4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
243 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
249 kfree_const(mnt
->mnt_devname
);
254 kmem_cache_free(mnt_cache
, mnt
);
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
277 int __mnt_is_readonly(struct vfsmount
*mnt
)
279 if (mnt
->mnt_flags
& MNT_READONLY
)
281 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
287 static inline void mnt_inc_writers(struct mount
*mnt
)
290 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
296 static inline void mnt_dec_writers(struct mount
*mnt
)
299 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
305 static unsigned int mnt_get_writers(struct mount
*mnt
)
308 unsigned int count
= 0;
311 for_each_possible_cpu(cpu
) {
312 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
317 return mnt
->mnt_writers
;
321 static int mnt_is_readonly(struct vfsmount
*mnt
)
323 if (mnt
->mnt_sb
->s_readonly_remount
)
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 return __mnt_is_readonly(mnt
);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount
*m
)
348 struct mount
*mnt
= real_mount(m
);
352 mnt_inc_writers(mnt
);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
359 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
367 if (mnt_is_readonly(m
)) {
368 mnt_dec_writers(mnt
);
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount
*m
)
389 sb_start_write(m
->mnt_sb
);
390 ret
= __mnt_want_write(m
);
392 sb_end_write(m
->mnt_sb
);
395 EXPORT_SYMBOL_GPL(mnt_want_write
);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount
*mnt
)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt
))
415 mnt_inc_writers(real_mount(mnt
));
419 EXPORT_SYMBOL_GPL(mnt_clone_write
);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file
*file
)
430 if (!(file
->f_mode
& FMODE_WRITER
))
431 return __mnt_want_write(file
->f_path
.mnt
);
433 return mnt_clone_write(file
->f_path
.mnt
);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file
*file
)
447 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
448 ret
= __mnt_want_write_file(file
);
450 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
453 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount
*mnt
)
466 mnt_dec_writers(real_mount(mnt
));
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount
*mnt
)
480 __mnt_drop_write(mnt
);
481 sb_end_write(mnt
->mnt_sb
);
483 EXPORT_SYMBOL_GPL(mnt_drop_write
);
485 void __mnt_drop_write_file(struct file
*file
)
487 __mnt_drop_write(file
->f_path
.mnt
);
490 void mnt_drop_write_file(struct file
*file
)
492 mnt_drop_write(file
->f_path
.mnt
);
494 EXPORT_SYMBOL(mnt_drop_write_file
);
496 static int mnt_make_readonly(struct mount
*mnt
)
501 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt
) > 0)
527 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
533 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
538 static void __mnt_unmake_readonly(struct mount
*mnt
)
541 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
545 int sb_prepare_remount_readonly(struct super_block
*sb
)
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb
->s_remove_count
))
555 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
556 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
557 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
559 if (mnt_get_writers(mnt
) > 0) {
565 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
569 sb
->s_readonly_remount
= 1;
572 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
573 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
574 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
581 static void free_vfsmnt(struct mount
*mnt
)
583 kfree_const(mnt
->mnt_devname
);
585 free_percpu(mnt
->mnt_pcp
);
587 kmem_cache_free(mnt_cache
, mnt
);
590 static void delayed_free_vfsmnt(struct rcu_head
*head
)
592 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
599 if (read_seqretry(&mount_lock
, seq
))
603 mnt
= real_mount(bastard
);
604 mnt_add_count(mnt
, 1);
605 if (likely(!read_seqretry(&mount_lock
, seq
)))
607 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
608 mnt_add_count(mnt
, -1);
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
617 int res
= __legitimize_mnt(bastard
, seq
);
620 if (unlikely(res
< 0)) {
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
632 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
634 struct hlist_head
*head
= m_hash(mnt
, dentry
);
637 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
638 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
644 * find the last mount at @dentry on vfsmount @mnt.
645 * mount_lock must be held.
647 struct mount
*__lookup_mnt_last(struct vfsmount
*mnt
, struct dentry
*dentry
)
649 struct mount
*p
, *res
= NULL
;
650 p
= __lookup_mnt(mnt
, dentry
);
653 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
655 hlist_for_each_entry_continue(p
, mnt_hash
) {
656 if (&p
->mnt_parent
->mnt
!= mnt
|| p
->mnt_mountpoint
!= dentry
)
658 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
666 * lookup_mnt - Return the first child mount mounted at path
668 * "First" means first mounted chronologically. If you create the
671 * mount /dev/sda1 /mnt
672 * mount /dev/sda2 /mnt
673 * mount /dev/sda3 /mnt
675 * Then lookup_mnt() on the base /mnt dentry in the root mount will
676 * return successively the root dentry and vfsmount of /dev/sda1, then
677 * /dev/sda2, then /dev/sda3, then NULL.
679 * lookup_mnt takes a reference to the found vfsmount.
681 struct vfsmount
*lookup_mnt(struct path
*path
)
683 struct mount
*child_mnt
;
689 seq
= read_seqbegin(&mount_lock
);
690 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
691 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
692 } while (!legitimize_mnt(m
, seq
));
698 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
699 * current mount namespace.
701 * The common case is dentries are not mountpoints at all and that
702 * test is handled inline. For the slow case when we are actually
703 * dealing with a mountpoint of some kind, walk through all of the
704 * mounts in the current mount namespace and test to see if the dentry
707 * The mount_hashtable is not usable in the context because we
708 * need to identify all mounts that may be in the current mount
709 * namespace not just a mount that happens to have some specified
712 bool __is_local_mountpoint(struct dentry
*dentry
)
714 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
716 bool is_covered
= false;
718 if (!d_mountpoint(dentry
))
721 down_read(&namespace_sem
);
722 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
723 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
727 up_read(&namespace_sem
);
732 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
734 struct hlist_head
*chain
= mp_hash(dentry
);
735 struct mountpoint
*mp
;
737 hlist_for_each_entry(mp
, chain
, m_hash
) {
738 if (mp
->m_dentry
== dentry
) {
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry
))
741 return ERR_PTR(-ENOENT
);
749 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
751 struct mountpoint
*mp
, *new = NULL
;
754 if (d_mountpoint(dentry
)) {
756 read_seqlock_excl(&mount_lock
);
757 mp
= lookup_mountpoint(dentry
);
758 read_sequnlock_excl(&mount_lock
);
764 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
766 return ERR_PTR(-ENOMEM
);
769 /* Exactly one processes may set d_mounted */
770 ret
= d_set_mounted(dentry
);
772 /* Someone else set d_mounted? */
776 /* The dentry is not available as a mountpoint? */
781 /* Add the new mountpoint to the hash table */
782 read_seqlock_excl(&mount_lock
);
783 new->m_dentry
= dentry
;
785 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
786 INIT_HLIST_HEAD(&new->m_list
);
787 read_sequnlock_excl(&mount_lock
);
796 static void put_mountpoint(struct mountpoint
*mp
)
798 if (!--mp
->m_count
) {
799 struct dentry
*dentry
= mp
->m_dentry
;
800 BUG_ON(!hlist_empty(&mp
->m_list
));
801 spin_lock(&dentry
->d_lock
);
802 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
803 spin_unlock(&dentry
->d_lock
);
804 hlist_del(&mp
->m_hash
);
809 static inline int check_mnt(struct mount
*mnt
)
811 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
815 * vfsmount lock must be held for write
817 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
821 wake_up_interruptible(&ns
->poll
);
826 * vfsmount lock must be held for write
828 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
830 if (ns
&& ns
->event
!= event
) {
832 wake_up_interruptible(&ns
->poll
);
837 * vfsmount lock must be held for write
839 static void unhash_mnt(struct mount
*mnt
)
841 mnt
->mnt_parent
= mnt
;
