4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 hash
= hash
+ (hash
>> d_hash_shift
);
110 return dentry_hashtable
+ (hash
& d_hash_mask
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(long, nr_dentry
);
119 static DEFINE_PER_CPU(long, nr_dentry_unused
);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
135 static long get_nr_dentry(void)
139 for_each_possible_cpu(i
)
140 sum
+= per_cpu(nr_dentry
, i
);
141 return sum
< 0 ? 0 : sum
;
144 static long get_nr_dentry_unused(void)
148 for_each_possible_cpu(i
)
149 sum
+= per_cpu(nr_dentry_unused
, i
);
150 return sum
< 0 ? 0 : sum
;
153 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
154 size_t *lenp
, loff_t
*ppos
)
156 dentry_stat
.nr_dentry
= get_nr_dentry();
157 dentry_stat
.nr_unused
= get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 #include <asm/word-at-a-time.h>
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
178 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
180 unsigned long a
,b
,mask
;
183 a
= *(unsigned long *)cs
;
184 b
= load_unaligned_zeropad(ct
);
185 if (tcount
< sizeof(unsigned long))
187 if (unlikely(a
!= b
))
189 cs
+= sizeof(unsigned long);
190 ct
+= sizeof(unsigned long);
191 tcount
-= sizeof(unsigned long);
195 mask
= bytemask_from_count(tcount
);
196 return unlikely(!!((a
^ b
) & mask
));
201 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
215 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
217 const unsigned char *cs
;
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
234 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs
, ct
, tcount
);
239 static void __d_free(struct rcu_head
*head
)
241 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
243 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
244 if (dname_external(dentry
))
245 kfree(dentry
->d_name
.name
);
246 kmem_cache_free(dentry_cache
, dentry
);
252 static void d_free(struct dentry
*dentry
)
254 BUG_ON((int)dentry
->d_lockref
.count
> 0);
255 this_cpu_dec(nr_dentry
);
256 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
257 dentry
->d_op
->d_release(dentry
);
259 /* if dentry was never visible to RCU, immediate free is OK */
260 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
261 __d_free(&dentry
->d_u
.d_rcu
);
263 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
267 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
268 * @dentry: the target dentry
269 * After this call, in-progress rcu-walk path lookup will fail. This
270 * should be called after unhashing, and after changing d_inode (if
271 * the dentry has not already been unhashed).
273 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
275 assert_spin_locked(&dentry
->d_lock
);
276 /* Go through a barrier */
277 write_seqcount_barrier(&dentry
->d_seq
);
281 * Release the dentry's inode, using the filesystem
282 * d_iput() operation if defined. Dentry has no refcount
285 static void dentry_iput(struct dentry
* dentry
)
286 __releases(dentry
->d_lock
)
287 __releases(dentry
->d_inode
->i_lock
)
289 struct inode
*inode
= dentry
->d_inode
;
291 dentry
->d_inode
= NULL
;
292 hlist_del_init(&dentry
->d_alias
);
293 spin_unlock(&dentry
->d_lock
);
294 spin_unlock(&inode
->i_lock
);
296 fsnotify_inoderemove(inode
);
297 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
298 dentry
->d_op
->d_iput(dentry
, inode
);
302 spin_unlock(&dentry
->d_lock
);
307 * Release the dentry's inode, using the filesystem
308 * d_iput() operation if defined. dentry remains in-use.
310 static void dentry_unlink_inode(struct dentry
* dentry
)
311 __releases(dentry
->d_lock
)
312 __releases(dentry
->d_inode
->i_lock
)
314 struct inode
*inode
= dentry
->d_inode
;
315 __d_clear_type(dentry
);
316 dentry
->d_inode
= NULL
;
317 hlist_del_init(&dentry
->d_alias
);
318 dentry_rcuwalk_barrier(dentry
);
319 spin_unlock(&dentry
->d_lock
);
320 spin_unlock(&inode
->i_lock
);
322 fsnotify_inoderemove(inode
);
323 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
324 dentry
->d_op
->d_iput(dentry
, inode
);
330 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
331 * is in use - which includes both the "real" per-superblock
332 * LRU list _and_ the DCACHE_SHRINK_LIST use.
334 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
335 * on the shrink list (ie not on the superblock LRU list).
337 * The per-cpu "nr_dentry_unused" counters are updated with
338 * the DCACHE_LRU_LIST bit.
340 * These helper functions make sure we always follow the
341 * rules. d_lock must be held by the caller.
343 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
344 static void d_lru_add(struct dentry
*dentry
)
346 D_FLAG_VERIFY(dentry
, 0);
347 dentry
->d_flags
|= DCACHE_LRU_LIST
;
348 this_cpu_inc(nr_dentry_unused
);
349 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
352 static void d_lru_del(struct dentry
*dentry
)
354 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
355 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
356 this_cpu_dec(nr_dentry_unused
);
357 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
360 static void d_shrink_del(struct dentry
*dentry
)
362 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
363 list_del_init(&dentry
->d_lru
);
364 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
365 this_cpu_dec(nr_dentry_unused
);
368 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
370 D_FLAG_VERIFY(dentry
, 0);
371 list_add(&dentry
->d_lru
, list
);
372 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
373 this_cpu_inc(nr_dentry_unused
);
377 * These can only be called under the global LRU lock, ie during the
378 * callback for freeing the LRU list. "isolate" removes it from the
379 * LRU lists entirely, while shrink_move moves it to the indicated
382 static void d_lru_isolate(struct dentry
*dentry
)
384 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
385 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
386 this_cpu_dec(nr_dentry_unused
);
387 list_del_init(&dentry
->d_lru
);
390 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
392 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
393 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
394 list_move_tail(&dentry
->d_lru
, list
);
398 * dentry_lru_(add|del)_list) must be called with d_lock held.
400 static void dentry_lru_add(struct dentry
*dentry
)
402 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
407 * Remove a dentry with references from the LRU.
409 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
410 * lose our last reference through the parent walk. In this case, we need to
411 * remove ourselves from the shrink list, not the LRU.
413 static void dentry_lru_del(struct dentry
*dentry
)
415 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
416 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
)
417 return d_shrink_del(dentry
);
423 * d_kill - kill dentry and return parent
424 * @dentry: dentry to kill
425 * @parent: parent dentry
427 * The dentry must already be unhashed and removed from the LRU.
429 * If this is the root of the dentry tree, return NULL.
431 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
434 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
435 __releases(dentry
->d_lock
)
436 __releases(parent
->d_lock
)
437 __releases(dentry
->d_inode
->i_lock
)
439 list_del(&dentry
->d_u
.d_child
);
441 * Inform d_walk() that we are no longer attached to the
444 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
446 spin_unlock(&parent
->d_lock
);
449 * dentry_iput drops the locks, at which point nobody (except
450 * transient RCU lookups) can reach this dentry.
457 * d_drop - drop a dentry
458 * @dentry: dentry to drop
460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461 * be found through a VFS lookup any more. Note that this is different from
462 * deleting the dentry - d_delete will try to mark the dentry negative if
463 * possible, giving a successful _negative_ lookup, while d_drop will
464 * just make the cache lookup fail.
466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467 * reason (NFS timeouts or autofs deletes).
469 * __d_drop requires dentry->d_lock.
471 void __d_drop(struct dentry
*dentry
)
473 if (!d_unhashed(dentry
)) {
474 struct hlist_bl_head
*b
;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_alias, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry
)))
481 b
= &dentry
->d_sb
->s_anon
;
483 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
486 __hlist_bl_del(&dentry
->d_hash
);
487 dentry
->d_hash
.pprev
= NULL
;
489 dentry_rcuwalk_barrier(dentry
);
492 EXPORT_SYMBOL(__d_drop
);
494 void d_drop(struct dentry
*dentry
)
496 spin_lock(&dentry
->d_lock
);
498 spin_unlock(&dentry
->d_lock
);
500 EXPORT_SYMBOL(d_drop
);
503 * Finish off a dentry we've decided to kill.
504 * dentry->d_lock must be held, returns with it unlocked.
505 * If ref is non-zero, then decrement the refcount too.
506 * Returns dentry requiring refcount drop, or NULL if we're done.
508 static struct dentry
*
509 dentry_kill(struct dentry
*dentry
, int unlock_on_failure
)
510 __releases(dentry
->d_lock
)
513 struct dentry
*parent
;
515 inode
= dentry
->d_inode
;
516 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
518 if (unlock_on_failure
) {
519 spin_unlock(&dentry
->d_lock
);
522 return dentry
; /* try again with same dentry */
527 parent
= dentry
->d_parent
;
528 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
530 spin_unlock(&inode
->i_lock
);
535 * The dentry is now unrecoverably dead to the world.
537 lockref_mark_dead(&dentry
->d_lockref
);
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
543 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) && !d_unhashed(dentry
))
544 dentry
->d_op
->d_prune(dentry
);
546 dentry_lru_del(dentry
);
547 /* if it was on the hash then remove it */
549 return d_kill(dentry
, parent
);
555 * This is complicated by the fact that we do not want to put
556 * dentries that are no longer on any hash chain on the unused
557 * list: we'd much rather just get rid of them immediately.
559 * However, that implies that we have to traverse the dentry
560 * tree upwards to the parents which might _also_ now be
561 * scheduled for deletion (it may have been only waiting for
562 * its last child to go away).
564 * This tail recursion is done by hand as we don't want to depend
565 * on the compiler to always get this right (gcc generally doesn't).
