sit: fix a double free on error path
[linux/fpc-iii.git] / fs / namespace.c
blob7cea503ae06d3fc177ff8b414901a60942040a6c
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
245 return mnt;
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 mnt_free_id(mnt);
253 out_free_cache:
254 kmem_cache_free(mnt_cache, mnt);
255 return NULL;
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
277 int __mnt_is_readonly(struct vfsmount *mnt)
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
287 static inline void mnt_inc_writers(struct mount *mnt)
289 #ifdef CONFIG_SMP
290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 mnt->mnt_writers++;
293 #endif
296 static inline void mnt_dec_writers(struct mount *mnt)
298 #ifdef CONFIG_SMP
299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 mnt->mnt_writers--;
302 #endif
305 static unsigned int mnt_get_writers(struct mount *mnt)
307 #ifdef CONFIG_SMP
308 unsigned int count = 0;
309 int cpu;
311 for_each_possible_cpu(cpu) {
312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 return count;
316 #else
317 return mnt->mnt_writers;
318 #endif
321 static int mnt_is_readonly(struct vfsmount *mnt)
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount *m)
348 struct mount *mnt = real_mount(m);
349 int ret = 0;
351 preempt_disable();
352 mnt_inc_writers(mnt);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
358 smp_mb();
359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 cpu_relax();
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
366 smp_rmb();
367 if (mnt_is_readonly(m)) {
368 mnt_dec_writers(mnt);
369 ret = -EROFS;
371 preempt_enable();
373 return ret;
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount *m)
387 int ret;
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
393 return ret;
395 EXPORT_SYMBOL_GPL(mnt_want_write);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount *mnt)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
415 mnt_inc_writers(real_mount(mnt));
416 preempt_enable();
417 return 0;
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file *file)
430 if (!(file->f_mode & FMODE_WRITER))
431 return __mnt_want_write(file->f_path.mnt);
432 else
433 return mnt_clone_write(file->f_path.mnt);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file *file)
445 int ret;
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount *mnt)
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount *mnt)
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
485 void __mnt_drop_write_file(struct file *file)
487 __mnt_drop_write(file->f_path.mnt);
490 void mnt_drop_write_file(struct file *file)
492 mnt_drop_write(file->f_path.mnt);
494 EXPORT_SYMBOL(mnt_drop_write_file);
496 static int mnt_make_readonly(struct mount *mnt)
498 int ret = 0;
500 lock_mount_hash();
501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
506 smp_mb();
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt) > 0)
525 ret = -EBUSY;
526 else
527 mnt->mnt.mnt_flags |= MNT_READONLY;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
532 smp_wmb();
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 unlock_mount_hash();
535 return ret;
538 static void __mnt_unmake_readonly(struct mount *mnt)
540 lock_mount_hash();
541 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 unlock_mount_hash();
545 int sb_prepare_remount_readonly(struct super_block *sb)
547 struct mount *mnt;
548 int err = 0;
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb->s_remove_count))
552 return -EBUSY;
554 lock_mount_hash();
555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 smp_mb();
559 if (mnt_get_writers(mnt) > 0) {
560 err = -EBUSY;
561 break;
565 if (!err && atomic_long_read(&sb->s_remove_count))
566 err = -EBUSY;
568 if (!err) {
569 sb->s_readonly_remount = 1;
570 smp_wmb();
572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
576 unlock_mount_hash();
578 return err;
581 static void free_vfsmnt(struct mount *mnt)
583 kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 free_percpu(mnt->mnt_pcp);
586 #endif
587 kmem_cache_free(mnt_cache, mnt);
590 static void delayed_free_vfsmnt(struct rcu_head *head)
592 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 struct mount *mnt;
599 if (read_seqretry(&mount_lock, seq))
600 return 1;
601 if (bastard == NULL)
602 return 0;
603 mnt = real_mount(bastard);
604 mnt_add_count(mnt, 1);
605 if (likely(!read_seqretry(&mount_lock, seq)))
606 return 0;
607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 mnt_add_count(mnt, -1);
609 return 1;
611 return -1;
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
617 int res = __legitimize_mnt(bastard, seq);
618 if (likely(!res))
619 return true;
620 if (unlikely(res < 0)) {
621 rcu_read_unlock();
622 mntput(bastard);
623 rcu_read_lock();
625 return false;
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
634 struct hlist_head *head = m_hash(mnt, dentry);
635 struct mount *p;
637 hlist_for_each_entry_rcu(p, head, mnt_hash)
638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 return p;
640 return NULL;
644 * find the last mount at @dentry on vfsmount @mnt.
645 * mount_lock must be held.
647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
649 struct mount *p, *res = NULL;
650 p = __lookup_mnt(mnt, dentry);
651 if (!p)
652 goto out;
653 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
654 res = p;
655 hlist_for_each_entry_continue(p, mnt_hash) {
656 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
657 break;
658 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
659 res = p;
661 out:
662 return res;
666 * lookup_mnt - Return the first child mount mounted at path
668 * "First" means first mounted chronologically. If you create the
669 * following mounts:
671 * mount /dev/sda1 /mnt
672 * mount /dev/sda2 /mnt
673 * mount /dev/sda3 /mnt
675 * Then lookup_mnt() on the base /mnt dentry in the root mount will
676 * return successively the root dentry and vfsmount of /dev/sda1, then
677 * /dev/sda2, then /dev/sda3, then NULL.
679 * lookup_mnt takes a reference to the found vfsmount.
681 struct vfsmount *lookup_mnt(struct path *path)
683 struct mount *child_mnt;
684 struct vfsmount *m;
685 unsigned seq;
687 rcu_read_lock();
688 do {
689 seq = read_seqbegin(&mount_lock);
690 child_mnt = __lookup_mnt(path->mnt, path->dentry);
691 m = child_mnt ? &child_mnt->mnt : NULL;
692 } while (!legitimize_mnt(m, seq));
693 rcu_read_unlock();
694 return m;
698 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
699 * current mount namespace.
701 * The common case is dentries are not mountpoints at all and that
702 * test is handled inline. For the slow case when we are actually
703 * dealing with a mountpoint of some kind, walk through all of the
704 * mounts in the current mount namespace and test to see if the dentry
705 * is a mountpoint.
707 * The mount_hashtable is not usable in the context because we
708 * need to identify all mounts that may be in the current mount
709 * namespace not just a mount that happens to have some specified
710 * parent mount.
712 bool __is_local_mountpoint(struct dentry *dentry)
714 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
715 struct mount *mnt;
716 bool is_covered = false;
718 if (!d_mountpoint(dentry))
719 goto out;
721 down_read(&namespace_sem);
722 list_for_each_entry(mnt, &ns->list, mnt_list) {
723 is_covered = (mnt->mnt_mountpoint == dentry);
724 if (is_covered)
725 break;
727 up_read(&namespace_sem);
728 out:
729 return is_covered;
732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
734 struct hlist_head *chain = mp_hash(dentry);
735 struct mountpoint *mp;
737 hlist_for_each_entry(mp, chain, m_hash) {
738 if (mp->m_dentry == dentry) {
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry))
741 return ERR_PTR(-ENOENT);
742 mp->m_count++;
743 return mp;
746 return NULL;
749 static struct mountpoint *get_mountpoint(struct dentry *dentry)
751 struct mountpoint *mp, *new = NULL;
752 int ret;
754 if (d_mountpoint(dentry)) {
755 mountpoint:
756 read_seqlock_excl(&mount_lock);
757 mp = lookup_mountpoint(dentry);
758 read_sequnlock_excl(&mount_lock);
759 if (mp)
760 goto done;
763 if (!new)
764 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
765 if (!new)
766 return ERR_PTR(-ENOMEM);
769 /* Exactly one processes may set d_mounted */
770 ret = d_set_mounted(dentry);
772 /* Someone else set d_mounted? */
773 if (ret == -EBUSY)
774 goto mountpoint;
776 /* The dentry is not available as a mountpoint? */
777 mp = ERR_PTR(ret);
778 if (ret)
779 goto done;
781 /* Add the new mountpoint to the hash table */
782 read_seqlock_excl(&mount_lock);
783 new->m_dentry = dentry;
784 new->m_count = 1;
785 hlist_add_head(&new->m_hash, mp_hash(dentry));
786 INIT_HLIST_HEAD(&new->m_list);
787 read_sequnlock_excl(&mount_lock);
789 mp = new;
790 new = NULL;
791 done:
792 kfree(new);
793 return mp;
796 static void put_mountpoint(struct mountpoint *mp)
798 if (!--mp->m_count) {
799 struct dentry *dentry = mp->m_dentry;
800 BUG_ON(!hlist_empty(&mp->m_list));
801 spin_lock(&dentry->d_lock);
802 dentry->d_flags &= ~DCACHE_MOUNTED;
803 spin_unlock(&dentry->d_lock);
804 hlist_del(&mp->m_hash);
805 kfree(mp);
809 static inline int check_mnt(struct mount *mnt)
811 return mnt->mnt_ns == current->nsproxy->mnt_ns;
815 * vfsmount lock must be held for write
817 static void touch_mnt_namespace(struct mnt_namespace *ns)
819 if (ns) {
820 ns->event = ++event;
821 wake_up_interruptible(&ns->poll);
826 * vfsmount lock must be held for write
828 static void __touch_mnt_namespace(struct mnt_namespace *ns)
830 if (ns && ns->event != event) {
831 ns->event = event;
832 wake_up_interruptible(&ns->poll);
837 * vfsmount lock must be held for write
839 static void unhash_mnt(struct mount *mnt)