842 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
843 list_del_init(&mnt
->mnt_child
);
844 hlist_del_init_rcu(&mnt
->mnt_hash
);
845 hlist_del_init(&mnt
->mnt_mp_list
);
846 put_mountpoint(mnt
->mnt_mp
);
851 * vfsmount lock must be held for write
853 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
855 old_path
->dentry
= mnt
->mnt_mountpoint
;
856 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
861 * vfsmount lock must be held for write
863 static void umount_mnt(struct mount
*mnt
)
865 /* old mountpoint will be dropped when we can do that */
866 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
871 * vfsmount lock must be held for write
873 void mnt_set_mountpoint(struct mount
*mnt
,
874 struct mountpoint
*mp
,
875 struct mount
*child_mnt
)
878 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
879 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
880 child_mnt
->mnt_parent
= mnt
;
881 child_mnt
->mnt_mp
= mp
;
882 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
886 * vfsmount lock must be held for write
888 static void attach_mnt(struct mount
*mnt
,
889 struct mount
*parent
,
890 struct mountpoint
*mp
)
892 mnt_set_mountpoint(parent
, mp
, mnt
);
893 hlist_add_head_rcu(&mnt
->mnt_hash
, m_hash(&parent
->mnt
, mp
->m_dentry
));
894 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
897 static void attach_shadowed(struct mount
*mnt
,
898 struct mount
*parent
,
899 struct mount
*shadows
)
902 hlist_add_behind_rcu(&mnt
->mnt_hash
, &shadows
->mnt_hash
);
903 list_add(&mnt
->mnt_child
, &shadows
->mnt_child
);
905 hlist_add_head_rcu(&mnt
->mnt_hash
,
906 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
907 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
912 * vfsmount lock must be held for write
914 static void commit_tree(struct mount
*mnt
, struct mount
*shadows
)
916 struct mount
*parent
= mnt
->mnt_parent
;
919 struct mnt_namespace
*n
= parent
->mnt_ns
;
921 BUG_ON(parent
== mnt
);
923 list_add_tail(&head
, &mnt
->mnt_list
);
924 list_for_each_entry(m
, &head
, mnt_list
)
927 list_splice(&head
, n
->list
.prev
);
929 n
->mounts
+= n
->pending_mounts
;
930 n
->pending_mounts
= 0;
932 attach_shadowed(mnt
, parent
, shadows
);
933 touch_mnt_namespace(n
);
936 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
938 struct list_head
*next
= p
->mnt_mounts
.next
;
939 if (next
== &p
->mnt_mounts
) {
943 next
= p
->mnt_child
.next
;
944 if (next
!= &p
->mnt_parent
->mnt_mounts
)
949 return list_entry(next
, struct mount
, mnt_child
);
952 static struct mount
*skip_mnt_tree(struct mount
*p
)
954 struct list_head
*prev
= p
->mnt_mounts
.prev
;
955 while (prev
!= &p
->mnt_mounts
) {
956 p
= list_entry(prev
, struct mount
, mnt_child
);
957 prev
= p
->mnt_mounts
.prev
;
963 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
969 return ERR_PTR(-ENODEV
);
971 mnt
= alloc_vfsmnt(name
);
973 return ERR_PTR(-ENOMEM
);
975 if (flags
& MS_KERNMOUNT
)
976 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
978 root
= mount_fs(type
, flags
, name
, data
);
982 return ERR_CAST(root
);
985 mnt
->mnt
.mnt_root
= root
;
986 mnt
->mnt
.mnt_sb
= root
->d_sb
;
987 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
988 mnt
->mnt_parent
= mnt
;
990 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
994 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
996 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
999 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1003 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1005 return ERR_PTR(-ENOMEM
);
1007 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1008 mnt
->mnt_group_id
= 0; /* not a peer of original */
1010 mnt
->mnt_group_id
= old
->mnt_group_id
;
1012 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1013 err
= mnt_alloc_group_id(mnt
);
1018 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
1019 /* Don't allow unprivileged users to change mount flags */
1020 if (flag
& CL_UNPRIVILEGED
) {
1021 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1023 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1024 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1026 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1027 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1029 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1030 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1032 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1033 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1036 /* Don't allow unprivileged users to reveal what is under a mount */
1037 if ((flag
& CL_UNPRIVILEGED
) &&
1038 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1039 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1041 atomic_inc(&sb
->s_active
);
1042 mnt
->mnt
.mnt_sb
= sb
;
1043 mnt
->mnt
.mnt_root
= dget(root
);
1044 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1045 mnt
->mnt_parent
= mnt
;
1047 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1048 unlock_mount_hash();
1050 if ((flag
& CL_SLAVE
) ||
1051 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1052 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1053 mnt
->mnt_master
= old
;
1054 CLEAR_MNT_SHARED(mnt
);
1055 } else if (!(flag
& CL_PRIVATE
)) {
1056 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1057 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1058 if (IS_MNT_SLAVE(old
))
1059 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1060 mnt
->mnt_master
= old
->mnt_master
;
1062 if (flag
& CL_MAKE_SHARED
)
1063 set_mnt_shared(mnt
);
1065 /* stick the duplicate mount on the same expiry list
1066 * as the original if that was on one */
1067 if (flag
& CL_EXPIRE
) {
1068 if (!list_empty(&old
->mnt_expire
))
1069 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1077 return ERR_PTR(err
);
1080 static void cleanup_mnt(struct mount
*mnt
)
1083 * This probably indicates that somebody messed
1084 * up a mnt_want/drop_write() pair. If this
1085 * happens, the filesystem was probably unable
1086 * to make r/w->r/o transitions.
1089 * The locking used to deal with mnt_count decrement provides barriers,
1090 * so mnt_get_writers() below is safe.
1092 WARN_ON(mnt_get_writers(mnt
));
1093 if (unlikely(mnt
->mnt_pins
.first
))
1095 fsnotify_vfsmount_delete(&mnt
->mnt
);
1096 dput(mnt
->mnt
.mnt_root
);
1097 deactivate_super(mnt
->mnt
.mnt_sb
);
1099 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1102 static void __cleanup_mnt(struct rcu_head
*head
)
1104 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1107 static LLIST_HEAD(delayed_mntput_list
);
1108 static void delayed_mntput(struct work_struct
*unused
)
1110 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1111 struct llist_node
*next
;
1113 for (; node
; node
= next
) {
1114 next
= llist_next(node
);
1115 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1118 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1120 static void mntput_no_expire(struct mount
*mnt
)
1123 mnt_add_count(mnt
, -1);
1124 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1129 if (mnt_get_count(mnt
)) {
1131 unlock_mount_hash();
1134 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1136 unlock_mount_hash();
1139 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1142 list_del(&mnt
->mnt_instance
);
1144 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1145 struct mount
*p
, *tmp
;
1146 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1150 unlock_mount_hash();
1152 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1153 struct task_struct
*task
= current
;
1154 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1155 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1156 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1159 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1160 schedule_delayed_work(&delayed_mntput_work
, 1);
1166 void mntput(struct vfsmount
*mnt
)
1169 struct mount
*m
= real_mount(mnt
);
1170 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1171 if (unlikely(m
->mnt_expiry_mark
))
1172 m
->mnt_expiry_mark
= 0;
1173 mntput_no_expire(m
);
1176 EXPORT_SYMBOL(mntput
);
1178 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1181 mnt_add_count(real_mount(mnt
), 1);
1184 EXPORT_SYMBOL(mntget
);
1186 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1189 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1192 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1196 static inline void mangle(struct seq_file
*m
, const char *s
)
1198 seq_escape(m
, s
, " \t\n\\");
1202 * Simple .show_options callback for filesystems which don't want to
1203 * implement more complex mount option showing.