566 * Real recursion would eat up our stack space.
570 * dput - release a dentry
571 * @dentry: dentry to release
573 * Release a dentry. This will drop the usage count and if appropriate
574 * call the dentry unlink method as well as removing it from the queues and
575 * releasing its resources. If the parent dentries were scheduled for release
576 * they too may now get deleted.
578 void dput(struct dentry
*dentry
)
580 if (unlikely(!dentry
))
584 if (lockref_put_or_lock(&dentry
->d_lockref
))
587 /* Unreachable? Get rid of it */
588 if (unlikely(d_unhashed(dentry
)))
591 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
592 if (dentry
->d_op
->d_delete(dentry
))
596 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
597 dentry
->d_flags
|= DCACHE_REFERENCED
;
598 dentry_lru_add(dentry
);
600 dentry
->d_lockref
.count
--;
601 spin_unlock(&dentry
->d_lock
);
605 dentry
= dentry_kill(dentry
, 1);
612 * d_invalidate - invalidate a dentry
613 * @dentry: dentry to invalidate
615 * Try to invalidate the dentry if it turns out to be
616 * possible. If there are other dentries that can be
617 * reached through this one we can't delete it and we
618 * return -EBUSY. On success we return 0.
623 int d_invalidate(struct dentry
* dentry
)
626 * If it's already been dropped, return OK.
628 spin_lock(&dentry
->d_lock
);
629 if (d_unhashed(dentry
)) {
630 spin_unlock(&dentry
->d_lock
);
634 * Check whether to do a partial shrink_dcache
635 * to get rid of unused child entries.
637 if (!list_empty(&dentry
->d_subdirs
)) {
638 spin_unlock(&dentry
->d_lock
);
639 shrink_dcache_parent(dentry
);
640 spin_lock(&dentry
->d_lock
);
644 * Somebody else still using it?
646 * If it's a directory, we can't drop it
647 * for fear of somebody re-populating it
648 * with children (even though dropping it
649 * would make it unreachable from the root,
650 * we might still populate it if it was a
651 * working directory or similar).
652 * We also need to leave mountpoints alone,
655 if (dentry
->d_lockref
.count
> 1 && dentry
->d_inode
) {
656 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
657 spin_unlock(&dentry
->d_lock
);
663 spin_unlock(&dentry
->d_lock
);
666 EXPORT_SYMBOL(d_invalidate
);
668 /* This must be called with d_lock held */
669 static inline void __dget_dlock(struct dentry
*dentry
)
671 dentry
->d_lockref
.count
++;
674 static inline void __dget(struct dentry
*dentry
)
676 lockref_get(&dentry
->d_lockref
);
679 struct dentry
*dget_parent(struct dentry
*dentry
)
685 * Do optimistic parent lookup without any
689 ret
= ACCESS_ONCE(dentry
->d_parent
);
690 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
692 if (likely(gotref
)) {
693 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
700 * Don't need rcu_dereference because we re-check it was correct under
704 ret
= dentry
->d_parent
;
705 spin_lock(&ret
->d_lock
);
706 if (unlikely(ret
!= dentry
->d_parent
)) {
707 spin_unlock(&ret
->d_lock
);
712 BUG_ON(!ret
->d_lockref
.count
);
713 ret
->d_lockref
.count
++;
714 spin_unlock(&ret
->d_lock
);
717 EXPORT_SYMBOL(dget_parent
);
720 * d_find_alias - grab a hashed alias of inode
721 * @inode: inode in question
722 * @want_discon: flag, used by d_splice_alias, to request
723 * that only a DISCONNECTED alias be returned.
725 * If inode has a hashed alias, or is a directory and has any alias,
726 * acquire the reference to alias and return it. Otherwise return NULL.
727 * Notice that if inode is a directory there can be only one alias and
728 * it can be unhashed only if it has no children, or if it is the root
731 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
732 * any other hashed alias over that one unless @want_discon is set,
733 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
735 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
737 struct dentry
*alias
, *discon_alias
;
741 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
742 spin_lock(&alias
->d_lock
);
743 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
744 if (IS_ROOT(alias
) &&
745 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
746 discon_alias
= alias
;
747 } else if (!want_discon
) {
749 spin_unlock(&alias
->d_lock
);
753 spin_unlock(&alias
->d_lock
);
756 alias
= discon_alias
;
757 spin_lock(&alias
->d_lock
);
758 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
759 if (IS_ROOT(alias
) &&
760 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
762 spin_unlock(&alias
->d_lock
);
766 spin_unlock(&alias
->d_lock
);
772 struct dentry
*d_find_alias(struct inode
*inode
)
774 struct dentry
*de
= NULL
;
776 if (!hlist_empty(&inode
->i_dentry
)) {
777 spin_lock(&inode
->i_lock
);
778 de
= __d_find_alias(inode
, 0);
779 spin_unlock(&inode
->i_lock
);
783 EXPORT_SYMBOL(d_find_alias
);
786 * Try to kill dentries associated with this inode.
787 * WARNING: you must own a reference to inode.
789 void d_prune_aliases(struct inode
*inode
)
791 struct dentry
*dentry
;
793 spin_lock(&inode
->i_lock
);
794 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
795 spin_lock(&dentry
->d_lock
);
796 if (!dentry
->d_lockref
.count
) {
798 * inform the fs via d_prune that this dentry
799 * is about to be unhashed and destroyed.
801 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
803 dentry
->d_op
->d_prune(dentry
);
805 __dget_dlock(dentry
);
807 spin_unlock(&dentry
->d_lock
);
808 spin_unlock(&inode
->i_lock
);
812 spin_unlock(&dentry
->d_lock
);
814 spin_unlock(&inode
->i_lock
);
816 EXPORT_SYMBOL(d_prune_aliases
);
819 * Try to throw away a dentry - free the inode, dput the parent.
820 * Requires dentry->d_lock is held, and dentry->d_count == 0.
821 * Releases dentry->d_lock.
823 * This may fail if locks cannot be acquired no problem, just try again.
825 static struct dentry
* try_prune_one_dentry(struct dentry
*dentry
)
826 __releases(dentry
->d_lock
)
828 struct dentry
*parent
;
830 parent
= dentry_kill(dentry
, 0);
832 * If dentry_kill returns NULL, we have nothing more to do.
833 * if it returns the same dentry, trylocks failed. In either
834 * case, just loop again.
836 * Otherwise, we need to prune ancestors too. This is necessary
837 * to prevent quadratic behavior of shrink_dcache_parent(), but
838 * is also expected to be beneficial in reducing dentry cache
843 if (parent
== dentry
)
846 /* Prune ancestors. */
849 if (lockref_put_or_lock(&dentry
->d_lockref
))
851 dentry
= dentry_kill(dentry
, 1);
856 static void shrink_dentry_list(struct list_head
*list
)
858 struct dentry
*dentry
;
862 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
863 if (&dentry
->d_lru
== list
)
867 * Get the dentry lock, and re-verify that the dentry is
868 * this on the shrinking list. If it is, we know that
869 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
871 spin_lock(&dentry
->d_lock
);
872 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
873 spin_unlock(&dentry
->d_lock
);
878 * The dispose list is isolated and dentries are not accounted
879 * to the LRU here, so we can simply remove it from the list
880 * here regardless of whether it is referenced or not.
882 d_shrink_del(dentry
);
885 * We found an inuse dentry which was not removed from
886 * the LRU because of laziness during lookup. Do not free it.
888 if (dentry
->d_lockref
.count
) {
889 spin_unlock(&dentry
->d_lock
);
895 * If 'try_to_prune()' returns a dentry, it will
896 * be the same one we passed in, and d_lock will
897 * have been held the whole time, so it will not
898 * have been added to any other lists. We failed
899 * to get the inode lock.
901 * We just add it back to the shrink list.
903 dentry
= try_prune_one_dentry(dentry
);
907 d_shrink_add(dentry
, list
);
908 spin_unlock(&dentry
->d_lock
);
914 static enum lru_status
915 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
917 struct list_head
*freeable
= arg
;
918 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
922 * we are inverting the lru lock/dentry->d_lock here,
923 * so use a trylock. If we fail to get the lock, just skip
926 if (!spin_trylock(&dentry
->d_lock
))
930 * Referenced dentries are still in use. If they have active
931 * counts, just remove them from the LRU. Otherwise give them
932 * another pass through the LRU.
934 if (dentry
->d_lockref
.count
) {
935 d_lru_isolate(dentry
);
936 spin_unlock(&dentry
->d_lock
);
940 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
941 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
942 spin_unlock(&dentry
->d_lock
);
945 * The list move itself will be made by the common LRU code. At
946 * this point, we've dropped the dentry->d_lock but keep the
947 * lru lock. This is safe to do, since every list movement is
948 * protected by the lru lock even if both locks are held.
950 * This is guaranteed by the fact that all LRU management
951 * functions are intermediated by the LRU API calls like
952 * list_lru_add and list_lru_del. List movement in this file
953 * only ever occur through this functions or through callbacks
954 * like this one, that are called from the LRU API.