841 mnt->mnt_parent = mnt;
842 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
843 list_del_init(&mnt->mnt_child);
844 hlist_del_init_rcu(&mnt->mnt_hash);
845 hlist_del_init(&mnt->mnt_mp_list);
846 put_mountpoint(mnt->mnt_mp);
847 mnt->mnt_mp = NULL;
851 * vfsmount lock must be held for write
853 static void detach_mnt(struct mount *mnt, struct path *old_path)
855 old_path->dentry = mnt->mnt_mountpoint;
856 old_path->mnt = &mnt->mnt_parent->mnt;
857 unhash_mnt(mnt);
861 * vfsmount lock must be held for write
863 static void umount_mnt(struct mount *mnt)
865 /* old mountpoint will be dropped when we can do that */
866 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
867 unhash_mnt(mnt);
871 * vfsmount lock must be held for write
873 void mnt_set_mountpoint(struct mount *mnt,
874 struct mountpoint *mp,
875 struct mount *child_mnt)
877 mp->m_count++;
878 mnt_add_count(mnt, 1); /* essentially, that's mntget */
879 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
880 child_mnt->mnt_parent = mnt;
881 child_mnt->mnt_mp = mp;
882 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
886 * vfsmount lock must be held for write
888 static void attach_mnt(struct mount *mnt,
889 struct mount *parent,
890 struct mountpoint *mp)
892 mnt_set_mountpoint(parent, mp, mnt);
893 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
894 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
897 static void attach_shadowed(struct mount *mnt,
898 struct mount *parent,
899 struct mount *shadows)
901 if (shadows) {
902 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
903 list_add(&mnt->mnt_child, &shadows->mnt_child);
904 } else {
905 hlist_add_head_rcu(&mnt->mnt_hash,
906 m_hash(&parent->mnt, mnt->mnt_mountpoint));
907 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
912 * vfsmount lock must be held for write
914 static void commit_tree(struct mount *mnt, struct mount *shadows)
916 struct mount *parent = mnt->mnt_parent;
917 struct mount *m;
918 LIST_HEAD(head);
919 struct mnt_namespace *n = parent->mnt_ns;
921 BUG_ON(parent == mnt);
923 list_add_tail(&head, &mnt->mnt_list);
924 list_for_each_entry(m, &head, mnt_list)
925 m->mnt_ns = n;
927 list_splice(&head, n->list.prev);
929 n->mounts += n->pending_mounts;
930 n->pending_mounts = 0;
932 attach_shadowed(mnt, parent, shadows);
933 touch_mnt_namespace(n);
936 static struct mount *next_mnt(struct mount *p, struct mount *root)
938 struct list_head *next = p->mnt_mounts.next;
939 if (next == &p->mnt_mounts) {
940 while (1) {
941 if (p == root)
942 return NULL;
943 next = p->mnt_child.next;
944 if (next != &p->mnt_parent->mnt_mounts)
945 break;
946 p = p->mnt_parent;
949 return list_entry(next, struct mount, mnt_child);
952 static struct mount *skip_mnt_tree(struct mount *p)
954 struct list_head *prev = p->mnt_mounts.prev;
955 while (prev != &p->mnt_mounts) {
956 p = list_entry(prev, struct mount, mnt_child);
957 prev = p->mnt_mounts.prev;
959 return p;
962 struct vfsmount *
963 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
965 struct mount *mnt;
966 struct dentry *root;
968 if (!type)
969 return ERR_PTR(-ENODEV);
971 mnt = alloc_vfsmnt(name);
972 if (!mnt)
973 return ERR_PTR(-ENOMEM);
975 if (flags & MS_KERNMOUNT)
976 mnt->mnt.mnt_flags = MNT_INTERNAL;
978 root = mount_fs(type, flags, name, data);
979 if (IS_ERR(root)) {
980 mnt_free_id(mnt);
981 free_vfsmnt(mnt);
982 return ERR_CAST(root);
985 mnt->mnt.mnt_root = root;
986 mnt->mnt.mnt_sb = root->d_sb;
987 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
988 mnt->mnt_parent = mnt;
989 lock_mount_hash();
990 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
991 unlock_mount_hash();
992 return &mnt->mnt;
994 EXPORT_SYMBOL_GPL(vfs_kern_mount);
996 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
997 int flag)
999 struct super_block *sb = old->mnt.mnt_sb;
1000 struct mount *mnt;
1001 int err;
1003 mnt = alloc_vfsmnt(old->mnt_devname);
1004 if (!mnt)
1005 return ERR_PTR(-ENOMEM);
1007 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1008 mnt->mnt_group_id = 0; /* not a peer of original */
1009 else
1010 mnt->mnt_group_id = old->mnt_group_id;
1012 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1013 err = mnt_alloc_group_id(mnt);
1014 if (err)
1015 goto out_free;
1018 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1019 /* Don't allow unprivileged users to change mount flags */
1020 if (flag & CL_UNPRIVILEGED) {
1021 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1023 if (mnt->mnt.mnt_flags & MNT_READONLY)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1026 if (mnt->mnt.mnt_flags & MNT_NODEV)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1029 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1032 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1033 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1036 /* Don't allow unprivileged users to reveal what is under a mount */
1037 if ((flag & CL_UNPRIVILEGED) &&
1038 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1039 mnt->mnt.mnt_flags |= MNT_LOCKED;
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
1046 lock_mount_hash();
1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048 unlock_mount_hash();
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
1062 if (flag & CL_MAKE_SHARED)
1063 set_mnt_shared(mnt);
1065 /* stick the duplicate mount on the same expiry list
1066 * as the original if that was on one */
1067 if (flag & CL_EXPIRE) {
1068 if (!list_empty(&old->mnt_expire))
1069 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 return mnt;
1074 out_free:
1075 mnt_free_id(mnt);
1076 free_vfsmnt(mnt);
1077 return ERR_PTR(err);
1080 static void cleanup_mnt(struct mount *mnt)
1083 * This probably indicates that somebody messed
1084 * up a mnt_want/drop_write() pair. If this
1085 * happens, the filesystem was probably unable
1086 * to make r/w->r/o transitions.
1089 * The locking used to deal with mnt_count decrement provides barriers,
1090 * so mnt_get_writers() below is safe.
1092 WARN_ON(mnt_get_writers(mnt));
1093 if (unlikely(mnt->mnt_pins.first))
1094 mnt_pin_kill(mnt);
1095 fsnotify_vfsmount_delete(&mnt->mnt);
1096 dput(mnt->mnt.mnt_root);
1097 deactivate_super(mnt->mnt.mnt_sb);
1098 mnt_free_id(mnt);
1099 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1102 static void __cleanup_mnt(struct rcu_head *head)
1104 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1107 static LLIST_HEAD(delayed_mntput_list);
1108 static void delayed_mntput(struct work_struct *unused)
1110 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1111 struct llist_node *next;
1113 for (; node; node = next) {
1114 next = llist_next(node);
1115 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1118 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1120 static void mntput_no_expire(struct mount *mnt)
1122 rcu_read_lock();
1123 mnt_add_count(mnt, -1);
1124 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1125 rcu_read_unlock();
1126 return;
1128 lock_mount_hash();
1129 if (mnt_get_count(mnt)) {
1130 rcu_read_unlock();
1131 unlock_mount_hash();
1132 return;
1134 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1135 rcu_read_unlock();
1136 unlock_mount_hash();
1137 return;
1139 mnt->mnt.mnt_flags |= MNT_DOOMED;
1140 rcu_read_unlock();
1142 list_del(&mnt->mnt_instance);
1144 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1145 struct mount *p, *tmp;
1146 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1147 umount_mnt(p);
1150 unlock_mount_hash();
1152 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1153 struct task_struct *task = current;
1154 if (likely(!(task->flags & PF_KTHREAD))) {
1155 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1156 if (!task_work_add(task, &mnt->mnt_rcu, true))
1157 return;
1159 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1160 schedule_delayed_work(&delayed_mntput_work, 1);
1161 return;
1163 cleanup_mnt(mnt);
1166 void mntput(struct vfsmount *mnt)
1168 if (mnt) {
1169 struct mount *m = real_mount(mnt);
1170 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1171 if (unlikely(m->mnt_expiry_mark))
1172 m->mnt_expiry_mark = 0;
1173 mntput_no_expire(m);
1176 EXPORT_SYMBOL(mntput);
1178 struct vfsmount *mntget(struct vfsmount *mnt)
1180 if (mnt)
1181 mnt_add_count(real_mount(mnt), 1);
1182 return mnt;
1184 EXPORT_SYMBOL(mntget);
1186 struct vfsmount *mnt_clone_internal(struct path *path)
1188 struct mount *p;
1189 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1190 if (IS_ERR(p))
1191 return ERR_CAST(p);
1192 p->mnt.mnt_flags |= MNT_INTERNAL;
1193 return &p->mnt;
1196 static inline void mangle(struct seq_file *m, const char *s)
1198 seq_escape(m, s, " \t\n\\");
1202 * Simple .show_options callback for filesystems which don't want to
1203 * implement more complex mount option showing.
1205 * See also save_mount_options().
1207 int generic_show_options(struct seq_file *m, struct dentry *root)
1209 const char *options;
1211 rcu_read_lock();
1212 options = rcu_dereference(root->d_sb->s_options);
1214 if (options != NULL && options[0]) {
1215 seq_putc(m, ',');
1216 mangle(m, options);
1218 rcu_read_unlock();
1220 return 0;
1222 EXPORT_SYMBOL(generic_show_options);
1225 * If filesystem uses generic_show_options(), this function should be
1226 * called from the fill_super() callback.
1228 * The .remount_fs callback usually needs to be handled in a special
1229 * way, to make sure, that previous options are not overwritten if the
1230 * remount fails.
1232 * Also note, that if the filesystem's .remount_fs function doesn't
1233 * reset all options to their default value, but changes only newly
1234 * given options, then the displayed options will not reflect reality
1235 * any more.