1205 * See also save_mount_options().
1207 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1209 const char *options
;
1212 options
= rcu_dereference(root
->d_sb
->s_options
);
1214 if (options
!= NULL
&& options
[0]) {
1222 EXPORT_SYMBOL(generic_show_options
);
1225 * If filesystem uses generic_show_options(), this function should be
1226 * called from the fill_super() callback.
1228 * The .remount_fs callback usually needs to be handled in a special
1229 * way, to make sure, that previous options are not overwritten if the
1232 * Also note, that if the filesystem's .remount_fs function doesn't
1233 * reset all options to their default value, but changes only newly
1234 * given options, then the displayed options will not reflect reality
1237 void save_mount_options(struct super_block
*sb
, char *options
)
1239 BUG_ON(sb
->s_options
);
1240 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1242 EXPORT_SYMBOL(save_mount_options
);
1244 void replace_mount_options(struct super_block
*sb
, char *options
)
1246 char *old
= sb
->s_options
;
1247 rcu_assign_pointer(sb
->s_options
, options
);
1253 EXPORT_SYMBOL(replace_mount_options
);
1255 #ifdef CONFIG_PROC_FS
1256 /* iterator; we want it to have access to namespace_sem, thus here... */
1257 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1259 struct proc_mounts
*p
= m
->private;
1261 down_read(&namespace_sem
);
1262 if (p
->cached_event
== p
->ns
->event
) {
1263 void *v
= p
->cached_mount
;
1264 if (*pos
== p
->cached_index
)
1266 if (*pos
== p
->cached_index
+ 1) {
1267 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1268 return p
->cached_mount
= v
;
1272 p
->cached_event
= p
->ns
->event
;
1273 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1274 p
->cached_index
= *pos
;
1275 return p
->cached_mount
;
1278 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1280 struct proc_mounts
*p
= m
->private;
1282 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1283 p
->cached_index
= *pos
;
1284 return p
->cached_mount
;
1287 static void m_stop(struct seq_file
*m
, void *v
)
1289 up_read(&namespace_sem
);
1292 static int m_show(struct seq_file
*m
, void *v
)
1294 struct proc_mounts
*p
= m
->private;
1295 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1296 return p
->show(m
, &r
->mnt
);
1299 const struct seq_operations mounts_op
= {
1305 #endif /* CONFIG_PROC_FS */
1308 * may_umount_tree - check if a mount tree is busy
1309 * @mnt: root of mount tree
1311 * This is called to check if a tree of mounts has any
1312 * open files, pwds, chroots or sub mounts that are
1315 int may_umount_tree(struct vfsmount
*m
)
1317 struct mount
*mnt
= real_mount(m
);
1318 int actual_refs
= 0;
1319 int minimum_refs
= 0;
1323 /* write lock needed for mnt_get_count */
1325 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1326 actual_refs
+= mnt_get_count(p
);
1329 unlock_mount_hash();
1331 if (actual_refs
> minimum_refs
)
1337 EXPORT_SYMBOL(may_umount_tree
);
1340 * may_umount - check if a mount point is busy
1341 * @mnt: root of mount
1343 * This is called to check if a mount point has any
1344 * open files, pwds, chroots or sub mounts. If the
1345 * mount has sub mounts this will return busy
1346 * regardless of whether the sub mounts are busy.
1348 * Doesn't take quota and stuff into account. IOW, in some cases it will
1349 * give false negatives. The main reason why it's here is that we need
1350 * a non-destructive way to look for easily umountable filesystems.
1352 int may_umount(struct vfsmount
*mnt
)
1355 down_read(&namespace_sem
);
1357 if (propagate_mount_busy(real_mount(mnt
), 2))
1359 unlock_mount_hash();
1360 up_read(&namespace_sem
);
1364 EXPORT_SYMBOL(may_umount
);
1366 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1368 static void namespace_unlock(void)
1370 struct hlist_head head
;
1372 hlist_move_list(&unmounted
, &head
);
1374 up_write(&namespace_sem
);
1376 if (likely(hlist_empty(&head
)))
1381 group_pin_kill(&head
);
1384 static inline void namespace_lock(void)
1386 down_write(&namespace_sem
);
1389 enum umount_tree_flags
{
1391 UMOUNT_PROPAGATE
= 2,
1392 UMOUNT_CONNECTED
= 4,
1395 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1397 /* Leaving mounts connected is only valid for lazy umounts */
1398 if (how
& UMOUNT_SYNC
)
1401 /* A mount without a parent has nothing to be connected to */
1402 if (!mnt_has_parent(mnt
))
1405 /* Because the reference counting rules change when mounts are
1406 * unmounted and connected, umounted mounts may not be
1407 * connected to mounted mounts.
1409 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1412 /* Has it been requested that the mount remain connected? */
1413 if (how
& UMOUNT_CONNECTED
)
1416 /* Is the mount locked such that it needs to remain connected? */
1417 if (IS_MNT_LOCKED(mnt
))
1420 /* By default disconnect the mount */
1425 * mount_lock must be held
1426 * namespace_sem must be held for write
1428 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1430 LIST_HEAD(tmp_list
);
1433 if (how
& UMOUNT_PROPAGATE
)
1434 propagate_mount_unlock(mnt
);
1436 /* Gather the mounts to umount */
1437 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1438 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1439 list_move(&p
->mnt_list
, &tmp_list
);
1442 /* Hide the mounts from mnt_mounts */
1443 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1444 list_del_init(&p
->mnt_child
);
1447 /* Add propogated mounts to the tmp_list */
1448 if (how
& UMOUNT_PROPAGATE
)
1449 propagate_umount(&tmp_list
);
1451 while (!list_empty(&tmp_list
)) {
1452 struct mnt_namespace
*ns
;
1454 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1455 list_del_init(&p
->mnt_expire
);
1456 list_del_init(&p
->mnt_list
);
1460 __touch_mnt_namespace(ns
);
1463 if (how
& UMOUNT_SYNC
)
1464 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1466 disconnect
= disconnect_mount(p
, how
);
1468 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1469 disconnect
? &unmounted
: NULL
);
1470 if (mnt_has_parent(p
)) {
1471 mnt_add_count(p
->mnt_parent
, -1);
1473 /* Don't forget about p */
1474 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1479 change_mnt_propagation(p
, MS_PRIVATE
);
1483 static void shrink_submounts(struct mount
*mnt
);
1485 static int do_umount(struct mount
*mnt
, int flags
)
1487 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1490 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1495 * Allow userspace to request a mountpoint be expired rather than
1496 * unmounting unconditionally. Unmount only happens if:
1497 * (1) the mark is already set (the mark is cleared by mntput())
1498 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1500 if (flags
& MNT_EXPIRE
) {
1501 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1502 flags
& (MNT_FORCE
| MNT_DETACH
))
1506 * probably don't strictly need the lock here if we examined
1507 * all race cases, but it's a slowpath.
1510 if (mnt_get_count(mnt
) != 2) {
1511 unlock_mount_hash();
1514 unlock_mount_hash();
1516 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1521 * If we may have to abort operations to get out of this
1522 * mount, and they will themselves hold resources we must
1523 * allow the fs to do things. In the Unix tradition of
1524 * 'Gee thats tricky lets do it in userspace' the umount_begin
1525 * might fail to complete on the first run through as other tasks
1526 * must return, and the like. Thats for the mount program to worry
1527 * about for the moment.
