serial_core: Get a reference for port->tty in uart_remove_one_port()
[linux/fpc-iii.git] / fs / ceph / mds_client.c
blobf4f050a69a48fff9a707c28d4a024691a5bdc814
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
10 #include "super.h"
11 #include "mds_client.h"
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
45 struct ceph_reconnect_state {
46 int nr_caps;
47 struct ceph_pagelist *pagelist;
48 bool flock;
51 static void __wake_requests(struct ceph_mds_client *mdsc,
52 struct list_head *head);
54 static const struct ceph_connection_operations mds_con_ops;
58 * mds reply parsing
62 * parse individual inode info
64 static int parse_reply_info_in(void **p, void *end,
65 struct ceph_mds_reply_info_in *info,
66 u64 features)
68 int err = -EIO;
70 info->in = *p;
71 *p += sizeof(struct ceph_mds_reply_inode) +
72 sizeof(*info->in->fragtree.splits) *
73 le32_to_cpu(info->in->fragtree.nsplits);
75 ceph_decode_32_safe(p, end, info->symlink_len, bad);
76 ceph_decode_need(p, end, info->symlink_len, bad);
77 info->symlink = *p;
78 *p += info->symlink_len;
80 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
81 ceph_decode_copy_safe(p, end, &info->dir_layout,
82 sizeof(info->dir_layout), bad);
83 else
84 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
86 ceph_decode_32_safe(p, end, info->xattr_len, bad);
87 ceph_decode_need(p, end, info->xattr_len, bad);
88 info->xattr_data = *p;
89 *p += info->xattr_len;
90 return 0;
91 bad:
92 return err;
96 * parse a normal reply, which may contain a (dir+)dentry and/or a
97 * target inode.
99 static int parse_reply_info_trace(void **p, void *end,
100 struct ceph_mds_reply_info_parsed *info,
101 u64 features)
103 int err;
105 if (info->head->is_dentry) {
106 err = parse_reply_info_in(p, end, &info->diri, features);
107 if (err < 0)
108 goto out_bad;
110 if (unlikely(*p + sizeof(*info->dirfrag) > end))
111 goto bad;
112 info->dirfrag = *p;
113 *p += sizeof(*info->dirfrag) +
114 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
115 if (unlikely(*p > end))
116 goto bad;
118 ceph_decode_32_safe(p, end, info->dname_len, bad);
119 ceph_decode_need(p, end, info->dname_len, bad);
120 info->dname = *p;
121 *p += info->dname_len;
122 info->dlease = *p;
123 *p += sizeof(*info->dlease);
126 if (info->head->is_target) {
127 err = parse_reply_info_in(p, end, &info->targeti, features);
128 if (err < 0)
129 goto out_bad;
132 if (unlikely(*p != end))
133 goto bad;
134 return 0;
136 bad:
137 err = -EIO;
138 out_bad:
139 pr_err("problem parsing mds trace %d\n", err);
140 return err;
144 * parse readdir results
146 static int parse_reply_info_dir(void **p, void *end,
147 struct ceph_mds_reply_info_parsed *info,
148 u64 features)
150 u32 num, i = 0;
151 int err;
153 info->dir_dir = *p;
154 if (*p + sizeof(*info->dir_dir) > end)
155 goto bad;
156 *p += sizeof(*info->dir_dir) +
157 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
158 if (*p > end)
159 goto bad;
161 ceph_decode_need(p, end, sizeof(num) + 2, bad);
162 num = ceph_decode_32(p);
163 info->dir_end = ceph_decode_8(p);
164 info->dir_complete = ceph_decode_8(p);
165 if (num == 0)
166 goto done;
168 /* alloc large array */
169 info->dir_nr = num;
170 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
171 sizeof(*info->dir_dname) +
172 sizeof(*info->dir_dname_len) +
173 sizeof(*info->dir_dlease),
174 GFP_NOFS);
175 if (info->dir_in == NULL) {
176 err = -ENOMEM;
177 goto out_bad;
179 info->dir_dname = (void *)(info->dir_in + num);
180 info->dir_dname_len = (void *)(info->dir_dname + num);
181 info->dir_dlease = (void *)(info->dir_dname_len + num);
183 while (num) {
184 /* dentry */
185 ceph_decode_need(p, end, sizeof(u32)*2, bad);
186 info->dir_dname_len[i] = ceph_decode_32(p);
187 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
188 info->dir_dname[i] = *p;
189 *p += info->dir_dname_len[i];
190 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
191 info->dir_dname[i]);
192 info->dir_dlease[i] = *p;
193 *p += sizeof(struct ceph_mds_reply_lease);
195 /* inode */
196 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
197 if (err < 0)
198 goto out_bad;
199 i++;
200 num--;
203 done:
204 if (*p != end)
205 goto bad;
206 return 0;
208 bad:
209 err = -EIO;
210 out_bad:
211 pr_err("problem parsing dir contents %d\n", err);
212 return err;
216 * parse fcntl F_GETLK results
218 static int parse_reply_info_filelock(void **p, void *end,
219 struct ceph_mds_reply_info_parsed *info,
220 u64 features)
222 if (*p + sizeof(*info->filelock_reply) > end)
223 goto bad;
225 info->filelock_reply = *p;
226 *p += sizeof(*info->filelock_reply);
228 if (unlikely(*p != end))
229 goto bad;
230 return 0;
232 bad:
233 return -EIO;
237 * parse create results
239 static int parse_reply_info_create(void **p, void *end,
240 struct ceph_mds_reply_info_parsed *info,
241 u64 features)
243 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
244 if (*p == end) {
245 info->has_create_ino = false;
246 } else {
247 info->has_create_ino = true;
248 info->ino = ceph_decode_64(p);
252 if (unlikely(*p != end))
253 goto bad;
254 return 0;
256 bad:
257 return -EIO;
261 * parse extra results
263 static int parse_reply_info_extra(void **p, void *end,
264 struct ceph_mds_reply_info_parsed *info,
265 u64 features)
267 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
268 return parse_reply_info_filelock(p, end, info, features);
269 else if (info->head->op == CEPH_MDS_OP_READDIR ||
270 info->head->op == CEPH_MDS_OP_LSSNAP)
271 return parse_reply_info_dir(p, end, info, features);
272 else if (info->head->op == CEPH_MDS_OP_CREATE)
273 return parse_reply_info_create(p, end, info, features);
274 else
275 return -EIO;
279 * parse entire mds reply
281 static int parse_reply_info(struct ceph_msg *msg,
282 struct ceph_mds_reply_info_parsed *info,
283 u64 features)
285 void *p, *end;
286 u32 len;
287 int err;
289 info->head = msg->front.iov_base;
290 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
291 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
293 /* trace */
294 ceph_decode_32_safe(&p, end, len, bad);
295 if (len > 0) {
296 ceph_decode_need(&p, end, len, bad);
297 err = parse_reply_info_trace(&p, p+len, info, features);
298 if (err < 0)
299 goto out_bad;
302 /* extra */
303 ceph_decode_32_safe(&p, end, len, bad);
304 if (len > 0) {
305 ceph_decode_need(&p, end, len, bad);
306 err = parse_reply_info_extra(&p, p+len, info, features);
307 if (err < 0)
308 goto out_bad;
311 /* snap blob */
312 ceph_decode_32_safe(&p, end, len, bad);
313 info->snapblob_len = len;
314 info->snapblob = p;
315 p += len;
317 if (p != end)
318 goto bad;
319 return 0;
321 bad:
322 err = -EIO;
323 out_bad:
324 pr_err("mds parse_reply err %d\n", err);
325 return err;
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
330 kfree(info->dir_in);
335 * sessions
337 static const char *session_state_name(int s)
339 switch (s) {
340 case CEPH_MDS_SESSION_NEW: return "new";
341 case CEPH_MDS_SESSION_OPENING: return "opening";
342 case CEPH_MDS_SESSION_OPEN: return "open";
343 case CEPH_MDS_SESSION_HUNG: return "hung";
344 case CEPH_MDS_SESSION_CLOSING: return "closing";
345 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347 default: return "???";
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
353 if (atomic_inc_not_zero(&s->s_ref)) {
354 dout("mdsc get_session %p %d -> %d\n", s,
355 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356 return s;
357 } else {
358 dout("mdsc get_session %p 0 -- FAIL", s);
359 return NULL;
363 void ceph_put_mds_session(struct ceph_mds_session *s)
365 dout("mdsc put_session %p %d -> %d\n", s,
366 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367 if (atomic_dec_and_test(&s->s_ref)) {
368 if (s->s_auth.authorizer)
369 ceph_auth_destroy_authorizer(
370 s->s_mdsc->fsc->client->monc.auth,
371 s->s_auth.authorizer);
372 kfree(s);
377 * called under mdsc->mutex
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380 int mds)
382 struct ceph_mds_session *session;
384 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385 return NULL;
386 session = mdsc->sessions[mds];
387 dout("lookup_mds_session %p %d\n", session,
388 atomic_read(&session->s_ref));
389 get_session(session);
390 return session;
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
395 if (mds >= mdsc->max_sessions)
396 return false;
397 return mdsc->sessions[mds];
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401 struct ceph_mds_session *s)
403 if (s->s_mds >= mdsc->max_sessions ||
404 mdsc->sessions[s->s_mds] != s)
405 return -ENOENT;
406 return 0;
410 * create+register a new session for given mds.
411 * called under mdsc->mutex.
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414 int mds)
416 struct ceph_mds_session *s;
418 if (mds >= mdsc->mdsmap->m_max_mds)
419 return ERR_PTR(-EINVAL);
421 s = kzalloc(sizeof(*s), GFP_NOFS);
422 if (!s)
423 return ERR_PTR(-ENOMEM);
424 s->s_mdsc = mdsc;
425 s->s_mds = mds;
426 s->s_state = CEPH_MDS_SESSION_NEW;
427 s->s_ttl = 0;
428 s->s_seq = 0;
429 mutex_init(&s->s_mutex);
431 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
433 spin_lock_init(&s->s_gen_ttl_lock);
434 s->s_cap_gen = 0;
435 s->s_cap_ttl = jiffies - 1;
437 spin_lock_init(&s->s_cap_lock);
438 s->s_renew_requested = 0;
439 s->s_renew_seq = 0;
440 INIT_LIST_HEAD(&s->s_caps);
441 s->s_nr_caps = 0;
442 s->s_trim_caps = 0;
443 atomic_set(&s->s_ref, 1);
444 INIT_LIST_HEAD(&s->s_waiting);
445 INIT_LIST_HEAD(&s->s_unsafe);
446 s->s_num_cap_releases = 0;
447 s->s_cap_reconnect = 0;
448 s->s_cap_iterator = NULL;
449 INIT_LIST_HEAD(&s->s_cap_releases);
450 INIT_LIST_HEAD(&s->s_cap_releases_done);
451 INIT_LIST_HEAD(&s->s_cap_flushing);
452 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
454 dout("register_session mds%d\n", mds);
455 if (mds >= mdsc->max_sessions) {
456 int newmax = 1 << get_count_order(mds+1);
457 struct ceph_mds_session **sa;
459 dout("register_session realloc to %d\n", newmax);
460 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461 if (sa == NULL)
462 goto fail_realloc;
463 if (mdsc->sessions) {
464 memcpy(sa, mdsc->sessions,
465 mdsc->max_sessions * sizeof(void *));
466 kfree(mdsc->sessions);
468 mdsc->sessions = sa;
469 mdsc->max_sessions = newmax;
471 mdsc->sessions[mds] = s;
472 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
474 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
477 return s;
479 fail_realloc:
480 kfree(s);
481 return ERR_PTR(-ENOMEM);
485 * called under mdsc->mutex
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488 struct ceph_mds_session *s)
490 dout("__unregister_session mds%d %p\n", s->s_mds, s);
491 BUG_ON(mdsc->sessions[s->s_mds] != s);
492 mdsc->sessions[s->s_mds] = NULL;
493 ceph_con_close(&s->s_con);
494 ceph_put_mds_session(s);
498 * drop session refs in request.
500 * should be last request ref, or hold mdsc->mutex
502 static void put_request_session(struct ceph_mds_request *req)
504 if (req->r_session) {
505 ceph_put_mds_session(req->r_session);
506 req->r_session = NULL;
510 void ceph_mdsc_release_request(struct kref *kref)
512 struct ceph_mds_request *req = container_of(kref,
513 struct ceph_mds_request,
514 r_kref);
515 if (req->r_request)
516 ceph_msg_put(req->r_request);
517 if (req->r_reply) {
518 ceph_msg_put(req->r_reply);
519 destroy_reply_info(&req->r_reply_info);
521 if (req->r_inode) {
522 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
523 iput(req->r_inode);
525 if (req->r_locked_dir)
526 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
527 if (req->r_target_inode)
528 iput(req->r_target_inode);
529 if (req->r_dentry)
530 dput(req->r_dentry);
531 if (req->r_old_dentry) {
533 * track (and drop pins for) r_old_dentry_dir
534 * separately, since r_old_dentry's d_parent may have
535 * changed between the dir mutex being dropped and
536 * this request being freed.