1237 void save_mount_options(struct super_block *sb, char *options)
1239 BUG_ON(sb->s_options);
1240 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1242 EXPORT_SYMBOL(save_mount_options);
1244 void replace_mount_options(struct super_block *sb, char *options)
1246 char *old = sb->s_options;
1247 rcu_assign_pointer(sb->s_options, options);
1248 if (old) {
1249 synchronize_rcu();
1250 kfree(old);
1253 EXPORT_SYMBOL(replace_mount_options);
1255 #ifdef CONFIG_PROC_FS
1256 /* iterator; we want it to have access to namespace_sem, thus here... */
1257 static void *m_start(struct seq_file *m, loff_t *pos)
1259 struct proc_mounts *p = m->private;
1261 down_read(&namespace_sem);
1262 if (p->cached_event == p->ns->event) {
1263 void *v = p->cached_mount;
1264 if (*pos == p->cached_index)
1265 return v;
1266 if (*pos == p->cached_index + 1) {
1267 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1268 return p->cached_mount = v;
1272 p->cached_event = p->ns->event;
1273 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1274 p->cached_index = *pos;
1275 return p->cached_mount;
1278 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1280 struct proc_mounts *p = m->private;
1282 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1283 p->cached_index = *pos;
1284 return p->cached_mount;
1287 static void m_stop(struct seq_file *m, void *v)
1289 up_read(&namespace_sem);
1292 static int m_show(struct seq_file *m, void *v)
1294 struct proc_mounts *p = m->private;
1295 struct mount *r = list_entry(v, struct mount, mnt_list);
1296 return p->show(m, &r->mnt);
1299 const struct seq_operations mounts_op = {
1300 .start = m_start,
1301 .next = m_next,
1302 .stop = m_stop,
1303 .show = m_show,
1305 #endif /* CONFIG_PROC_FS */
1308 * may_umount_tree - check if a mount tree is busy
1309 * @mnt: root of mount tree
1311 * This is called to check if a tree of mounts has any
1312 * open files, pwds, chroots or sub mounts that are
1313 * busy.
1315 int may_umount_tree(struct vfsmount *m)
1317 struct mount *mnt = real_mount(m);
1318 int actual_refs = 0;
1319 int minimum_refs = 0;
1320 struct mount *p;
1321 BUG_ON(!m);
1323 /* write lock needed for mnt_get_count */
1324 lock_mount_hash();
1325 for (p = mnt; p; p = next_mnt(p, mnt)) {
1326 actual_refs += mnt_get_count(p);
1327 minimum_refs += 2;
1329 unlock_mount_hash();
1331 if (actual_refs > minimum_refs)
1332 return 0;
1334 return 1;
1337 EXPORT_SYMBOL(may_umount_tree);
1340 * may_umount - check if a mount point is busy
1341 * @mnt: root of mount
1343 * This is called to check if a mount point has any
1344 * open files, pwds, chroots or sub mounts. If the
1345 * mount has sub mounts this will return busy
1346 * regardless of whether the sub mounts are busy.
1348 * Doesn't take quota and stuff into account. IOW, in some cases it will
1349 * give false negatives. The main reason why it's here is that we need
1350 * a non-destructive way to look for easily umountable filesystems.
1352 int may_umount(struct vfsmount *mnt)
1354 int ret = 1;
1355 down_read(&namespace_sem);
1356 lock_mount_hash();
1357 if (propagate_mount_busy(real_mount(mnt), 2))
1358 ret = 0;
1359 unlock_mount_hash();
1360 up_read(&namespace_sem);
1361 return ret;
1364 EXPORT_SYMBOL(may_umount);
1366 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1368 static void namespace_unlock(void)
1370 struct hlist_head head;
1372 hlist_move_list(&unmounted, &head);
1374 up_write(&namespace_sem);
1376 if (likely(hlist_empty(&head)))
1377 return;
1379 synchronize_rcu();
1381 group_pin_kill(&head);
1384 static inline void namespace_lock(void)
1386 down_write(&namespace_sem);
1389 enum umount_tree_flags {
1390 UMOUNT_SYNC = 1,
1391 UMOUNT_PROPAGATE = 2,
1392 UMOUNT_CONNECTED = 4,
1395 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1397 /* Leaving mounts connected is only valid for lazy umounts */
1398 if (how & UMOUNT_SYNC)
1399 return true;
1401 /* A mount without a parent has nothing to be connected to */
1402 if (!mnt_has_parent(mnt))
1403 return true;
1405 /* Because the reference counting rules change when mounts are
1406 * unmounted and connected, umounted mounts may not be
1407 * connected to mounted mounts.
1409 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1410 return true;
1412 /* Has it been requested that the mount remain connected? */
1413 if (how & UMOUNT_CONNECTED)
1414 return false;
1416 /* Is the mount locked such that it needs to remain connected? */
1417 if (IS_MNT_LOCKED(mnt))
1418 return false;
1420 /* By default disconnect the mount */
1421 return true;
1425 * mount_lock must be held
1426 * namespace_sem must be held for write
1428 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1430 LIST_HEAD(tmp_list);
1431 struct mount *p;
1433 if (how & UMOUNT_PROPAGATE)
1434 propagate_mount_unlock(mnt);
1436 /* Gather the mounts to umount */
1437 for (p = mnt; p; p = next_mnt(p, mnt)) {
1438 p->mnt.mnt_flags |= MNT_UMOUNT;
1439 list_move(&p->mnt_list, &tmp_list);
1442 /* Hide the mounts from mnt_mounts */
1443 list_for_each_entry(p, &tmp_list, mnt_list) {
1444 list_del_init(&p->mnt_child);
1447 /* Add propogated mounts to the tmp_list */
1448 if (how & UMOUNT_PROPAGATE)
1449 propagate_umount(&tmp_list);
1451 while (!list_empty(&tmp_list)) {
1452 struct mnt_namespace *ns;
1453 bool disconnect;
1454 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1455 list_del_init(&p->mnt_expire);
1456 list_del_init(&p->mnt_list);
1457 ns = p->mnt_ns;
1458 if (ns) {
1459 ns->mounts--;
1460 __touch_mnt_namespace(ns);
1462 p->mnt_ns = NULL;
1463 if (how & UMOUNT_SYNC)
1464 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1466 disconnect = disconnect_mount(p, how);
1468 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1469 disconnect ? &unmounted : NULL);
1470 if (mnt_has_parent(p)) {
1471 mnt_add_count(p->mnt_parent, -1);
1472 if (!disconnect) {
1473 /* Don't forget about p */
1474 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1475 } else {
1476 umount_mnt(p);
1479 change_mnt_propagation(p, MS_PRIVATE);
1483 static void shrink_submounts(struct mount *mnt);
1485 static int do_umount(struct mount *mnt, int flags)
1487 struct super_block *sb = mnt->mnt.mnt_sb;
1488 int retval;
1490 retval = security_sb_umount(&mnt->mnt, flags);
1491 if (retval)
1492 return retval;
1495 * Allow userspace to request a mountpoint be expired rather than
1496 * unmounting unconditionally. Unmount only happens if:
1497 * (1) the mark is already set (the mark is cleared by mntput())
1498 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1500 if (flags & MNT_EXPIRE) {
1501 if (&mnt->mnt == current->fs->root.mnt ||
1502 flags & (MNT_FORCE | MNT_DETACH))
1503 return -EINVAL;
1506 * probably don't strictly need the lock here if we examined
1507 * all race cases, but it's a slowpath.
1509 lock_mount_hash();
1510 if (mnt_get_count(mnt) != 2) {
1511 unlock_mount_hash();
1512 return -EBUSY;
1514 unlock_mount_hash();
1516 if (!xchg(&mnt->mnt_expiry_mark, 1))
1517 return -EAGAIN;
1521 * If we may have to abort operations to get out of this
1522 * mount, and they will themselves hold resources we must
1523 * allow the fs to do things. In the Unix tradition of
1524 * 'Gee thats tricky lets do it in userspace' the umount_begin
1525 * might fail to complete on the first run through as other tasks
1526 * must return, and the like. Thats for the mount program to worry
1527 * about for the moment.
1530 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1531 sb->s_op->umount_begin(sb);
1535 * No sense to grab the lock for this test, but test itself looks
1536 * somewhat bogus. Suggestions for better replacement?
1537 * Ho-hum... In principle, we might treat that as umount + switch
1538 * to rootfs. GC would eventually take care of the old vfsmount.
1539 * Actually it makes sense, especially if rootfs would contain a
1540 * /reboot - static binary that would close all descriptors and
1541 * call reboot(9). Then init(8) could umount root and exec /reboot.
1543 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1545 * Special case for "unmounting" root ...
1546 * we just try to remount it readonly.
1548 if (!capable(CAP_SYS_ADMIN))
1549 return -EPERM;
1550 down_write(&sb->s_umount);
1551 if (!(sb->s_flags & MS_RDONLY))
1552 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1553 up_write(&sb->s_umount);
1554 return retval;
1557 namespace_lock();
1558 lock_mount_hash();
1559 event++;
1561 if (flags & MNT_DETACH) {
1562 if (!list_empty(&mnt->mnt_list))
1563 umount_tree(mnt, UMOUNT_PROPAGATE);
1564 retval = 0;
1565 } else {
1566 shrink_submounts(mnt);
1567 retval = -EBUSY;
1568 if (!propagate_mount_busy(mnt, 2)) {
1569 if (!list_empty(&mnt->mnt_list))
1570 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1571 retval = 0;
1574 unlock_mount_hash();
1575 namespace_unlock();
1576 return retval;
1580 * __detach_mounts - lazily unmount all mounts on the specified dentry
1582 * During unlink, rmdir, and d_drop it is possible to loose the path
1583 * to an existing mountpoint, and wind up leaking the mount.
1584 * detach_mounts allows lazily unmounting those mounts instead of
1585 * leaking them.
1587 * The caller may hold dentry->d_inode->i_mutex.
1589 void __detach_mounts(struct dentry *dentry)
1591 struct mountpoint *mp;
1592 struct mount *mnt;
1594 namespace_lock();
1595 lock_mount_hash();
1596 mp = lookup_mountpoint(dentry);
1597 if (IS_ERR_OR_NULL(mp))
1598 goto out_unlock;
1600 event++;
1601 while (!hlist_empty(&mp->m_list)) {
1602 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1603 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1604 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1605 umount_mnt(mnt);
1607 else umount_tree(mnt, UMOUNT_CONNECTED);
1609 put_mountpoint(mp);
1610 out_unlock:
1611 unlock_mount_hash();
1612 namespace_unlock();
1616 * Is the caller allowed to modify his namespace?