1530 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1531 sb
->s_op
->umount_begin(sb
);
1535 * No sense to grab the lock for this test, but test itself looks
1536 * somewhat bogus. Suggestions for better replacement?
1537 * Ho-hum... In principle, we might treat that as umount + switch
1538 * to rootfs. GC would eventually take care of the old vfsmount.
1539 * Actually it makes sense, especially if rootfs would contain a
1540 * /reboot - static binary that would close all descriptors and
1541 * call reboot(9). Then init(8) could umount root and exec /reboot.
1543 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1545 * Special case for "unmounting" root ...
1546 * we just try to remount it readonly.
1548 if (!capable(CAP_SYS_ADMIN
))
1550 down_write(&sb
->s_umount
);
1551 if (!(sb
->s_flags
& MS_RDONLY
))
1552 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1553 up_write(&sb
->s_umount
);
1561 if (flags
& MNT_DETACH
) {
1562 if (!list_empty(&mnt
->mnt_list
))
1563 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1566 shrink_submounts(mnt
);
1568 if (!propagate_mount_busy(mnt
, 2)) {
1569 if (!list_empty(&mnt
->mnt_list
))
1570 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1574 unlock_mount_hash();
1580 * __detach_mounts - lazily unmount all mounts on the specified dentry
1582 * During unlink, rmdir, and d_drop it is possible to loose the path
1583 * to an existing mountpoint, and wind up leaking the mount.
1584 * detach_mounts allows lazily unmounting those mounts instead of
1587 * The caller may hold dentry->d_inode->i_mutex.
1589 void __detach_mounts(struct dentry
*dentry
)
1591 struct mountpoint
*mp
;
1596 mp
= lookup_mountpoint(dentry
);
1597 if (IS_ERR_OR_NULL(mp
))
1601 while (!hlist_empty(&mp
->m_list
)) {
1602 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1603 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1604 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1607 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1611 unlock_mount_hash();
1616 * Is the caller allowed to modify his namespace?
1618 static inline bool may_mount(void)
1620 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1623 static inline bool may_mandlock(void)
1625 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1628 return capable(CAP_SYS_ADMIN
);
1632 * Now umount can handle mount points as well as block devices.
1633 * This is important for filesystems which use unnamed block devices.
1635 * We now support a flag for forced unmount like the other 'big iron'
1636 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1639 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1644 int lookup_flags
= 0;
1646 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1652 if (!(flags
& UMOUNT_NOFOLLOW
))
1653 lookup_flags
|= LOOKUP_FOLLOW
;
1655 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1658 mnt
= real_mount(path
.mnt
);
1660 if (path
.dentry
!= path
.mnt
->mnt_root
)
1662 if (!check_mnt(mnt
))
1664 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1667 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1670 retval
= do_umount(mnt
, flags
);
1672 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1674 mntput_no_expire(mnt
);
1679 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1682 * The 2.0 compatible umount. No flags.
1684 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1686 return sys_umount(name
, 0);
1691 static bool is_mnt_ns_file(struct dentry
*dentry
)
1693 /* Is this a proxy for a mount namespace? */
1694 return dentry
->d_op
== &ns_dentry_operations
&&
1695 dentry
->d_fsdata
== &mntns_operations
;
1698 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1700 return container_of(ns
, struct mnt_namespace
, ns
);
1703 static bool mnt_ns_loop(struct dentry
*dentry
)
1705 /* Could bind mounting the mount namespace inode cause a
1706 * mount namespace loop?
1708 struct mnt_namespace
*mnt_ns
;
1709 if (!is_mnt_ns_file(dentry
))
1712 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1713 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1716 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1719 struct mount
*res
, *p
, *q
, *r
, *parent
;
1721 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1722 return ERR_PTR(-EINVAL
);
1724 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1725 return ERR_PTR(-EINVAL
);
1727 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1731 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1734 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1736 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1739 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1740 struct mount
*t
= NULL
;
1741 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1742 IS_MNT_UNBINDABLE(s
)) {
1743 s
= skip_mnt_tree(s
);
1746 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1747 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1748 s
= skip_mnt_tree(s
);
1751 while (p
!= s
->mnt_parent
) {
1757 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1761 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1762 mnt_set_mountpoint(parent
, p
->mnt_mp
, q
);
1763 if (!list_empty(&parent
->mnt_mounts
)) {
1764 t
= list_last_entry(&parent
->mnt_mounts
,
1765 struct mount
, mnt_child
);
1766 if (t
->mnt_mp
!= p
->mnt_mp
)
1769 attach_shadowed(q
, parent
, t
);
1770 unlock_mount_hash();
1777 umount_tree(res
, UMOUNT_SYNC
);
1778 unlock_mount_hash();
1783 /* Caller should check returned pointer for errors */
1785 struct vfsmount
*collect_mounts(struct path
*path
)
1789 if (!check_mnt(real_mount(path
->mnt
)))
1790 tree
= ERR_PTR(-EINVAL
);
1792 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1793 CL_COPY_ALL
| CL_PRIVATE
);
1796 return ERR_CAST(tree
);
1800 void drop_collected_mounts(struct vfsmount
*mnt
)
1804 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1805 unlock_mount_hash();
1810 * clone_private_mount - create a private clone of a path
1812 * This creates a new vfsmount, which will be the clone of @path. The new will
1813 * not be attached anywhere in the namespace and will be private (i.e. changes
1814 * to the originating mount won't be propagated into this).
1816 * Release with mntput().
1818 struct vfsmount
*clone_private_mount(struct path
*path
)
1820 struct mount
*old_mnt
= real_mount(path
->mnt
);
1821 struct mount
*new_mnt
;
1823 if (IS_MNT_UNBINDABLE(old_mnt
))
1824 return ERR_PTR(-EINVAL
);
1826 down_read(&namespace_sem
);
1827 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1828 up_read(&namespace_sem
);
1829 if (IS_ERR(new_mnt
))
1830 return ERR_CAST(new_mnt
);
1832 return &new_mnt
->mnt
;
1834 EXPORT_SYMBOL_GPL(clone_private_mount
);
1836 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1837 struct vfsmount
*root
)
1840 int res
= f(root
, arg
);
1843 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1844 res
= f(&mnt
->mnt
, arg
);
1851 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1855 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1856 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1857 mnt_release_group_id(p
);
1861 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1865 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1866 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1867 int err
= mnt_alloc_group_id(p
);
1869 cleanup_group_ids(mnt
, p
);
1878 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1880 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1881 unsigned int mounts
= 0, old
, pending
, sum
;
1884 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1888 pending
= ns
->pending_mounts
;
1889 sum
= old
+ pending
;
1893 (mounts
> (max
- sum
)))
1896 ns
->pending_mounts
= pending
+ mounts
;
1901 * @source_mnt : mount tree to be attached
1902 * @nd : place the mount tree @source_mnt is attached
1903 * @parent_nd : if non-null, detach the source_mnt from its parent and
1904 * store the parent mount and mountpoint dentry.
1905 * (done when source_mnt is moved)
1907 * NOTE: in the table below explains the semantics when a source mount
1908 * of a given type is attached to a destination mount of a given type.
1909 * ---------------------------------------------------------------------------
1910 * | BIND MOUNT OPERATION |
1911 * |**************************************************************************
1912 * | source-->| shared | private | slave | unbindable |
1916 * |**************************************************************************
1917 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1919 * |non-shared| shared (+) | private | slave (*) | invalid |
1920 * ***************************************************************************
1921 * A bind operation clones the source mount and mounts the clone on the
1922 * destination mount.