538 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
539 CEPH_CAP_PIN);
540 dput(req->r_old_dentry);
541 iput(req->r_old_dentry_dir);
543 kfree(req->r_path1);
544 kfree(req->r_path2);
545 put_request_session(req);
546 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547 kfree(req);
551 * lookup session, bump ref if found.
553 * called under mdsc->mutex.
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556 u64 tid)
558 struct ceph_mds_request *req;
559 struct rb_node *n = mdsc->request_tree.rb_node;
561 while (n) {
562 req = rb_entry(n, struct ceph_mds_request, r_node);
563 if (tid < req->r_tid)
564 n = n->rb_left;
565 else if (tid > req->r_tid)
566 n = n->rb_right;
567 else {
568 ceph_mdsc_get_request(req);
569 return req;
572 return NULL;
575 static void __insert_request(struct ceph_mds_client *mdsc,
576 struct ceph_mds_request *new)
578 struct rb_node **p = &mdsc->request_tree.rb_node;
579 struct rb_node *parent = NULL;
580 struct ceph_mds_request *req = NULL;
582 while (*p) {
583 parent = *p;
584 req = rb_entry(parent, struct ceph_mds_request, r_node);
585 if (new->r_tid < req->r_tid)
586 p = &(*p)->rb_left;
587 else if (new->r_tid > req->r_tid)
588 p = &(*p)->rb_right;
589 else
590 BUG();
593 rb_link_node(&new->r_node, parent, p);
594 rb_insert_color(&new->r_node, &mdsc->request_tree);
598 * Register an in-flight request, and assign a tid. Link to directory
599 * are modifying (if any).
601 * Called under mdsc->mutex.
603 static void __register_request(struct ceph_mds_client *mdsc,
604 struct ceph_mds_request *req,
605 struct inode *dir)
607 req->r_tid = ++mdsc->last_tid;
608 if (req->r_num_caps)
609 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 req->r_num_caps);
611 dout("__register_request %p tid %lld\n", req, req->r_tid);
612 ceph_mdsc_get_request(req);
613 __insert_request(mdsc, req);
615 req->r_uid = current_fsuid();
616 req->r_gid = current_fsgid();
618 if (dir) {
619 struct ceph_inode_info *ci = ceph_inode(dir);
621 ihold(dir);
622 spin_lock(&ci->i_unsafe_lock);
623 req->r_unsafe_dir = dir;
624 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625 spin_unlock(&ci->i_unsafe_lock);
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630 struct ceph_mds_request *req)
632 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633 rb_erase(&req->r_node, &mdsc->request_tree);
634 RB_CLEAR_NODE(&req->r_node);
636 if (req->r_unsafe_dir) {
637 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
639 spin_lock(&ci->i_unsafe_lock);
640 list_del_init(&req->r_unsafe_dir_item);
641 spin_unlock(&ci->i_unsafe_lock);
643 iput(req->r_unsafe_dir);
644 req->r_unsafe_dir = NULL;
647 complete_all(&req->r_safe_completion);
649 ceph_mdsc_put_request(req);
653 * Choose mds to send request to next. If there is a hint set in the
654 * request (e.g., due to a prior forward hint from the mds), use that.
655 * Otherwise, consult frag tree and/or caps to identify the
656 * appropriate mds. If all else fails, choose randomly.
658 * Called under mdsc->mutex.
660 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
663 * we don't need to worry about protecting the d_parent access
664 * here because we never renaming inside the snapped namespace
665 * except to resplice to another snapdir, and either the old or new
666 * result is a valid result.
668 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
669 dentry = dentry->d_parent;
670 return dentry;
673 static int __choose_mds(struct ceph_mds_client *mdsc,
674 struct ceph_mds_request *req)
676 struct inode *inode;
677 struct ceph_inode_info *ci;
678 struct ceph_cap *cap;
679 int mode = req->r_direct_mode;
680 int mds = -1;
681 u32 hash = req->r_direct_hash;
682 bool is_hash = req->r_direct_is_hash;
685 * is there a specific mds we should try? ignore hint if we have
686 * no session and the mds is not up (active or recovering).
688 if (req->r_resend_mds >= 0 &&
689 (__have_session(mdsc, req->r_resend_mds) ||
690 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
691 dout("choose_mds using resend_mds mds%d\n",
692 req->r_resend_mds);
693 return req->r_resend_mds;
696 if (mode == USE_RANDOM_MDS)
697 goto random;
699 inode = NULL;
700 if (req->r_inode) {
701 inode = req->r_inode;
702 } else if (req->r_dentry) {
703 /* ignore race with rename; old or new d_parent is okay */
704 struct dentry *parent = req->r_dentry->d_parent;
705 struct inode *dir = parent->d_inode;
707 if (dir->i_sb != mdsc->fsc->sb) {
708 /* not this fs! */
709 inode = req->r_dentry->d_inode;
710 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
711 /* direct snapped/virtual snapdir requests
712 * based on parent dir inode */
713 struct dentry *dn = get_nonsnap_parent(parent);
714 inode = dn->d_inode;
715 dout("__choose_mds using nonsnap parent %p\n", inode);
716 } else {
717 /* dentry target */
718 inode = req->r_dentry->d_inode;
719 if (!inode || mode == USE_AUTH_MDS) {
720 /* dir + name */
721 inode = dir;
722 hash = ceph_dentry_hash(dir, req->r_dentry);
723 is_hash = true;
728 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
729 (int)hash, mode);
730 if (!inode)
731 goto random;
732 ci = ceph_inode(inode);
734 if (is_hash && S_ISDIR(inode->i_mode)) {
735 struct ceph_inode_frag frag;
736 int found;
738 ceph_choose_frag(ci, hash, &frag, &found);
739 if (found) {
740 if (mode == USE_ANY_MDS && frag.ndist > 0) {
741 u8 r;
743 /* choose a random replica */
744 get_random_bytes(&r, 1);
745 r %= frag.ndist;
746 mds = frag.dist[r];
747 dout("choose_mds %p %llx.%llx "
748 "frag %u mds%d (%d/%d)\n",
749 inode, ceph_vinop(inode),
750 frag.frag, mds,
751 (int)r, frag.ndist);
752 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
753 CEPH_MDS_STATE_ACTIVE)
754 return mds;
757 /* since this file/dir wasn't known to be
758 * replicated, then we want to look for the
759 * authoritative mds. */
760 mode = USE_AUTH_MDS;
761 if (frag.mds >= 0) {
762 /* choose auth mds */
763 mds = frag.mds;
764 dout("choose_mds %p %llx.%llx "
765 "frag %u mds%d (auth)\n",
766 inode, ceph_vinop(inode), frag.frag, mds);
767 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
768 CEPH_MDS_STATE_ACTIVE)
769 return mds;
774 spin_lock(&ci->i_ceph_lock);
775 cap = NULL;
776 if (mode == USE_AUTH_MDS)
777 cap = ci->i_auth_cap;
778 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
779 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
780 if (!cap) {
781 spin_unlock(&ci->i_ceph_lock);
782 goto random;
784 mds = cap->session->s_mds;
785 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
786 inode, ceph_vinop(inode), mds,
787 cap == ci->i_auth_cap ? "auth " : "", cap);
788 spin_unlock(&ci->i_ceph_lock);
789 return mds;
791 random:
792 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
793 dout("choose_mds chose random mds%d\n", mds);
794 return mds;
799 * session messages
801 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
803 struct ceph_msg *msg;
804 struct ceph_mds_session_head *h;
806 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
807 false);
808 if (!msg) {
809 pr_err("create_session_msg ENOMEM creating msg\n");
810 return NULL;
812 h = msg->front.iov_base;
813 h->op = cpu_to_le32(op);
814 h->seq = cpu_to_le64(seq);
815 return msg;
819 * send session open request.
821 * called under mdsc->mutex
823 static int __open_session(struct ceph_mds_client *mdsc,
824 struct ceph_mds_session *session)
826 struct ceph_msg *msg;
827 int mstate;
828 int mds = session->s_mds;
830 /* wait for mds to go active? */
831 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
832 dout("open_session to mds%d (%s)\n", mds,
833 ceph_mds_state_name(mstate));
834 session->s_state = CEPH_MDS_SESSION_OPENING;
835 session->s_renew_requested = jiffies;
837 /* send connect message */
838 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
839 if (!msg)
840 return -ENOMEM;
841 ceph_con_send(&session->s_con, msg);
842 return 0;
846 * open sessions for any export targets for the given mds
848 * called under mdsc->mutex
850 static struct ceph_mds_session *
851 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
853 struct ceph_mds_session *session;
855 session = __ceph_lookup_mds_session(mdsc, target);
856 if (!session) {
857 session = register_session(mdsc, target);
858 if (IS_ERR(session))
859 return session;
861 if (session->s_state == CEPH_MDS_SESSION_NEW ||
862 session->s_state == CEPH_MDS_SESSION_CLOSING)
863 __open_session(mdsc, session);
865 return session;
868 struct ceph_mds_session *
869 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
871 struct ceph_mds_session *session;
873 dout("open_export_target_session to mds%d\n", target);
875 mutex_lock(&mdsc->mutex);
876 session = __open_export_target_session(mdsc, target);
877 mutex_unlock(&mdsc->mutex);
879 return session;
882 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
883 struct ceph_mds_session *session)
885 struct ceph_mds_info *mi;
886 struct ceph_mds_session *ts;
887 int i, mds = session->s_mds;
889 if (mds >= mdsc->mdsmap->m_max_mds)
890 return;
892 mi = &mdsc->mdsmap->m_info[mds];
893 dout("open_export_target_sessions for mds%d (%d targets)\n",
894 session->s_mds, mi->num_export_targets);
896 for (i = 0; i < mi->num_export_targets; i++) {
897 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
898 if (!IS_ERR(ts))
899 ceph_put_mds_session(ts);
903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
904 struct ceph_mds_session *session)
906 mutex_lock(&mdsc->mutex);
907 __open_export_target_sessions(mdsc, session);
908 mutex_unlock(&mdsc->mutex);
912 * session caps
916 * Free preallocated cap messages assigned to this session
918 static void cleanup_cap_releases(struct ceph_mds_session *session)
920 struct ceph_msg *msg;
922 spin_lock(&session->s_cap_lock);
923 while (!list_empty(&session->s_cap_releases)) {
924 msg = list_first_entry(&session->s_cap_releases,
925 struct ceph_msg, list_head);
926 list_del_init(&msg->list_head);
927 ceph_msg_put(msg);
929 while (!list_empty(&session->s_cap_releases_done)) {
930 msg = list_first_entry(&session->s_cap_releases_done,
931 struct ceph_msg, list_head);
932 list_del_init(&msg->list_head);
933 ceph_msg_put(msg);
935 spin_unlock(&session->s_cap_lock);
939 * Helper to safely iterate over all caps associated with a session, with
940 * special care taken to handle a racing __ceph_remove_cap().
942 * Caller must hold session s_mutex.