1618 static inline bool may_mount(void)
1620 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1623 static inline bool may_mandlock(void)
1625 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1626 return false;
1627 #endif
1628 return capable(CAP_SYS_ADMIN);
1632 * Now umount can handle mount points as well as block devices.
1633 * This is important for filesystems which use unnamed block devices.
1635 * We now support a flag for forced unmount like the other 'big iron'
1636 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1639 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1641 struct path path;
1642 struct mount *mnt;
1643 int retval;
1644 int lookup_flags = 0;
1646 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1647 return -EINVAL;
1649 if (!may_mount())
1650 return -EPERM;
1652 if (!(flags & UMOUNT_NOFOLLOW))
1653 lookup_flags |= LOOKUP_FOLLOW;
1655 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1656 if (retval)
1657 goto out;
1658 mnt = real_mount(path.mnt);
1659 retval = -EINVAL;
1660 if (path.dentry != path.mnt->mnt_root)
1661 goto dput_and_out;
1662 if (!check_mnt(mnt))
1663 goto dput_and_out;
1664 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1665 goto dput_and_out;
1666 retval = -EPERM;
1667 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1668 goto dput_and_out;
1670 retval = do_umount(mnt, flags);
1671 dput_and_out:
1672 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1673 dput(path.dentry);
1674 mntput_no_expire(mnt);
1675 out:
1676 return retval;
1679 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1682 * The 2.0 compatible umount. No flags.
1684 SYSCALL_DEFINE1(oldumount, char __user *, name)
1686 return sys_umount(name, 0);
1689 #endif
1691 static bool is_mnt_ns_file(struct dentry *dentry)
1693 /* Is this a proxy for a mount namespace? */
1694 return dentry->d_op == &ns_dentry_operations &&
1695 dentry->d_fsdata == &mntns_operations;
1698 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1700 return container_of(ns, struct mnt_namespace, ns);
1703 static bool mnt_ns_loop(struct dentry *dentry)
1705 /* Could bind mounting the mount namespace inode cause a
1706 * mount namespace loop?
1708 struct mnt_namespace *mnt_ns;
1709 if (!is_mnt_ns_file(dentry))
1710 return false;
1712 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1713 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1716 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1717 int flag)
1719 struct mount *res, *p, *q, *r, *parent;
1721 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1722 return ERR_PTR(-EINVAL);
1724 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1725 return ERR_PTR(-EINVAL);
1727 res = q = clone_mnt(mnt, dentry, flag);
1728 if (IS_ERR(q))
1729 return q;
1731 q->mnt_mountpoint = mnt->mnt_mountpoint;
1733 p = mnt;
1734 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1735 struct mount *s;
1736 if (!is_subdir(r->mnt_mountpoint, dentry))
1737 continue;
1739 for (s = r; s; s = next_mnt(s, r)) {
1740 struct mount *t = NULL;
1741 if (!(flag & CL_COPY_UNBINDABLE) &&
1742 IS_MNT_UNBINDABLE(s)) {
1743 s = skip_mnt_tree(s);
1744 continue;
1746 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1747 is_mnt_ns_file(s->mnt.mnt_root)) {
1748 s = skip_mnt_tree(s);
1749 continue;
1751 while (p != s->mnt_parent) {
1752 p = p->mnt_parent;
1753 q = q->mnt_parent;
1755 p = s;
1756 parent = q;
1757 q = clone_mnt(p, p->mnt.mnt_root, flag);
1758 if (IS_ERR(q))
1759 goto out;
1760 lock_mount_hash();
1761 list_add_tail(&q->mnt_list, &res->mnt_list);
1762 mnt_set_mountpoint(parent, p->mnt_mp, q);
1763 if (!list_empty(&parent->mnt_mounts)) {
1764 t = list_last_entry(&parent->mnt_mounts,
1765 struct mount, mnt_child);
1766 if (t->mnt_mp != p->mnt_mp)
1767 t = NULL;
1769 attach_shadowed(q, parent, t);
1770 unlock_mount_hash();
1773 return res;
1774 out:
1775 if (res) {
1776 lock_mount_hash();
1777 umount_tree(res, UMOUNT_SYNC);
1778 unlock_mount_hash();
1780 return q;
1783 /* Caller should check returned pointer for errors */
1785 struct vfsmount *collect_mounts(struct path *path)
1787 struct mount *tree;
1788 namespace_lock();
1789 if (!check_mnt(real_mount(path->mnt)))
1790 tree = ERR_PTR(-EINVAL);
1791 else
1792 tree = copy_tree(real_mount(path->mnt), path->dentry,
1793 CL_COPY_ALL | CL_PRIVATE);
1794 namespace_unlock();
1795 if (IS_ERR(tree))
1796 return ERR_CAST(tree);
1797 return &tree->mnt;
1800 void drop_collected_mounts(struct vfsmount *mnt)
1802 namespace_lock();
1803 lock_mount_hash();
1804 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1805 unlock_mount_hash();
1806 namespace_unlock();
1810 * clone_private_mount - create a private clone of a path
1812 * This creates a new vfsmount, which will be the clone of @path. The new will
1813 * not be attached anywhere in the namespace and will be private (i.e. changes
1814 * to the originating mount won't be propagated into this).
1816 * Release with mntput().
1818 struct vfsmount *clone_private_mount(struct path *path)
1820 struct mount *old_mnt = real_mount(path->mnt);
1821 struct mount *new_mnt;
1823 if (IS_MNT_UNBINDABLE(old_mnt))
1824 return ERR_PTR(-EINVAL);
1826 down_read(&namespace_sem);
1827 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1828 up_read(&namespace_sem);
1829 if (IS_ERR(new_mnt))
1830 return ERR_CAST(new_mnt);
1832 return &new_mnt->mnt;
1834 EXPORT_SYMBOL_GPL(clone_private_mount);
1836 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1837 struct vfsmount *root)
1839 struct mount *mnt;
1840 int res = f(root, arg);
1841 if (res)
1842 return res;
1843 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1844 res = f(&mnt->mnt, arg);
1845 if (res)
1846 return res;
1848 return 0;
1851 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1853 struct mount *p;
1855 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1856 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1857 mnt_release_group_id(p);
1861 static int invent_group_ids(struct mount *mnt, bool recurse)
1863 struct mount *p;
1865 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1866 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1867 int err = mnt_alloc_group_id(p);
1868 if (err) {
1869 cleanup_group_ids(mnt, p);
1870 return err;
1875 return 0;
1878 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1880 unsigned int max = READ_ONCE(sysctl_mount_max);
1881 unsigned int mounts = 0, old, pending, sum;
1882 struct mount *p;
1884 for (p = mnt; p; p = next_mnt(p, mnt))
1885 mounts++;
1887 old = ns->mounts;
1888 pending = ns->pending_mounts;
1889 sum = old + pending;
1890 if ((old > sum) ||
1891 (pending > sum) ||
1892 (max < sum) ||
1893 (mounts > (max - sum)))
1894 return -ENOSPC;
1896 ns->pending_mounts = pending + mounts;
1897 return 0;
1901 * @source_mnt : mount tree to be attached
1902 * @nd : place the mount tree @source_mnt is attached
1903 * @parent_nd : if non-null, detach the source_mnt from its parent and
1904 * store the parent mount and mountpoint dentry.
1905 * (done when source_mnt is moved)
1907 * NOTE: in the table below explains the semantics when a source mount
1908 * of a given type is attached to a destination mount of a given type.
1909 * ---------------------------------------------------------------------------
1910 * | BIND MOUNT OPERATION |
1911 * |**************************************************************************
1912 * | source-->| shared | private | slave | unbindable |
1913 * | dest | | | | |
1914 * | | | | | | |
1915 * | v | | | | |
1916 * |**************************************************************************
1917 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1918 * | | | | | |
1919 * |non-shared| shared (+) | private | slave (*) | invalid |
1920 * ***************************************************************************
1921 * A bind operation clones the source mount and mounts the clone on the
1922 * destination mount.
1924 * (++) the cloned mount is propagated to all the mounts in the propagation
1925 * tree of the destination mount and the cloned mount is added to
1926 * the peer group of the source mount.
1927 * (+) the cloned mount is created under the destination mount and is marked
1928 * as shared. The cloned mount is added to the peer group of the source
1929 * mount.
1930 * (+++) the mount is propagated to all the mounts in the propagation tree
1931 * of the destination mount and the cloned mount is made slave
1932 * of the same master as that of the source mount. The cloned mount
1933 * is marked as 'shared and slave'.
1934 * (*) the cloned mount is made a slave of the same master as that of the
1935 * source mount.
1937 * ---------------------------------------------------------------------------
1938 * | MOVE MOUNT OPERATION |
1939 * |**************************************************************************
1940 * | source-->| shared | private | slave | unbindable |
1941 * | dest | | | | |
1942 * | | | | | | |
1943 * | v | | | | |
1944 * |**************************************************************************
1945 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1946 * | | | | | |
1947 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1948 * ***************************************************************************
1950 * (+) the mount is moved to the destination. And is then propagated to
1951 * all the mounts in the propagation tree of the destination mount.
1952 * (+*) the mount is moved to the destination.
1953 * (+++) the mount is moved to the destination and is then propagated to
1954 * all the mounts belonging to the destination mount's propagation tree.
1955 * the mount is marked as 'shared and slave'.
1956 * (*) the mount continues to be a slave at the new location.
1958 * if the source mount is a tree, the operations explained above is
1959 * applied to each mount in the tree.
1960 * Must be called without spinlocks held, since this function can sleep
1961 * in allocations.