1924 * (++) the cloned mount is propagated to all the mounts in the propagation
1925 * tree of the destination mount and the cloned mount is added to
1926 * the peer group of the source mount.
1927 * (+) the cloned mount is created under the destination mount and is marked
1928 * as shared. The cloned mount is added to the peer group of the source
1930 * (+++) the mount is propagated to all the mounts in the propagation tree
1931 * of the destination mount and the cloned mount is made slave
1932 * of the same master as that of the source mount. The cloned mount
1933 * is marked as 'shared and slave'.
1934 * (*) the cloned mount is made a slave of the same master as that of the
1937 * ---------------------------------------------------------------------------
1938 * | MOVE MOUNT OPERATION |
1939 * |**************************************************************************
1940 * | source-->| shared | private | slave | unbindable |
1944 * |**************************************************************************
1945 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1947 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1948 * ***************************************************************************
1950 * (+) the mount is moved to the destination. And is then propagated to
1951 * all the mounts in the propagation tree of the destination mount.
1952 * (+*) the mount is moved to the destination.
1953 * (+++) the mount is moved to the destination and is then propagated to
1954 * all the mounts belonging to the destination mount's propagation tree.
1955 * the mount is marked as 'shared and slave'.
1956 * (*) the mount continues to be a slave at the new location.
1958 * if the source mount is a tree, the operations explained above is
1959 * applied to each mount in the tree.
1960 * Must be called without spinlocks held, since this function can sleep
1963 static int attach_recursive_mnt(struct mount
*source_mnt
,
1964 struct mount
*dest_mnt
,
1965 struct mountpoint
*dest_mp
,
1966 struct path
*parent_path
)
1968 HLIST_HEAD(tree_list
);
1969 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1970 struct mount
*child
, *p
;
1971 struct hlist_node
*n
;
1974 /* Is there space to add these mounts to the mount namespace? */
1976 err
= count_mounts(ns
, source_mnt
);
1981 if (IS_MNT_SHARED(dest_mnt
)) {
1982 err
= invent_group_ids(source_mnt
, true);
1985 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1988 goto out_cleanup_ids
;
1989 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1995 detach_mnt(source_mnt
, parent_path
);
1996 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1997 touch_mnt_namespace(source_mnt
->mnt_ns
);
1999 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2000 commit_tree(source_mnt
, NULL
);
2003 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2005 hlist_del_init(&child
->mnt_hash
);
2006 q
= __lookup_mnt_last(&child
->mnt_parent
->mnt
,
2007 child
->mnt_mountpoint
);
2008 commit_tree(child
, q
);
2010 unlock_mount_hash();
2015 while (!hlist_empty(&tree_list
)) {
2016 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2017 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2018 umount_tree(child
, UMOUNT_SYNC
);
2020 unlock_mount_hash();
2021 cleanup_group_ids(source_mnt
, NULL
);
2023 ns
->pending_mounts
= 0;
2027 static struct mountpoint
*lock_mount(struct path
*path
)
2029 struct vfsmount
*mnt
;
2030 struct dentry
*dentry
= path
->dentry
;
2032 inode_lock(dentry
->d_inode
);
2033 if (unlikely(cant_mount(dentry
))) {
2034 inode_unlock(dentry
->d_inode
);
2035 return ERR_PTR(-ENOENT
);
2038 mnt
= lookup_mnt(path
);
2040 struct mountpoint
*mp
= get_mountpoint(dentry
);
2043 inode_unlock(dentry
->d_inode
);
2049 inode_unlock(path
->dentry
->d_inode
);
2052 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2056 static void unlock_mount(struct mountpoint
*where
)
2058 struct dentry
*dentry
= where
->m_dentry
;
2060 read_seqlock_excl(&mount_lock
);
2061 put_mountpoint(where
);
2062 read_sequnlock_excl(&mount_lock
);
2065 inode_unlock(dentry
->d_inode
);
2068 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2070 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2073 if (d_is_dir(mp
->m_dentry
) !=
2074 d_is_dir(mnt
->mnt
.mnt_root
))
2077 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2081 * Sanity check the flags to change_mnt_propagation.
2084 static int flags_to_propagation_type(int flags
)
2086 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2088 /* Fail if any non-propagation flags are set */
2089 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2091 /* Only one propagation flag should be set */
2092 if (!is_power_of_2(type
))
2098 * recursively change the type of the mountpoint.
2100 static int do_change_type(struct path
*path
, int flag
)
2103 struct mount
*mnt
= real_mount(path
->mnt
);
2104 int recurse
= flag
& MS_REC
;
2108 if (path
->dentry
!= path
->mnt
->mnt_root
)
2111 type
= flags_to_propagation_type(flag
);
2116 if (type
== MS_SHARED
) {
2117 err
= invent_group_ids(mnt
, recurse
);
2123 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2124 change_mnt_propagation(m
, type
);
2125 unlock_mount_hash();
2132 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2134 struct mount
*child
;
2135 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2136 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2139 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2146 * do loopback mount.
2148 static int do_loopback(struct path
*path
, const char *old_name
,
2151 struct path old_path
;
2152 struct mount
*mnt
= NULL
, *old
, *parent
;
2153 struct mountpoint
*mp
;
2155 if (!old_name
|| !*old_name
)
2157 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2162 if (mnt_ns_loop(old_path
.dentry
))
2165 mp
= lock_mount(path
);
2170 old
= real_mount(old_path
.mnt
);
2171 parent
= real_mount(path
->mnt
);
2174 if (IS_MNT_UNBINDABLE(old
))
2177 if (!check_mnt(parent
))
2180 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2183 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2187 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2189 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2196 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2198 err
= graft_tree(mnt
, parent
, mp
);
2201 umount_tree(mnt
, UMOUNT_SYNC
);
2202 unlock_mount_hash();
2207 path_put(&old_path
);
2211 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2214 int readonly_request
= 0;
2216 if (ms_flags
& MS_RDONLY
)
2217 readonly_request
= 1;
2218 if (readonly_request
== __mnt_is_readonly(mnt
))
2221 if (readonly_request
)
2222 error
= mnt_make_readonly(real_mount(mnt
));
2224 __mnt_unmake_readonly(real_mount(mnt
));
2229 * change filesystem flags. dir should be a physical root of filesystem.
2230 * If you've mounted a non-root directory somewhere and want to do remount
2231 * on it - tough luck.
2233 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2237 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2238 struct mount
*mnt
= real_mount(path
->mnt
);
2240 if (!check_mnt(mnt
))
2243 if (path
->dentry
!= path
->mnt
->mnt_root
)
2246 /* Don't allow changing of locked mnt flags.
2248 * No locks need to be held here while testing the various
2249 * MNT_LOCK flags because those flags can never be cleared
2250 * once they are set.