944 static int iterate_session_caps(struct ceph_mds_session *session,
945 int (*cb)(struct inode *, struct ceph_cap *,
946 void *), void *arg)
948 struct list_head *p;
949 struct ceph_cap *cap;
950 struct inode *inode, *last_inode = NULL;
951 struct ceph_cap *old_cap = NULL;
952 int ret;
954 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
955 spin_lock(&session->s_cap_lock);
956 p = session->s_caps.next;
957 while (p != &session->s_caps) {
958 cap = list_entry(p, struct ceph_cap, session_caps);
959 inode = igrab(&cap->ci->vfs_inode);
960 if (!inode) {
961 p = p->next;
962 continue;
964 session->s_cap_iterator = cap;
965 spin_unlock(&session->s_cap_lock);
967 if (last_inode) {
968 iput(last_inode);
969 last_inode = NULL;
971 if (old_cap) {
972 ceph_put_cap(session->s_mdsc, old_cap);
973 old_cap = NULL;
976 ret = cb(inode, cap, arg);
977 last_inode = inode;
979 spin_lock(&session->s_cap_lock);
980 p = p->next;
981 if (cap->ci == NULL) {
982 dout("iterate_session_caps finishing cap %p removal\n",
983 cap);
984 BUG_ON(cap->session != session);
985 list_del_init(&cap->session_caps);
986 session->s_nr_caps--;
987 cap->session = NULL;
988 old_cap = cap; /* put_cap it w/o locks held */
990 if (ret < 0)
991 goto out;
993 ret = 0;
994 out:
995 session->s_cap_iterator = NULL;
996 spin_unlock(&session->s_cap_lock);
998 if (last_inode)
999 iput(last_inode);
1000 if (old_cap)
1001 ceph_put_cap(session->s_mdsc, old_cap);
1003 return ret;
1006 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1007 void *arg)
1009 struct ceph_inode_info *ci = ceph_inode(inode);
1010 int drop = 0;
1012 dout("removing cap %p, ci is %p, inode is %p\n",
1013 cap, ci, &ci->vfs_inode);
1014 spin_lock(&ci->i_ceph_lock);
1015 __ceph_remove_cap(cap, false);
1016 if (!__ceph_is_any_real_caps(ci)) {
1017 struct ceph_mds_client *mdsc =
1018 ceph_sb_to_client(inode->i_sb)->mdsc;
1020 spin_lock(&mdsc->cap_dirty_lock);
1021 if (!list_empty(&ci->i_dirty_item)) {
1022 pr_info(" dropping dirty %s state for %p %lld\n",
1023 ceph_cap_string(ci->i_dirty_caps),
1024 inode, ceph_ino(inode));
1025 ci->i_dirty_caps = 0;
1026 list_del_init(&ci->i_dirty_item);
1027 drop = 1;
1029 if (!list_empty(&ci->i_flushing_item)) {
1030 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1031 ceph_cap_string(ci->i_flushing_caps),
1032 inode, ceph_ino(inode));
1033 ci->i_flushing_caps = 0;
1034 list_del_init(&ci->i_flushing_item);
1035 mdsc->num_cap_flushing--;
1036 drop = 1;
1038 if (drop && ci->i_wrbuffer_ref) {
1039 pr_info(" dropping dirty data for %p %lld\n",
1040 inode, ceph_ino(inode));
1041 ci->i_wrbuffer_ref = 0;
1042 ci->i_wrbuffer_ref_head = 0;
1043 drop++;
1045 spin_unlock(&mdsc->cap_dirty_lock);
1047 spin_unlock(&ci->i_ceph_lock);
1048 while (drop--)
1049 iput(inode);
1050 return 0;
1054 * caller must hold session s_mutex
1056 static void remove_session_caps(struct ceph_mds_session *session)
1058 dout("remove_session_caps on %p\n", session);
1059 iterate_session_caps(session, remove_session_caps_cb, NULL);
1061 spin_lock(&session->s_cap_lock);
1062 if (session->s_nr_caps > 0) {
1063 struct super_block *sb = session->s_mdsc->fsc->sb;
1064 struct inode *inode;
1065 struct ceph_cap *cap, *prev = NULL;
1066 struct ceph_vino vino;
1068 * iterate_session_caps() skips inodes that are being
1069 * deleted, we need to wait until deletions are complete.
1070 * __wait_on_freeing_inode() is designed for the job,
1071 * but it is not exported, so use lookup inode function
1072 * to access it.
1074 while (!list_empty(&session->s_caps)) {
1075 cap = list_entry(session->s_caps.next,
1076 struct ceph_cap, session_caps);
1077 if (cap == prev)
1078 break;
1079 prev = cap;
1080 vino = cap->ci->i_vino;
1081 spin_unlock(&session->s_cap_lock);
1083 inode = ceph_find_inode(sb, vino);
1084 iput(inode);
1086 spin_lock(&session->s_cap_lock);
1089 spin_unlock(&session->s_cap_lock);
1091 BUG_ON(session->s_nr_caps > 0);
1092 BUG_ON(!list_empty(&session->s_cap_flushing));
1093 cleanup_cap_releases(session);
1097 * wake up any threads waiting on this session's caps. if the cap is
1098 * old (didn't get renewed on the client reconnect), remove it now.
1100 * caller must hold s_mutex.
1102 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1103 void *arg)
1105 struct ceph_inode_info *ci = ceph_inode(inode);
1107 wake_up_all(&ci->i_cap_wq);
1108 if (arg) {
1109 spin_lock(&ci->i_ceph_lock);
1110 ci->i_wanted_max_size = 0;
1111 ci->i_requested_max_size = 0;
1112 spin_unlock(&ci->i_ceph_lock);
1114 return 0;
1117 static void wake_up_session_caps(struct ceph_mds_session *session,
1118 int reconnect)
1120 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1121 iterate_session_caps(session, wake_up_session_cb,
1122 (void *)(unsigned long)reconnect);
1126 * Send periodic message to MDS renewing all currently held caps. The
1127 * ack will reset the expiration for all caps from this session.
1129 * caller holds s_mutex
1131 static int send_renew_caps(struct ceph_mds_client *mdsc,
1132 struct ceph_mds_session *session)
1134 struct ceph_msg *msg;
1135 int state;
1137 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1138 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1139 pr_info("mds%d caps stale\n", session->s_mds);
1140 session->s_renew_requested = jiffies;
1142 /* do not try to renew caps until a recovering mds has reconnected
1143 * with its clients. */
1144 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1145 if (state < CEPH_MDS_STATE_RECONNECT) {
1146 dout("send_renew_caps ignoring mds%d (%s)\n",
1147 session->s_mds, ceph_mds_state_name(state));
1148 return 0;
1151 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1152 ceph_mds_state_name(state));
1153 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1154 ++session->s_renew_seq);
1155 if (!msg)
1156 return -ENOMEM;
1157 ceph_con_send(&session->s_con, msg);
1158 return 0;
1161 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1162 struct ceph_mds_session *session, u64 seq)
1164 struct ceph_msg *msg;
1166 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1167 session->s_mds, session_state_name(session->s_state), seq);
1168 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1169 if (!msg)
1170 return -ENOMEM;
1171 ceph_con_send(&session->s_con, msg);
1172 return 0;
1177 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1179 * Called under session->s_mutex
1181 static void renewed_caps(struct ceph_mds_client *mdsc,
1182 struct ceph_mds_session *session, int is_renew)
1184 int was_stale;
1185 int wake = 0;
1187 spin_lock(&session->s_cap_lock);
1188 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1190 session->s_cap_ttl = session->s_renew_requested +
1191 mdsc->mdsmap->m_session_timeout*HZ;
1193 if (was_stale) {
1194 if (time_before(jiffies, session->s_cap_ttl)) {
1195 pr_info("mds%d caps renewed\n", session->s_mds);
1196 wake = 1;
1197 } else {
1198 pr_info("mds%d caps still stale\n", session->s_mds);
1201 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1202 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1203 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1204 spin_unlock(&session->s_cap_lock);
1206 if (wake)
1207 wake_up_session_caps(session, 0);
1211 * send a session close request
1213 static int request_close_session(struct ceph_mds_client *mdsc,
1214 struct ceph_mds_session *session)
1216 struct ceph_msg *msg;
1218 dout("request_close_session mds%d state %s seq %lld\n",
1219 session->s_mds, session_state_name(session->s_state),
1220 session->s_seq);
1221 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1222 if (!msg)
1223 return -ENOMEM;
1224 ceph_con_send(&session->s_con, msg);
1225 return 0;
1229 * Called with s_mutex held.
1231 static int __close_session(struct ceph_mds_client *mdsc,
1232 struct ceph_mds_session *session)
1234 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1235 return 0;
1236 session->s_state = CEPH_MDS_SESSION_CLOSING;
1237 return request_close_session(mdsc, session);
1241 * Trim old(er) caps.
1243 * Because we can't cache an inode without one or more caps, we do
1244 * this indirectly: if a cap is unused, we prune its aliases, at which
1245 * point the inode will hopefully get dropped to.
1247 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1248 * memory pressure from the MDS, though, so it needn't be perfect.
1250 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1252 struct ceph_mds_session *session = arg;
1253 struct ceph_inode_info *ci = ceph_inode(inode);
1254 int used, wanted, oissued, mine;
1256 if (session->s_trim_caps <= 0)
1257 return -1;
1259 spin_lock(&ci->i_ceph_lock);
1260 mine = cap->issued | cap->implemented;
1261 used = __ceph_caps_used(ci);
1262 wanted = __ceph_caps_file_wanted(ci);
1263 oissued = __ceph_caps_issued_other(ci, cap);
1265 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1266 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1267 ceph_cap_string(used), ceph_cap_string(wanted));
1268 if (cap == ci->i_auth_cap) {
1269 if (ci->i_dirty_caps | ci->i_flushing_caps)
1270 goto out;
1271 if ((used | wanted) & CEPH_CAP_ANY_WR)
1272 goto out;
1274 if ((used | wanted) & ~oissued & mine)
1275 goto out; /* we need these caps */
1277 session->s_trim_caps--;
1278 if (oissued) {
1279 /* we aren't the only cap.. just remove us */
1280 __ceph_remove_cap(cap, true);
1281 } else {
1282 /* try to drop referring dentries */
1283 spin_unlock(&ci->i_ceph_lock);
1284 d_prune_aliases(inode);
1285 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1286 inode, cap, atomic_read(&inode->i_count));
1287 return 0;
1290 out:
1291 spin_unlock(&ci->i_ceph_lock);
1292 return 0;
1296 * Trim session cap count down to some max number.
1298 static int trim_caps(struct ceph_mds_client *mdsc,
1299 struct ceph_mds_session *session,
1300 int max_caps)
1302 int trim_caps = session->s_nr_caps - max_caps;
1304 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1305 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1306 if (trim_caps > 0) {
1307 session->s_trim_caps = trim_caps;
1308 iterate_session_caps(session, trim_caps_cb, session);
1309 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1310 session->s_mds, session->s_nr_caps, max_caps,
1311 trim_caps - session->s_trim_caps);
1312 session->s_trim_caps = 0;
1314 return 0;
1318 * Allocate cap_release messages. If there is a partially full message
1319 * in the queue, try to allocate enough to cover it's remainder, so that
1320 * we can send it immediately.
1322 * Called under s_mutex.
1324 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1325 struct ceph_mds_session *session)
1327 struct ceph_msg *msg, *partial = NULL;
1328 struct ceph_mds_cap_release *head;
1329 int err = -ENOMEM;
1330 int extra = mdsc->fsc->mount_options->cap_release_safety;
1331 int num;
1333 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1334 extra);
1336 spin_lock(&session->s_cap_lock);
1338 if (!list_empty(&session->s_cap_releases)) {
1339 msg = list_first_entry(&session->s_cap_releases,
1340 struct ceph_msg,
1341 list_head);
1342 head = msg->front.iov_base;
1343 num = le32_to_cpu(head->num);
1344 if (num) {
1345 dout(" partial %p with (%d/%d)\n", msg, num,
1346 (int)CEPH_CAPS_PER_RELEASE);
1347 extra += CEPH_CAPS_PER_RELEASE - num;
1348 partial = msg;
1351 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1352 spin_unlock(&session->s_cap_lock);
1353 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1354 GFP_NOFS, false);
1355 if (!msg)
1356 goto out_unlocked;
1357 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1358 (int)msg->front.iov_len);
1359 head = msg->front.iov_base;
1360 head->num = cpu_to_le32(0);
1361 msg->front.iov_len = sizeof(*head);
1362 spin_lock(&session->s_cap_lock);
1363 list_add(&msg->list_head, &session->s_cap_releases);
1364 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1367 if (partial) {
1368 head = partial->front.iov_base;
1369 num = le32_to_cpu(head->num);
1370 dout(" queueing partial %p with %d/%d\n", partial, num,
1371 (int)CEPH_CAPS_PER_RELEASE);
1372 list_move_tail(&partial->list_head,
1373 &session->s_cap_releases_done);
1374 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1376 err = 0;
1377 spin_unlock(&session->s_cap_lock);
1378 out_unlocked:
1379 return err;
1383 * flush all dirty inode data to disk.