956 * The only exceptions to this are functions like
957 * shrink_dentry_list, and code that first checks for the
958 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
959 * operating only with stack provided lists after they are
960 * properly isolated from the main list. It is thus, always a
966 d_lru_shrink_move(dentry
, freeable
);
967 spin_unlock(&dentry
->d_lock
);
973 * prune_dcache_sb - shrink the dcache
975 * @nr_to_scan : number of entries to try to free
976 * @nid: which node to scan for freeable entities
978 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
979 * done when we need more memory an called from the superblock shrinker
982 * This function may fail to free any resources if all the dentries are in
985 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
991 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
992 &dispose
, &nr_to_scan
);
993 shrink_dentry_list(&dispose
);
997 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
998 spinlock_t
*lru_lock
, void *arg
)
1000 struct list_head
*freeable
= arg
;
1001 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1004 * we are inverting the lru lock/dentry->d_lock here,
1005 * so use a trylock. If we fail to get the lock, just skip
1008 if (!spin_trylock(&dentry
->d_lock
))
1011 d_lru_shrink_move(dentry
, freeable
);
1012 spin_unlock(&dentry
->d_lock
);
1019 * shrink_dcache_sb - shrink dcache for a superblock
1022 * Shrink the dcache for the specified super block. This is used to free
1023 * the dcache before unmounting a file system.
1025 void shrink_dcache_sb(struct super_block
*sb
)
1032 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1033 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1035 this_cpu_sub(nr_dentry_unused
, freed
);
1036 shrink_dentry_list(&dispose
);
1037 } while (freed
> 0);
1039 EXPORT_SYMBOL(shrink_dcache_sb
);
1042 * enum d_walk_ret - action to talke during tree walk
1043 * @D_WALK_CONTINUE: contrinue walk
1044 * @D_WALK_QUIT: quit walk
1045 * @D_WALK_NORETRY: quit when retry is needed
1046 * @D_WALK_SKIP: skip this dentry and its children
1056 * d_walk - walk the dentry tree
1057 * @parent: start of walk
1058 * @data: data passed to @enter() and @finish()
1059 * @enter: callback when first entering the dentry
1060 * @finish: callback when successfully finished the walk
1062 * The @enter() and @finish() callbacks are called with d_lock held.
1064 static void d_walk(struct dentry
*parent
, void *data
,
1065 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1066 void (*finish
)(void *))
1068 struct dentry
*this_parent
;
1069 struct list_head
*next
;
1071 enum d_walk_ret ret
;
1075 read_seqbegin_or_lock(&rename_lock
, &seq
);
1076 this_parent
= parent
;
1077 spin_lock(&this_parent
->d_lock
);
1079 ret
= enter(data
, this_parent
);
1081 case D_WALK_CONTINUE
:
1086 case D_WALK_NORETRY
:
1091 next
= this_parent
->d_subdirs
.next
;
1093 while (next
!= &this_parent
->d_subdirs
) {
1094 struct list_head
*tmp
= next
;
1095 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1098 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1100 ret
= enter(data
, dentry
);
1102 case D_WALK_CONTINUE
:
1105 spin_unlock(&dentry
->d_lock
);
1107 case D_WALK_NORETRY
:
1111 spin_unlock(&dentry
->d_lock
);
1115 if (!list_empty(&dentry
->d_subdirs
)) {
1116 spin_unlock(&this_parent
->d_lock
);
1117 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1118 this_parent
= dentry
;
1119 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1122 spin_unlock(&dentry
->d_lock
);
1125 * All done at this level ... ascend and resume the search.
1127 if (this_parent
!= parent
) {
1128 struct dentry
*child
= this_parent
;
1129 this_parent
= child
->d_parent
;
1132 spin_unlock(&child
->d_lock
);
1133 spin_lock(&this_parent
->d_lock
);
1136 * might go back up the wrong parent if we have had a rename
1139 if (this_parent
!= child
->d_parent
||
1140 (child
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1141 need_seqretry(&rename_lock
, seq
)) {
1142 spin_unlock(&this_parent
->d_lock
);
1147 next
= child
->d_u
.d_child
.next
;
1150 if (need_seqretry(&rename_lock
, seq
)) {
1151 spin_unlock(&this_parent
->d_lock
);
1158 spin_unlock(&this_parent
->d_lock
);
1159 done_seqretry(&rename_lock
, seq
);
1170 * Search for at least 1 mount point in the dentry's subdirs.
1171 * We descend to the next level whenever the d_subdirs
1172 * list is non-empty and continue searching.
1175 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1178 if (d_mountpoint(dentry
)) {
1182 return D_WALK_CONTINUE
;
1186 * have_submounts - check for mounts over a dentry
1187 * @parent: dentry to check.
1189 * Return true if the parent or its subdirectories contain
1192 int have_submounts(struct dentry
*parent
)
1196 d_walk(parent
, &ret
, check_mount
, NULL
);
1200 EXPORT_SYMBOL(have_submounts
);
1203 * Called by mount code to set a mountpoint and check if the mountpoint is
1204 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1205 * subtree can become unreachable).
1207 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1208 * this reason take rename_lock and d_lock on dentry and ancestors.
1210 int d_set_mounted(struct dentry
*dentry
)
1214 write_seqlock(&rename_lock
);
1215 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1216 /* Need exclusion wrt. check_submounts_and_drop() */
1217 spin_lock(&p
->d_lock
);
1218 if (unlikely(d_unhashed(p
))) {
1219 spin_unlock(&p
->d_lock
);
1222 spin_unlock(&p
->d_lock
);
1224 spin_lock(&dentry
->d_lock
);
1225 if (!d_unlinked(dentry
)) {
1226 dentry
->d_flags
|= DCACHE_MOUNTED
;
1229 spin_unlock(&dentry
->d_lock
);
1231 write_sequnlock(&rename_lock
);
1236 * Search the dentry child list of the specified parent,
1237 * and move any unused dentries to the end of the unused
1238 * list for prune_dcache(). We descend to the next level
1239 * whenever the d_subdirs list is non-empty and continue
1242 * It returns zero iff there are no unused children,
1243 * otherwise it returns the number of children moved to
1244 * the end of the unused list. This may not be the total
1245 * number of unused children, because select_parent can
1246 * drop the lock and return early due to latency
1250 struct select_data
{
1251 struct dentry
*start
;
1252 struct list_head dispose
;
1256 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1258 struct select_data
*data
= _data
;
1259 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1261 if (data
->start
== dentry
)
1265 * move only zero ref count dentries to the dispose list.
1267 * Those which are presently on the shrink list, being processed
1268 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1269 * loop in shrink_dcache_parent() might not make any progress
1272 if (dentry
->d_lockref
.count
) {
1273 dentry_lru_del(dentry
);
1274 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1276 * We can't use d_lru_shrink_move() because we
1277 * need to get the global LRU lock and do the
1281 d_shrink_add(dentry
, &data
->dispose
);
1283 ret
= D_WALK_NORETRY
;
1286 * We can return to the caller if we have found some (this
1287 * ensures forward progress). We'll be coming back to find
1290 if (data
->found
&& need_resched())
1297 * shrink_dcache_parent - prune dcache
1298 * @parent: parent of entries to prune
1300 * Prune the dcache to remove unused children of the parent dentry.
1302 void shrink_dcache_parent(struct dentry
*parent
)
1305 struct select_data data
;
1307 INIT_LIST_HEAD(&data
.dispose
);
1308 data
.start
= parent
;
1311 d_walk(parent
, &data
, select_collect
, NULL
);
1315 shrink_dentry_list(&data
.dispose
);
1319 EXPORT_SYMBOL(shrink_dcache_parent
);
1321 static enum d_walk_ret
umount_collect(void *_data
, struct dentry
*dentry
)
1323 struct select_data
*data
= _data
;
1324 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1326 if (dentry
->d_lockref
.count
) {
1327 dentry_lru_del(dentry
);
1328 if (likely(!list_empty(&dentry
->d_subdirs
)))
1330 if (dentry
== data
->start
&& dentry
->d_lockref
.count
== 1)
1333 "BUG: Dentry %p{i=%lx,n=%s}"
1334 " still in use (%d)"
1335 " [unmount of %s %s]\n",
1338 dentry
->d_inode
->i_ino
: 0UL,
1339 dentry
->d_name
.name
,
1340 dentry
->d_lockref
.count
,
1341 dentry
->d_sb
->s_type
->name
,
1342 dentry
->d_sb
->s_id
);
1344 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1346 * We can't use d_lru_shrink_move() because we
1347 * need to get the global LRU lock and do the
1350 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1352 d_shrink_add(dentry
, &data
->dispose
);
1354 ret
= D_WALK_NORETRY
;
1357 if (data
->found
&& need_resched())
1363 * destroy the dentries attached to a superblock on unmounting
1365 void shrink_dcache_for_umount(struct super_block
*sb
)
1367 struct dentry
*dentry
;
1369 if (down_read_trylock(&sb
->s_umount
))
1372 dentry
= sb
->s_root
;
1375 struct select_data data
;
1377 INIT_LIST_HEAD(&data
.dispose
);
1378 data
.start
= dentry
;
1381 d_walk(dentry
, &data
, umount_collect
, NULL
);
1385 shrink_dentry_list(&data
.dispose
);
1391 while (!hlist_bl_empty(&sb
->s_anon
)) {
1392 struct select_data data
;
1393 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1395 INIT_LIST_HEAD(&data
.dispose
);
1399 d_walk(dentry
, &data
, umount_collect
, NULL
);
1401 shrink_dentry_list(&data
.dispose
);
1406 static enum d_walk_ret
check_and_collect(void *_data
, struct dentry
*dentry
)
1408 struct select_data
*data
= _data
;
1410 if (d_mountpoint(dentry
)) {
1411 data
->found
= -EBUSY
;
1415 return select_collect(_data
, dentry
);
1418 static void check_and_drop(void *_data
)
1420 struct select_data
*data
= _data
;
1422 if (d_mountpoint(data
->start
))
1423 data
->found
= -EBUSY
;
1425 __d_drop(data
->start
);
1429 * check_submounts_and_drop - prune dcache, check for submounts and drop
1431 * All done as a single atomic operation relative to has_unlinked_ancestor().
