);
2787 mutex_lock(&mdsc
->mutex
);
2788 ceph_con_close(&s
->s_con
);
2789 mutex_unlock(&s
->s_mutex
);
2790 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
2793 /* kick any requests waiting on the recovering mds */
2794 kick_requests(mdsc
, i
);
2795 } else if (oldstate
== newstate
) {
2796 continue; /* nothing new with this mds */
2802 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
2803 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
2804 mutex_unlock(&mdsc
->mutex
);
2805 send_mds_reconnect(mdsc
, s
);
2806 mutex_lock(&mdsc
->mutex
);
2810 * kick request on any mds that has gone active.
2812 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
2813 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
2814 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
2815 oldstate
!= CEPH_MDS_STATE_STARTING
)
2816 pr_info("mds%d recovery completed\n", s
->s_mds
);
2817 kick_requests(mdsc
, i
);
2818 ceph_kick_flushing_caps(mdsc
, s
);
2819 wake_up_session_caps(s
, 1);
2823 for (i
= 0; i
< newmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2824 s
= mdsc
->sessions
[i
];
2827 if (!ceph_mdsmap_is_laggy(newmap
, i
))
2829 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2830 s
->s_state
== CEPH_MDS_SESSION_HUNG
||
2831 s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2832 dout(" connecting to export targets of laggy mds%d\n",
2834 __open_export_target_sessions(mdsc
, s
);
2846 * caller must hold session s_mutex, dentry->d_lock
2848 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
2850 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
2852 ceph_put_mds_session(di
->lease_session
);
2853 di
->lease_session
= NULL
;
2856 static void handle_lease(struct ceph_mds_client
*mdsc
,
2857 struct ceph_mds_session
*session
,
2858 struct ceph_msg
*msg
)
2860 struct super_block
*sb
= mdsc
->fsc
->sb
;
2861 struct inode
*inode
;
2862 struct dentry
*parent
, *dentry
;
2863 struct ceph_dentry_info
*di
;
2864 int mds
= session
->s_mds
;
2865 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
2867 struct ceph_vino vino
;
2871 dout("handle_lease from mds%d\n", mds
);
2874 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
2876 vino
.ino
= le64_to_cpu(h
->ino
);
2877 vino
.snap
= CEPH_NOSNAP
;
2878 seq
= le32_to_cpu(h
->seq
);
2879 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
2880 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
2881 if (dname
.len
!= get_unaligned_le32(h
+1))
2884 mutex_lock(&session
->s_mutex
);
2888 inode
= ceph_find_inode(sb
, vino
);
2889 dout("handle_lease %s, ino %llx %p %.*s\n",
2890 ceph_lease_op_name(h
->action
), vino
.ino
, inode
,
2891 dname
.len
, dname
.name
);
2892 if (inode
== NULL
) {
2893 dout("handle_lease no inode %llx\n", vino
.ino
);
2898 parent
= d_find_alias(inode
);
2900 dout("no parent dentry on inode %p\n", inode
);
2902 goto release
; /* hrm... */
2904 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
2905 dentry
= d_lookup(parent
, &dname
);
2910 spin_lock(&dentry
->d_lock
);
2911 di
= ceph_dentry(dentry
);
2912 switch (h
->action
) {
2913 case CEPH_MDS_LEASE_REVOKE
:
2914 if (di
->lease_session
== session
) {
2915 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
2916 h
->seq
= cpu_to_le32(di
->lease_seq
);
2917 __ceph_mdsc_drop_dentry_lease(dentry
);
2922 case CEPH_MDS_LEASE_RENEW
:
2923 if (di
->lease_session
== session
&&
2924 di
->lease_gen
== session
->s_cap_gen
&&
2925 di
->lease_renew_from
&&
2926 di
->lease_renew_after
== 0) {
2927 unsigned long duration
=
2928 le32_to_cpu(h
->duration_ms
) * HZ
/ 1000;
2930 di
->lease_seq
= seq
;
2931 dentry
->d_time
= di
->lease_renew_from
+ duration
;
2932 di
->lease_renew_after
= di
->lease_renew_from
+
2934 di
->lease_renew_from
= 0;
2938 spin_unlock(&dentry
->d_lock
);
2945 /* let's just reuse the same message */
2946 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
2948 ceph_con_send(&session
->s_con
, msg
);
2952 mutex_unlock(&session
->s_mutex
);
2956 pr_err("corrupt lease message\n");
2960 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
2961 struct inode
*inode
,
2962 struct dentry
*dentry
, char action
,
2965 struct ceph_msg
*msg
;
2966 struct ceph_mds_lease
*lease
;
2967 int len
= sizeof(*lease
) + sizeof(u32
);
2970 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2971 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
2972 dnamelen
= dentry
->d_name
.len
;
2975 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
, false);
2978 lease
= msg
->front
.iov_base
;
2979 lease
->action
= action
;
2980 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
2981 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
2982 lease
->seq
= cpu_to_le32(seq
);
2983 put_unaligned_le32(dnamelen
, lease
+ 1);
2984 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
2987 * if this is a preemptive lease RELEASE, no need to
2988 * flush request stream, since the actual request will
2991 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
2993 ceph_con_send(&session
->s_con
, msg
);
2997 * Preemptively release a lease we expect to invalidate anyway.