1385 * returns true if we've flushed through want_flush_seq
1387 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1389 int mds, ret = 1;
1391 dout("check_cap_flush want %lld\n", want_flush_seq);
1392 mutex_lock(&mdsc->mutex);
1393 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1394 struct ceph_mds_session *session = mdsc->sessions[mds];
1396 if (!session)
1397 continue;
1398 get_session(session);
1399 mutex_unlock(&mdsc->mutex);
1401 mutex_lock(&session->s_mutex);
1402 if (!list_empty(&session->s_cap_flushing)) {
1403 struct ceph_inode_info *ci =
1404 list_entry(session->s_cap_flushing.next,
1405 struct ceph_inode_info,
1406 i_flushing_item);
1407 struct inode *inode = &ci->vfs_inode;
1409 spin_lock(&ci->i_ceph_lock);
1410 if (ci->i_cap_flush_seq <= want_flush_seq) {
1411 dout("check_cap_flush still flushing %p "
1412 "seq %lld <= %lld to mds%d\n", inode,
1413 ci->i_cap_flush_seq, want_flush_seq,
1414 session->s_mds);
1415 ret = 0;
1417 spin_unlock(&ci->i_ceph_lock);
1419 mutex_unlock(&session->s_mutex);
1420 ceph_put_mds_session(session);
1422 if (!ret)
1423 return ret;
1424 mutex_lock(&mdsc->mutex);
1427 mutex_unlock(&mdsc->mutex);
1428 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1429 return ret;
1433 * called under s_mutex
1435 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1436 struct ceph_mds_session *session)
1438 struct ceph_msg *msg;
1440 dout("send_cap_releases mds%d\n", session->s_mds);
1441 spin_lock(&session->s_cap_lock);
1442 while (!list_empty(&session->s_cap_releases_done)) {
1443 msg = list_first_entry(&session->s_cap_releases_done,
1444 struct ceph_msg, list_head);
1445 list_del_init(&msg->list_head);
1446 spin_unlock(&session->s_cap_lock);
1447 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1448 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1449 ceph_con_send(&session->s_con, msg);
1450 spin_lock(&session->s_cap_lock);
1452 spin_unlock(&session->s_cap_lock);
1455 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1456 struct ceph_mds_session *session)
1458 struct ceph_msg *msg;
1459 struct ceph_mds_cap_release *head;
1460 unsigned num;
1462 dout("discard_cap_releases mds%d\n", session->s_mds);
1464 /* zero out the in-progress message */
1465 msg = list_first_entry(&session->s_cap_releases,
1466 struct ceph_msg, list_head);
1467 head = msg->front.iov_base;
1468 num = le32_to_cpu(head->num);
1469 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1470 head->num = cpu_to_le32(0);
1471 msg->front.iov_len = sizeof(*head);
1472 session->s_num_cap_releases += num;
1474 /* requeue completed messages */
1475 while (!list_empty(&session->s_cap_releases_done)) {
1476 msg = list_first_entry(&session->s_cap_releases_done,
1477 struct ceph_msg, list_head);
1478 list_del_init(&msg->list_head);
1480 head = msg->front.iov_base;
1481 num = le32_to_cpu(head->num);
1482 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1483 num);
1484 session->s_num_cap_releases += num;
1485 head->num = cpu_to_le32(0);
1486 msg->front.iov_len = sizeof(*head);
1487 list_add(&msg->list_head, &session->s_cap_releases);
1492 * requests
1496 * Create an mds request.
1498 struct ceph_mds_request *
1499 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1501 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1503 if (!req)
1504 return ERR_PTR(-ENOMEM);
1506 mutex_init(&req->r_fill_mutex);
1507 req->r_mdsc = mdsc;
1508 req->r_started = jiffies;
1509 req->r_resend_mds = -1;
1510 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1511 req->r_fmode = -1;
1512 kref_init(&req->r_kref);
1513 INIT_LIST_HEAD(&req->r_wait);
1514 init_completion(&req->r_completion);
1515 init_completion(&req->r_safe_completion);
1516 INIT_LIST_HEAD(&req->r_unsafe_item);
1518 req->r_op = op;
1519 req->r_direct_mode = mode;
1520 return req;
1524 * return oldest (lowest) request, tid in request tree, 0 if none.
1526 * called under mdsc->mutex.
1528 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1530 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1531 return NULL;
1532 return rb_entry(rb_first(&mdsc->request_tree),
1533 struct ceph_mds_request, r_node);
1536 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1538 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1540 if (req)
1541 return req->r_tid;
1542 return 0;
1546 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1547 * on build_path_from_dentry in fs/cifs/dir.c.
1549 * If @stop_on_nosnap, generate path relative to the first non-snapped
1550 * inode.
1552 * Encode hidden .snap dirs as a double /, i.e.
1553 * foo/.snap/bar -> foo//bar
1555 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1556 int stop_on_nosnap)
1558 struct dentry *temp;
1559 char *path;
1560 int len, pos;
1561 unsigned seq;
1563 if (dentry == NULL)
1564 return ERR_PTR(-EINVAL);
1566 retry:
1567 len = 0;
1568 seq = read_seqbegin(&rename_lock);
1569 rcu_read_lock();
1570 for (temp = dentry; !IS_ROOT(temp);) {
1571 struct inode *inode = temp->d_inode;
1572 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1573 len++; /* slash only */
1574 else if (stop_on_nosnap && inode &&
1575 ceph_snap(inode) == CEPH_NOSNAP)
1576 break;
1577 else
1578 len += 1 + temp->d_name.len;
1579 temp = temp->d_parent;
1581 rcu_read_unlock();
1582 if (len)
1583 len--; /* no leading '/' */
1585 path = kmalloc(len+1, GFP_NOFS);
1586 if (path == NULL)
1587 return ERR_PTR(-ENOMEM);
1588 pos = len;
1589 path[pos] = 0; /* trailing null */
1590 rcu_read_lock();
1591 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1592 struct inode *inode;
1594 spin_lock(&temp->d_lock);
1595 inode = temp->d_inode;
1596 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1597 dout("build_path path+%d: %p SNAPDIR\n",
1598 pos, temp);
1599 } else if (stop_on_nosnap && inode &&
1600 ceph_snap(inode) == CEPH_NOSNAP) {
1601 spin_unlock(&temp->d_lock);
1602 break;
1603 } else {
1604 pos -= temp->d_name.len;
1605 if (pos < 0) {
1606 spin_unlock(&temp->d_lock);
1607 break;
1609 strncpy(path + pos, temp->d_name.name,
1610 temp->d_name.len);
1612 spin_unlock(&temp->d_lock);
1613 if (pos)
1614 path[--pos] = '/';
1615 temp = temp->d_parent;
1617 rcu_read_unlock();
1618 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1619 pr_err("build_path did not end path lookup where "
1620 "expected, namelen is %d, pos is %d\n", len, pos);
1621 /* presumably this is only possible if racing with a
1622 rename of one of the parent directories (we can not
1623 lock the dentries above us to prevent this, but
1624 retrying should be harmless) */
1625 kfree(path);
1626 goto retry;
1629 *base = ceph_ino(temp->d_inode);
1630 *plen = len;
1631 dout("build_path on %p %d built %llx '%.*s'\n",
1632 dentry, d_count(dentry), *base, len, path);
1633 return path;
1636 static int build_dentry_path(struct dentry *dentry,
1637 const char **ppath, int *ppathlen, u64 *pino,
1638 int *pfreepath)
1640 char *path;
1642 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1643 *pino = ceph_ino(dentry->d_parent->d_inode);
1644 *ppath = dentry->d_name.name;
1645 *ppathlen = dentry->d_name.len;
1646 return 0;
1648 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1649 if (IS_ERR(path))
1650 return PTR_ERR(path);
1651 *ppath = path;
1652 *pfreepath = 1;
1653 return 0;
1656 static int build_inode_path(struct inode *inode,
1657 const char **ppath, int *ppathlen, u64 *pino,
1658 int *pfreepath)
1660 struct dentry *dentry;
1661 char *path;
1663 if (ceph_snap(inode) == CEPH_NOSNAP) {
1664 *pino = ceph_ino(inode);
1665 *ppathlen = 0;
1666 return 0;
1668 dentry = d_find_alias(inode);
1669 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1670 dput(dentry);
1671 if (IS_ERR(path))
1672 return PTR_ERR(path);
1673 *ppath = path;
1674 *pfreepath = 1;
1675 return 0;
1679 * request arguments may be specified via an inode *, a dentry *, or
1680 * an explicit ino+path.
1682 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1683 const char *rpath, u64 rino,
1684 const char **ppath, int *pathlen,
1685 u64 *ino, int *freepath)
1687 int r = 0;
1689 if (rinode) {
1690 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1691 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1692 ceph_snap(rinode));
1693 } else if (rdentry) {
1694 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1695 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1696 *ppath);
1697 } else if (rpath || rino) {
1698 *ino = rino;
1699 *ppath = rpath;
1700 *pathlen = rpath ? strlen(rpath) : 0;
1701 dout(" path %.*s\n", *pathlen, rpath);
1704 return r;
1708 * called under mdsc->mutex
1710 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1711 struct ceph_mds_request *req,
1712 int mds)
1714 struct ceph_msg *msg;
1715 struct ceph_mds_request_head *head;
1716 const char *path1 = NULL;
1717 const char *path2 = NULL;
1718 u64 ino1 = 0, ino2 = 0;
1719 int pathlen1 = 0, pathlen2 = 0;
1720 int freepath1 = 0, freepath2 = 0;
1721 int len;
1722 u16 releases;
1723 void *p, *end;
1724 int ret;
1726 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1727 req->r_path1, req->r_ino1.ino,
1728 &path1, &pathlen1, &ino1, &freepath1);
1729 if (ret < 0) {
1730 msg = ERR_PTR(ret);
1731 goto out;
1734 ret = set_request_path_attr(NULL, req->r_old_dentry,
1735 req->r_path2, req->r_ino2.ino,
1736 &path2, &pathlen2, &ino2, &freepath2);
1737 if (ret < 0) {
1738 msg = ERR_PTR(ret);
1739 goto out_free1;
1742 len = sizeof(*head) +
1743 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1745 /* calculate (max) length for cap releases */
1746 len += sizeof(struct ceph_mds_request_release) *
1747 (!!req->r_inode_drop + !!req->r_dentry_drop +
1748 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1749 if (req->r_dentry_drop)
1750 len += req->r_dentry->d_name.len;
1751 if (req->r_old_dentry_drop)
1752 len += req->r_old_dentry->d_name.len;
1754 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1755 if (!msg) {
1756 msg = ERR_PTR(-ENOMEM);
1757 goto out_free2;
1760 msg->hdr.tid = cpu_to_le64(req->r_tid);
1762 head = msg->front.iov_base;
1763 p = msg->front.iov_base + sizeof(*head);
1764 end = msg->front.iov_base + msg->front.iov_len;
1766 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1767 head->op = cpu_to_le32(req->r_op);
1768 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1769 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1770 head->args = req->r_args;
1772 ceph_encode_filepath(&p, end, ino1, path1);
1773 ceph_encode_filepath(&p, end, ino2, path2);
1775 /* make note of release offset, in case we need to replay */
1776 req->r_request_release_offset = p - msg->front.iov_base;
1778 /* cap releases */
1779 releases = 0;
1780 if (req->r_inode_drop)
1781 releases += ceph_encode_inode_release(&p,
1782 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1783 mds, req->r_inode_drop, req->r_inode_unless, 0);
1784 if (req->r_dentry_drop)
1785 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1786 mds, req->r_dentry_drop, req->r_dentry_unless);
1787 if (req->r_old_dentry_drop)
1788 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1789 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1790 if (req->r_old_inode_drop)
1791 releases += ceph_encode_inode_release(&p,
1792 req->r_old_dentry->d_inode,
1793 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1794 head->num_releases = cpu_to_le16(releases);
1796 BUG_ON(p > end);
1797 msg->front.iov_len = p - msg->front.iov_base;
1798 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1800 if (req->r_data_len) {
1801 /* outbound data set only by ceph_sync_setxattr() */
1802 BUG_ON(!req->r_pages);
1803 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1806 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1807 msg->hdr.data_off = cpu_to_le16(0);
1809 out_free2:
1810 if (freepath2)
1811 kfree((char *)path2);
1812 out_free1:
1813 if (freepath1)
1814 kfree((char *)path1);
1815 out:
1816 return msg;
1820 * called under mdsc->mutex if error, under no mutex if
1821 * success.
1823 static void complete_request(struct ceph_mds_client *mdsc,
1824 struct ceph_mds_request *req)
1826 if (req->r_callback)
1827 req->r_callback(mdsc, req);
1828 else
1829 complete_all(&req->r_completion);
1833 * called under mdsc->mutex
1835 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1836 struct ceph_mds_request *req,
1837 int mds)
1839 struct ceph_mds_request_head *rhead;
1840 struct ceph_msg *msg;
1841 int flags = 0;
1843 req->r_attempts++;
1844 if (req->r_inode) {
1845 struct ceph_cap *cap =
1846 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1848 if (cap)
1849 req->r_sent_on_mseq = cap->mseq;
1850 else
1851 req->r_sent_on_mseq = -1;
1853 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1854 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1856 if (req->r_got_unsafe) {
1858 * Replay. Do not regenerate message (and rebuild
1859 * paths, etc.); just use the original message.
1860 * Rebuilding paths will break for renames because
1861 * d_move mangles the src name.