1432 * Returns 0 if successfully unhashed @parent. If there were submounts then
1435 * @dentry: dentry to prune and drop
1437 int check_submounts_and_drop(struct dentry
*dentry
)
1441 /* Negative dentries can be dropped without further checks */
1442 if (!dentry
->d_inode
) {
1448 struct select_data data
;
1450 INIT_LIST_HEAD(&data
.dispose
);
1451 data
.start
= dentry
;
1454 d_walk(dentry
, &data
, check_and_collect
, check_and_drop
);
1457 if (!list_empty(&data
.dispose
))
1458 shrink_dentry_list(&data
.dispose
);
1469 EXPORT_SYMBOL(check_submounts_and_drop
);
1472 * __d_alloc - allocate a dcache entry
1473 * @sb: filesystem it will belong to
1474 * @name: qstr of the name
1476 * Allocates a dentry. It returns %NULL if there is insufficient memory
1477 * available. On a success the dentry is returned. The name passed in is
1478 * copied and the copy passed in may be reused after this call.
1481 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1483 struct dentry
*dentry
;
1486 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1491 * We guarantee that the inline name is always NUL-terminated.
1492 * This way the memcpy() done by the name switching in rename
1493 * will still always have a NUL at the end, even if we might
1494 * be overwriting an internal NUL character
1496 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1497 if (name
->len
> DNAME_INLINE_LEN
-1) {
1498 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1500 kmem_cache_free(dentry_cache
, dentry
);
1504 dname
= dentry
->d_iname
;
1507 dentry
->d_name
.len
= name
->len
;
1508 dentry
->d_name
.hash
= name
->hash
;
1509 memcpy(dname
, name
->name
, name
->len
);
1510 dname
[name
->len
] = 0;
1512 /* Make sure we always see the terminating NUL character */
1514 dentry
->d_name
.name
= dname
;
1516 dentry
->d_lockref
.count
= 1;
1517 dentry
->d_flags
= 0;
1518 spin_lock_init(&dentry
->d_lock
);
1519 seqcount_init(&dentry
->d_seq
);
1520 dentry
->d_inode
= NULL
;
1521 dentry
->d_parent
= dentry
;
1523 dentry
->d_op
= NULL
;
1524 dentry
->d_fsdata
= NULL
;
1525 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1526 INIT_LIST_HEAD(&dentry
->d_lru
);
1527 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1528 INIT_HLIST_NODE(&dentry
->d_alias
);
1529 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1530 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1532 this_cpu_inc(nr_dentry
);
1538 * d_alloc - allocate a dcache entry
1539 * @parent: parent of entry to allocate
1540 * @name: qstr of the name
1542 * Allocates a dentry. It returns %NULL if there is insufficient memory
1543 * available. On a success the dentry is returned. The name passed in is
1544 * copied and the copy passed in may be reused after this call.
1546 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1548 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1552 spin_lock(&parent
->d_lock
);
1554 * don't need child lock because it is not subject
1555 * to concurrency here
1557 __dget_dlock(parent
);
1558 dentry
->d_parent
= parent
;
1559 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1560 spin_unlock(&parent
->d_lock
);
1564 EXPORT_SYMBOL(d_alloc
);
1567 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1568 * @sb: the superblock
1569 * @name: qstr of the name
1571 * For a filesystem that just pins its dentries in memory and never
1572 * performs lookups at all, return an unhashed IS_ROOT dentry.
1574 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1576 return __d_alloc(sb
, name
);
1578 EXPORT_SYMBOL(d_alloc_pseudo
);
1580 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1585 q
.len
= strlen(name
);
1586 q
.hash
= full_name_hash(q
.name
, q
.len
);
1587 return d_alloc(parent
, &q
);
1589 EXPORT_SYMBOL(d_alloc_name
);
1591 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1593 WARN_ON_ONCE(dentry
->d_op
);
1594 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1596 DCACHE_OP_REVALIDATE
|
1597 DCACHE_OP_WEAK_REVALIDATE
|
1598 DCACHE_OP_DELETE
));
1603 dentry
->d_flags
|= DCACHE_OP_HASH
;
1605 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1606 if (op
->d_revalidate
)
1607 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1608 if (op
->d_weak_revalidate
)
1609 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1611 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1613 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1616 EXPORT_SYMBOL(d_set_d_op
);
1618 static unsigned d_flags_for_inode(struct inode
*inode
)
1620 unsigned add_flags
= DCACHE_FILE_TYPE
;
1623 return DCACHE_MISS_TYPE
;
1625 if (S_ISDIR(inode
->i_mode
)) {
1626 add_flags
= DCACHE_DIRECTORY_TYPE
;
1627 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1628 if (unlikely(!inode
->i_op
->lookup
))
1629 add_flags
= DCACHE_AUTODIR_TYPE
;
1631 inode
->i_opflags
|= IOP_LOOKUP
;
1633 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1634 if (unlikely(inode
->i_op
->follow_link
))
1635 add_flags
= DCACHE_SYMLINK_TYPE
;
1637 inode
->i_opflags
|= IOP_NOFOLLOW
;
1640 if (unlikely(IS_AUTOMOUNT(inode
)))
1641 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1645 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1647 unsigned add_flags
= d_flags_for_inode(inode
);
1649 spin_lock(&dentry
->d_lock
);
1650 dentry
->d_flags
&= ~DCACHE_ENTRY_TYPE
;
1651 dentry
->d_flags
|= add_flags
;
1653 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1654 dentry
->d_inode
= inode
;
1655 dentry_rcuwalk_barrier(dentry
);
1656 spin_unlock(&dentry
->d_lock
);
1657 fsnotify_d_instantiate(dentry
, inode
);
1661 * d_instantiate - fill in inode information for a dentry
1662 * @entry: dentry to complete
1663 * @inode: inode to attach to this dentry
1665 * Fill in inode information in the entry.
1667 * This turns negative dentries into productive full members
1670 * NOTE! This assumes that the inode count has been incremented
1671 * (or otherwise set) by the caller to indicate that it is now
1672 * in use by the dcache.
1675 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1677 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1679 spin_lock(&inode
->i_lock
);
1680 __d_instantiate(entry
, inode
);
1682 spin_unlock(&inode
->i_lock
);
1683 security_d_instantiate(entry
, inode
);
1685 EXPORT_SYMBOL(d_instantiate
);
1688 * d_instantiate_unique - instantiate a non-aliased dentry
1689 * @entry: dentry to instantiate
1690 * @inode: inode to attach to this dentry
1692 * Fill in inode information in the entry. On success, it returns NULL.
1693 * If an unhashed alias of "entry" already exists, then we return the
1694 * aliased dentry instead and drop one reference to inode.
1696 * Note that in order to avoid conflicts with rename() etc, the caller
1697 * had better be holding the parent directory semaphore.
1699 * This also assumes that the inode count has been incremented
1700 * (or otherwise set) by the caller to indicate that it is now
1701 * in use by the dcache.
1703 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1704 struct inode
*inode
)
1706 struct dentry
*alias
;
1707 int len
= entry
->d_name
.len
;
1708 const char *name
= entry
->d_name
.name
;
1709 unsigned int hash
= entry
->d_name
.hash
;
1712 __d_instantiate(entry
, NULL
);
1716 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1718 * Don't need alias->d_lock here, because aliases with
1719 * d_parent == entry->d_parent are not subject to name or
1720 * parent changes, because the parent inode i_mutex is held.
1722 if (alias
->d_name
.hash
!= hash
)
1724 if (alias
->d_parent
!= entry
->d_parent
)
1726 if (alias
->d_name
.len
!= len
)
1728 if (dentry_cmp(alias
, name
, len
))
1734 __d_instantiate(entry
, inode
);
1738 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1740 struct dentry
*result
;
1742 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1745 spin_lock(&inode
->i_lock
);
1746 result
= __d_instantiate_unique(entry
, inode
);
1748 spin_unlock(&inode
->i_lock
);
1751 security_d_instantiate(entry
, inode
);
1755 BUG_ON(!d_unhashed(result
));
1760 EXPORT_SYMBOL(d_instantiate_unique
);
1763 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1764 * @entry: dentry to complete
1765 * @inode: inode to attach to this dentry
1767 * Fill in inode information in the entry. If a directory alias is found, then
1768 * return an error (and drop inode). Together with d_materialise_unique() this
1769 * guarantees that a directory inode may never have more than one alias.
1771 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1773 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1775 spin_lock(&inode
->i_lock
);
1776 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1777 spin_unlock(&inode
->i_lock
);
1781 __d_instantiate(entry
, inode
);
1782 spin_unlock(&inode
->i_lock
);
1783 security_d_instantiate(entry
, inode
);
1787 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1789 struct dentry
*d_make_root(struct inode
*root_inode
)
1791 struct dentry
*res
= NULL
;
1794 static const struct qstr name
= QSTR_INIT("/", 1);
1796 res
= __d_alloc(root_inode
->i_sb
, &name
);
1798 d_instantiate(res
, root_inode
);
1804 EXPORT_SYMBOL(d_make_root
);
1806 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1808 struct dentry
*alias
;
1810 if (hlist_empty(&inode
->i_dentry
))
1812 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1818 * d_find_any_alias - find any alias for a given inode
1819 * @inode: inode to find an alias for
1821 * If any aliases exist for the given inode, take and return a
1822 * reference for one of them. If no aliases exist, return %NULL.