2252 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2253 !(mnt_flags
& MNT_READONLY
)) {
2256 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2257 !(mnt_flags
& MNT_NODEV
)) {
2260 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2261 !(mnt_flags
& MNT_NOSUID
)) {
2264 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2265 !(mnt_flags
& MNT_NOEXEC
)) {
2268 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2269 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2273 err
= security_sb_remount(sb
, data
);
2277 down_write(&sb
->s_umount
);
2278 if (flags
& MS_BIND
)
2279 err
= change_mount_flags(path
->mnt
, flags
);
2280 else if (!capable(CAP_SYS_ADMIN
))
2283 err
= do_remount_sb(sb
, flags
, data
, 0);
2286 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2287 mnt
->mnt
.mnt_flags
= mnt_flags
;
2288 touch_mnt_namespace(mnt
->mnt_ns
);
2289 unlock_mount_hash();
2291 up_write(&sb
->s_umount
);
2295 static inline int tree_contains_unbindable(struct mount
*mnt
)
2298 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2299 if (IS_MNT_UNBINDABLE(p
))
2305 static int do_move_mount(struct path
*path
, const char *old_name
)
2307 struct path old_path
, parent_path
;
2310 struct mountpoint
*mp
;
2312 if (!old_name
|| !*old_name
)
2314 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2318 mp
= lock_mount(path
);
2323 old
= real_mount(old_path
.mnt
);
2324 p
= real_mount(path
->mnt
);
2327 if (!check_mnt(p
) || !check_mnt(old
))
2330 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2334 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2337 if (!mnt_has_parent(old
))
2340 if (d_is_dir(path
->dentry
) !=
2341 d_is_dir(old_path
.dentry
))
2344 * Don't move a mount residing in a shared parent.
2346 if (IS_MNT_SHARED(old
->mnt_parent
))
2349 * Don't move a mount tree containing unbindable mounts to a destination
2350 * mount which is shared.
2352 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2355 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2359 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2363 /* if the mount is moved, it should no longer be expire
2365 list_del_init(&old
->mnt_expire
);
2370 path_put(&parent_path
);
2371 path_put(&old_path
);
2375 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2378 const char *subtype
= strchr(fstype
, '.');
2387 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2389 if (!mnt
->mnt_sb
->s_subtype
)
2395 return ERR_PTR(err
);
2399 * add a mount into a namespace's mount tree
2401 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2403 struct mountpoint
*mp
;
2404 struct mount
*parent
;
2407 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2409 mp
= lock_mount(path
);
2413 parent
= real_mount(path
->mnt
);
2415 if (unlikely(!check_mnt(parent
))) {
2416 /* that's acceptable only for automounts done in private ns */
2417 if (!(mnt_flags
& MNT_SHRINKABLE
))
2419 /* ... and for those we'd better have mountpoint still alive */
2420 if (!parent
->mnt_ns
)
2424 /* Refuse the same filesystem on the same mount point */
2426 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2427 path
->mnt
->mnt_root
== path
->dentry
)
2431 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2434 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2435 err
= graft_tree(newmnt
, parent
, mp
);
2442 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2445 * create a new mount for userspace and request it to be added into the
2448 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2449 int mnt_flags
, const char *name
, void *data
)
2451 struct file_system_type
*type
;
2452 struct vfsmount
*mnt
;
2458 type
= get_fs_type(fstype
);
2462 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2463 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2464 !mnt
->mnt_sb
->s_subtype
)
2465 mnt
= fs_set_subtype(mnt
, fstype
);
2467 put_filesystem(type
);
2469 return PTR_ERR(mnt
);
2471 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2476 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2482 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2484 struct mount
*mnt
= real_mount(m
);
2486 /* The new mount record should have at least 2 refs to prevent it being
2487 * expired before we get a chance to add it
2489 BUG_ON(mnt_get_count(mnt
) < 2);
2491 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2492 m
->mnt_root
== path
->dentry
) {
2497 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2501 /* remove m from any expiration list it may be on */
2502 if (!list_empty(&mnt
->mnt_expire
)) {
2504 list_del_init(&mnt
->mnt_expire
);
2513 * mnt_set_expiry - Put a mount on an expiration list
2514 * @mnt: The mount to list.
2515 * @expiry_list: The list to add the mount to.
2517 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2521 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2525 EXPORT_SYMBOL(mnt_set_expiry
);
2528 * process a list of expirable mountpoints with the intent of discarding any
2529 * mountpoints that aren't in use and haven't been touched since last we came
2532 void mark_mounts_for_expiry(struct list_head
*mounts
)
2534 struct mount
*mnt
, *next
;
2535 LIST_HEAD(graveyard
);
2537 if (list_empty(mounts
))
2543 /* extract from the expiration list every vfsmount that matches the
2544 * following criteria:
2545 * - only referenced by its parent vfsmount
2546 * - still marked for expiry (marked on the last call here; marks are
2547 * cleared by mntput())
2549 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2550 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2551 propagate_mount_busy(mnt
, 1))
2553 list_move(&mnt
->mnt_expire
, &graveyard
);
2555 while (!list_empty(&graveyard
)) {
2556 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2557 touch_mnt_namespace(mnt
->mnt_ns
);
2558 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2560 unlock_mount_hash();
2564 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2567 * Ripoff of 'select_parent()'
2569 * search the list of submounts for a given mountpoint, and move any
2570 * shrinkable submounts to the 'graveyard' list.
2572 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2574 struct mount
*this_parent
= parent
;
2575 struct list_head
*next
;
2579 next
= this_parent
->mnt_mounts
.next
;
2581 while (next
!= &this_parent
->mnt_mounts
) {
2582 struct list_head
*tmp
= next
;
2583 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2586 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2589 * Descend a level if the d_mounts list is non-empty.
2591 if (!list_empty(&mnt
->mnt_mounts
)) {
2596 if (!propagate_mount_busy(mnt
, 1)) {
2597 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2602 * All done at this level ... ascend and resume the search
2604 if (this_parent
!= parent
) {
2605 next
= this_parent
->mnt_child
.next
;
2606 this_parent
= this_parent
->mnt_parent
;
2613 * process a list of expirable mountpoints with the intent of discarding any
2614 * submounts of a specific parent mountpoint
2616 * mount_lock must be held for write
2618 static void shrink_submounts(struct mount
*mnt
)
2620 LIST_HEAD(graveyard
);
2623 /* extract submounts of 'mountpoint' from the expiration list */
2624 while (select_submounts(mnt
, &graveyard
)) {
2625 while (!list_empty(&graveyard
)) {
2626 m
= list_first_entry(&graveyard
, struct mount
,
2628 touch_mnt_namespace(m
->mnt_ns
);
2629 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2635 * Some copy_from_user() implementations do not return the exact number of
2636 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2637 * Note that this function differs from copy_from_user() in that it will oops
2638 * on bad values of `to', rather than returning a short copy.
2640 static long exact_copy_from_user(void *to
, const void __user
* from
,
2644 const char __user
*f
= from
;
2647 if (!access_ok(VERIFY_READ
, from
, n
))
2651 if (__get_user(c
, f
)) {
2662 void *copy_mount_options(const void __user
* data
)
2671 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2673 return ERR_PTR(-ENOMEM
);
2675 /* We only care that *some* data at the address the user
2676 * gave us is valid. Just in case, we'll zero
2677 * the remainder of the page.
2679 /* copy_from_user cannot cross TASK_SIZE ! */
2680 size
= TASK_SIZE
- (unsigned long)data
;
2681 if (size
> PAGE_SIZE
)
2684 i
= size
- exact_copy_from_user(copy
, data
, size
);
2687 return ERR_PTR(-EFAULT
);
2690 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2694 char *copy_mount_string(const void __user
*data
)
2696 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2700 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2701 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2703 * data is a (void *) that can point to any structure up to
2704 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2705 * information (or be NULL).
2707 * Pre-0.97 versions of mount() didn't have a flags word.
2708 * When the flags word was introduced its top half was required
2709 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2710 * Therefore, if this magic number is present, it carries no information
2711 * and must be discarded.
