Linux 4.9.215
[linux/fpc-iii.git] / kernel / kexec_core.c
blobf5ab72ebda1134a398748ae5907c585efc85d4b9
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
43 #include <asm/page.h>
44 #include <asm/sections.h>
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
50 DEFINE_MUTEX(kexec_mutex);
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
55 /* vmcoreinfo stuff */
56 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
57 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
58 size_t vmcoreinfo_size;
59 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
61 /* Flag to indicate we are going to kexec a new kernel */
62 bool kexec_in_progress = false;
65 /* Location of the reserved area for the crash kernel */
66 struct resource crashk_res = {
67 .name = "Crash kernel",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 .desc = IORES_DESC_CRASH_KERNEL
73 struct resource crashk_low_res = {
74 .name = "Crash kernel",
75 .start = 0,
76 .end = 0,
77 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
78 .desc = IORES_DESC_CRASH_KERNEL
81 int kexec_should_crash(struct task_struct *p)
84 * If crash_kexec_post_notifiers is enabled, don't run
85 * crash_kexec() here yet, which must be run after panic
86 * notifiers in panic().
88 if (crash_kexec_post_notifiers)
89 return 0;
91 * There are 4 panic() calls in do_exit() path, each of which
92 * corresponds to each of these 4 conditions.
94 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
95 return 1;
96 return 0;
99 int kexec_crash_loaded(void)
101 return !!kexec_crash_image;
103 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
106 * When kexec transitions to the new kernel there is a one-to-one
107 * mapping between physical and virtual addresses. On processors
108 * where you can disable the MMU this is trivial, and easy. For
109 * others it is still a simple predictable page table to setup.
111 * In that environment kexec copies the new kernel to its final
112 * resting place. This means I can only support memory whose
113 * physical address can fit in an unsigned long. In particular
114 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
115 * If the assembly stub has more restrictive requirements
116 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
117 * defined more restrictively in <asm/kexec.h>.
119 * The code for the transition from the current kernel to the
120 * the new kernel is placed in the control_code_buffer, whose size
121 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
122 * page of memory is necessary, but some architectures require more.
123 * Because this memory must be identity mapped in the transition from
124 * virtual to physical addresses it must live in the range
125 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
126 * modifiable.
128 * The assembly stub in the control code buffer is passed a linked list
129 * of descriptor pages detailing the source pages of the new kernel,
130 * and the destination addresses of those source pages. As this data
131 * structure is not used in the context of the current OS, it must
132 * be self-contained.
134 * The code has been made to work with highmem pages and will use a
135 * destination page in its final resting place (if it happens
136 * to allocate it). The end product of this is that most of the
137 * physical address space, and most of RAM can be used.
139 * Future directions include:
140 * - allocating a page table with the control code buffer identity
141 * mapped, to simplify machine_kexec and make kexec_on_panic more
142 * reliable.
146 * KIMAGE_NO_DEST is an impossible destination address..., for
147 * allocating pages whose destination address we do not care about.
149 #define KIMAGE_NO_DEST (-1UL)
150 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
152 static struct page *kimage_alloc_page(struct kimage *image,
153 gfp_t gfp_mask,
154 unsigned long dest);
156 int sanity_check_segment_list(struct kimage *image)
158 int i;
159 unsigned long nr_segments = image->nr_segments;
160 unsigned long total_pages = 0;
163 * Verify we have good destination addresses. The caller is
164 * responsible for making certain we don't attempt to load
165 * the new image into invalid or reserved areas of RAM. This
166 * just verifies it is an address we can use.
168 * Since the kernel does everything in page size chunks ensure
169 * the destination addresses are page aligned. Too many
170 * special cases crop of when we don't do this. The most
171 * insidious is getting overlapping destination addresses
172 * simply because addresses are changed to page size
173 * granularity.
175 for (i = 0; i < nr_segments; i++) {
176 unsigned long mstart, mend;
178 mstart = image->segment[i].mem;
179 mend = mstart + image->segment[i].memsz;
180 if (mstart > mend)
181 return -EADDRNOTAVAIL;
182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 return -EADDRNOTAVAIL;
184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 return -EADDRNOTAVAIL;
188 /* Verify our destination addresses do not overlap.
189 * If we alloed overlapping destination addresses
190 * through very weird things can happen with no
191 * easy explanation as one segment stops on another.