1824 struct dentry
*d_find_any_alias(struct inode
*inode
)
1828 spin_lock(&inode
->i_lock
);
1829 de
= __d_find_any_alias(inode
);
1830 spin_unlock(&inode
->i_lock
);
1833 EXPORT_SYMBOL(d_find_any_alias
);
1836 * d_obtain_alias - find or allocate a dentry for a given inode
1837 * @inode: inode to allocate the dentry for
1839 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1840 * similar open by handle operations. The returned dentry may be anonymous,
1841 * or may have a full name (if the inode was already in the cache).
1843 * When called on a directory inode, we must ensure that the inode only ever
1844 * has one dentry. If a dentry is found, that is returned instead of
1845 * allocating a new one.
1847 * On successful return, the reference to the inode has been transferred
1848 * to the dentry. In case of an error the reference on the inode is released.
1849 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1850 * be passed in and will be the error will be propagate to the return value,
1851 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1853 struct dentry
*d_obtain_alias(struct inode
*inode
)
1855 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1861 return ERR_PTR(-ESTALE
);
1863 return ERR_CAST(inode
);
1865 res
= d_find_any_alias(inode
);
1869 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1871 res
= ERR_PTR(-ENOMEM
);
1875 spin_lock(&inode
->i_lock
);
1876 res
= __d_find_any_alias(inode
);
1878 spin_unlock(&inode
->i_lock
);
1883 /* attach a disconnected dentry */
1884 add_flags
= d_flags_for_inode(inode
) | DCACHE_DISCONNECTED
;
1886 spin_lock(&tmp
->d_lock
);
1887 tmp
->d_inode
= inode
;
1888 tmp
->d_flags
|= add_flags
;
1889 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1890 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1891 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1892 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1893 spin_unlock(&tmp
->d_lock
);
1894 spin_unlock(&inode
->i_lock
);
1895 security_d_instantiate(tmp
, inode
);
1900 if (res
&& !IS_ERR(res
))
1901 security_d_instantiate(res
, inode
);
1905 EXPORT_SYMBOL(d_obtain_alias
);
1908 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1909 * @inode: the inode which may have a disconnected dentry
1910 * @dentry: a negative dentry which we want to point to the inode.
1912 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1913 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1914 * and return it, else simply d_add the inode to the dentry and return NULL.
1916 * This is needed in the lookup routine of any filesystem that is exportable
1917 * (via knfsd) so that we can build dcache paths to directories effectively.
1919 * If a dentry was found and moved, then it is returned. Otherwise NULL
1920 * is returned. This matches the expected return value of ->lookup.
1922 * Cluster filesystems may call this function with a negative, hashed dentry.
1923 * In that case, we know that the inode will be a regular file, and also this
1924 * will only occur during atomic_open. So we need to check for the dentry
1925 * being already hashed only in the final case.
1927 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1929 struct dentry
*new = NULL
;
1932 return ERR_CAST(inode
);
1934 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1935 spin_lock(&inode
->i_lock
);
1936 new = __d_find_alias(inode
, 1);
1938 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1939 spin_unlock(&inode
->i_lock
);
1940 security_d_instantiate(new, inode
);
1941 d_move(new, dentry
);
1944 /* already taking inode->i_lock, so d_add() by hand */
1945 __d_instantiate(dentry
, inode
);
1946 spin_unlock(&inode
->i_lock
);
1947 security_d_instantiate(dentry
, inode
);
1951 d_instantiate(dentry
, inode
);
1952 if (d_unhashed(dentry
))
1957 EXPORT_SYMBOL(d_splice_alias
);
1960 * d_add_ci - lookup or allocate new dentry with case-exact name
1961 * @inode: the inode case-insensitive lookup has found
1962 * @dentry: the negative dentry that was passed to the parent's lookup func
1963 * @name: the case-exact name to be associated with the returned dentry
1965 * This is to avoid filling the dcache with case-insensitive names to the
1966 * same inode, only the actual correct case is stored in the dcache for
1967 * case-insensitive filesystems.
1969 * For a case-insensitive lookup match and if the the case-exact dentry
1970 * already exists in in the dcache, use it and return it.
1972 * If no entry exists with the exact case name, allocate new dentry with
1973 * the exact case, and return the spliced entry.
1975 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1978 struct dentry
*found
;
1982 * First check if a dentry matching the name already exists,
1983 * if not go ahead and create it now.
1985 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1986 if (unlikely(IS_ERR(found
)))
1989 new = d_alloc(dentry
->d_parent
, name
);
1991 found
= ERR_PTR(-ENOMEM
);
1995 found
= d_splice_alias(inode
, new);
2004 * If a matching dentry exists, and it's not negative use it.
2006 * Decrement the reference count to balance the iget() done
2009 if (found
->d_inode
) {
2010 if (unlikely(found
->d_inode
!= inode
)) {
2011 /* This can't happen because bad inodes are unhashed. */
2012 BUG_ON(!is_bad_inode(inode
));
2013 BUG_ON(!is_bad_inode(found
->d_inode
));
2020 * Negative dentry: instantiate it unless the inode is a directory and
2021 * already has a dentry.
2023 new = d_splice_alias(inode
, found
);
2034 EXPORT_SYMBOL(d_add_ci
);
2037 * Do the slow-case of the dentry name compare.
2039 * Unlike the dentry_cmp() function, we need to atomically
2040 * load the name and length information, so that the
2041 * filesystem can rely on them, and can use the 'name' and
2042 * 'len' information without worrying about walking off the
2043 * end of memory etc.
2045 * Thus the read_seqcount_retry() and the "duplicate" info
2046 * in arguments (the low-level filesystem should not look
2047 * at the dentry inode or name contents directly, since
2048 * rename can change them while we're in RCU mode).
2050 enum slow_d_compare
{
2056 static noinline
enum slow_d_compare
slow_dentry_cmp(
2057 const struct dentry
*parent
,
2058 struct dentry
*dentry
,
2060 const struct qstr
*name
)
2062 int tlen
= dentry
->d_name
.len
;
2063 const char *tname
= dentry
->d_name
.name
;
2065 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2067 return D_COMP_SEQRETRY
;
2069 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2070 return D_COMP_NOMATCH
;
2075 * __d_lookup_rcu - search for a dentry (racy, store-free)
2076 * @parent: parent dentry
2077 * @name: qstr of name we wish to find
2078 * @seqp: returns d_seq value at the point where the dentry was found
2079 * Returns: dentry, or NULL
2081 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2082 * resolution (store-free path walking) design described in
2083 * Documentation/filesystems/path-lookup.txt.
2085 * This is not to be used outside core vfs.
2087 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2088 * held, and rcu_read_lock held. The returned dentry must not be stored into
2089 * without taking d_lock and checking d_seq sequence count against @seq
2092 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2095 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2096 * the returned dentry, so long as its parent's seqlock is checked after the
2097 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2098 * is formed, giving integrity down the path walk.
2100 * NOTE! The caller *has* to check the resulting dentry against the sequence
2101 * number we've returned before using any of the resulting dentry state!
2103 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2104 const struct qstr
*name
,
2107 u64 hashlen
= name
->hash_len
;
2108 const unsigned char *str
= name
->name
;
2109 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2110 struct hlist_bl_node
*node
;
2111 struct dentry
*dentry
;
2114 * Note: There is significant duplication with __d_lookup_rcu which is
2115 * required to prevent single threaded performance regressions
2116 * especially on architectures where smp_rmb (in seqcounts) are costly.
2117 * Keep the two functions in sync.
2121 * The hash list is protected using RCU.
2123 * Carefully use d_seq when comparing a candidate dentry, to avoid
2124 * races with d_move().
2126 * It is possible that concurrent renames can mess up our list
2127 * walk here and result in missing our dentry, resulting in the
2128 * false-negative result. d_lookup() protects against concurrent
2129 * renames using rename_lock seqlock.
2131 * See Documentation/filesystems/path-lookup.txt for more details.
2133 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2138 * The dentry sequence count protects us from concurrent
2139 * renames, and thus protects parent and name fields.
2141 * The caller must perform a seqcount check in order
2142 * to do anything useful with the returned dentry.
2144 * NOTE! We do a "raw" seqcount_begin here. That means that
2145 * we don't wait for the sequence count to stabilize if it
2146 * is in the middle of a sequence change. If we do the slow
2147 * dentry compare, we will do seqretries until it is stable,
2148 * and if we end up with a successful lookup, we actually
2149 * want to exit RCU lookup anyway.
2151 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2152 if (dentry
->d_parent
!= parent
)
2154 if (d_unhashed(dentry
))
2157 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2158 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2161 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2164 case D_COMP_NOMATCH
:
2171 if (dentry
->d_name
.hash_len
!= hashlen
)
2174 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2181 * d_lookup - search for a dentry
2182 * @parent: parent dentry
2183 * @name: qstr of name we wish to find
2184 * Returns: dentry, or NULL
2186 * d_lookup searches the children of the parent dentry for the name in
2187 * question. If the dentry is found its reference count is incremented and the
2188 * dentry is returned. The caller must use dput to free the entry when it has
2189 * finished using it. %NULL is returned if the dentry does not exist.