1863 msg = req->r_request;
1864 rhead = msg->front.iov_base;
1866 flags = le32_to_cpu(rhead->flags);
1867 flags |= CEPH_MDS_FLAG_REPLAY;
1868 rhead->flags = cpu_to_le32(flags);
1870 if (req->r_target_inode)
1871 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1873 rhead->num_retry = req->r_attempts - 1;
1875 /* remove cap/dentry releases from message */
1876 rhead->num_releases = 0;
1877 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1878 msg->front.iov_len = req->r_request_release_offset;
1879 return 0;
1882 if (req->r_request) {
1883 ceph_msg_put(req->r_request);
1884 req->r_request = NULL;
1886 msg = create_request_message(mdsc, req, mds);
1887 if (IS_ERR(msg)) {
1888 req->r_err = PTR_ERR(msg);
1889 complete_request(mdsc, req);
1890 return PTR_ERR(msg);
1892 req->r_request = msg;
1894 rhead = msg->front.iov_base;
1895 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1896 if (req->r_got_unsafe)
1897 flags |= CEPH_MDS_FLAG_REPLAY;
1898 if (req->r_locked_dir)
1899 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1900 rhead->flags = cpu_to_le32(flags);
1901 rhead->num_fwd = req->r_num_fwd;
1902 rhead->num_retry = req->r_attempts - 1;
1903 rhead->ino = 0;
1905 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1906 return 0;
1910 * send request, or put it on the appropriate wait list.
1912 static int __do_request(struct ceph_mds_client *mdsc,
1913 struct ceph_mds_request *req)
1915 struct ceph_mds_session *session = NULL;
1916 int mds = -1;
1917 int err = -EAGAIN;
1919 if (req->r_err || req->r_got_result) {
1920 if (req->r_aborted)
1921 __unregister_request(mdsc, req);
1922 goto out;
1925 if (req->r_timeout &&
1926 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1927 dout("do_request timed out\n");
1928 err = -EIO;
1929 goto finish;
1932 put_request_session(req);
1934 mds = __choose_mds(mdsc, req);
1935 if (mds < 0 ||
1936 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1937 dout("do_request no mds or not active, waiting for map\n");
1938 list_add(&req->r_wait, &mdsc->waiting_for_map);
1939 goto out;
1942 /* get, open session */
1943 session = __ceph_lookup_mds_session(mdsc, mds);
1944 if (!session) {
1945 session = register_session(mdsc, mds);
1946 if (IS_ERR(session)) {
1947 err = PTR_ERR(session);
1948 goto finish;
1951 req->r_session = get_session(session);
1953 dout("do_request mds%d session %p state %s\n", mds, session,
1954 session_state_name(session->s_state));
1955 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1956 session->s_state != CEPH_MDS_SESSION_HUNG) {
1957 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1958 session->s_state == CEPH_MDS_SESSION_CLOSING)
1959 __open_session(mdsc, session);
1960 list_add(&req->r_wait, &session->s_waiting);
1961 goto out_session;
1964 /* send request */
1965 req->r_resend_mds = -1; /* forget any previous mds hint */
1967 if (req->r_request_started == 0) /* note request start time */
1968 req->r_request_started = jiffies;
1970 err = __prepare_send_request(mdsc, req, mds);
1971 if (!err) {
1972 ceph_msg_get(req->r_request);
1973 ceph_con_send(&session->s_con, req->r_request);
1976 out_session:
1977 ceph_put_mds_session(session);
1978 out:
1979 return err;
1981 finish:
1982 req->r_err = err;
1983 complete_request(mdsc, req);
1984 goto out;
1988 * called under mdsc->mutex
1990 static void __wake_requests(struct ceph_mds_client *mdsc,
1991 struct list_head *head)
1993 struct ceph_mds_request *req;
1994 LIST_HEAD(tmp_list);
1996 list_splice_init(head, &tmp_list);
1998 while (!list_empty(&tmp_list)) {
1999 req = list_entry(tmp_list.next,
2000 struct ceph_mds_request, r_wait);
2001 list_del_init(&req->r_wait);
2002 dout(" wake request %p tid %llu\n", req, req->r_tid);
2003 __do_request(mdsc, req);
2008 * Wake up threads with requests pending for @mds, so that they can
2009 * resubmit their requests to a possibly different mds.
2011 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2013 struct ceph_mds_request *req;
2014 struct rb_node *p;
2016 dout("kick_requests mds%d\n", mds);
2017 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
2018 req = rb_entry(p, struct ceph_mds_request, r_node);
2019 if (req->r_got_unsafe)
2020 continue;
2021 if (req->r_session &&
2022 req->r_session->s_mds == mds) {
2023 dout(" kicking tid %llu\n", req->r_tid);
2024 __do_request(mdsc, req);
2029 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2030 struct ceph_mds_request *req)
2032 dout("submit_request on %p\n", req);
2033 mutex_lock(&mdsc->mutex);
2034 __register_request(mdsc, req, NULL);
2035 __do_request(mdsc, req);
2036 mutex_unlock(&mdsc->mutex);
2040 * Synchrously perform an mds request. Take care of all of the
2041 * session setup, forwarding, retry details.
2043 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2044 struct inode *dir,
2045 struct ceph_mds_request *req)
2047 int err;
2049 dout("do_request on %p\n", req);
2051 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2052 if (req->r_inode)
2053 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2054 if (req->r_locked_dir)
2055 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2056 if (req->r_old_dentry)
2057 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2058 CEPH_CAP_PIN);
2060 /* issue */
2061 mutex_lock(&mdsc->mutex);
2062 __register_request(mdsc, req, dir);
2063 __do_request(mdsc, req);
2065 if (req->r_err) {
2066 err = req->r_err;
2067 __unregister_request(mdsc, req);
2068 dout("do_request early error %d\n", err);
2069 goto out;
2072 /* wait */
2073 mutex_unlock(&mdsc->mutex);
2074 dout("do_request waiting\n");
2075 if (req->r_timeout) {
2076 err = (long)wait_for_completion_killable_timeout(
2077 &req->r_completion, req->r_timeout);
2078 if (err == 0)
2079 err = -EIO;
2080 } else {
2081 err = wait_for_completion_killable(&req->r_completion);
2083 dout("do_request waited, got %d\n", err);
2084 mutex_lock(&mdsc->mutex);
2086 /* only abort if we didn't race with a real reply */
2087 if (req->r_got_result) {
2088 err = le32_to_cpu(req->r_reply_info.head->result);
2089 } else if (err < 0) {
2090 dout("aborted request %lld with %d\n", req->r_tid, err);
2093 * ensure we aren't running concurrently with
2094 * ceph_fill_trace or ceph_readdir_prepopulate, which
2095 * rely on locks (dir mutex) held by our caller.
2097 mutex_lock(&req->r_fill_mutex);
2098 req->r_err = err;
2099 req->r_aborted = true;
2100 mutex_unlock(&req->r_fill_mutex);
2102 if (req->r_locked_dir &&
2103 (req->r_op & CEPH_MDS_OP_WRITE))
2104 ceph_invalidate_dir_request(req);
2105 } else {
2106 err = req->r_err;
2109 out:
2110 mutex_unlock(&mdsc->mutex);
2111 dout("do_request %p done, result %d\n", req, err);
2112 return err;
2116 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2117 * namespace request.
2119 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2121 struct inode *inode = req->r_locked_dir;
2123 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2125 ceph_dir_clear_complete(inode);
2126 if (req->r_dentry)
2127 ceph_invalidate_dentry_lease(req->r_dentry);
2128 if (req->r_old_dentry)
2129 ceph_invalidate_dentry_lease(req->r_old_dentry);
2133 * Handle mds reply.
2135 * We take the session mutex and parse and process the reply immediately.
2136 * This preserves the logical ordering of replies, capabilities, etc., sent
2137 * by the MDS as they are applied to our local cache.
2139 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2141 struct ceph_mds_client *mdsc = session->s_mdsc;
2142 struct ceph_mds_request *req;
2143 struct ceph_mds_reply_head *head = msg->front.iov_base;
2144 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2145 u64 tid;
2146 int err, result;
2147 int mds = session->s_mds;
2149 if (msg->front.iov_len < sizeof(*head)) {
2150 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2151 ceph_msg_dump(msg);
2152 return;
2155 /* get request, session */
2156 tid = le64_to_cpu(msg->hdr.tid);
2157 mutex_lock(&mdsc->mutex);
2158 req = __lookup_request(mdsc, tid);
2159 if (!req) {
2160 dout("handle_reply on unknown tid %llu\n", tid);
2161 mutex_unlock(&mdsc->mutex);
2162 return;
2164 dout("handle_reply %p\n", req);
2166 /* correct session? */
2167 if (req->r_session != session) {
2168 pr_err("mdsc_handle_reply got %llu on session mds%d"
2169 " not mds%d\n", tid, session->s_mds,
2170 req->r_session ? req->r_session->s_mds : -1);
2171 mutex_unlock(&mdsc->mutex);
2172 goto out;
2175 /* dup? */
2176 if ((req->r_got_unsafe && !head->safe) ||
2177 (req->r_got_safe && head->safe)) {
2178 pr_warning("got a dup %s reply on %llu from mds%d\n",
2179 head->safe ? "safe" : "unsafe", tid, mds);
2180 mutex_unlock(&mdsc->mutex);
2181 goto out;
2183 if (req->r_got_safe && !head->safe) {
2184 pr_warning("got unsafe after safe on %llu from mds%d\n",
2185 tid, mds);
2186 mutex_unlock(&mdsc->mutex);
2187 goto out;
2190 result = le32_to_cpu(head->result);
2193 * Handle an ESTALE
2194 * if we're not talking to the authority, send to them
2195 * if the authority has changed while we weren't looking,
2196 * send to new authority
2197 * Otherwise we just have to return an ESTALE
2199 if (result == -ESTALE) {
2200 dout("got ESTALE on request %llu", req->r_tid);
2201 if (req->r_direct_mode != USE_AUTH_MDS) {
2202 dout("not using auth, setting for that now");
2203 req->r_direct_mode = USE_AUTH_MDS;
2204 __do_request(mdsc, req);
2205 mutex_unlock(&mdsc->mutex);
2206 goto out;
2207 } else {
2208 int mds = __choose_mds(mdsc, req);
2209 if (mds >= 0 && mds != req->r_session->s_mds) {
2210 dout("but auth changed, so resending");
2211 __do_request(mdsc, req);
2212 mutex_unlock(&mdsc->mutex);
2213 goto out;
2216 dout("have to return ESTALE on request %llu", req->r_tid);
2220 if (head->safe) {
2221 req->r_got_safe = true;
2222 __unregister_request(mdsc, req);
2224 if (req->r_got_unsafe) {
2226 * We already handled the unsafe response, now do the
2227 * cleanup. No need to examine the response; the MDS
2228 * doesn't include any result info in the safe
2229 * response. And even if it did, there is nothing
2230 * useful we could do with a revised return value.
2232 dout("got safe reply %llu, mds%d\n", tid, mds);
2233 list_del_init(&req->r_unsafe_item);
2235 /* last unsafe request during umount? */
2236 if (mdsc->stopping && !__get_oldest_req(mdsc))
2237 complete_all(&mdsc->safe_umount_waiters);
2238 mutex_unlock(&mdsc->mutex);
2239 goto out;
2241 } else {
2242 req->r_got_unsafe = true;
2243 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2246 dout("handle_reply tid %lld result %d\n", tid, result);
2247 rinfo = &req->r_reply_info;
2248 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2249 mutex_unlock(&mdsc->mutex);
2251 mutex_lock(&session->s_mutex);
2252 if (err < 0) {
2253 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2254 ceph_msg_dump(msg);
2255 goto out_err;
2258 /* snap trace */
2259 if (rinfo->snapblob_len) {
2260 down_write(&mdsc->snap_rwsem);
2261 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2262 rinfo->snapblob + rinfo->snapblob_len,
2263 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2264 downgrade_write(&mdsc->snap_rwsem);
2265 } else {
2266 down_read(&mdsc->snap_rwsem);
2269 /* insert trace into our cache */
2270 mutex_lock(&req->r_fill_mutex);
2271 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2272 if (err == 0) {
2273 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2274 req->r_op == CEPH_MDS_OP_LSSNAP))
2275 ceph_readdir_prepopulate(req, req->r_session);
2276 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2278 mutex_unlock(&req->r_fill_mutex);
2280 up_read(&mdsc->snap_rwsem);
2281 out_err:
2282 mutex_lock(&mdsc->mutex);
2283 if (!req->r_aborted) {
2284 if (err) {
2285 req->r_err = err;
2286 } else {
2287 req->r_reply = msg;
2288 ceph_msg_get(msg);
2289 req->r_got_result = true;
2291 } else {
2292 dout("reply arrived after request %lld was aborted\n", tid);
2294 mutex_unlock(&mdsc->mutex);
2296 ceph_add_cap_releases(mdsc, req->r_session);
2297 mutex_unlock(&session->s_mutex);
2299 /* kick calling process */
2300 complete_request(mdsc, req);
2301 out:
2302 ceph_mdsc_put_request(req);
2303 return;
2309 * handle mds notification that our request has been forwarded.