2998 * Pass @inode always, @dentry is optional.
3000 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
3001 struct dentry
*dentry
)
3003 struct ceph_dentry_info
*di
;
3004 struct ceph_mds_session
*session
;
3007 BUG_ON(inode
== NULL
);
3008 BUG_ON(dentry
== NULL
);
3010 /* is dentry lease valid? */
3011 spin_lock(&dentry
->d_lock
);
3012 di
= ceph_dentry(dentry
);
3013 if (!di
|| !di
->lease_session
||
3014 di
->lease_session
->s_mds
< 0 ||
3015 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
3016 !time_before(jiffies
, dentry
->d_time
)) {
3017 dout("lease_release inode %p dentry %p -- "
3020 spin_unlock(&dentry
->d_lock
);
3024 /* we do have a lease on this dentry; note mds and seq */
3025 session
= ceph_get_mds_session(di
->lease_session
);
3026 seq
= di
->lease_seq
;
3027 __ceph_mdsc_drop_dentry_lease(dentry
);
3028 spin_unlock(&dentry
->d_lock
);
3030 dout("lease_release inode %p dentry %p to mds%d\n",
3031 inode
, dentry
, session
->s_mds
);
3032 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
3033 CEPH_MDS_LEASE_RELEASE
, seq
);
3034 ceph_put_mds_session(session
);
3038 * drop all leases (and dentry refs) in preparation for umount
3040 static void drop_leases(struct ceph_mds_client
*mdsc
)
3044 dout("drop_leases\n");
3045 mutex_lock(&mdsc
->mutex
);
3046 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3047 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3050 mutex_unlock(&mdsc
->mutex
);
3051 mutex_lock(&s
->s_mutex
);
3052 mutex_unlock(&s
->s_mutex
);
3053 ceph_put_mds_session(s
);
3054 mutex_lock(&mdsc
->mutex
);
3056 mutex_unlock(&mdsc
->mutex
);
3062 * delayed work -- periodically trim expired leases, renew caps with mds
3064 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
3067 unsigned hz
= round_jiffies_relative(HZ
* delay
);
3068 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
3071 static void delayed_work(struct work_struct
*work
)
3074 struct ceph_mds_client
*mdsc
=
3075 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
3079 dout("mdsc delayed_work\n");
3080 ceph_check_delayed_caps(mdsc
);
3082 mutex_lock(&mdsc
->mutex
);
3083 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
3084 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
3085 mdsc
->last_renew_caps
);
3087 mdsc
->last_renew_caps
= jiffies
;
3089 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3090 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3093 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3094 dout("resending session close request for mds%d\n",
3096 request_close_session(mdsc
, s
);
3097 ceph_put_mds_session(s
);
3100 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
3101 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
3102 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
3103 pr_info("mds%d hung\n", s
->s_mds
);
3106 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
3107 /* this mds is failed or recovering, just wait */
3108 ceph_put_mds_session(s
);
3111 mutex_unlock(&mdsc
->mutex
);
3113 mutex_lock(&s
->s_mutex
);
3115 send_renew_caps(mdsc
, s
);
3117 ceph_con_keepalive(&s
->s_con
);
3118 ceph_add_cap_releases(mdsc
, s
);
3119 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
3120 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
3121 ceph_send_cap_releases(mdsc
, s
);
3122 mutex_unlock(&s
->s_mutex
);
3123 ceph_put_mds_session(s
);
3125 mutex_lock(&mdsc
->mutex
);
3127 mutex_unlock(&mdsc
->mutex
);
3129 schedule_delayed(mdsc
);
3132 int ceph_mdsc_init(struct ceph_fs_client
*fsc
)
3135 struct ceph_mds_client
*mdsc
;
3137 mdsc
= kzalloc(sizeof(struct ceph_mds_client
), GFP_NOFS
);
3142 mutex_init(&mdsc
->mutex
);
3143 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
3144 if (mdsc
->mdsmap
== NULL
) {
3149 init_completion(&mdsc
->safe_umount_waiters
);
3150 init_waitqueue_head(&mdsc
->session_close_wq
);
3151 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
3152 mdsc
->sessions
= NULL
;
3153 mdsc
->max_sessions
= 0;
3155 init_rwsem(&mdsc
->snap_rwsem
);
3156 mdsc
->snap_realms
= RB_ROOT
;
3157 INIT_LIST_HEAD(&mdsc
->snap_empty
);