2191 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2193 struct dentry
*dentry
;
2197 seq
= read_seqbegin(&rename_lock
);
2198 dentry
= __d_lookup(parent
, name
);
2201 } while (read_seqretry(&rename_lock
, seq
));
2204 EXPORT_SYMBOL(d_lookup
);
2207 * __d_lookup - search for a dentry (racy)
2208 * @parent: parent dentry
2209 * @name: qstr of name we wish to find
2210 * Returns: dentry, or NULL
2212 * __d_lookup is like d_lookup, however it may (rarely) return a
2213 * false-negative result due to unrelated rename activity.
2215 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2216 * however it must be used carefully, eg. with a following d_lookup in
2217 * the case of failure.
2219 * __d_lookup callers must be commented.
2221 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2223 unsigned int len
= name
->len
;
2224 unsigned int hash
= name
->hash
;
2225 const unsigned char *str
= name
->name
;
2226 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2227 struct hlist_bl_node
*node
;
2228 struct dentry
*found
= NULL
;
2229 struct dentry
*dentry
;
2232 * Note: There is significant duplication with __d_lookup_rcu which is
2233 * required to prevent single threaded performance regressions
2234 * especially on architectures where smp_rmb (in seqcounts) are costly.
2235 * Keep the two functions in sync.
2239 * The hash list is protected using RCU.
2241 * Take d_lock when comparing a candidate dentry, to avoid races
2244 * It is possible that concurrent renames can mess up our list
2245 * walk here and result in missing our dentry, resulting in the
2246 * false-negative result. d_lookup() protects against concurrent
2247 * renames using rename_lock seqlock.
2249 * See Documentation/filesystems/path-lookup.txt for more details.
2253 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2255 if (dentry
->d_name
.hash
!= hash
)
2258 spin_lock(&dentry
->d_lock
);
2259 if (dentry
->d_parent
!= parent
)
2261 if (d_unhashed(dentry
))
2265 * It is safe to compare names since d_move() cannot
2266 * change the qstr (protected by d_lock).
2268 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2269 int tlen
= dentry
->d_name
.len
;
2270 const char *tname
= dentry
->d_name
.name
;
2271 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2274 if (dentry
->d_name
.len
!= len
)
2276 if (dentry_cmp(dentry
, str
, len
))
2280 dentry
->d_lockref
.count
++;
2282 spin_unlock(&dentry
->d_lock
);
2285 spin_unlock(&dentry
->d_lock
);
2293 * d_hash_and_lookup - hash the qstr then search for a dentry
2294 * @dir: Directory to search in
2295 * @name: qstr of name we wish to find
2297 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2299 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2302 * Check for a fs-specific hash function. Note that we must
2303 * calculate the standard hash first, as the d_op->d_hash()
2304 * routine may choose to leave the hash value unchanged.
2306 name
->hash
= full_name_hash(name
->name
, name
->len
);
2307 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2308 int err
= dir
->d_op
->d_hash(dir
, name
);
2309 if (unlikely(err
< 0))
2310 return ERR_PTR(err
);
2312 return d_lookup(dir
, name
);
2314 EXPORT_SYMBOL(d_hash_and_lookup
);
2317 * d_validate - verify dentry provided from insecure source (deprecated)
2318 * @dentry: The dentry alleged to be valid child of @dparent
2319 * @dparent: The parent dentry (known to be valid)
2321 * An insecure source has sent us a dentry, here we verify it and dget() it.
2322 * This is used by ncpfs in its readdir implementation.
2323 * Zero is returned in the dentry is invalid.
2325 * This function is slow for big directories, and deprecated, do not use it.
2327 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2329 struct dentry
*child
;
2331 spin_lock(&dparent
->d_lock
);
2332 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2333 if (dentry
== child
) {
2334 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2335 __dget_dlock(dentry
);
2336 spin_unlock(&dentry
->d_lock
);
2337 spin_unlock(&dparent
->d_lock
);
2341 spin_unlock(&dparent
->d_lock
);
2345 EXPORT_SYMBOL(d_validate
);
2348 * When a file is deleted, we have two options:
2349 * - turn this dentry into a negative dentry
2350 * - unhash this dentry and free it.
2352 * Usually, we want to just turn this into
2353 * a negative dentry, but if anybody else is
2354 * currently using the dentry or the inode
2355 * we can't do that and we fall back on removing
2356 * it from the hash queues and waiting for
2357 * it to be deleted later when it has no users
2361 * d_delete - delete a dentry
2362 * @dentry: The dentry to delete
2364 * Turn the dentry into a negative dentry if possible, otherwise
2365 * remove it from the hash queues so it can be deleted later
2368 void d_delete(struct dentry
* dentry
)
2370 struct inode
*inode
;
2373 * Are we the only user?
2376 spin_lock(&dentry
->d_lock
);
2377 inode
= dentry
->d_inode
;
2378 isdir
= S_ISDIR(inode
->i_mode
);
2379 if (dentry
->d_lockref
.count
== 1) {
2380 if (!spin_trylock(&inode
->i_lock
)) {
2381 spin_unlock(&dentry
->d_lock
);
2385 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2386 dentry_unlink_inode(dentry
);
2387 fsnotify_nameremove(dentry
, isdir
);
2391 if (!d_unhashed(dentry
))
2394 spin_unlock(&dentry
->d_lock
);
2396 fsnotify_nameremove(dentry
, isdir
);
2398 EXPORT_SYMBOL(d_delete
);
2400 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2402 BUG_ON(!d_unhashed(entry
));
2404 entry
->d_flags
|= DCACHE_RCUACCESS
;
2405 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2409 static void _d_rehash(struct dentry
* entry
)
2411 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2415 * d_rehash - add an entry back to the hash
2416 * @entry: dentry to add to the hash
2418 * Adds a dentry to the hash according to its name.
2421 void d_rehash(struct dentry
* entry
)
2423 spin_lock(&entry
->d_lock
);
2425 spin_unlock(&entry
->d_lock
);
2427 EXPORT_SYMBOL(d_rehash
);
2430 * dentry_update_name_case - update case insensitive dentry with a new name
2431 * @dentry: dentry to be updated
2434 * Update a case insensitive dentry with new case of name.
2436 * dentry must have been returned by d_lookup with name @name. Old and new
2437 * name lengths must match (ie. no d_compare which allows mismatched name
2440 * Parent inode i_mutex must be held over d_lookup and into this call (to
2441 * keep renames and concurrent inserts, and readdir(2) away).
2443 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2445 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2446 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2448 spin_lock(&dentry
->d_lock
);
2449 write_seqcount_begin(&dentry
->d_seq
);
2450 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2451 write_seqcount_end(&dentry
->d_seq
);
2452 spin_unlock(&dentry
->d_lock
);
2454 EXPORT_SYMBOL(dentry_update_name_case
);
2456 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2458 if (dname_external(target
)) {
2459 if (dname_external(dentry
)) {
2461 * Both external: swap the pointers
2463 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2466 * dentry:internal, target:external. Steal target's
2467 * storage and make target internal.
2469 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2470 dentry
->d_name
.len
+ 1);
2471 dentry
->d_name
.name
= target
->d_name
.name
;
2472 target
->d_name
.name
= target
->d_iname
;
2475 if (dname_external(dentry
)) {
2477 * dentry:external, target:internal. Give dentry's
2478 * storage to target and make dentry internal
2480 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2481 target
->d_name
.len
+ 1);
2482 target
->d_name
.name
= dentry
->d_name
.name
;
2483 dentry
->d_name
.name
= dentry
->d_iname
;
2486 * Both are internal. Just copy target to dentry
2488 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2489 target
->d_name
.len
+ 1);
2490 dentry
->d_name
.len
= target
->d_name
.len
;
2494 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2497 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2500 * XXXX: do we really need to take target->d_lock?
2502 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2503 spin_lock(&target
->d_parent
->d_lock
);
2505 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2506 spin_lock(&dentry
->d_parent
->d_lock
);
2507 spin_lock_nested(&target
->d_parent
->d_lock
,
2508 DENTRY_D_LOCK_NESTED
);
2510 spin_lock(&target
->d_parent
->d_lock
);
2511 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2512 DENTRY_D_LOCK_NESTED
);
2515 if (target
< dentry
) {
2516 spin_lock_nested(&target
->d_lock
, 2);
2517 spin_lock_nested(&dentry
->d_lock
, 3);
2519 spin_lock_nested(&dentry
->d_lock
, 2);
2520 spin_lock_nested(&target
->d_lock
, 3);
2524 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2525 struct dentry
*target
)
2527 if (target
->d_parent
!= dentry
->d_parent
)
2528 spin_unlock(&dentry
->d_parent
->d_lock
);
2529 if (target
->d_parent
!= target
)
2530 spin_unlock(&target
->d_parent
->d_lock
);
2534 * When switching names, the actual string doesn't strictly have to
2535 * be preserved in the target - because we're dropping the target
2536 * anyway. As such, we can just do a simple memcpy() to copy over
2537 * the new name before we switch.
2539 * Note that we have to be a lot more careful about getting the hash
2540 * switched - we have to switch the hash value properly even if it
2541 * then no longer matches the actual (corrupted) string of the target.