2311 static void handle_forward(struct ceph_mds_client *mdsc,
2312 struct ceph_mds_session *session,
2313 struct ceph_msg *msg)
2315 struct ceph_mds_request *req;
2316 u64 tid = le64_to_cpu(msg->hdr.tid);
2317 u32 next_mds;
2318 u32 fwd_seq;
2319 int err = -EINVAL;
2320 void *p = msg->front.iov_base;
2321 void *end = p + msg->front.iov_len;
2323 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2324 next_mds = ceph_decode_32(&p);
2325 fwd_seq = ceph_decode_32(&p);
2327 mutex_lock(&mdsc->mutex);
2328 req = __lookup_request(mdsc, tid);
2329 if (!req) {
2330 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2331 goto out; /* dup reply? */
2334 if (req->r_aborted) {
2335 dout("forward tid %llu aborted, unregistering\n", tid);
2336 __unregister_request(mdsc, req);
2337 } else if (fwd_seq <= req->r_num_fwd) {
2338 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2339 tid, next_mds, req->r_num_fwd, fwd_seq);
2340 } else {
2341 /* resend. forward race not possible; mds would drop */
2342 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2343 BUG_ON(req->r_err);
2344 BUG_ON(req->r_got_result);
2345 req->r_num_fwd = fwd_seq;
2346 req->r_resend_mds = next_mds;
2347 put_request_session(req);
2348 __do_request(mdsc, req);
2350 ceph_mdsc_put_request(req);
2351 out:
2352 mutex_unlock(&mdsc->mutex);
2353 return;
2355 bad:
2356 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2360 * handle a mds session control message
2362 static void handle_session(struct ceph_mds_session *session,
2363 struct ceph_msg *msg)
2365 struct ceph_mds_client *mdsc = session->s_mdsc;
2366 u32 op;
2367 u64 seq;
2368 int mds = session->s_mds;
2369 struct ceph_mds_session_head *h = msg->front.iov_base;
2370 int wake = 0;
2372 /* decode */
2373 if (msg->front.iov_len != sizeof(*h))
2374 goto bad;
2375 op = le32_to_cpu(h->op);
2376 seq = le64_to_cpu(h->seq);
2378 mutex_lock(&mdsc->mutex);
2379 if (op == CEPH_SESSION_CLOSE)
2380 __unregister_session(mdsc, session);
2381 /* FIXME: this ttl calculation is generous */
2382 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2383 mutex_unlock(&mdsc->mutex);
2385 mutex_lock(&session->s_mutex);
2387 dout("handle_session mds%d %s %p state %s seq %llu\n",
2388 mds, ceph_session_op_name(op), session,
2389 session_state_name(session->s_state), seq);
2391 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2392 session->s_state = CEPH_MDS_SESSION_OPEN;
2393 pr_info("mds%d came back\n", session->s_mds);
2396 switch (op) {
2397 case CEPH_SESSION_OPEN:
2398 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2399 pr_info("mds%d reconnect success\n", session->s_mds);
2400 session->s_state = CEPH_MDS_SESSION_OPEN;
2401 renewed_caps(mdsc, session, 0);
2402 wake = 1;
2403 if (mdsc->stopping)
2404 __close_session(mdsc, session);
2405 break;
2407 case CEPH_SESSION_RENEWCAPS:
2408 if (session->s_renew_seq == seq)
2409 renewed_caps(mdsc, session, 1);
2410 break;
2412 case CEPH_SESSION_CLOSE:
2413 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2414 pr_info("mds%d reconnect denied\n", session->s_mds);
2415 remove_session_caps(session);
2416 wake = 1; /* for good measure */
2417 wake_up_all(&mdsc->session_close_wq);
2418 kick_requests(mdsc, mds);
2419 break;
2421 case CEPH_SESSION_STALE:
2422 pr_info("mds%d caps went stale, renewing\n",
2423 session->s_mds);
2424 spin_lock(&session->s_gen_ttl_lock);
2425 session->s_cap_gen++;
2426 session->s_cap_ttl = jiffies - 1;
2427 spin_unlock(&session->s_gen_ttl_lock);
2428 send_renew_caps(mdsc, session);
2429 break;
2431 case CEPH_SESSION_RECALL_STATE:
2432 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2433 break;
2435 case CEPH_SESSION_FLUSHMSG:
2436 send_flushmsg_ack(mdsc, session, seq);
2437 break;
2439 default:
2440 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2441 WARN_ON(1);
2444 mutex_unlock(&session->s_mutex);
2445 if (wake) {
2446 mutex_lock(&mdsc->mutex);
2447 __wake_requests(mdsc, &session->s_waiting);
2448 mutex_unlock(&mdsc->mutex);
2450 return;
2452 bad:
2453 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2454 (int)msg->front.iov_len);
2455 ceph_msg_dump(msg);
2456 return;
2461 * called under session->mutex.
2463 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2464 struct ceph_mds_session *session)
2466 struct ceph_mds_request *req, *nreq;
2467 int err;
2469 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2471 mutex_lock(&mdsc->mutex);
2472 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2473 err = __prepare_send_request(mdsc, req, session->s_mds);
2474 if (!err) {
2475 ceph_msg_get(req->r_request);
2476 ceph_con_send(&session->s_con, req->r_request);
2479 mutex_unlock(&mdsc->mutex);
2483 * Encode information about a cap for a reconnect with the MDS.
2485 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2486 void *arg)
2488 union {
2489 struct ceph_mds_cap_reconnect v2;
2490 struct ceph_mds_cap_reconnect_v1 v1;
2491 } rec;
2492 size_t reclen;
2493 struct ceph_inode_info *ci;
2494 struct ceph_reconnect_state *recon_state = arg;
2495 struct ceph_pagelist *pagelist = recon_state->pagelist;
2496 char *path;
2497 int pathlen, err;
2498 u64 pathbase;
2499 struct dentry *dentry;
2501 ci = cap->ci;
2503 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2504 inode, ceph_vinop(inode), cap, cap->cap_id,
2505 ceph_cap_string(cap->issued));
2506 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2507 if (err)
2508 return err;
2510 dentry = d_find_alias(inode);
2511 if (dentry) {
2512 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2513 if (IS_ERR(path)) {
2514 err = PTR_ERR(path);
2515 goto out_dput;
2517 } else {
2518 path = NULL;
2519 pathlen = 0;
2521 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2522 if (err)
2523 goto out_free;
2525 spin_lock(&ci->i_ceph_lock);
2526 cap->seq = 0; /* reset cap seq */
2527 cap->issue_seq = 0; /* and issue_seq */
2528 cap->mseq = 0; /* and migrate_seq */
2529 cap->cap_gen = cap->session->s_cap_gen;
2531 if (recon_state->flock) {
2532 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2533 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2534 rec.v2.issued = cpu_to_le32(cap->issued);
2535 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2536 rec.v2.pathbase = cpu_to_le64(pathbase);
2537 rec.v2.flock_len = 0;
2538 reclen = sizeof(rec.v2);
2539 } else {
2540 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2541 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2542 rec.v1.issued = cpu_to_le32(cap->issued);
2543 rec.v1.size = cpu_to_le64(inode->i_size);
2544 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2545 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2546 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2547 rec.v1.pathbase = cpu_to_le64(pathbase);
2548 reclen = sizeof(rec.v1);
2550 spin_unlock(&ci->i_ceph_lock);
2552 if (recon_state->flock) {
2553 int num_fcntl_locks, num_flock_locks;
2554 struct ceph_filelock *flocks;
2556 encode_again:
2557 spin_lock(&inode->i_lock);
2558 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2559 spin_unlock(&inode->i_lock);
2560 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2561 sizeof(struct ceph_filelock), GFP_NOFS);
2562 if (!flocks) {
2563 err = -ENOMEM;
2564 goto out_free;
2566 spin_lock(&inode->i_lock);
2567 err = ceph_encode_locks_to_buffer(inode, flocks,
2568 num_fcntl_locks,
2569 num_flock_locks);
2570 spin_unlock(&inode->i_lock);
2571 if (err) {
2572 kfree(flocks);
2573 if (err == -ENOSPC)
2574 goto encode_again;
2575 goto out_free;
2578 * number of encoded locks is stable, so copy to pagelist
2580 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2581 (num_fcntl_locks+num_flock_locks) *
2582 sizeof(struct ceph_filelock));
2583 err = ceph_pagelist_append(pagelist, &rec, reclen);
2584 if (!err)
2585 err = ceph_locks_to_pagelist(flocks, pagelist,
2586 num_fcntl_locks,
2587 num_flock_locks);
2588 kfree(flocks);
2589 } else {
2590 err = ceph_pagelist_append(pagelist, &rec, reclen);
2593 recon_state->nr_caps++;
2594 out_free:
2595 kfree(path);
2596 out_dput:
2597 dput(dentry);
2598 return err;
2603 * If an MDS fails and recovers, clients need to reconnect in order to
2604 * reestablish shared state. This includes all caps issued through
2605 * this session _and_ the snap_realm hierarchy. Because it's not
2606 * clear which snap realms the mds cares about, we send everything we
2607 * know about.. that ensures we'll then get any new info the
2608 * recovering MDS might have.
2610 * This is a relatively heavyweight operation, but it's rare.
2612 * called with mdsc->mutex held.
2614 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2615 struct ceph_mds_session *session)
2617 struct ceph_msg *reply;
2618 struct rb_node *p;
2619 int mds = session->s_mds;
2620 int err = -ENOMEM;
2621 int s_nr_caps;
2622 struct ceph_pagelist *pagelist;
2623 struct ceph_reconnect_state recon_state;
2625 pr_info("mds%d reconnect start\n", mds);
2627 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2628 if (!pagelist)
2629 goto fail_nopagelist;
2630 ceph_pagelist_init(pagelist);
2632 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2633 if (!reply)
2634 goto fail_nomsg;
2636 mutex_lock(&session->s_mutex);
2637 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2638 session->s_seq = 0;
2640 ceph_con_close(&session->s_con);
2641 ceph_con_open(&session->s_con,
2642 CEPH_ENTITY_TYPE_MDS, mds,
2643 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2645 /* replay unsafe requests */
2646 replay_unsafe_requests(mdsc, session);
2648 down_read(&mdsc->snap_rwsem);
2650 dout("session %p state %s\n", session,
2651 session_state_name(session->s_state));
2653 spin_lock(&session->s_gen_ttl_lock);
2654 session->s_cap_gen++;
2655 spin_unlock(&session->s_gen_ttl_lock);
2657 spin_lock(&session->s_cap_lock);
2659 * notify __ceph_remove_cap() that we are composing cap reconnect.
2660 * If a cap get released before being added to the cap reconnect,
2661 * __ceph_remove_cap() should skip queuing cap release.
2663 session->s_cap_reconnect = 1;
2664 /* drop old cap expires; we're about to reestablish that state */
2665 discard_cap_releases(mdsc, session);
2666 spin_unlock(&session->s_cap_lock);
2668 /* traverse this session's caps */
2669 s_nr_caps = session->s_nr_caps;
2670 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2671 if (err)
2672 goto fail;
2674 recon_state.nr_caps = 0;
2675 recon_state.pagelist = pagelist;
2676 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2677 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2678 if (err < 0)
2679 goto fail;
2681 spin_lock(&session->s_cap_lock);
2682 session->s_cap_reconnect = 0;
2683 spin_unlock(&session->s_cap_lock);
2686 * snaprealms. we provide mds with the ino, seq (version), and
2687 * parent for all of our realms. If the mds has any newer info,
2688 * it will tell us.
2690 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2691 struct ceph_snap_realm *realm =
2692 rb_entry(p, struct ceph_snap_realm, node);
2693 struct ceph_mds_snaprealm_reconnect sr_rec;
2695 dout(" adding snap realm %llx seq %lld parent %llx\n",
2696 realm->ino, realm->seq, realm->parent_ino);
2697 sr_rec.ino = cpu_to_le64(realm->ino);
2698 sr_rec.seq = cpu_to_le64(realm->seq);
2699 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2700 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2701 if (err)
2702 goto fail;
2705 if (recon_state.flock)
2706 reply->hdr.version = cpu_to_le16(2);
2708 /* raced with cap release? */
2709 if (s_nr_caps != recon_state.nr_caps) {
2710 struct page *page = list_first_entry(&pagelist->head,
2711 struct page, lru);
2712 __le32 *addr = kmap_atomic(page);
2713 *addr = cpu_to_le32(recon_state.nr_caps);
2714 kunmap_atomic(addr);
2717 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2718 ceph_msg_data_add_pagelist(reply, pagelist);
2719 ceph_con_send(&session->s_con, reply);
2721 mutex_unlock(&session->s_mutex);
2723 mutex_lock(&mdsc->mutex);
2724 __wake_requests(mdsc, &session->s_waiting);
2725 mutex_unlock(&mdsc->mutex);
2727 up_read(&mdsc->snap_rwsem);
2728 return;
2730 fail:
2731 ceph_msg_put(reply);
2732 up_read(&mdsc->snap_rwsem);
2733 mutex_unlock(&session->s_mutex);
2734 fail_nomsg:
2735 ceph_pagelist_release(pagelist);
2736 kfree(pagelist);
2737 fail_nopagelist:
2738 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2739 return;
2744 * compare old and new mdsmaps, kicking requests
2745 * and closing out old connections as necessary
2747 * called under mdsc->mutex.