1963 static int attach_recursive_mnt(struct mount *source_mnt,
1964 struct mount *dest_mnt,
1965 struct mountpoint *dest_mp,
1966 struct path *parent_path)
1968 HLIST_HEAD(tree_list);
1969 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1970 struct mount *child, *p;
1971 struct hlist_node *n;
1972 int err;
1974 /* Is there space to add these mounts to the mount namespace? */
1975 if (!parent_path) {
1976 err = count_mounts(ns, source_mnt);
1977 if (err)
1978 goto out;
1981 if (IS_MNT_SHARED(dest_mnt)) {
1982 err = invent_group_ids(source_mnt, true);
1983 if (err)
1984 goto out;
1985 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1986 lock_mount_hash();
1987 if (err)
1988 goto out_cleanup_ids;
1989 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1990 set_mnt_shared(p);
1991 } else {
1992 lock_mount_hash();
1994 if (parent_path) {
1995 detach_mnt(source_mnt, parent_path);
1996 attach_mnt(source_mnt, dest_mnt, dest_mp);
1997 touch_mnt_namespace(source_mnt->mnt_ns);
1998 } else {
1999 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2000 commit_tree(source_mnt, NULL);
2003 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2004 struct mount *q;
2005 hlist_del_init(&child->mnt_hash);
2006 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2007 child->mnt_mountpoint);
2008 commit_tree(child, q);
2010 unlock_mount_hash();
2012 return 0;
2014 out_cleanup_ids:
2015 while (!hlist_empty(&tree_list)) {
2016 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2017 child->mnt_parent->mnt_ns->pending_mounts = 0;
2018 umount_tree(child, UMOUNT_SYNC);
2020 unlock_mount_hash();
2021 cleanup_group_ids(source_mnt, NULL);
2022 out:
2023 ns->pending_mounts = 0;
2024 return err;
2027 static struct mountpoint *lock_mount(struct path *path)
2029 struct vfsmount *mnt;
2030 struct dentry *dentry = path->dentry;
2031 retry:
2032 inode_lock(dentry->d_inode);
2033 if (unlikely(cant_mount(dentry))) {
2034 inode_unlock(dentry->d_inode);
2035 return ERR_PTR(-ENOENT);
2037 namespace_lock();
2038 mnt = lookup_mnt(path);
2039 if (likely(!mnt)) {
2040 struct mountpoint *mp = get_mountpoint(dentry);
2041 if (IS_ERR(mp)) {
2042 namespace_unlock();
2043 inode_unlock(dentry->d_inode);
2044 return mp;
2046 return mp;
2048 namespace_unlock();
2049 inode_unlock(path->dentry->d_inode);
2050 path_put(path);
2051 path->mnt = mnt;
2052 dentry = path->dentry = dget(mnt->mnt_root);
2053 goto retry;
2056 static void unlock_mount(struct mountpoint *where)
2058 struct dentry *dentry = where->m_dentry;
2060 read_seqlock_excl(&mount_lock);
2061 put_mountpoint(where);
2062 read_sequnlock_excl(&mount_lock);
2064 namespace_unlock();
2065 inode_unlock(dentry->d_inode);
2068 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2070 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2071 return -EINVAL;
2073 if (d_is_dir(mp->m_dentry) !=
2074 d_is_dir(mnt->mnt.mnt_root))
2075 return -ENOTDIR;
2077 return attach_recursive_mnt(mnt, p, mp, NULL);
2081 * Sanity check the flags to change_mnt_propagation.
2084 static int flags_to_propagation_type(int flags)
2086 int type = flags & ~(MS_REC | MS_SILENT);
2088 /* Fail if any non-propagation flags are set */
2089 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2090 return 0;
2091 /* Only one propagation flag should be set */
2092 if (!is_power_of_2(type))
2093 return 0;
2094 return type;
2098 * recursively change the type of the mountpoint.
2100 static int do_change_type(struct path *path, int flag)
2102 struct mount *m;
2103 struct mount *mnt = real_mount(path->mnt);
2104 int recurse = flag & MS_REC;
2105 int type;
2106 int err = 0;
2108 if (path->dentry != path->mnt->mnt_root)
2109 return -EINVAL;
2111 type = flags_to_propagation_type(flag);
2112 if (!type)
2113 return -EINVAL;
2115 namespace_lock();
2116 if (type == MS_SHARED) {
2117 err = invent_group_ids(mnt, recurse);
2118 if (err)
2119 goto out_unlock;
2122 lock_mount_hash();
2123 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2124 change_mnt_propagation(m, type);
2125 unlock_mount_hash();
2127 out_unlock:
2128 namespace_unlock();
2129 return err;
2132 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2134 struct mount *child;
2135 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2136 if (!is_subdir(child->mnt_mountpoint, dentry))
2137 continue;
2139 if (child->mnt.mnt_flags & MNT_LOCKED)
2140 return true;
2142 return false;
2146 * do loopback mount.
2148 static int do_loopback(struct path *path, const char *old_name,
2149 int recurse)
2151 struct path old_path;
2152 struct mount *mnt = NULL, *old, *parent;
2153 struct mountpoint *mp;
2154 int err;
2155 if (!old_name || !*old_name)
2156 return -EINVAL;
2157 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2158 if (err)
2159 return err;
2161 err = -EINVAL;
2162 if (mnt_ns_loop(old_path.dentry))
2163 goto out;
2165 mp = lock_mount(path);
2166 err = PTR_ERR(mp);
2167 if (IS_ERR(mp))
2168 goto out;
2170 old = real_mount(old_path.mnt);
2171 parent = real_mount(path->mnt);
2173 err = -EINVAL;
2174 if (IS_MNT_UNBINDABLE(old))
2175 goto out2;
2177 if (!check_mnt(parent))
2178 goto out2;
2180 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2181 goto out2;
2183 if (!recurse && has_locked_children(old, old_path.dentry))
2184 goto out2;
2186 if (recurse)
2187 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2188 else
2189 mnt = clone_mnt(old, old_path.dentry, 0);
2191 if (IS_ERR(mnt)) {
2192 err = PTR_ERR(mnt);
2193 goto out2;
2196 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2198 err = graft_tree(mnt, parent, mp);
2199 if (err) {
2200 lock_mount_hash();
2201 umount_tree(mnt, UMOUNT_SYNC);
2202 unlock_mount_hash();
2204 out2:
2205 unlock_mount(mp);
2206 out:
2207 path_put(&old_path);
2208 return err;
2211 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2213 int error = 0;
2214 int readonly_request = 0;
2216 if (ms_flags & MS_RDONLY)
2217 readonly_request = 1;
2218 if (readonly_request == __mnt_is_readonly(mnt))
2219 return 0;
2221 if (readonly_request)
2222 error = mnt_make_readonly(real_mount(mnt));
2223 else
2224 __mnt_unmake_readonly(real_mount(mnt));
2225 return error;
2229 * change filesystem flags. dir should be a physical root of filesystem.
2230 * If you've mounted a non-root directory somewhere and want to do remount
2231 * on it - tough luck.
2233 static int do_remount(struct path *path, int flags, int mnt_flags,
2234 void *data)
2236 int err;
2237 struct super_block *sb = path->mnt->mnt_sb;
2238 struct mount *mnt = real_mount(path->mnt);
2240 if (!check_mnt(mnt))
2241 return -EINVAL;
2243 if (path->dentry != path->mnt->mnt_root)
2244 return -EINVAL;
2246 /* Don't allow changing of locked mnt flags.
2248 * No locks need to be held here while testing the various
2249 * MNT_LOCK flags because those flags can never be cleared
2250 * once they are set.
2252 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2253 !(mnt_flags & MNT_READONLY)) {
2254 return -EPERM;
2256 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2257 !(mnt_flags & MNT_NODEV)) {
2258 return -EPERM;
2260 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2261 !(mnt_flags & MNT_NOSUID)) {
2262 return -EPERM;
2264 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2265 !(mnt_flags & MNT_NOEXEC)) {
2266 return -EPERM;
2268 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2269 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2270 return -EPERM;
2273 err = security_sb_remount(sb, data);
2274 if (err)
2275 return err;
2277 down_write(&sb->s_umount);
2278 if (flags & MS_BIND)
2279 err = change_mount_flags(path->mnt, flags);
2280 else if (!capable(CAP_SYS_ADMIN))
2281 err = -EPERM;
2282 else
2283 err = do_remount_sb(sb, flags, data, 0);
2284 if (!err) {
2285 lock_mount_hash();
2286 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2287 mnt->mnt.mnt_flags = mnt_flags;
2288 touch_mnt_namespace(mnt->mnt_ns);
2289 unlock_mount_hash();
2291 up_write(&sb->s_umount);
2292 return err;
2295 static inline int tree_contains_unbindable(struct mount *mnt)
2297 struct mount *p;
2298 for (p = mnt; p; p = next_mnt(p, mnt)) {
2299 if (IS_MNT_UNBINDABLE(p))
2300 return 1;
2302 return 0;
2305 static int do_move_mount(struct path *path, const char *old_name)
2307 struct path old_path, parent_path;
2308 struct mount *p;
2309 struct mount *old;
2310 struct mountpoint *mp;
2311 int err;
2312 if (!old_name || !*old_name)
2313 return -EINVAL;
2314 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2315 if (err)
2316 return err;
2318 mp = lock_mount(path);
2319 err = PTR_ERR(mp);
2320 if (IS_ERR(mp))
2321 goto out;
2323 old = real_mount(old_path.mnt);
2324 p = real_mount(path->mnt);
2326 err = -EINVAL;
2327 if (!check_mnt(p) || !check_mnt(old))
2328 goto out1;
2330 if (old->mnt.mnt_flags & MNT_LOCKED)
2331 goto out1;
2333 err = -EINVAL;
2334 if (old_path.dentry != old_path.mnt->mnt_root)
2335 goto out1;
2337 if (!mnt_has_parent(old))
2338 goto out1;
2340 if (d_is_dir(path->dentry) !=
2341 d_is_dir(old_path.dentry))
2342 goto out1;
2344 * Don't move a mount residing in a shared parent.