2542 * The hash value has to match the hash queue that the dentry is on..
2545 * __d_move - move a dentry
2546 * @dentry: entry to move
2547 * @target: new dentry
2549 * Update the dcache to reflect the move of a file name. Negative
2550 * dcache entries should not be moved in this way. Caller must hold
2551 * rename_lock, the i_mutex of the source and target directories,
2552 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2554 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2556 if (!dentry
->d_inode
)
2557 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2559 BUG_ON(d_ancestor(dentry
, target
));
2560 BUG_ON(d_ancestor(target
, dentry
));
2562 dentry_lock_for_move(dentry
, target
);
2564 write_seqcount_begin(&dentry
->d_seq
);
2565 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2567 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2570 * Move the dentry to the target hash queue. Don't bother checking
2571 * for the same hash queue because of how unlikely it is.
2574 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2576 /* Unhash the target: dput() will then get rid of it */
2579 list_del(&dentry
->d_u
.d_child
);
2580 list_del(&target
->d_u
.d_child
);
2582 /* Switch the names.. */
2583 switch_names(dentry
, target
);
2584 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2586 /* ... and switch the parents */
2587 if (IS_ROOT(dentry
)) {
2588 dentry
->d_parent
= target
->d_parent
;
2589 target
->d_parent
= target
;
2590 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2592 swap(dentry
->d_parent
, target
->d_parent
);
2594 /* And add them back to the (new) parent lists */
2595 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2598 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2600 write_seqcount_end(&target
->d_seq
);
2601 write_seqcount_end(&dentry
->d_seq
);
2603 dentry_unlock_parents_for_move(dentry
, target
);
2604 spin_unlock(&target
->d_lock
);
2605 fsnotify_d_move(dentry
);
2606 spin_unlock(&dentry
->d_lock
);
2610 * d_move - move a dentry
2611 * @dentry: entry to move
2612 * @target: new dentry
2614 * Update the dcache to reflect the move of a file name. Negative
2615 * dcache entries should not be moved in this way. See the locking
2616 * requirements for __d_move.
2618 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2620 write_seqlock(&rename_lock
);
2621 __d_move(dentry
, target
);
2622 write_sequnlock(&rename_lock
);
2624 EXPORT_SYMBOL(d_move
);
2627 * d_ancestor - search for an ancestor
2628 * @p1: ancestor dentry
2631 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2632 * an ancestor of p2, else NULL.
2634 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2638 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2639 if (p
->d_parent
== p1
)
2646 * This helper attempts to cope with remotely renamed directories
2648 * It assumes that the caller is already holding
2649 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2651 * Note: If ever the locking in lock_rename() changes, then please
2652 * remember to update this too...
2654 static struct dentry
*__d_unalias(struct inode
*inode
,
2655 struct dentry
*dentry
, struct dentry
*alias
)
2657 struct mutex
*m1
= NULL
, *m2
= NULL
;
2658 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2660 /* If alias and dentry share a parent, then no extra locks required */
2661 if (alias
->d_parent
== dentry
->d_parent
)
2664 /* See lock_rename() */
2665 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2667 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2668 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2670 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2672 if (likely(!d_mountpoint(alias
))) {
2673 __d_move(alias
, dentry
);
2677 spin_unlock(&inode
->i_lock
);
2686 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2687 * named dentry in place of the dentry to be replaced.
2688 * returns with anon->d_lock held!
2690 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2692 struct dentry
*dparent
;
2694 dentry_lock_for_move(anon
, dentry
);
2696 write_seqcount_begin(&dentry
->d_seq
);
2697 write_seqcount_begin_nested(&anon
->d_seq
, DENTRY_D_LOCK_NESTED
);
2699 dparent
= dentry
->d_parent
;
2701 switch_names(dentry
, anon
);
2702 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2704 dentry
->d_parent
= dentry
;
2705 list_del_init(&dentry
->d_u
.d_child
);
2706 anon
->d_parent
= dparent
;
2707 list_move(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2709 write_seqcount_end(&dentry
->d_seq
);
2710 write_seqcount_end(&anon
->d_seq
);
2712 dentry_unlock_parents_for_move(anon
, dentry
);
2713 spin_unlock(&dentry
->d_lock
);
2715 /* anon->d_lock still locked, returns locked */
2719 * d_materialise_unique - introduce an inode into the tree
2720 * @dentry: candidate dentry
2721 * @inode: inode to bind to the dentry, to which aliases may be attached
2723 * Introduces an dentry into the tree, substituting an extant disconnected
2724 * root directory alias in its place if there is one. Caller must hold the
2725 * i_mutex of the parent directory.
2727 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2729 struct dentry
*actual
;
2731 BUG_ON(!d_unhashed(dentry
));
2735 __d_instantiate(dentry
, NULL
);
2740 spin_lock(&inode
->i_lock
);
2742 if (S_ISDIR(inode
->i_mode
)) {
2743 struct dentry
*alias
;
2745 /* Does an aliased dentry already exist? */
2746 alias
= __d_find_alias(inode
, 0);
2749 write_seqlock(&rename_lock
);
2751 if (d_ancestor(alias
, dentry
)) {
2752 /* Check for loops */
2753 actual
= ERR_PTR(-ELOOP
);
2754 spin_unlock(&inode
->i_lock
);
2755 } else if (IS_ROOT(alias
)) {
2756 /* Is this an anonymous mountpoint that we
2757 * could splice into our tree? */
2758 __d_materialise_dentry(dentry
, alias
);
2759 write_sequnlock(&rename_lock
);
2763 /* Nope, but we must(!) avoid directory
2764 * aliasing. This drops inode->i_lock */
2765 actual
= __d_unalias(inode
, dentry
, alias
);
2767 write_sequnlock(&rename_lock
);
2768 if (IS_ERR(actual
)) {
2769 if (PTR_ERR(actual
) == -ELOOP
)
2770 pr_warn_ratelimited(
2771 "VFS: Lookup of '%s' in %s %s"
2772 " would have caused loop\n",
2773 dentry
->d_name
.name
,
2774 inode
->i_sb
->s_type
->name
,
2782 /* Add a unique reference */
2783 actual
= __d_instantiate_unique(dentry
, inode
);
2787 BUG_ON(!d_unhashed(actual
));
2789 spin_lock(&actual
->d_lock
);
2792 spin_unlock(&actual
->d_lock
);
2793 spin_unlock(&inode
->i_lock
);
2795 if (actual
== dentry
) {
2796 security_d_instantiate(dentry
, inode
);
2803 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2805 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2809 return -ENAMETOOLONG
;
2811 memcpy(*buffer
, str
, namelen
);
2816 * prepend_name - prepend a pathname in front of current buffer pointer
2817 * @buffer: buffer pointer
2818 * @buflen: allocated length of the buffer
2819 * @name: name string and length qstr structure
2821 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2822 * make sure that either the old or the new name pointer and length are
2823 * fetched. However, there may be mismatch between length and pointer.
2824 * The length cannot be trusted, we need to copy it byte-by-byte until
2825 * the length is reached or a null byte is found. It also prepends "/" at
2826 * the beginning of the name. The sequence number check at the caller will
2827 * retry it again when a d_move() does happen. So any garbage in the buffer
2828 * due to mismatched pointer and length will be discarded.
2830 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2832 const char *dname
= ACCESS_ONCE(name
->name
);
2833 u32 dlen
= ACCESS_ONCE(name
->len
);
2836 if (*buflen
< dlen
+ 1)
2837 return -ENAMETOOLONG
;
2838 *buflen
-= dlen
+ 1;
2839 p
= *buffer
-= dlen
+ 1;
2851 * prepend_path - Prepend path string to a buffer
2852 * @path: the dentry/vfsmount to report
2853 * @root: root vfsmnt/dentry
2854 * @buffer: pointer to the end of the buffer
2855 * @buflen: pointer to buffer length
2857 * The function will first try to write out the pathname without taking any
2858 * lock other than the RCU read lock to make sure that dentries won't go away.
2859 * It only checks the sequence number of the global rename_lock as any change
2860 * in the dentry's d_seq will be preceded by changes in the rename_lock
2861 * sequence number. If the sequence number had been changed, it will restart
2862 * the whole pathname back-tracing sequence again by taking the rename_lock.
2863 * In this case, there is no need to take the RCU read lock as the recursive
2864 * parent pointer references will keep the dentry chain alive as long as no
2865 * rename operation is performed.
2867 static int prepend_path(const struct path
*path
,
2868 const struct path
*root
,
2869 char **buffer
, int *buflen
)
2871 struct dentry
*dentry
;
2872 struct vfsmount
*vfsmnt
;
2875 unsigned seq
, m_seq
= 0;
2881 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2888 dentry
= path
->dentry
;
2890 mnt
= real_mount(vfsmnt
);
2891 read_seqbegin_or_lock(&rename_lock
, &seq
);
2892 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2893 struct dentry
* parent
;
2895 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2896 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2898 if (mnt
!= parent
) {
2899 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2905 * Filesystems needing to implement special "root names"
2906 * should do so with ->d_dname()
2908 if (IS_ROOT(dentry
) &&
2909 (dentry
->d_name
.len
!= 1 ||
2910 dentry
->d_name
.name
[0] != '/')) {
2911 WARN(1, "Root dentry has weird name <%.*s>\n",
2912 (int) dentry
->d_name
.len
,
2913 dentry
->d_name
.name
);
2916 error
= is_mounted(vfsmnt
) ? 1 : 2;
2919 parent
= dentry
->d_parent
;
2921 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2929 if (need_seqretry(&rename_lock
, seq
)) {
2933 done_seqretry(&rename_lock
, seq
);
2937 if (need_seqretry(&mount_lock
, m_seq
)) {
2941 done_seqretry(&mount_lock
, m_seq
);
2943 if (error
>= 0 && bptr
== *buffer
) {
2945 error
= -ENAMETOOLONG
;
2955 * __d_path - return the path of a dentry
2956 * @path: the dentry/vfsmount to report
2957 * @root: root vfsmnt/dentry
2958 * @buf: buffer to return value in
2959 * @buflen: buffer length
2961 * Convert a dentry into an ASCII path name.