3158 spin_lock_init(&mdsc
->snap_empty_lock
);
3160 mdsc
->request_tree
= RB_ROOT
;
3161 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
3162 mdsc
->last_renew_caps
= jiffies
;
3163 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
3164 spin_lock_init(&mdsc
->cap_delay_lock
);
3165 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
3166 spin_lock_init(&mdsc
->snap_flush_lock
);
3167 mdsc
->cap_flush_seq
= 0;
3168 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
3169 INIT_LIST_HEAD(&mdsc
->cap_dirty_migrating
);
3170 mdsc
->num_cap_flushing
= 0;
3171 spin_lock_init(&mdsc
->cap_dirty_lock
);
3172 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
3173 spin_lock_init(&mdsc
->dentry_lru_lock
);
3174 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
3176 ceph_caps_init(mdsc
);
3177 ceph_adjust_min_caps(mdsc
, fsc
->min_caps
);
3183 * Wait for safe replies on open mds requests. If we time out, drop
3184 * all requests from the tree to avoid dangling dentry refs.
3186 static void wait_requests(struct ceph_mds_client
*mdsc
)
3188 struct ceph_mds_request
*req
;
3189 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3191 mutex_lock(&mdsc
->mutex
);
3192 if (__get_oldest_req(mdsc
)) {
3193 mutex_unlock(&mdsc
->mutex
);
3195 dout("wait_requests waiting for requests\n");
3196 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
3197 fsc
->client
->options
->mount_timeout
* HZ
);
3199 /* tear down remaining requests */
3200 mutex_lock(&mdsc
->mutex
);
3201 while ((req
= __get_oldest_req(mdsc
))) {
3202 dout("wait_requests timed out on tid %llu\n",
3204 __unregister_request(mdsc
, req
);
3207 mutex_unlock(&mdsc
->mutex
);
3208 dout("wait_requests done\n");
3212 * called before mount is ro, and before dentries are torn down.
3213 * (hmm, does this still race with new lookups?)
3215 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
3217 dout("pre_umount\n");
3221 ceph_flush_dirty_caps(mdsc
);
3222 wait_requests(mdsc
);
3225 * wait for reply handlers to drop their request refs and
3226 * their inode/dcache refs
3232 * wait for all write mds requests to flush.
3234 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
3236 struct ceph_mds_request
*req
= NULL
, *nextreq
;
3239 mutex_lock(&mdsc
->mutex
);
3240 dout("wait_unsafe_requests want %lld\n", want_tid
);
3242 req
= __get_oldest_req(mdsc
);
3243 while (req
&& req
->r_tid
<= want_tid
) {
3244 /* find next request */
3245 n
= rb_next(&req
->r_node
);
3247 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
3250 if ((req
->r_op
& CEPH_MDS_OP_WRITE
)) {
3252 ceph_mdsc_get_request(req
);
3254 ceph_mdsc_get_request(nextreq
);
3255 mutex_unlock(&mdsc
->mutex
);
3256 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3257 req
->r_tid
, want_tid
);
3258 wait_for_completion(&req
->r_safe_completion
);
3259 mutex_lock(&mdsc
->mutex
);
3260 ceph_mdsc_put_request(req
);
3262 break; /* next dne before, so we're done! */
3263 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
3264 /* next request was removed from tree */
3265 ceph_mdsc_put_request(nextreq
);
3268 ceph_mdsc_put_request(nextreq
); /* won't go away */
3272 mutex_unlock(&mdsc
->mutex
);
3273 dout("wait_unsafe_requests done\n");
3276 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
3278 u64 want_tid
, want_flush
;
3280 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3284 mutex_lock(&mdsc
->mutex
);
3285 want_tid
= mdsc
->last_tid
;
3286 want_flush
= mdsc
->cap_flush_seq
;
3287 mutex_unlock(&mdsc
->mutex
);
3288 dout("sync want tid %lld flush_seq %lld\n", want_tid
, want_flush
);
3290 ceph_flush_dirty_caps(mdsc
);
3292 wait_unsafe_requests(mdsc
, want_tid
);
3293 wait_event(mdsc
->cap_flushing_wq
, check_cap_flush(mdsc
, want_flush
));
3297 * true if all sessions are closed, or we force unmount
3299 static bool done_closing_sessions(struct ceph_mds_client
*mdsc
)
3303 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3306 mutex_lock(&mdsc
->mutex
);
3307 for (i
= 0; i
< mdsc
->max_sessions
; i
++)
3308 if (mdsc
->sessions
[i
])
3310 mutex_unlock(&mdsc
->mutex
);
3315 * called after sb is ro.