193 for (i = 0; i < nr_segments; i++) {
194 unsigned long mstart, mend;
195 unsigned long j;
197 mstart = image->segment[i].mem;
198 mend = mstart + image->segment[i].memsz;
199 for (j = 0; j < i; j++) {
200 unsigned long pstart, pend;
202 pstart = image->segment[j].mem;
203 pend = pstart + image->segment[j].memsz;
204 /* Do the segments overlap ? */
205 if ((mend > pstart) && (mstart < pend))
206 return -EINVAL;
210 /* Ensure our buffer sizes are strictly less than
211 * our memory sizes. This should always be the case,
212 * and it is easier to check up front than to be surprised
213 * later on.
215 for (i = 0; i < nr_segments; i++) {
216 if (image->segment[i].bufsz > image->segment[i].memsz)
217 return -EINVAL;
221 * Verify that no more than half of memory will be consumed. If the
222 * request from userspace is too large, a large amount of time will be
223 * wasted allocating pages, which can cause a soft lockup.
225 for (i = 0; i < nr_segments; i++) {
226 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
227 return -EINVAL;
229 total_pages += PAGE_COUNT(image->segment[i].memsz);
232 if (total_pages > totalram_pages / 2)
233 return -EINVAL;
236 * Verify we have good destination addresses. Normally
237 * the caller is responsible for making certain we don't
238 * attempt to load the new image into invalid or reserved
239 * areas of RAM. But crash kernels are preloaded into a
240 * reserved area of ram. We must ensure the addresses
241 * are in the reserved area otherwise preloading the
242 * kernel could corrupt things.
245 if (image->type == KEXEC_TYPE_CRASH) {
246 for (i = 0; i < nr_segments; i++) {
247 unsigned long mstart, mend;
249 mstart = image->segment[i].mem;
250 mend = mstart + image->segment[i].memsz - 1;
251 /* Ensure we are within the crash kernel limits */
252 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
253 (mend > phys_to_boot_phys(crashk_res.end)))
254 return -EADDRNOTAVAIL;
258 return 0;
261 struct kimage *do_kimage_alloc_init(void)
263 struct kimage *image;
265 /* Allocate a controlling structure */
266 image = kzalloc(sizeof(*image), GFP_KERNEL);
267 if (!image)
268 return NULL;
270 image->head = 0;
271 image->entry = &image->head;
272 image->last_entry = &image->head;
273 image->control_page = ~0; /* By default this does not apply */
274 image->type = KEXEC_TYPE_DEFAULT;
276 /* Initialize the list of control pages */
277 INIT_LIST_HEAD(&image->control_pages);
279 /* Initialize the list of destination pages */
280 INIT_LIST_HEAD(&image->dest_pages);
282 /* Initialize the list of unusable pages */
283 INIT_LIST_HEAD(&image->unusable_pages);
285 return image;
288 int kimage_is_destination_range(struct kimage *image,
289 unsigned long start,
290 unsigned long end)
292 unsigned long i;
294 for (i = 0; i < image->nr_segments; i++) {
295 unsigned long mstart, mend;
297 mstart = image->segment[i].mem;
298 mend = mstart + image->segment[i].memsz;
299 if ((end > mstart) && (start < mend))
300 return 1;
303 return 0;
306 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
308 struct page *pages;
310 pages = alloc_pages(gfp_mask, order);
311 if (pages) {
312 unsigned int count, i;
314 pages->mapping = NULL;
315 set_page_private(pages, order);
316 count = 1 << order;
317 for (i = 0; i < count; i++)
318 SetPageReserved(pages + i);
321 return pages;
324 static void kimage_free_pages(struct page *page)
326 unsigned int order, count, i;
328 order = page_private(page);
329 count = 1 << order;
330 for (i = 0; i < count; i++)
331 ClearPageReserved(page + i);
332 __free_pages(page, order);
335 void kimage_free_page_list(struct list_head *list)
337 struct page *page, *next;
339 list_for_each_entry_safe(page, next, list, lru) {
340 list_del(&page->lru);
341 kimage_free_pages(page);
345 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
346 unsigned int order)
348 /* Control pages are special, they are the intermediaries
349 * that are needed while we copy the rest of the pages
350 * to their final resting place. As such they must
351 * not conflict with either the destination addresses
352 * or memory the kernel is already using.
354 * The only case where we really need more than one of
355 * these are for architectures where we cannot disable
356 * the MMU and must instead generate an identity mapped
357 * page table for all of the memory.
359 * At worst this runs in O(N) of the image size.
361 struct list_head extra_pages;
362 struct page *pages;
363 unsigned int count;
365 count = 1 << order;
366 INIT_LIST_HEAD(&extra_pages);
368 /* Loop while I can allocate a page and the page allocated
369 * is a destination page.
