usb: pvrusb2-io free urb cleanup
[linux/fpc-iii.git] / kernel / kmod.c
blob2b76dee284964c82ca42a81b2ddd1463f72d001d
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/smp_lock.h>
27 #include <linux/slab.h>
28 #include <linux/namespace.h>
29 #include <linux/completion.h>
30 #include <linux/file.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <asm/uaccess.h>
39 extern int max_threads;
41 static struct workqueue_struct *khelper_wq;
43 #ifdef CONFIG_KMOD
46 modprobe_path is set via /proc/sys.
48 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
50 /**
51 * request_module - try to load a kernel module
52 * @fmt: printf style format string for the name of the module
53 * @varargs: arguements as specified in the format string
55 * Load a module using the user mode module loader. The function returns
56 * zero on success or a negative errno code on failure. Note that a
57 * successful module load does not mean the module did not then unload
58 * and exit on an error of its own. Callers must check that the service
59 * they requested is now available not blindly invoke it.
61 * If module auto-loading support is disabled then this function
62 * becomes a no-operation.
64 int request_module(const char *fmt, ...)
66 va_list args;
67 char module_name[MODULE_NAME_LEN];
68 unsigned int max_modprobes;
69 int ret;
70 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
71 static char *envp[] = { "HOME=/",
72 "TERM=linux",
73 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
74 NULL };
75 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
76 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
77 static int kmod_loop_msg;
79 va_start(args, fmt);
80 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
81 va_end(args);
82 if (ret >= MODULE_NAME_LEN)
83 return -ENAMETOOLONG;
85 /* If modprobe needs a service that is in a module, we get a recursive
86 * loop. Limit the number of running kmod threads to max_threads/2 or
87 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
88 * would be to run the parents of this process, counting how many times
89 * kmod was invoked. That would mean accessing the internals of the
90 * process tables to get the command line, proc_pid_cmdline is static
91 * and it is not worth changing the proc code just to handle this case.
92 * KAO.
94 * "trace the ppid" is simple, but will fail if someone's
95 * parent exits. I think this is as good as it gets. --RR
97 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
98 atomic_inc(&kmod_concurrent);
99 if (atomic_read(&kmod_concurrent) > max_modprobes) {
100 /* We may be blaming an innocent here, but unlikely */
101 if (kmod_loop_msg++ < 5)
102 printk(KERN_ERR
103 "request_module: runaway loop modprobe %s\n",
104 module_name);
105 atomic_dec(&kmod_concurrent);
106 return -ENOMEM;
109 ret = call_usermodehelper(modprobe_path, argv, envp, 1);
110 atomic_dec(&kmod_concurrent);
111 return ret;
113 EXPORT_SYMBOL(request_module);
114 #endif /* CONFIG_KMOD */
116 struct subprocess_info {
117 struct completion *complete;
118 char *path;
119 char **argv;
120 char **envp;
121 struct key *ring;
122 int wait;
123 int retval;
124 struct file *stdin;
128 * This is the task which runs the usermode application
130 static int ____call_usermodehelper(void *data)
132 struct subprocess_info *sub_info = data;
133 struct key *new_session, *old_session;
134 int retval;
136 /* Unblock all signals and set the session keyring. */
137 new_session = key_get(sub_info->ring);
138 flush_signals(current);
139 spin_lock_irq(&current->sighand->siglock);
140 old_session = __install_session_keyring(current, new_session);
141 flush_signal_handlers(current, 1);
142 sigemptyset(&current->blocked);
143 recalc_sigpending();
144 spin_unlock_irq(&current->sighand->siglock);
146 key_put(old_session);
148 /* Install input pipe when needed */
149 if (sub_info->stdin) {
150 struct files_struct *f = current->files;
151 struct fdtable *fdt;
152 /* no races because files should be private here */
153 sys_close(0);
154 fd_install(0, sub_info->stdin);
155 spin_lock(&f->file_lock);
156 fdt = files_fdtable(f);
157 FD_SET(0, fdt->open_fds);
158 FD_CLR(0, fdt->close_on_exec);
159 spin_unlock(&f->file_lock);
161 /* and disallow core files too */
162 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
165 /* We can run anywhere, unlike our parent keventd(). */
166 set_cpus_allowed(current, CPU_MASK_ALL);
168 retval = -EPERM;
169 if (current->fs->root)
170 retval = kernel_execve(sub_info->path,
171 sub_info->argv, sub_info->envp);
173 /* Exec failed? */
174 sub_info->retval = retval;
175 do_exit(0);
178 /* Keventd can't block, but this (a child) can. */
179 static int wait_for_helper(void *data)
181 struct subprocess_info *sub_info = data;
182 pid_t pid;
183 struct k_sigaction sa;
185 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
186 * populate the status, but will return -ECHILD. */
187 sa.sa.sa_handler = SIG_IGN;
188 sa.sa.sa_flags = 0;
189 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
190 do_sigaction(SIGCHLD, &sa, NULL);
191 allow_signal(SIGCHLD);
193 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
194 if (pid < 0) {
195 sub_info->retval = pid;
196 } else {
197 int ret;
200 * Normally it is bogus to call wait4() from in-kernel because
201 * wait4() wants to write the exit code to a userspace address.