2346 if (IS_MNT_SHARED(old->mnt_parent))
2347 goto out1;
2349 * Don't move a mount tree containing unbindable mounts to a destination
2350 * mount which is shared.
2352 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2353 goto out1;
2354 err = -ELOOP;
2355 for (; mnt_has_parent(p); p = p->mnt_parent)
2356 if (p == old)
2357 goto out1;
2359 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2360 if (err)
2361 goto out1;
2363 /* if the mount is moved, it should no longer be expire
2364 * automatically */
2365 list_del_init(&old->mnt_expire);
2366 out1:
2367 unlock_mount(mp);
2368 out:
2369 if (!err)
2370 path_put(&parent_path);
2371 path_put(&old_path);
2372 return err;
2375 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2377 int err;
2378 const char *subtype = strchr(fstype, '.');
2379 if (subtype) {
2380 subtype++;
2381 err = -EINVAL;
2382 if (!subtype[0])
2383 goto err;
2384 } else
2385 subtype = "";
2387 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2388 err = -ENOMEM;
2389 if (!mnt->mnt_sb->s_subtype)
2390 goto err;
2391 return mnt;
2393 err:
2394 mntput(mnt);
2395 return ERR_PTR(err);
2399 * add a mount into a namespace's mount tree
2401 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2403 struct mountpoint *mp;
2404 struct mount *parent;
2405 int err;
2407 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2409 mp = lock_mount(path);
2410 if (IS_ERR(mp))
2411 return PTR_ERR(mp);
2413 parent = real_mount(path->mnt);
2414 err = -EINVAL;
2415 if (unlikely(!check_mnt(parent))) {
2416 /* that's acceptable only for automounts done in private ns */
2417 if (!(mnt_flags & MNT_SHRINKABLE))
2418 goto unlock;
2419 /* ... and for those we'd better have mountpoint still alive */
2420 if (!parent->mnt_ns)
2421 goto unlock;
2424 /* Refuse the same filesystem on the same mount point */
2425 err = -EBUSY;
2426 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2427 path->mnt->mnt_root == path->dentry)
2428 goto unlock;
2430 err = -EINVAL;
2431 if (d_is_symlink(newmnt->mnt.mnt_root))
2432 goto unlock;
2434 newmnt->mnt.mnt_flags = mnt_flags;
2435 err = graft_tree(newmnt, parent, mp);
2437 unlock:
2438 unlock_mount(mp);
2439 return err;
2442 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2445 * create a new mount for userspace and request it to be added into the
2446 * namespace's tree
2448 static int do_new_mount(struct path *path, const char *fstype, int flags,
2449 int mnt_flags, const char *name, void *data)
2451 struct file_system_type *type;
2452 struct vfsmount *mnt;
2453 int err;
2455 if (!fstype)
2456 return -EINVAL;
2458 type = get_fs_type(fstype);
2459 if (!type)
2460 return -ENODEV;
2462 mnt = vfs_kern_mount(type, flags, name, data);
2463 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2464 !mnt->mnt_sb->s_subtype)
2465 mnt = fs_set_subtype(mnt, fstype);
2467 put_filesystem(type);
2468 if (IS_ERR(mnt))
2469 return PTR_ERR(mnt);
2471 if (mount_too_revealing(mnt, &mnt_flags)) {
2472 mntput(mnt);
2473 return -EPERM;
2476 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2477 if (err)
2478 mntput(mnt);
2479 return err;
2482 int finish_automount(struct vfsmount *m, struct path *path)
2484 struct mount *mnt = real_mount(m);
2485 int err;
2486 /* The new mount record should have at least 2 refs to prevent it being
2487 * expired before we get a chance to add it
2489 BUG_ON(mnt_get_count(mnt) < 2);
2491 if (m->mnt_sb == path->mnt->mnt_sb &&
2492 m->mnt_root == path->dentry) {
2493 err = -ELOOP;
2494 goto fail;
2497 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2498 if (!err)
2499 return 0;
2500 fail:
2501 /* remove m from any expiration list it may be on */
2502 if (!list_empty(&mnt->mnt_expire)) {
2503 namespace_lock();
2504 list_del_init(&mnt->mnt_expire);
2505 namespace_unlock();
2507 mntput(m);
2508 mntput(m);
2509 return err;
2513 * mnt_set_expiry - Put a mount on an expiration list
2514 * @mnt: The mount to list.
2515 * @expiry_list: The list to add the mount to.
2517 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2519 namespace_lock();
2521 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2523 namespace_unlock();
2525 EXPORT_SYMBOL(mnt_set_expiry);
2528 * process a list of expirable mountpoints with the intent of discarding any
2529 * mountpoints that aren't in use and haven't been touched since last we came
2530 * here
2532 void mark_mounts_for_expiry(struct list_head *mounts)
2534 struct mount *mnt, *next;
2535 LIST_HEAD(graveyard);
2537 if (list_empty(mounts))
2538 return;
2540 namespace_lock();
2541 lock_mount_hash();
2543 /* extract from the expiration list every vfsmount that matches the
2544 * following criteria:
2545 * - only referenced by its parent vfsmount
2546 * - still marked for expiry (marked on the last call here; marks are
2547 * cleared by mntput())
2549 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2550 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2551 propagate_mount_busy(mnt, 1))
2552 continue;
2553 list_move(&mnt->mnt_expire, &graveyard);
2555 while (!list_empty(&graveyard)) {
2556 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2557 touch_mnt_namespace(mnt->mnt_ns);
2558 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2560 unlock_mount_hash();
2561 namespace_unlock();
2564 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2567 * Ripoff of 'select_parent()'
2569 * search the list of submounts for a given mountpoint, and move any
2570 * shrinkable submounts to the 'graveyard' list.
2572 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2574 struct mount *this_parent = parent;
2575 struct list_head *next;
2576 int found = 0;
2578 repeat:
2579 next = this_parent->mnt_mounts.next;
2580 resume:
2581 while (next != &this_parent->mnt_mounts) {
2582 struct list_head *tmp = next;
2583 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2585 next = tmp->next;
2586 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2587 continue;
2589 * Descend a level if the d_mounts list is non-empty.
2591 if (!list_empty(&mnt->mnt_mounts)) {
2592 this_parent = mnt;
2593 goto repeat;
2596 if (!propagate_mount_busy(mnt, 1)) {
2597 list_move_tail(&mnt->mnt_expire, graveyard);
2598 found++;
2602 * All done at this level ... ascend and resume the search
2604 if (this_parent != parent) {
2605 next = this_parent->mnt_child.next;
2606 this_parent = this_parent->mnt_parent;
2607 goto resume;
2609 return found;
2613 * process a list of expirable mountpoints with the intent of discarding any
2614 * submounts of a specific parent mountpoint
2616 * mount_lock must be held for write
2618 static void shrink_submounts(struct mount *mnt)
2620 LIST_HEAD(graveyard);
2621 struct mount *m;
2623 /* extract submounts of 'mountpoint' from the expiration list */
2624 while (select_submounts(mnt, &graveyard)) {
2625 while (!list_empty(&graveyard)) {
2626 m = list_first_entry(&graveyard, struct mount,
2627 mnt_expire);
2628 touch_mnt_namespace(m->mnt_ns);
2629 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2635 * Some copy_from_user() implementations do not return the exact number of
2636 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2637 * Note that this function differs from copy_from_user() in that it will oops
2638 * on bad values of `to', rather than returning a short copy.
2640 static long exact_copy_from_user(void *to, const void __user * from,
2641 unsigned long n)
2643 char *t = to;
2644 const char __user *f = from;
2645 char c;
2647 if (!access_ok(VERIFY_READ, from, n))
2648 return n;
2650 while (n) {
2651 if (__get_user(c, f)) {
2652 memset(t, 0, n);
2653 break;
2655 *t++ = c;
2656 f++;
2657 n--;
2659 return n;
2662 void *copy_mount_options(const void __user * data)
2664 int i;
2665 unsigned long size;
2666 char *copy;
2668 if (!data)
2669 return NULL;
2671 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2672 if (!copy)
2673 return ERR_PTR(-ENOMEM);
2675 /* We only care that *some* data at the address the user
2676 * gave us is valid. Just in case, we'll zero
2677 * the remainder of the page.
2679 /* copy_from_user cannot cross TASK_SIZE ! */
2680 size = TASK_SIZE - (unsigned long)data;
2681 if (size > PAGE_SIZE)
2682 size = PAGE_SIZE;
2684 i = size - exact_copy_from_user(copy, data, size);
2685 if (!i) {
2686 kfree(copy);
2687 return ERR_PTR(-EFAULT);
2689 if (i != PAGE_SIZE)
2690 memset(copy + i, 0, PAGE_SIZE - i);
2691 return copy;
2694 char *copy_mount_string(const void __user *data)
2696 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2700 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2701 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2703 * data is a (void *) that can point to any structure up to
2704 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2705 * information (or be NULL).
2707 * Pre-0.97 versions of mount() didn't have a flags word.
2708 * When the flags word was introduced its top half was required
2709 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2710 * Therefore, if this magic number is present, it carries no information
2711 * and must be discarded.