2963 * Returns a pointer into the buffer or an error code if the
2964 * path was too long.
2966 * "buflen" should be positive.
2968 * If the path is not reachable from the supplied root, return %NULL.
2970 char *__d_path(const struct path
*path
,
2971 const struct path
*root
,
2972 char *buf
, int buflen
)
2974 char *res
= buf
+ buflen
;
2977 prepend(&res
, &buflen
, "\0", 1);
2978 error
= prepend_path(path
, root
, &res
, &buflen
);
2981 return ERR_PTR(error
);
2987 char *d_absolute_path(const struct path
*path
,
2988 char *buf
, int buflen
)
2990 struct path root
= {};
2991 char *res
= buf
+ buflen
;
2994 prepend(&res
, &buflen
, "\0", 1);
2995 error
= prepend_path(path
, &root
, &res
, &buflen
);
3000 return ERR_PTR(error
);
3005 * same as __d_path but appends "(deleted)" for unlinked files.
3007 static int path_with_deleted(const struct path
*path
,
3008 const struct path
*root
,
3009 char **buf
, int *buflen
)
3011 prepend(buf
, buflen
, "\0", 1);
3012 if (d_unlinked(path
->dentry
)) {
3013 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3018 return prepend_path(path
, root
, buf
, buflen
);
3021 static int prepend_unreachable(char **buffer
, int *buflen
)
3023 return prepend(buffer
, buflen
, "(unreachable)", 13);
3026 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3031 seq
= read_seqcount_begin(&fs
->seq
);
3033 } while (read_seqcount_retry(&fs
->seq
, seq
));
3037 * d_path - return the path of a dentry
3038 * @path: path to report
3039 * @buf: buffer to return value in
3040 * @buflen: buffer length
3042 * Convert a dentry into an ASCII path name. If the entry has been deleted
3043 * the string " (deleted)" is appended. Note that this is ambiguous.
3045 * Returns a pointer into the buffer or an error code if the path was
3046 * too long. Note: Callers should use the returned pointer, not the passed
3047 * in buffer, to use the name! The implementation often starts at an offset
3048 * into the buffer, and may leave 0 bytes at the start.
3050 * "buflen" should be positive.
3052 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3054 char *res
= buf
+ buflen
;
3059 * We have various synthetic filesystems that never get mounted. On
3060 * these filesystems dentries are never used for lookup purposes, and
3061 * thus don't need to be hashed. They also don't need a name until a
3062 * user wants to identify the object in /proc/pid/fd/. The little hack
3063 * below allows us to generate a name for these objects on demand:
3065 * Some pseudo inodes are mountable. When they are mounted
3066 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3067 * and instead have d_path return the mounted path.
3069 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3070 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3071 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3074 get_fs_root_rcu(current
->fs
, &root
);
3075 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3079 res
= ERR_PTR(error
);
3082 EXPORT_SYMBOL(d_path
);
3085 * Helper function for dentry_operations.d_dname() members
3087 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3088 const char *fmt
, ...)
3094 va_start(args
, fmt
);
3095 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3098 if (sz
> sizeof(temp
) || sz
> buflen
)
3099 return ERR_PTR(-ENAMETOOLONG
);
3101 buffer
+= buflen
- sz
;
3102 return memcpy(buffer
, temp
, sz
);
3105 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3107 char *end
= buffer
+ buflen
;
3108 /* these dentries are never renamed, so d_lock is not needed */
3109 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3110 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3111 prepend(&end
, &buflen
, "/", 1))
3112 end
= ERR_PTR(-ENAMETOOLONG
);
3117 * Write full pathname from the root of the filesystem into the buffer.
3119 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3121 struct dentry
*dentry
;
3134 prepend(&end
, &len
, "\0", 1);
3138 read_seqbegin_or_lock(&rename_lock
, &seq
);
3139 while (!IS_ROOT(dentry
)) {
3140 struct dentry
*parent
= dentry
->d_parent
;
3143 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3152 if (need_seqretry(&rename_lock
, seq
)) {
3156 done_seqretry(&rename_lock
, seq
);
3161 return ERR_PTR(-ENAMETOOLONG
);
3164 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3166 return __dentry_path(dentry
, buf
, buflen
);
3168 EXPORT_SYMBOL(dentry_path_raw
);
3170 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3175 if (d_unlinked(dentry
)) {
3177 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3181 retval
= __dentry_path(dentry
, buf
, buflen
);
3182 if (!IS_ERR(retval
) && p
)
3183 *p
= '/'; /* restore '/' overriden with '\0' */
3186 return ERR_PTR(-ENAMETOOLONG
);
3189 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3195 seq
= read_seqcount_begin(&fs
->seq
);
3198 } while (read_seqcount_retry(&fs
->seq
, seq
));
3202 * NOTE! The user-level library version returns a
3203 * character pointer. The kernel system call just
3204 * returns the length of the buffer filled (which
3205 * includes the ending '\0' character), or a negative
3206 * error value. So libc would do something like
3208 * char *getcwd(char * buf, size_t size)
3212 * retval = sys_getcwd(buf, size);
3219 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3222 struct path pwd
, root
;
3223 char *page
= __getname();
3229 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3232 if (!d_unlinked(pwd
.dentry
)) {
3234 char *cwd
= page
+ PATH_MAX
;
3235 int buflen
= PATH_MAX
;
3237 prepend(&cwd
, &buflen
, "\0", 1);
3238 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3244 /* Unreachable from current root */
3246 error
= prepend_unreachable(&cwd
, &buflen
);
3252 len
= PATH_MAX
+ page
- cwd
;
3255 if (copy_to_user(buf
, cwd
, len
))
3268 * Test whether new_dentry is a subdirectory of old_dentry.
3270 * Trivially implemented using the dcache structure
3274 * is_subdir - is new dentry a subdirectory of old_dentry
3275 * @new_dentry: new dentry
3276 * @old_dentry: old dentry
3278 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3279 * Returns 0 otherwise.
3280 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3283 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3288 if (new_dentry
== old_dentry
)
3292 /* for restarting inner loop in case of seq retry */
3293 seq
= read_seqbegin(&rename_lock
);
3295 * Need rcu_readlock to protect against the d_parent trashing
3299 if (d_ancestor(old_dentry
, new_dentry
))
3304 } while (read_seqretry(&rename_lock
, seq
));
3309 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3311 struct dentry
*root
= data
;
3312 if (dentry
!= root
) {
3313 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3316 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3317 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3318 dentry
->d_lockref
.count
--;
3321 return D_WALK_CONTINUE
;
3324 void d_genocide(struct dentry
*parent
)
3326 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3329 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3331 inode_dec_link_count(inode
);
3332 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3333 !hlist_unhashed(&dentry
->d_alias
) ||
3334 !d_unlinked(dentry
));
3335 spin_lock(&dentry
->d_parent
->d_lock
);
3336 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3337 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3338 (unsigned long long)inode
->i_ino
);
3339 spin_unlock(&dentry
->d_lock
);
3340 spin_unlock(&dentry
->d_parent
->d_lock
);
3341 d_instantiate(dentry
, inode
);
3343 EXPORT_SYMBOL(d_tmpfile
);
3345 static __initdata
unsigned long dhash_entries
;
3346 static int __init
set_dhash_entries(char *str
)
3350 dhash_entries
= simple_strtoul(str
, &str
, 0);
3353 __setup("dhash_entries=", set_dhash_entries
);
3355 static void __init
dcache_init_early(void)
3359 /* If hashes are distributed across NUMA nodes, defer
3360 * hash allocation until vmalloc space is available.
3366 alloc_large_system_hash("Dentry cache",
3367 sizeof(struct hlist_bl_head
),
3376 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3377 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3380 static void __init
dcache_init(void)
3385 * A constructor could be added for stable state like the lists,
3386 * but it is probably not worth it because of the cache nature
3389 dentry_cache
= KMEM_CACHE(dentry
,
3390 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3392 /* Hash may have been set up in dcache_init_early */
3397 alloc_large_system_hash("Dentry cache",
3398 sizeof(struct hlist_bl_head
),
3407 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3408 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3411 /* SLAB cache for __getname() consumers */
3412 struct kmem_cache
*names_cachep __read_mostly
;
3413 EXPORT_SYMBOL(names_cachep
);
3415 EXPORT_SYMBOL(d_genocide
);
3417 void __init
vfs_caches_init_early(void)
3419 dcache_init_early();
3423 void __init
vfs_caches_init(unsigned long mempages
)
3425 unsigned long reserve
;
3427 /* Base hash sizes on available memory, with a reserve equal to
3428 150% of current kernel size */
3430 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3431 mempages
-= reserve
;
3433 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3434 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3438 files_init(mempages
);