202 * But wait_for_helper() always runs as keventd, and put_user()
203 * to a kernel address works OK for kernel threads, due to their
204 * having an mm_segment_t which spans the entire address space.
206 * Thus the __user pointer cast is valid here.
208 sys_wait4(pid, (int __user *)&ret, 0, NULL);
211 * If ret is 0, either ____call_usermodehelper failed and the
212 * real error code is already in sub_info->retval or
213 * sub_info->retval is 0 anyway, so don't mess with it then.
215 if (ret)
216 sub_info->retval = ret;
219 complete(sub_info->complete);
220 return 0;
223 /* This is run by khelper thread */
224 static void __call_usermodehelper(void *data)
226 struct subprocess_info *sub_info = data;
227 pid_t pid;
228 int wait = sub_info->wait;
230 /* CLONE_VFORK: wait until the usermode helper has execve'd
231 * successfully We need the data structures to stay around
232 * until that is done. */
233 if (wait)
234 pid = kernel_thread(wait_for_helper, sub_info,
235 CLONE_FS | CLONE_FILES | SIGCHLD);
236 else
237 pid = kernel_thread(____call_usermodehelper, sub_info,
238 CLONE_VFORK | SIGCHLD);
240 if (pid < 0) {
241 sub_info->retval = pid;
242 complete(sub_info->complete);
243 } else if (!wait)
244 complete(sub_info->complete);
248 * call_usermodehelper_keys - start a usermode application
249 * @path: pathname for the application
250 * @argv: null-terminated argument list
251 * @envp: null-terminated environment list
252 * @session_keyring: session keyring for process (NULL for an empty keyring)
253 * @wait: wait for the application to finish and return status.
255 * Runs a user-space application. The application is started
256 * asynchronously if wait is not set, and runs as a child of keventd.
257 * (ie. it runs with full root capabilities).
259 * Must be called from process context. Returns a negative error code
260 * if program was not execed successfully, or 0.
262 int call_usermodehelper_keys(char *path, char **argv, char **envp,
263 struct key *session_keyring, int wait)
265 DECLARE_COMPLETION_ONSTACK(done);
266 struct subprocess_info sub_info = {
267 .complete = &done,
268 .path = path,
269 .argv = argv,
270 .envp = envp,
271 .ring = session_keyring,
272 .wait = wait,
273 .retval = 0,
275 DECLARE_WORK(work, __call_usermodehelper, &sub_info);
277 if (!khelper_wq)
278 return -EBUSY;
280 if (path[0] == '\0')
281 return 0;
283 queue_work(khelper_wq, &work);
284 wait_for_completion(&done);
285 return sub_info.retval;
287 EXPORT_SYMBOL(call_usermodehelper_keys);
289 int call_usermodehelper_pipe(char *path, char **argv, char **envp,
290 struct file **filp)
292 DECLARE_COMPLETION(done);
293 struct subprocess_info sub_info = {
294 .complete = &done,
295 .path = path,
296 .argv = argv,
297 .envp = envp,
298 .retval = 0,
300 struct file *f;
301 DECLARE_WORK(work, __call_usermodehelper, &sub_info);
303 if (!khelper_wq)
304 return -EBUSY;
306 if (path[0] == '\0')
307 return 0;
309 f = create_write_pipe();
310 if (IS_ERR(f))
311 return PTR_ERR(f);
312 *filp = f;
314 f = create_read_pipe(f);
315 if (IS_ERR(f)) {
316 free_write_pipe(*filp);
317 return PTR_ERR(f);
319 sub_info.stdin = f;
321 queue_work(khelper_wq, &work);
322 wait_for_completion(&done);
323 return sub_info.retval;
325 EXPORT_SYMBOL(call_usermodehelper_pipe);
327 void __init usermodehelper_init(void)
329 khelper_wq = create_singlethread_workqueue("khelper");
330 BUG_ON(!khelper_wq);