2713 long do_mount(const char *dev_name, const char __user *dir_name,
2714 const char *type_page, unsigned long flags, void *data_page)
2716 struct path path;
2717 int retval = 0;
2718 int mnt_flags = 0;
2720 /* Discard magic */
2721 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2722 flags &= ~MS_MGC_MSK;
2724 /* Basic sanity checks */
2725 if (data_page)
2726 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2728 /* ... and get the mountpoint */
2729 retval = user_path(dir_name, &path);
2730 if (retval)
2731 return retval;
2733 retval = security_sb_mount(dev_name, &path,
2734 type_page, flags, data_page);
2735 if (!retval && !may_mount())
2736 retval = -EPERM;
2737 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2738 retval = -EPERM;
2739 if (retval)
2740 goto dput_out;
2742 /* Default to relatime unless overriden */
2743 if (!(flags & MS_NOATIME))
2744 mnt_flags |= MNT_RELATIME;
2746 /* Separate the per-mountpoint flags */
2747 if (flags & MS_NOSUID)
2748 mnt_flags |= MNT_NOSUID;
2749 if (flags & MS_NODEV)
2750 mnt_flags |= MNT_NODEV;
2751 if (flags & MS_NOEXEC)
2752 mnt_flags |= MNT_NOEXEC;
2753 if (flags & MS_NOATIME)
2754 mnt_flags |= MNT_NOATIME;
2755 if (flags & MS_NODIRATIME)
2756 mnt_flags |= MNT_NODIRATIME;
2757 if (flags & MS_STRICTATIME)
2758 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2759 if (flags & MS_RDONLY)
2760 mnt_flags |= MNT_READONLY;
2762 /* The default atime for remount is preservation */
2763 if ((flags & MS_REMOUNT) &&
2764 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2765 MS_STRICTATIME)) == 0)) {
2766 mnt_flags &= ~MNT_ATIME_MASK;
2767 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2770 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2771 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2772 MS_STRICTATIME | MS_NOREMOTELOCK);
2774 if (flags & MS_REMOUNT)
2775 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2776 data_page);
2777 else if (flags & MS_BIND)
2778 retval = do_loopback(&path, dev_name, flags & MS_REC);
2779 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2780 retval = do_change_type(&path, flags);
2781 else if (flags & MS_MOVE)
2782 retval = do_move_mount(&path, dev_name);
2783 else
2784 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2785 dev_name, data_page);
2786 dput_out:
2787 path_put(&path);
2788 return retval;
2791 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2793 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2796 static void dec_mnt_namespaces(struct ucounts *ucounts)
2798 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2801 static void free_mnt_ns(struct mnt_namespace *ns)
2803 ns_free_inum(&ns->ns);
2804 dec_mnt_namespaces(ns->ucounts);
2805 put_user_ns(ns->user_ns);
2806 kfree(ns);
2810 * Assign a sequence number so we can detect when we attempt to bind
2811 * mount a reference to an older mount namespace into the current
2812 * mount namespace, preventing reference counting loops. A 64bit
2813 * number incrementing at 10Ghz will take 12,427 years to wrap which
2814 * is effectively never, so we can ignore the possibility.
2816 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2818 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2820 struct mnt_namespace *new_ns;
2821 struct ucounts *ucounts;
2822 int ret;
2824 ucounts = inc_mnt_namespaces(user_ns);
2825 if (!ucounts)
2826 return ERR_PTR(-ENOSPC);
2828 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2829 if (!new_ns) {
2830 dec_mnt_namespaces(ucounts);
2831 return ERR_PTR(-ENOMEM);
2833 ret = ns_alloc_inum(&new_ns->ns);
2834 if (ret) {
2835 kfree(new_ns);
2836 dec_mnt_namespaces(ucounts);
2837 return ERR_PTR(ret);
2839 new_ns->ns.ops = &mntns_operations;
2840 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2841 atomic_set(&new_ns->count, 1);
2842 new_ns->root = NULL;
2843 INIT_LIST_HEAD(&new_ns->list);
2844 init_waitqueue_head(&new_ns->poll);
2845 new_ns->event = 0;
2846 new_ns->user_ns = get_user_ns(user_ns);
2847 new_ns->ucounts = ucounts;
2848 new_ns->mounts = 0;
2849 new_ns->pending_mounts = 0;
2850 return new_ns;
2853 __latent_entropy
2854 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2855 struct user_namespace *user_ns, struct fs_struct *new_fs)
2857 struct mnt_namespace *new_ns;
2858 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2859 struct mount *p, *q;
2860 struct mount *old;
2861 struct mount *new;
2862 int copy_flags;
2864 BUG_ON(!ns);
2866 if (likely(!(flags & CLONE_NEWNS))) {
2867 get_mnt_ns(ns);
2868 return ns;
2871 old = ns->root;
2873 new_ns = alloc_mnt_ns(user_ns);
2874 if (IS_ERR(new_ns))
2875 return new_ns;
2877 namespace_lock();
2878 /* First pass: copy the tree topology */
2879 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2880 if (user_ns != ns->user_ns)
2881 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2882 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2883 if (IS_ERR(new)) {
2884 namespace_unlock();
2885 free_mnt_ns(new_ns);
2886 return ERR_CAST(new);
2888 new_ns->root = new;
2889 list_add_tail(&new_ns->list, &new->mnt_list);
2892 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2893 * as belonging to new namespace. We have already acquired a private
2894 * fs_struct, so tsk->fs->lock is not needed.
2896 p = old;
2897 q = new;
2898 while (p) {
2899 q->mnt_ns = new_ns;
2900 new_ns->mounts++;
2901 if (new_fs) {
2902 if (&p->mnt == new_fs->root.mnt) {
2903 new_fs->root.mnt = mntget(&q->mnt);
2904 rootmnt = &p->mnt;
2906 if (&p->mnt == new_fs->pwd.mnt) {
2907 new_fs->pwd.mnt = mntget(&q->mnt);
2908 pwdmnt = &p->mnt;
2911 p = next_mnt(p, old);
2912 q = next_mnt(q, new);
2913 if (!q)
2914 break;
2915 while (p->mnt.mnt_root != q->mnt.mnt_root)
2916 p = next_mnt(p, old);
2918 namespace_unlock();
2920 if (rootmnt)
2921 mntput(rootmnt);
2922 if (pwdmnt)
2923 mntput(pwdmnt);
2925 return new_ns;
2929 * create_mnt_ns - creates a private namespace and adds a root filesystem
2930 * @mnt: pointer to the new root filesystem mountpoint
2932 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2934 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2935 if (!IS_ERR(new_ns)) {
2936 struct mount *mnt = real_mount(m);
2937 mnt->mnt_ns = new_ns;
2938 new_ns->root = mnt;
2939 new_ns->mounts++;
2940 list_add(&mnt->mnt_list, &new_ns->list);
2941 } else {
2942 mntput(m);
2944 return new_ns;
2947 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2949 struct mnt_namespace *ns;
2950 struct super_block *s;
2951 struct path path;
2952 int err;
2954 ns = create_mnt_ns(mnt);
2955 if (IS_ERR(ns))
2956 return ERR_CAST(ns);
2958 err = vfs_path_lookup(mnt->mnt_root, mnt,
2959 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2961 put_mnt_ns(ns);
2963 if (err)
2964 return ERR_PTR(err);
2966 /* trade a vfsmount reference for active sb one */
2967 s = path.mnt->mnt_sb;
2968 atomic_inc(&s->s_active);
2969 mntput(path.mnt);
2970 /* lock the sucker */
2971 down_write(&s->s_umount);
2972 /* ... and return the root of (sub)tree on it */
2973 return path.dentry;
2975 EXPORT_SYMBOL(mount_subtree);
2977 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2978 char __user *, type, unsigned long, flags, void __user *, data)
2980 int ret;
2981 char *kernel_type;
2982 char *kernel_dev;
2983 void *options;
2985 kernel_type = copy_mount_string(type);
2986 ret = PTR_ERR(kernel_type);
2987 if (IS_ERR(kernel_type))
2988 goto out_type;
2990 kernel_dev = copy_mount_string(dev_name);
2991 ret = PTR_ERR(kernel_dev);
2992 if (IS_ERR(kernel_dev))
2993 goto out_dev;
2995 options = copy_mount_options(data);
2996 ret = PTR_ERR(options);
2997 if (IS_ERR(options))
2998 goto out_data;
3000 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3002 kfree(options);
3003 out_data:
3004 kfree(kernel_dev);
3005 out_dev:
3006 kfree(kernel_type);
3007 out_type:
3008 return ret;
3012 * Return true if path is reachable from root
3014 * namespace_sem or mount_lock is held
3016 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3017 const struct path *root)
3019 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3020 dentry = mnt->mnt_mountpoint;
3021 mnt = mnt->mnt_parent;
3023 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3026 bool path_is_under(struct path *path1, struct path *path2)
3028 bool res;
3029 read_seqlock_excl(&mount_lock);
3030 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3031 read_sequnlock_excl(&mount_lock);
3032 return res;
3034 EXPORT_SYMBOL(path_is_under);
3037 * pivot_root Semantics:
3038 * Moves the root file system of the current process to the directory put_old,
3039 * makes new_root as the new root file system of the current process, and sets
3040 * root/cwd of all processes which had them on the current root to new_root.
3042 * Restrictions:
3043 * The new_root and put_old must be directories, and must not be on the
3044 * same file system as the current process root. The put_old must be
3045 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3046 * pointed to by put_old must yield the same directory as new_root. No other
3047 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3049 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3050 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3051 * in this situation.
3053 * Notes:
3054 * - we don't move root/cwd if they are not at the root (reason: if something
3055 * cared enough to change them, it's probably wrong to force them elsewhere)
3056 * - it's okay to pick a root that isn't the root of a file system, e.g.
3057 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3058 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3059 * first.