2713 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2714 const char *type_page
, unsigned long flags
, void *data_page
)
2721 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2722 flags
&= ~MS_MGC_MSK
;
2724 /* Basic sanity checks */
2726 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2728 /* ... and get the mountpoint */
2729 retval
= user_path(dir_name
, &path
);
2733 retval
= security_sb_mount(dev_name
, &path
,
2734 type_page
, flags
, data_page
);
2735 if (!retval
&& !may_mount())
2737 if (!retval
&& (flags
& MS_MANDLOCK
) && !may_mandlock())
2742 /* Default to relatime unless overriden */
2743 if (!(flags
& MS_NOATIME
))
2744 mnt_flags
|= MNT_RELATIME
;
2746 /* Separate the per-mountpoint flags */
2747 if (flags
& MS_NOSUID
)
2748 mnt_flags
|= MNT_NOSUID
;
2749 if (flags
& MS_NODEV
)
2750 mnt_flags
|= MNT_NODEV
;
2751 if (flags
& MS_NOEXEC
)
2752 mnt_flags
|= MNT_NOEXEC
;
2753 if (flags
& MS_NOATIME
)
2754 mnt_flags
|= MNT_NOATIME
;
2755 if (flags
& MS_NODIRATIME
)
2756 mnt_flags
|= MNT_NODIRATIME
;
2757 if (flags
& MS_STRICTATIME
)
2758 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2759 if (flags
& MS_RDONLY
)
2760 mnt_flags
|= MNT_READONLY
;
2762 /* The default atime for remount is preservation */
2763 if ((flags
& MS_REMOUNT
) &&
2764 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2765 MS_STRICTATIME
)) == 0)) {
2766 mnt_flags
&= ~MNT_ATIME_MASK
;
2767 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2770 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2771 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2772 MS_STRICTATIME
| MS_NOREMOTELOCK
);
2774 if (flags
& MS_REMOUNT
)
2775 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2777 else if (flags
& MS_BIND
)
2778 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2779 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2780 retval
= do_change_type(&path
, flags
);
2781 else if (flags
& MS_MOVE
)
2782 retval
= do_move_mount(&path
, dev_name
);
2784 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2785 dev_name
, data_page
);
2791 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2793 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2796 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2798 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2801 static void free_mnt_ns(struct mnt_namespace
*ns
)
2803 ns_free_inum(&ns
->ns
);
2804 dec_mnt_namespaces(ns
->ucounts
);
2805 put_user_ns(ns
->user_ns
);
2810 * Assign a sequence number so we can detect when we attempt to bind
2811 * mount a reference to an older mount namespace into the current
2812 * mount namespace, preventing reference counting loops. A 64bit
2813 * number incrementing at 10Ghz will take 12,427 years to wrap which
2814 * is effectively never, so we can ignore the possibility.
2816 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2818 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2820 struct mnt_namespace
*new_ns
;
2821 struct ucounts
*ucounts
;
2824 ucounts
= inc_mnt_namespaces(user_ns
);
2826 return ERR_PTR(-ENOSPC
);
2828 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2830 dec_mnt_namespaces(ucounts
);
2831 return ERR_PTR(-ENOMEM
);
2833 ret
= ns_alloc_inum(&new_ns
->ns
);
2836 dec_mnt_namespaces(ucounts
);
2837 return ERR_PTR(ret
);
2839 new_ns
->ns
.ops
= &mntns_operations
;
2840 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2841 atomic_set(&new_ns
->count
, 1);
2842 new_ns
->root
= NULL
;
2843 INIT_LIST_HEAD(&new_ns
->list
);
2844 init_waitqueue_head(&new_ns
->poll
);
2846 new_ns
->user_ns
= get_user_ns(user_ns
);
2847 new_ns
->ucounts
= ucounts
;
2849 new_ns
->pending_mounts
= 0;
2854 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2855 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2857 struct mnt_namespace
*new_ns
;
2858 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2859 struct mount
*p
, *q
;
2866 if (likely(!(flags
& CLONE_NEWNS
))) {
2873 new_ns
= alloc_mnt_ns(user_ns
);
2878 /* First pass: copy the tree topology */
2879 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2880 if (user_ns
!= ns
->user_ns
)
2881 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2882 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2885 free_mnt_ns(new_ns
);
2886 return ERR_CAST(new);
2889 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2892 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2893 * as belonging to new namespace. We have already acquired a private
2894 * fs_struct, so tsk->fs->lock is not needed.
2902 if (&p
->mnt
== new_fs
->root
.mnt
) {
2903 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2906 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2907 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2911 p
= next_mnt(p
, old
);
2912 q
= next_mnt(q
, new);
2915 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2916 p
= next_mnt(p
, old
);
2929 * create_mnt_ns - creates a private namespace and adds a root filesystem
2930 * @mnt: pointer to the new root filesystem mountpoint
2932 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2934 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2935 if (!IS_ERR(new_ns
)) {
2936 struct mount
*mnt
= real_mount(m
);
2937 mnt
->mnt_ns
= new_ns
;
2940 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2947 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2949 struct mnt_namespace
*ns
;
2950 struct super_block
*s
;
2954 ns
= create_mnt_ns(mnt
);
2956 return ERR_CAST(ns
);
2958 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2959 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2964 return ERR_PTR(err
);
2966 /* trade a vfsmount reference for active sb one */
2967 s
= path
.mnt
->mnt_sb
;
2968 atomic_inc(&s
->s_active
);
2970 /* lock the sucker */
2971 down_write(&s
->s_umount
);
2972 /* ... and return the root of (sub)tree on it */
2975 EXPORT_SYMBOL(mount_subtree
);
2977 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2978 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2985 kernel_type
= copy_mount_string(type
);
2986 ret
= PTR_ERR(kernel_type
);
2987 if (IS_ERR(kernel_type
))
2990 kernel_dev
= copy_mount_string(dev_name
);
2991 ret
= PTR_ERR(kernel_dev
);
2992 if (IS_ERR(kernel_dev
))
2995 options
= copy_mount_options(data
);
2996 ret
= PTR_ERR(options
);
2997 if (IS_ERR(options
))
3000 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3012 * Return true if path is reachable from root
3014 * namespace_sem or mount_lock is held
3016 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3017 const struct path
*root
)
3019 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3020 dentry
= mnt
->mnt_mountpoint
;
3021 mnt
= mnt
->mnt_parent
;
3023 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3026 bool path_is_under(struct path
*path1
, struct path
*path2
)
3029 read_seqlock_excl(&mount_lock
);
3030 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3031 read_sequnlock_excl(&mount_lock
);
3034 EXPORT_SYMBOL(path_is_under
);
3037 * pivot_root Semantics:
3038 * Moves the root file system of the current process to the directory put_old,
3039 * makes new_root as the new root file system of the current process, and sets
3040 * root/cwd of all processes which had them on the current root to new_root.
3043 * The new_root and put_old must be directories, and must not be on the
3044 * same file system as the current process root. The put_old must be
3045 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3046 * pointed to by put_old must yield the same directory as new_root. No other
3047 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3049 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3050 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3051 * in this situation.
3054 * - we don't move root/cwd if they are not at the root (reason: if something
3055 * cared enough to change them, it's probably wrong to force them elsewhere)
3056 * - it's okay to pick a root that isn't the root of a file system, e.g.