2749 static void check_new_map(struct ceph_mds_client *mdsc,
2750 struct ceph_mdsmap *newmap,
2751 struct ceph_mdsmap *oldmap)
2753 int i;
2754 int oldstate, newstate;
2755 struct ceph_mds_session *s;
2757 dout("check_new_map new %u old %u\n",
2758 newmap->m_epoch, oldmap->m_epoch);
2760 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2761 if (mdsc->sessions[i] == NULL)
2762 continue;
2763 s = mdsc->sessions[i];
2764 oldstate = ceph_mdsmap_get_state(oldmap, i);
2765 newstate = ceph_mdsmap_get_state(newmap, i);
2767 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2768 i, ceph_mds_state_name(oldstate),
2769 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2770 ceph_mds_state_name(newstate),
2771 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2772 session_state_name(s->s_state));
2774 if (i >= newmap->m_max_mds ||
2775 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2776 ceph_mdsmap_get_addr(newmap, i),
2777 sizeof(struct ceph_entity_addr))) {
2778 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2779 /* the session never opened, just close it
2780 * out now */
2781 __wake_requests(mdsc, &s->s_waiting);
2782 __unregister_session(mdsc, s);
2783 } else {
2784 /* just close it */
2785 mutex_unlock(&mdsc->mutex);
2786 mutex_lock(&s->s_mutex);
2787 mutex_lock(&mdsc->mutex);
2788 ceph_con_close(&s->s_con);
2789 mutex_unlock(&s->s_mutex);
2790 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2793 /* kick any requests waiting on the recovering mds */
2794 kick_requests(mdsc, i);
2795 } else if (oldstate == newstate) {
2796 continue; /* nothing new with this mds */
2800 * send reconnect?
2802 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2803 newstate >= CEPH_MDS_STATE_RECONNECT) {
2804 mutex_unlock(&mdsc->mutex);
2805 send_mds_reconnect(mdsc, s);
2806 mutex_lock(&mdsc->mutex);
2810 * kick request on any mds that has gone active.
2812 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2813 newstate >= CEPH_MDS_STATE_ACTIVE) {
2814 if (oldstate != CEPH_MDS_STATE_CREATING &&
2815 oldstate != CEPH_MDS_STATE_STARTING)
2816 pr_info("mds%d recovery completed\n", s->s_mds);
2817 kick_requests(mdsc, i);
2818 ceph_kick_flushing_caps(mdsc, s);
2819 wake_up_session_caps(s, 1);
2823 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2824 s = mdsc->sessions[i];
2825 if (!s)
2826 continue;
2827 if (!ceph_mdsmap_is_laggy(newmap, i))
2828 continue;
2829 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2830 s->s_state == CEPH_MDS_SESSION_HUNG ||
2831 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2832 dout(" connecting to export targets of laggy mds%d\n",
2834 __open_export_target_sessions(mdsc, s);
2842 * leases
2846 * caller must hold session s_mutex, dentry->d_lock
2848 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2850 struct ceph_dentry_info *di = ceph_dentry(dentry);
2852 ceph_put_mds_session(di->lease_session);
2853 di->lease_session = NULL;
2856 static void handle_lease(struct ceph_mds_client *mdsc,
2857 struct ceph_mds_session *session,
2858 struct ceph_msg *msg)
2860 struct super_block *sb = mdsc->fsc->sb;
2861 struct inode *inode;
2862 struct dentry *parent, *dentry;
2863 struct ceph_dentry_info *di;
2864 int mds = session->s_mds;
2865 struct ceph_mds_lease *h = msg->front.iov_base;
2866 u32 seq;
2867 struct ceph_vino vino;
2868 struct qstr dname;
2869 int release = 0;
2871 dout("handle_lease from mds%d\n", mds);
2873 /* decode */
2874 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2875 goto bad;
2876 vino.ino = le64_to_cpu(h->ino);
2877 vino.snap = CEPH_NOSNAP;
2878 seq = le32_to_cpu(h->seq);
2879 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2880 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2881 if (dname.len != get_unaligned_le32(h+1))
2882 goto bad;
2884 mutex_lock(&session->s_mutex);
2885 session->s_seq++;
2887 /* lookup inode */
2888 inode = ceph_find_inode(sb, vino);
2889 dout("handle_lease %s, ino %llx %p %.*s\n",
2890 ceph_lease_op_name(h->action), vino.ino, inode,
2891 dname.len, dname.name);
2892 if (inode == NULL) {
2893 dout("handle_lease no inode %llx\n", vino.ino);
2894 goto release;
2897 /* dentry */
2898 parent = d_find_alias(inode);
2899 if (!parent) {
2900 dout("no parent dentry on inode %p\n", inode);
2901 WARN_ON(1);
2902 goto release; /* hrm... */
2904 dname.hash = full_name_hash(dname.name, dname.len);
2905 dentry = d_lookup(parent, &dname);
2906 dput(parent);
2907 if (!dentry)
2908 goto release;
2910 spin_lock(&dentry->d_lock);
2911 di = ceph_dentry(dentry);
2912 switch (h->action) {
2913 case CEPH_MDS_LEASE_REVOKE:
2914 if (di->lease_session == session) {
2915 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2916 h->seq = cpu_to_le32(di->lease_seq);
2917 __ceph_mdsc_drop_dentry_lease(dentry);
2919 release = 1;
2920 break;
2922 case CEPH_MDS_LEASE_RENEW:
2923 if (di->lease_session == session &&
2924 di->lease_gen == session->s_cap_gen &&
2925 di->lease_renew_from &&
2926 di->lease_renew_after == 0) {
2927 unsigned long duration =
2928 le32_to_cpu(h->duration_ms) * HZ / 1000;
2930 di->lease_seq = seq;
2931 dentry->d_time = di->lease_renew_from + duration;
2932 di->lease_renew_after = di->lease_renew_from +
2933 (duration >> 1);
2934 di->lease_renew_from = 0;
2936 break;
2938 spin_unlock(&dentry->d_lock);
2939 dput(dentry);
2941 if (!release)
2942 goto out;
2944 release:
2945 /* let's just reuse the same message */
2946 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2947 ceph_msg_get(msg);
2948 ceph_con_send(&session->s_con, msg);
2950 out:
2951 iput(inode);
2952 mutex_unlock(&session->s_mutex);
2953 return;
2955 bad:
2956 pr_err("corrupt lease message\n");
2957 ceph_msg_dump(msg);
2960 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2961 struct inode *inode,
2962 struct dentry *dentry, char action,
2963 u32 seq)
2965 struct ceph_msg *msg;
2966 struct ceph_mds_lease *lease;
2967 int len = sizeof(*lease) + sizeof(u32);
2968 int dnamelen = 0;
2970 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2971 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2972 dnamelen = dentry->d_name.len;
2973 len += dnamelen;
2975 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2976 if (!msg)
2977 return;
2978 lease = msg->front.iov_base;
2979 lease->action = action;
2980 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2981 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2982 lease->seq = cpu_to_le32(seq);
2983 put_unaligned_le32(dnamelen, lease + 1);
2984 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2987 * if this is a preemptive lease RELEASE, no need to
2988 * flush request stream, since the actual request will
2989 * soon follow.
2991 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2993 ceph_con_send(&session->s_con, msg);
2997 * Preemptively release a lease we expect to invalidate anyway.
2998 * Pass @inode always, @dentry is optional.
3000 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3001 struct dentry *dentry)
3003 struct ceph_dentry_info *di;
3004 struct ceph_mds_session *session;
3005 u32 seq;
3007 BUG_ON(inode == NULL);
3008 BUG_ON(dentry == NULL);
3010 /* is dentry lease valid? */
3011 spin_lock(&dentry->d_lock);
3012 di = ceph_dentry(dentry);
3013 if (!di || !di->lease_session ||
3014 di->lease_session->s_mds < 0 ||
3015 di->lease_gen != di->lease_session->s_cap_gen ||
3016 !time_before(jiffies, dentry->d_time)) {
3017 dout("lease_release inode %p dentry %p -- "
3018 "no lease\n",
3019 inode, dentry);
3020 spin_unlock(&dentry->d_lock);
3021 return;
3024 /* we do have a lease on this dentry; note mds and seq */
3025 session = ceph_get_mds_session(di->lease_session);
3026 seq = di->lease_seq;
3027 __ceph_mdsc_drop_dentry_lease(dentry);
3028 spin_unlock(&dentry->d_lock);
3030 dout("lease_release inode %p dentry %p to mds%d\n",
3031 inode, dentry, session->s_mds);
3032 ceph_mdsc_lease_send_msg(session, inode, dentry,
3033 CEPH_MDS_LEASE_RELEASE, seq);
3034 ceph_put_mds_session(session);
3038 * drop all leases (and dentry refs) in preparation for umount
3040 static void drop_leases(struct ceph_mds_client *mdsc)
3042 int i;
3044 dout("drop_leases\n");
3045 mutex_lock(&mdsc->mutex);
3046 for (i = 0; i < mdsc->max_sessions; i++) {
3047 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3048 if (!s)
3049 continue;
3050 mutex_unlock(&mdsc->mutex);
3051 mutex_lock(&s->s_mutex);
3052 mutex_unlock(&s->s_mutex);
3053 ceph_put_mds_session(s);
3054 mutex_lock(&mdsc->mutex);
3056 mutex_unlock(&mdsc->mutex);
3062 * delayed work -- periodically trim expired leases, renew caps with mds
3064 static void schedule_delayed(struct ceph_mds_client *mdsc)
3066 int delay = 5;
3067 unsigned hz = round_jiffies_relative(HZ * delay);
3068 schedule_delayed_work(&mdsc->delayed_work, hz);
3071 static void delayed_work(struct work_struct *work)
3073 int i;
3074 struct ceph_mds_client *mdsc =
3075 container_of(work, struct ceph_mds_client, delayed_work.work);
3076 int renew_interval;
3077 int renew_caps;
3079 dout("mdsc delayed_work\n");
3080 ceph_check_delayed_caps(mdsc);
3082 mutex_lock(&mdsc->mutex);
3083 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3084 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3085 mdsc->last_renew_caps);
3086 if (renew_caps)
3087 mdsc->last_renew_caps = jiffies;
3089 for (i = 0; i < mdsc->max_sessions; i++) {
3090 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3091 if (s == NULL)
3092 continue;
3093 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3094 dout("resending session close request for mds%d\n",
3095 s->s_mds);
3096 request_close_session(mdsc, s);
3097 ceph_put_mds_session(s);
3098 continue;
3100 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3101 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3102 s->s_state = CEPH_MDS_SESSION_HUNG;
3103 pr_info("mds%d hung\n", s->s_mds);
3106 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3107 /* this mds is failed or recovering, just wait */
3108 ceph_put_mds_session(s);
3109 continue;
3111 mutex_unlock(&mdsc->mutex);
3113 mutex_lock(&s->s_mutex);
3114 if (renew_caps)
3115 send_renew_caps(mdsc, s);
3116 else
3117 ceph_con_keepalive(&s->s_con);
3118 ceph_add_cap_releases(mdsc, s);
3119 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3120 s->s_state == CEPH_MDS_SESSION_HUNG)
3121 ceph_send_cap_releases(mdsc, s);
3122 mutex_unlock(&s->s_mutex);
3123 ceph_put_mds_session(s);
3125 mutex_lock(&mdsc->mutex);
3127 mutex_unlock(&mdsc->mutex);
3129 schedule_delayed(mdsc);
3132 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3135 struct ceph_mds_client *mdsc;
3137 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3138 if (!mdsc)
3139 return -ENOMEM;
3140 mdsc->fsc = fsc;
3141 fsc->mdsc = mdsc;
3142 mutex_init(&mdsc->mutex);
3143 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3144 if (mdsc->mdsmap == NULL) {
3145 kfree(mdsc);
3146 return -ENOMEM;
3149 init_completion(&mdsc->safe_umount_waiters);
3150 init_waitqueue_head(&mdsc->session_close_wq);
3151 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3152 mdsc->sessions = NULL;
3153 mdsc->max_sessions = 0;
3154 mdsc->stopping = 0;
3155 init_rwsem(&mdsc->snap_rwsem);
3156 mdsc->snap_realms = RB_ROOT;
3157 INIT_LIST_HEAD(&mdsc->snap_empty);
3158 spin_lock_init(&mdsc->snap_empty_lock);
3159 mdsc->last_tid = 0;
3160 mdsc->request_tree = RB_ROOT;
3161 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3162 mdsc->last_renew_caps = jiffies;
3163 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3164 spin_lock_init(&mdsc->cap_delay_lock);
3165 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3166 spin_lock_init(&mdsc->snap_flush_lock);
3167 mdsc->cap_flush_seq = 0;
3168 INIT_LIST_HEAD(&mdsc->cap_dirty);
3169 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3170 mdsc->num_cap_flushing = 0;
3171 spin_lock_init(&mdsc->cap_dirty_lock);
3172 init_waitqueue_head(&mdsc->cap_flushing_wq);
3173 spin_lock_init(&mdsc->dentry_lru_lock);
3174 INIT_LIST_HEAD(&mdsc->dentry_lru);
3176 ceph_caps_init(mdsc);
3177 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3179 return 0;
3183 * Wait for safe replies on open mds requests. If we time out, drop
3184 * all requests from the tree to avoid dangling dentry refs.