3061 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3062 const char __user *, put_old)
3064 struct path new, old, parent_path, root_parent, root;
3065 struct mount *new_mnt, *root_mnt, *old_mnt;
3066 struct mountpoint *old_mp, *root_mp;
3067 int error;
3069 if (!may_mount())
3070 return -EPERM;
3072 error = user_path_dir(new_root, &new);
3073 if (error)
3074 goto out0;
3076 error = user_path_dir(put_old, &old);
3077 if (error)
3078 goto out1;
3080 error = security_sb_pivotroot(&old, &new);
3081 if (error)
3082 goto out2;
3084 get_fs_root(current->fs, &root);
3085 old_mp = lock_mount(&old);
3086 error = PTR_ERR(old_mp);
3087 if (IS_ERR(old_mp))
3088 goto out3;
3090 error = -EINVAL;
3091 new_mnt = real_mount(new.mnt);
3092 root_mnt = real_mount(root.mnt);
3093 old_mnt = real_mount(old.mnt);
3094 if (IS_MNT_SHARED(old_mnt) ||
3095 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3096 IS_MNT_SHARED(root_mnt->mnt_parent))
3097 goto out4;
3098 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3099 goto out4;
3100 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3101 goto out4;
3102 error = -ENOENT;
3103 if (d_unlinked(new.dentry))
3104 goto out4;
3105 error = -EBUSY;
3106 if (new_mnt == root_mnt || old_mnt == root_mnt)
3107 goto out4; /* loop, on the same file system */
3108 error = -EINVAL;
3109 if (root.mnt->mnt_root != root.dentry)
3110 goto out4; /* not a mountpoint */
3111 if (!mnt_has_parent(root_mnt))
3112 goto out4; /* not attached */
3113 root_mp = root_mnt->mnt_mp;
3114 if (new.mnt->mnt_root != new.dentry)
3115 goto out4; /* not a mountpoint */
3116 if (!mnt_has_parent(new_mnt))
3117 goto out4; /* not attached */
3118 /* make sure we can reach put_old from new_root */
3119 if (!is_path_reachable(old_mnt, old.dentry, &new))
3120 goto out4;
3121 /* make certain new is below the root */
3122 if (!is_path_reachable(new_mnt, new.dentry, &root))
3123 goto out4;
3124 root_mp->m_count++; /* pin it so it won't go away */
3125 lock_mount_hash();
3126 detach_mnt(new_mnt, &parent_path);
3127 detach_mnt(root_mnt, &root_parent);
3128 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3129 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3130 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3132 /* mount old root on put_old */
3133 attach_mnt(root_mnt, old_mnt, old_mp);
3134 /* mount new_root on / */
3135 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3136 touch_mnt_namespace(current->nsproxy->mnt_ns);
3137 /* A moved mount should not expire automatically */
3138 list_del_init(&new_mnt->mnt_expire);
3139 put_mountpoint(root_mp);
3140 unlock_mount_hash();
3141 chroot_fs_refs(&root, &new);
3142 error = 0;
3143 out4:
3144 unlock_mount(old_mp);
3145 if (!error) {
3146 path_put(&root_parent);
3147 path_put(&parent_path);
3149 out3:
3150 path_put(&root);
3151 out2:
3152 path_put(&old);
3153 out1:
3154 path_put(&new);
3155 out0:
3156 return error;
3159 static void __init init_mount_tree(void)
3161 struct vfsmount *mnt;
3162 struct mnt_namespace *ns;
3163 struct path root;
3164 struct file_system_type *type;
3166 type = get_fs_type("rootfs");
3167 if (!type)
3168 panic("Can't find rootfs type");
3169 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3170 put_filesystem(type);
3171 if (IS_ERR(mnt))
3172 panic("Can't create rootfs");
3174 ns = create_mnt_ns(mnt);
3175 if (IS_ERR(ns))
3176 panic("Can't allocate initial namespace");
3178 init_task.nsproxy->mnt_ns = ns;
3179 get_mnt_ns(ns);
3181 root.mnt = mnt;
3182 root.dentry = mnt->mnt_root;
3183 mnt->mnt_flags |= MNT_LOCKED;
3185 set_fs_pwd(current->fs, &root);
3186 set_fs_root(current->fs, &root);
3189 void __init mnt_init(void)
3191 unsigned u;
3192 int err;
3194 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3195 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3197 mount_hashtable = alloc_large_system_hash("Mount-cache",
3198 sizeof(struct hlist_head),
3199 mhash_entries, 19,
3201 &m_hash_shift, &m_hash_mask, 0, 0);
3202 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3203 sizeof(struct hlist_head),
3204 mphash_entries, 19,
3206 &mp_hash_shift, &mp_hash_mask, 0, 0);
3208 if (!mount_hashtable || !mountpoint_hashtable)
3209 panic("Failed to allocate mount hash table\n");
3211 for (u = 0; u <= m_hash_mask; u++)
3212 INIT_HLIST_HEAD(&mount_hashtable[u]);
3213 for (u = 0; u <= mp_hash_mask; u++)
3214 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3216 kernfs_init();
3218 err = sysfs_init();
3219 if (err)
3220 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3221 __func__, err);
3222 fs_kobj = kobject_create_and_add("fs", NULL);
3223 if (!fs_kobj)
3224 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3225 init_rootfs();
3226 init_mount_tree();
3229 void put_mnt_ns(struct mnt_namespace *ns)
3231 if (!atomic_dec_and_test(&ns->count))
3232 return;
3233 drop_collected_mounts(&ns->root->mnt);
3234 free_mnt_ns(ns);
3237 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3239 struct vfsmount *mnt;
3240 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3241 if (!IS_ERR(mnt)) {
3243 * it is a longterm mount, don't release mnt until
3244 * we unmount before file sys is unregistered
3246 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3248 return mnt;
3250 EXPORT_SYMBOL_GPL(kern_mount_data);
3252 void kern_unmount(struct vfsmount *mnt)
3254 /* release long term mount so mount point can be released */
3255 if (!IS_ERR_OR_NULL(mnt)) {
3256 real_mount(mnt)->mnt_ns = NULL;
3257 synchronize_rcu(); /* yecchhh... */
3258 mntput(mnt);
3261 EXPORT_SYMBOL(kern_unmount);
3263 bool our_mnt(struct vfsmount *mnt)
3265 return check_mnt(real_mount(mnt));
3268 bool current_chrooted(void)
3270 /* Does the current process have a non-standard root */
3271 struct path ns_root;
3272 struct path fs_root;
3273 bool chrooted;
3275 /* Find the namespace root */
3276 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3277 ns_root.dentry = ns_root.mnt->mnt_root;
3278 path_get(&ns_root);
3279 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3282 get_fs_root(current->fs, &fs_root);
3284 chrooted = !path_equal(&fs_root, &ns_root);
3286 path_put(&fs_root);
3287 path_put(&ns_root);
3289 return chrooted;
3292 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3293 int *new_mnt_flags)
3295 int new_flags = *new_mnt_flags;
3296 struct mount *mnt;
3297 bool visible = false;
3299 down_read(&namespace_sem);
3300 list_for_each_entry(mnt, &ns->list, mnt_list) {
3301 struct mount *child;
3302 int mnt_flags;
3304 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3305 continue;
3307 /* This mount is not fully visible if it's root directory
3308 * is not the root directory of the filesystem.
3310 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3311 continue;
3313 /* A local view of the mount flags */
3314 mnt_flags = mnt->mnt.mnt_flags;
3316 /* Don't miss readonly hidden in the superblock flags */
3317 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3318 mnt_flags |= MNT_LOCK_READONLY;
3320 /* Verify the mount flags are equal to or more permissive
3321 * than the proposed new mount.
3323 if ((mnt_flags & MNT_LOCK_READONLY) &&
3324 !(new_flags & MNT_READONLY))
3325 continue;
3326 if ((mnt_flags & MNT_LOCK_ATIME) &&
3327 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3328 continue;
3330 /* This mount is not fully visible if there are any
3331 * locked child mounts that cover anything except for
3332 * empty directories.
3334 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3335 struct inode *inode = child->mnt_mountpoint->d_inode;
3336 /* Only worry about locked mounts */
3337 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3338 continue;
3339 /* Is the directory permanetly empty? */
3340 if (!is_empty_dir_inode(inode))
3341 goto next;
3343 /* Preserve the locked attributes */
3344 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3345 MNT_LOCK_ATIME);
3346 visible = true;
3347 goto found;
3348 next: ;
3350 found:
3351 up_read(&namespace_sem);
3352 return visible;
3355 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3357 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3358 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3359 unsigned long s_iflags;
3361 if (ns->user_ns == &init_user_ns)
3362 return false;
3364 /* Can this filesystem be too revealing? */
3365 s_iflags = mnt->mnt_sb->s_iflags;
3366 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3367 return false;
3369 if ((s_iflags & required_iflags) != required_iflags) {
3370 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3371 required_iflags);
3372 return true;
3375 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3378 bool mnt_may_suid(struct vfsmount *mnt)
3381 * Foreign mounts (accessed via fchdir or through /proc
3382 * symlinks) are always treated as if they are nosuid. This
3383 * prevents namespaces from trusting potentially unsafe
3384 * suid/sgid bits, file caps, or security labels that originate
3385 * in other namespaces.
3387 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3388 current_in_userns(mnt->mnt_sb->s_user_ns);
3391 static struct ns_common *mntns_get(struct task_struct *task)
3393 struct ns_common *ns = NULL;
3394 struct nsproxy *nsproxy;
3396 task_lock(task);
3397 nsproxy = task->nsproxy;
3398 if (nsproxy) {
3399 ns = &nsproxy->mnt_ns->ns;
3400 get_mnt_ns(to_mnt_ns(ns));
3402 task_unlock(task);
3404 return ns;
3407 static void mntns_put(struct ns_common *ns)
3409 put_mnt_ns(to_mnt_ns(ns));
3412 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3414 struct fs_struct *fs = current->fs;
3415 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3416 struct path root;
3418 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3419 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3420 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3421 return -EPERM;
3423 if (fs->users != 1)
3424 return -EINVAL;
3426 get_mnt_ns(mnt_ns);
3427 put_mnt_ns(nsproxy->mnt_ns);
3428 nsproxy->mnt_ns = mnt_ns;
3430 /* Find the root */
3431 root.mnt = &mnt_ns->root->mnt;
3432 root.dentry = mnt_ns->root->mnt.mnt_root;
3433 path_get(&root);
3434 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3437 /* Update the pwd and root */
3438 set_fs_pwd(fs, &root);
3439 set_fs_root(fs, &root);
3441 path_put(&root);
3442 return 0;
3445 static struct user_namespace *mntns_owner(struct ns_common *ns)
3447 return to_mnt_ns(ns)->user_ns;
3450 const struct proc_ns_operations mntns_operations = {
3451 .name = "mnt",
3452 .type = CLONE_NEWNS,
3453 .get = mntns_get,
3454 .put = mntns_put,
3455 .install = mntns_install,
3456 .owner = mntns_owner,