3057 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3058 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3061 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3062 const char __user
*, put_old
)
3064 struct path
new, old
, parent_path
, root_parent
, root
;
3065 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3066 struct mountpoint
*old_mp
, *root_mp
;
3072 error
= user_path_dir(new_root
, &new);
3076 error
= user_path_dir(put_old
, &old
);
3080 error
= security_sb_pivotroot(&old
, &new);
3084 get_fs_root(current
->fs
, &root
);
3085 old_mp
= lock_mount(&old
);
3086 error
= PTR_ERR(old_mp
);
3091 new_mnt
= real_mount(new.mnt
);
3092 root_mnt
= real_mount(root
.mnt
);
3093 old_mnt
= real_mount(old
.mnt
);
3094 if (IS_MNT_SHARED(old_mnt
) ||
3095 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3096 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3098 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3100 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3103 if (d_unlinked(new.dentry
))
3106 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3107 goto out4
; /* loop, on the same file system */
3109 if (root
.mnt
->mnt_root
!= root
.dentry
)
3110 goto out4
; /* not a mountpoint */
3111 if (!mnt_has_parent(root_mnt
))
3112 goto out4
; /* not attached */
3113 root_mp
= root_mnt
->mnt_mp
;
3114 if (new.mnt
->mnt_root
!= new.dentry
)
3115 goto out4
; /* not a mountpoint */
3116 if (!mnt_has_parent(new_mnt
))
3117 goto out4
; /* not attached */
3118 /* make sure we can reach put_old from new_root */
3119 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3121 /* make certain new is below the root */
3122 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3124 root_mp
->m_count
++; /* pin it so it won't go away */
3126 detach_mnt(new_mnt
, &parent_path
);
3127 detach_mnt(root_mnt
, &root_parent
);
3128 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3129 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3130 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3132 /* mount old root on put_old */
3133 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3134 /* mount new_root on / */
3135 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3136 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3137 /* A moved mount should not expire automatically */
3138 list_del_init(&new_mnt
->mnt_expire
);
3139 put_mountpoint(root_mp
);
3140 unlock_mount_hash();
3141 chroot_fs_refs(&root
, &new);
3144 unlock_mount(old_mp
);
3146 path_put(&root_parent
);
3147 path_put(&parent_path
);
3159 static void __init
init_mount_tree(void)
3161 struct vfsmount
*mnt
;
3162 struct mnt_namespace
*ns
;
3164 struct file_system_type
*type
;
3166 type
= get_fs_type("rootfs");
3168 panic("Can't find rootfs type");
3169 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3170 put_filesystem(type
);
3172 panic("Can't create rootfs");
3174 ns
= create_mnt_ns(mnt
);
3176 panic("Can't allocate initial namespace");
3178 init_task
.nsproxy
->mnt_ns
= ns
;
3182 root
.dentry
= mnt
->mnt_root
;
3183 mnt
->mnt_flags
|= MNT_LOCKED
;
3185 set_fs_pwd(current
->fs
, &root
);
3186 set_fs_root(current
->fs
, &root
);
3189 void __init
mnt_init(void)
3194 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3195 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3197 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3198 sizeof(struct hlist_head
),
3201 &m_hash_shift
, &m_hash_mask
, 0, 0);
3202 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3203 sizeof(struct hlist_head
),
3206 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3208 if (!mount_hashtable
|| !mountpoint_hashtable
)
3209 panic("Failed to allocate mount hash table\n");
3211 for (u
= 0; u
<= m_hash_mask
; u
++)
3212 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3213 for (u
= 0; u
<= mp_hash_mask
; u
++)
3214 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3220 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3222 fs_kobj
= kobject_create_and_add("fs", NULL
);
3224 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3229 void put_mnt_ns(struct mnt_namespace
*ns
)
3231 if (!atomic_dec_and_test(&ns
->count
))
3233 drop_collected_mounts(&ns
->root
->mnt
);
3237 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3239 struct vfsmount
*mnt
;
3240 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3243 * it is a longterm mount, don't release mnt until
3244 * we unmount before file sys is unregistered
3246 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3250 EXPORT_SYMBOL_GPL(kern_mount_data
);
3252 void kern_unmount(struct vfsmount
*mnt
)
3254 /* release long term mount so mount point can be released */
3255 if (!IS_ERR_OR_NULL(mnt
)) {
3256 real_mount(mnt
)->mnt_ns
= NULL
;
3257 synchronize_rcu(); /* yecchhh... */
3261 EXPORT_SYMBOL(kern_unmount
);
3263 bool our_mnt(struct vfsmount
*mnt
)
3265 return check_mnt(real_mount(mnt
));
3268 bool current_chrooted(void)
3270 /* Does the current process have a non-standard root */
3271 struct path ns_root
;
3272 struct path fs_root
;
3275 /* Find the namespace root */
3276 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3277 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3279 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3282 get_fs_root(current
->fs
, &fs_root
);
3284 chrooted
= !path_equal(&fs_root
, &ns_root
);
3292 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3295 int new_flags
= *new_mnt_flags
;
3297 bool visible
= false;
3299 down_read(&namespace_sem
);
3300 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3301 struct mount
*child
;
3304 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3307 /* This mount is not fully visible if it's root directory
3308 * is not the root directory of the filesystem.
3310 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3313 /* A local view of the mount flags */
3314 mnt_flags
= mnt
->mnt
.mnt_flags
;
3316 /* Don't miss readonly hidden in the superblock flags */
3317 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3318 mnt_flags
|= MNT_LOCK_READONLY
;
3320 /* Verify the mount flags are equal to or more permissive
3321 * than the proposed new mount.
3323 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3324 !(new_flags
& MNT_READONLY
))
3326 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3327 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3330 /* This mount is not fully visible if there are any
3331 * locked child mounts that cover anything except for
3332 * empty directories.
3334 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3335 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3336 /* Only worry about locked mounts */
3337 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3339 /* Is the directory permanetly empty? */
3340 if (!is_empty_dir_inode(inode
))
3343 /* Preserve the locked attributes */
3344 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3351 up_read(&namespace_sem
);
3355 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3357 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3358 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3359 unsigned long s_iflags
;
3361 if (ns
->user_ns
== &init_user_ns
)
3364 /* Can this filesystem be too revealing? */
3365 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3366 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3369 if ((s_iflags
& required_iflags
) != required_iflags
) {
3370 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3375 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3378 bool mnt_may_suid(struct vfsmount
*mnt
)
3381 * Foreign mounts (accessed via fchdir or through /proc
3382 * symlinks) are always treated as if they are nosuid. This
3383 * prevents namespaces from trusting potentially unsafe
3384 * suid/sgid bits, file caps, or security labels that originate
3385 * in other namespaces.
3387 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3388 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3391 static struct ns_common
*mntns_get(struct task_struct
*task
)
3393 struct ns_common
*ns
= NULL
;
3394 struct nsproxy
*nsproxy
;
3397 nsproxy
= task
->nsproxy
;
3399 ns
= &nsproxy
->mnt_ns
->ns
;
3400 get_mnt_ns(to_mnt_ns(ns
));
3407 static void mntns_put(struct ns_common
*ns
)
3409 put_mnt_ns(to_mnt_ns(ns
));
3412 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3414 struct fs_struct
*fs
= current
->fs
;
3415 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3418 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3419 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3420 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3427 put_mnt_ns(nsproxy
->mnt_ns
);
3428 nsproxy
->mnt_ns
= mnt_ns
;
3431 root
.mnt
= &mnt_ns
->root
->mnt
;
3432 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3434 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3437 /* Update the pwd and root */
3438 set_fs_pwd(fs
, &root
);
3439 set_fs_root(fs
, &root
);
3445 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3447 return to_mnt_ns(ns
)->user_ns
;
3450 const struct proc_ns_operations mntns_operations
= {
3452 .type
= CLONE_NEWNS
,
3455 .install
= mntns_install
,
3456 .owner
= mntns_owner
,