3317 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
3319 struct ceph_mds_session
*session
;
3321 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3322 unsigned long timeout
= fsc
->client
->options
->mount_timeout
* HZ
;
3324 dout("close_sessions\n");
3326 /* close sessions */
3327 mutex_lock(&mdsc
->mutex
);
3328 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3329 session
= __ceph_lookup_mds_session(mdsc
, i
);
3332 mutex_unlock(&mdsc
->mutex
);
3333 mutex_lock(&session
->s_mutex
);
3334 __close_session(mdsc
, session
);
3335 mutex_unlock(&session
->s_mutex
);
3336 ceph_put_mds_session(session
);
3337 mutex_lock(&mdsc
->mutex
);
3339 mutex_unlock(&mdsc
->mutex
);
3341 dout("waiting for sessions to close\n");
3342 wait_event_timeout(mdsc
->session_close_wq
, done_closing_sessions(mdsc
),
3345 /* tear down remaining sessions */
3346 mutex_lock(&mdsc
->mutex
);
3347 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3348 if (mdsc
->sessions
[i
]) {
3349 session
= get_session(mdsc
->sessions
[i
]);
3350 __unregister_session(mdsc
, session
);
3351 mutex_unlock(&mdsc
->mutex
);
3352 mutex_lock(&session
->s_mutex
);
3353 remove_session_caps(session
);
3354 mutex_unlock(&session
->s_mutex
);
3355 ceph_put_mds_session(session
);
3356 mutex_lock(&mdsc
->mutex
);
3359 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
3360 mutex_unlock(&mdsc
->mutex
);
3362 ceph_cleanup_empty_realms(mdsc
);
3364 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3369 static void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
3372 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3374 ceph_mdsmap_destroy(mdsc
->mdsmap
);
3375 kfree(mdsc
->sessions
);
3376 ceph_caps_finalize(mdsc
);
3379 void ceph_mdsc_destroy(struct ceph_fs_client
*fsc
)
3381 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
3383 dout("mdsc_destroy %p\n", mdsc
);
3384 ceph_mdsc_stop(mdsc
);
3386 /* flush out any connection work with references to us */
3391 dout("mdsc_destroy %p done\n", mdsc
);
3396 * handle mds map update.
3398 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
3402 void *p
= msg
->front
.iov_base
;
3403 void *end
= p
+ msg
->front
.iov_len
;
3404 struct ceph_mdsmap
*newmap
, *oldmap
;
3405 struct ceph_fsid fsid
;
3408 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
3409 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
3410 if (ceph_check_fsid(mdsc
->fsc
->client
, &fsid
) < 0)
3412 epoch
= ceph_decode_32(&p
);
3413 maplen
= ceph_decode_32(&p
);
3414 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
3416 /* do we need it? */
3417 ceph_monc_got_mdsmap(&mdsc
->fsc
->client
->monc
, epoch
);
3418 mutex_lock(&mdsc
->mutex
);
3419 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
3420 dout("handle_map epoch %u <= our %u\n",
3421 epoch
, mdsc
->mdsmap
->m_epoch
);
3422 mutex_unlock(&mdsc
->mutex
);
3426 newmap
= ceph_mdsmap_decode(&p
, end
);
3427 if (IS_ERR(newmap
)) {
3428 err
= PTR_ERR(newmap
);
3432 /* swap into place */
3434 oldmap
= mdsc
->mdsmap
;
3435 mdsc
->mdsmap
= newmap
;
3436 check_new_map(mdsc
, newmap
, oldmap
);
3437 ceph_mdsmap_destroy(oldmap
);
3439 mdsc
->mdsmap
= newmap
; /* first mds map */
3441 mdsc
->fsc
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3443 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3445 mutex_unlock(&mdsc
->mutex
);
3446 schedule_delayed(mdsc
);
3450 mutex_unlock(&mdsc
->mutex
);
3452 pr_err("error decoding mdsmap %d\n", err
);
3456 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3458 struct ceph_mds_session
*s
= con
->private;
3460 if (get_session(s
)) {
3461 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3464 dout("mdsc con_get %p FAIL\n", s
);
3468 static void con_put(struct ceph_connection
*con
)
3470 struct ceph_mds_session
*s
= con
->private;
3472 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
) - 1);
3473 ceph_put_mds_session(s
);
3477 * if the client is unresponsive for long enough, the mds will kill
3478 * the session entirely.