3186 static void wait_requests(struct ceph_mds_client *mdsc)
3188 struct ceph_mds_request *req;
3189 struct ceph_fs_client *fsc = mdsc->fsc;
3191 mutex_lock(&mdsc->mutex);
3192 if (__get_oldest_req(mdsc)) {
3193 mutex_unlock(&mdsc->mutex);
3195 dout("wait_requests waiting for requests\n");
3196 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3197 fsc->client->options->mount_timeout * HZ);
3199 /* tear down remaining requests */
3200 mutex_lock(&mdsc->mutex);
3201 while ((req = __get_oldest_req(mdsc))) {
3202 dout("wait_requests timed out on tid %llu\n",
3203 req->r_tid);
3204 __unregister_request(mdsc, req);
3207 mutex_unlock(&mdsc->mutex);
3208 dout("wait_requests done\n");
3212 * called before mount is ro, and before dentries are torn down.
3213 * (hmm, does this still race with new lookups?)
3215 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3217 dout("pre_umount\n");
3218 mdsc->stopping = 1;
3220 drop_leases(mdsc);
3221 ceph_flush_dirty_caps(mdsc);
3222 wait_requests(mdsc);
3225 * wait for reply handlers to drop their request refs and
3226 * their inode/dcache refs
3228 ceph_msgr_flush();
3232 * wait for all write mds requests to flush.
3234 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3236 struct ceph_mds_request *req = NULL, *nextreq;
3237 struct rb_node *n;
3239 mutex_lock(&mdsc->mutex);
3240 dout("wait_unsafe_requests want %lld\n", want_tid);
3241 restart:
3242 req = __get_oldest_req(mdsc);
3243 while (req && req->r_tid <= want_tid) {
3244 /* find next request */
3245 n = rb_next(&req->r_node);
3246 if (n)
3247 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3248 else
3249 nextreq = NULL;
3250 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3251 /* write op */
3252 ceph_mdsc_get_request(req);
3253 if (nextreq)
3254 ceph_mdsc_get_request(nextreq);
3255 mutex_unlock(&mdsc->mutex);
3256 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3257 req->r_tid, want_tid);
3258 wait_for_completion(&req->r_safe_completion);
3259 mutex_lock(&mdsc->mutex);
3260 ceph_mdsc_put_request(req);
3261 if (!nextreq)
3262 break; /* next dne before, so we're done! */
3263 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3264 /* next request was removed from tree */
3265 ceph_mdsc_put_request(nextreq);
3266 goto restart;
3268 ceph_mdsc_put_request(nextreq); /* won't go away */
3270 req = nextreq;
3272 mutex_unlock(&mdsc->mutex);
3273 dout("wait_unsafe_requests done\n");
3276 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3278 u64 want_tid, want_flush;
3280 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3281 return;
3283 dout("sync\n");
3284 mutex_lock(&mdsc->mutex);
3285 want_tid = mdsc->last_tid;
3286 want_flush = mdsc->cap_flush_seq;
3287 mutex_unlock(&mdsc->mutex);
3288 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3290 ceph_flush_dirty_caps(mdsc);
3292 wait_unsafe_requests(mdsc, want_tid);
3293 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3297 * true if all sessions are closed, or we force unmount
3299 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3301 int i, n = 0;
3303 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3304 return true;
3306 mutex_lock(&mdsc->mutex);
3307 for (i = 0; i < mdsc->max_sessions; i++)
3308 if (mdsc->sessions[i])
3309 n++;
3310 mutex_unlock(&mdsc->mutex);
3311 return n == 0;
3315 * called after sb is ro.
3317 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3319 struct ceph_mds_session *session;
3320 int i;
3321 struct ceph_fs_client *fsc = mdsc->fsc;
3322 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3324 dout("close_sessions\n");
3326 /* close sessions */
3327 mutex_lock(&mdsc->mutex);
3328 for (i = 0; i < mdsc->max_sessions; i++) {
3329 session = __ceph_lookup_mds_session(mdsc, i);
3330 if (!session)
3331 continue;
3332 mutex_unlock(&mdsc->mutex);
3333 mutex_lock(&session->s_mutex);
3334 __close_session(mdsc, session);
3335 mutex_unlock(&session->s_mutex);
3336 ceph_put_mds_session(session);
3337 mutex_lock(&mdsc->mutex);
3339 mutex_unlock(&mdsc->mutex);
3341 dout("waiting for sessions to close\n");
3342 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3343 timeout);
3345 /* tear down remaining sessions */
3346 mutex_lock(&mdsc->mutex);
3347 for (i = 0; i < mdsc->max_sessions; i++) {
3348 if (mdsc->sessions[i]) {
3349 session = get_session(mdsc->sessions[i]);
3350 __unregister_session(mdsc, session);
3351 mutex_unlock(&mdsc->mutex);
3352 mutex_lock(&session->s_mutex);
3353 remove_session_caps(session);
3354 mutex_unlock(&session->s_mutex);
3355 ceph_put_mds_session(session);
3356 mutex_lock(&mdsc->mutex);
3359 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3360 mutex_unlock(&mdsc->mutex);
3362 ceph_cleanup_empty_realms(mdsc);
3364 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3366 dout("stopped\n");
3369 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3371 dout("stop\n");
3372 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3373 if (mdsc->mdsmap)
3374 ceph_mdsmap_destroy(mdsc->mdsmap);
3375 kfree(mdsc->sessions);
3376 ceph_caps_finalize(mdsc);
3379 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3381 struct ceph_mds_client *mdsc = fsc->mdsc;
3383 dout("mdsc_destroy %p\n", mdsc);
3384 ceph_mdsc_stop(mdsc);
3386 /* flush out any connection work with references to us */
3387 ceph_msgr_flush();
3389 fsc->mdsc = NULL;
3390 kfree(mdsc);
3391 dout("mdsc_destroy %p done\n", mdsc);
3396 * handle mds map update.
3398 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3400 u32 epoch;
3401 u32 maplen;
3402 void *p = msg->front.iov_base;
3403 void *end = p + msg->front.iov_len;
3404 struct ceph_mdsmap *newmap, *oldmap;
3405 struct ceph_fsid fsid;
3406 int err = -EINVAL;
3408 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3409 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3410 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3411 return;
3412 epoch = ceph_decode_32(&p);
3413 maplen = ceph_decode_32(&p);
3414 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3416 /* do we need it? */
3417 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3418 mutex_lock(&mdsc->mutex);
3419 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3420 dout("handle_map epoch %u <= our %u\n",
3421 epoch, mdsc->mdsmap->m_epoch);
3422 mutex_unlock(&mdsc->mutex);
3423 return;
3426 newmap = ceph_mdsmap_decode(&p, end);
3427 if (IS_ERR(newmap)) {
3428 err = PTR_ERR(newmap);
3429 goto bad_unlock;
3432 /* swap into place */
3433 if (mdsc->mdsmap) {
3434 oldmap = mdsc->mdsmap;
3435 mdsc->mdsmap = newmap;
3436 check_new_map(mdsc, newmap, oldmap);
3437 ceph_mdsmap_destroy(oldmap);
3438 } else {
3439 mdsc->mdsmap = newmap; /* first mds map */
3441 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3443 __wake_requests(mdsc, &mdsc->waiting_for_map);
3445 mutex_unlock(&mdsc->mutex);
3446 schedule_delayed(mdsc);
3447 return;
3449 bad_unlock:
3450 mutex_unlock(&mdsc->mutex);
3451 bad:
3452 pr_err("error decoding mdsmap %d\n", err);
3453 return;
3456 static struct ceph_connection *con_get(struct ceph_connection *con)
3458 struct ceph_mds_session *s = con->private;
3460 if (get_session(s)) {
3461 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3462 return con;
3464 dout("mdsc con_get %p FAIL\n", s);
3465 return NULL;
3468 static void con_put(struct ceph_connection *con)
3470 struct ceph_mds_session *s = con->private;
3472 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3473 ceph_put_mds_session(s);
3477 * if the client is unresponsive for long enough, the mds will kill
3478 * the session entirely.
3480 static void peer_reset(struct ceph_connection *con)
3482 struct ceph_mds_session *s = con->private;
3483 struct ceph_mds_client *mdsc = s->s_mdsc;
3485 pr_warning("mds%d closed our session\n", s->s_mds);
3486 send_mds_reconnect(mdsc, s);
3489 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3491 struct ceph_mds_session *s = con->private;
3492 struct ceph_mds_client *mdsc = s->s_mdsc;
3493 int type = le16_to_cpu(msg->hdr.type);
3495 mutex_lock(&mdsc->mutex);
3496 if (__verify_registered_session(mdsc, s) < 0) {
3497 mutex_unlock(&mdsc->mutex);
3498 goto out;
3500 mutex_unlock(&mdsc->mutex);
3502 switch (type) {
3503 case CEPH_MSG_MDS_MAP:
3504 ceph_mdsc_handle_map(mdsc, msg);
3505 break;
3506 case CEPH_MSG_CLIENT_SESSION:
3507 handle_session(s, msg);
3508 break;
3509 case CEPH_MSG_CLIENT_REPLY:
3510 handle_reply(s, msg);
3511 break;
3512 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3513 handle_forward(mdsc, s, msg);
3514 break;
3515 case CEPH_MSG_CLIENT_CAPS:
3516 ceph_handle_caps(s, msg);
3517 break;
3518 case CEPH_MSG_CLIENT_SNAP:
3519 ceph_handle_snap(mdsc, s, msg);
3520 break;
3521 case CEPH_MSG_CLIENT_LEASE:
3522 handle_lease(mdsc, s, msg);
3523 break;
3525 default:
3526 pr_err("received unknown message type %d %s\n", type,
3527 ceph_msg_type_name(type));
3529 out:
3530 ceph_msg_put(msg);
3534 * authentication
3538 * Note: returned pointer is the address of a structure that's
3539 * managed separately. Caller must *not* attempt to free it.
3541 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3542 int *proto, int force_new)
3544 struct ceph_mds_session *s = con->private;
3545 struct ceph_mds_client *mdsc = s->s_mdsc;
3546 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3547 struct ceph_auth_handshake *auth = &s->s_auth;
3549 if (force_new && auth->authorizer) {
3550 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3551 auth->authorizer = NULL;
3553 if (!auth->authorizer) {
3554 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3555 auth);
3556 if (ret)
3557 return ERR_PTR(ret);
3558 } else {
3559 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3560 auth);
3561 if (ret)
3562 return ERR_PTR(ret);
3564 *proto = ac->protocol;
3566 return auth;
3570 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3572 struct ceph_mds_session *s = con->private;
3573 struct ceph_mds_client *mdsc = s->s_mdsc;
3574 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3576 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3579 static int invalidate_authorizer(struct ceph_connection *con)
3581 struct ceph_mds_session *s = con->private;
3582 struct ceph_mds_client *mdsc = s->s_mdsc;
3583 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3585 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3587 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3590 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3591 struct ceph_msg_header *hdr, int *skip)
3593 struct ceph_msg *msg;
3594 int type = (int) le16_to_cpu(hdr->type);
3595 int front_len = (int) le32_to_cpu(hdr->front_len);
3597 if (con->in_msg)
3598 return con->in_msg;
3600 *skip = 0;
3601 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3602 if (!msg) {
3603 pr_err("unable to allocate msg type %d len %d\n",
3604 type, front_len);
3605 return NULL;
3608 return msg;
3611 static const struct ceph_connection_operations mds_con_ops = {
3612 .get = con_get,
3613 .put = con_put,
3614 .dispatch = dispatch,
3615 .get_authorizer = get_authorizer,
3616 .verify_authorizer_reply = verify_authorizer_reply,
3617 .invalidate_authorizer = invalidate_authorizer,
3618 .peer_reset = peer_reset,
3619 .alloc_msg = mds_alloc_msg,
3622 /* eof */