3480 static void peer_reset(struct ceph_connection
*con
)
3482 struct ceph_mds_session
*s
= con
->private;
3483 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3485 pr_warning("mds%d closed our session\n", s
->s_mds
);
3486 send_mds_reconnect(mdsc
, s
);
3489 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3491 struct ceph_mds_session
*s
= con
->private;
3492 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3493 int type
= le16_to_cpu(msg
->hdr
.type
);
3495 mutex_lock(&mdsc
->mutex
);
3496 if (__verify_registered_session(mdsc
, s
) < 0) {
3497 mutex_unlock(&mdsc
->mutex
);
3500 mutex_unlock(&mdsc
->mutex
);
3503 case CEPH_MSG_MDS_MAP
:
3504 ceph_mdsc_handle_map(mdsc
, msg
);
3506 case CEPH_MSG_CLIENT_SESSION
:
3507 handle_session(s
, msg
);
3509 case CEPH_MSG_CLIENT_REPLY
:
3510 handle_reply(s
, msg
);
3512 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3513 handle_forward(mdsc
, s
, msg
);
3515 case CEPH_MSG_CLIENT_CAPS
:
3516 ceph_handle_caps(s
, msg
);
3518 case CEPH_MSG_CLIENT_SNAP
:
3519 ceph_handle_snap(mdsc
, s
, msg
);
3521 case CEPH_MSG_CLIENT_LEASE
:
3522 handle_lease(mdsc
, s
, msg
);
3526 pr_err("received unknown message type %d %s\n", type
,
3527 ceph_msg_type_name(type
));
3538 * Note: returned pointer is the address of a structure that's
3539 * managed separately. Caller must *not* attempt to free it.
3541 static struct ceph_auth_handshake
*get_authorizer(struct ceph_connection
*con
,
3542 int *proto
, int force_new
)
3544 struct ceph_mds_session
*s
= con
->private;
3545 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3546 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3547 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
3549 if (force_new
&& auth
->authorizer
) {
3550 ceph_auth_destroy_authorizer(ac
, auth
->authorizer
);
3551 auth
->authorizer
= NULL
;
3553 if (!auth
->authorizer
) {
3554 int ret
= ceph_auth_create_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3557 return ERR_PTR(ret
);
3559 int ret
= ceph_auth_update_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3562 return ERR_PTR(ret
);
3564 *proto
= ac
->protocol
;
3570 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3572 struct ceph_mds_session
*s
= con
->private;
3573 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3574 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3576 return ceph_auth_verify_authorizer_reply(ac
, s
->s_auth
.authorizer
, len
);
3579 static int invalidate_authorizer(struct ceph_connection
*con
)
3581 struct ceph_mds_session
*s
= con
->private;
3582 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3583 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3585 ceph_auth_invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3587 return ceph_monc_validate_auth(&mdsc
->fsc
->client
->monc
);
3590 static struct ceph_msg
*mds_alloc_msg(struct ceph_connection
*con
,
3591 struct ceph_msg_header
*hdr
, int *skip
)
3593 struct ceph_msg
*msg
;
3594 int type
= (int) le16_to_cpu(hdr
->type
);
3595 int front_len
= (int) le32_to_cpu(hdr
->front_len
);
3601 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
, false);
3603 pr_err("unable to allocate msg type %d len %d\n",
3611 static const struct ceph_connection_operations mds_con_ops
= {
3614 .dispatch
= dispatch
,
3615 .get_authorizer
= get_authorizer
,
3616 .verify_authorizer_reply
= verify_authorizer_reply
,
3617 .invalidate_authorizer
= invalidate_authorizer
,
3618 .peer_reset
= peer_reset
,
3619 .alloc_msg
= mds_alloc_msg
,