371 do {
372 unsigned long pfn, epfn, addr, eaddr;
374 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
375 if (!pages)
376 break;
377 pfn = page_to_boot_pfn(pages);
378 epfn = pfn + count;
379 addr = pfn << PAGE_SHIFT;
380 eaddr = epfn << PAGE_SHIFT;
381 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
382 kimage_is_destination_range(image, addr, eaddr)) {
383 list_add(&pages->lru, &extra_pages);
384 pages = NULL;
386 } while (!pages);
388 if (pages) {
389 /* Remember the allocated page... */
390 list_add(&pages->lru, &image->control_pages);
392 /* Because the page is already in it's destination
393 * location we will never allocate another page at
394 * that address. Therefore kimage_alloc_pages
395 * will not return it (again) and we don't need
396 * to give it an entry in image->segment[].
399 /* Deal with the destination pages I have inadvertently allocated.
401 * Ideally I would convert multi-page allocations into single
402 * page allocations, and add everything to image->dest_pages.
404 * For now it is simpler to just free the pages.
406 kimage_free_page_list(&extra_pages);
408 return pages;
411 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
412 unsigned int order)
414 /* Control pages are special, they are the intermediaries
415 * that are needed while we copy the rest of the pages
416 * to their final resting place. As such they must
417 * not conflict with either the destination addresses
418 * or memory the kernel is already using.
420 * Control pages are also the only pags we must allocate
421 * when loading a crash kernel. All of the other pages
422 * are specified by the segments and we just memcpy
423 * into them directly.
425 * The only case where we really need more than one of
426 * these are for architectures where we cannot disable
427 * the MMU and must instead generate an identity mapped
428 * page table for all of the memory.
430 * Given the low demand this implements a very simple
431 * allocator that finds the first hole of the appropriate
432 * size in the reserved memory region, and allocates all
433 * of the memory up to and including the hole.
435 unsigned long hole_start, hole_end, size;
436 struct page *pages;
438 pages = NULL;
439 size = (1 << order) << PAGE_SHIFT;
440 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
441 hole_end = hole_start + size - 1;
442 while (hole_end <= crashk_res.end) {
443 unsigned long i;
445 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
446 break;
447 /* See if I overlap any of the segments */
448 for (i = 0; i < image->nr_segments; i++) {
449 unsigned long mstart, mend;
451 mstart = image->segment[i].mem;
452 mend = mstart + image->segment[i].memsz - 1;
453 if ((hole_end >= mstart) && (hole_start <= mend)) {
454 /* Advance the hole to the end of the segment */
455 hole_start = (mend + (size - 1)) & ~(size - 1);
456 hole_end = hole_start + size - 1;
457 break;
460 /* If I don't overlap any segments I have found my hole! */
461 if (i == image->nr_segments) {
462 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
463 image->control_page = hole_end;
464 break;
468 return pages;
472 struct page *kimage_alloc_control_pages(struct kimage *image,
473 unsigned int order)
475 struct page *pages = NULL;
477 switch (image->type) {
478 case KEXEC_TYPE_DEFAULT:
479 pages = kimage_alloc_normal_control_pages(image, order);
480 break;
481 case KEXEC_TYPE_CRASH:
482 pages = kimage_alloc_crash_control_pages(image, order);
483 break;
486 return pages;
489 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
491 if (*image->entry != 0)
492 image->entry++;
494 if (image->entry == image->last_entry) {
495 kimage_entry_t *ind_page;
496 struct page *page;
498 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
499 if (!page)
500 return -ENOMEM;
502 ind_page = page_address(page);
503 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
504 image->entry = ind_page;
505 image->last_entry = ind_page +
506 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
508 *image->entry = entry;
509 image->entry++;
510 *image->entry = 0;
512 return 0;
515 static int kimage_set_destination(struct kimage *image,
516 unsigned long destination)
518 int result;
520 destination &= PAGE_MASK;
521 result = kimage_add_entry(image, destination | IND_DESTINATION);
523 return result;
527 static int kimage_add_page(struct kimage *image, unsigned long page)
529 int result;
531 page &= PAGE_MASK;
532 result = kimage_add_entry(image, page | IND_SOURCE);
534 return result;
538 static void kimage_free_extra_pages(struct kimage *image)
540 /* Walk through and free any extra destination pages I may have */
541 kimage_free_page_list(&image->dest_pages);
543 /* Walk through and free any unusable pages I have cached */
544 kimage_free_page_list(&image->unusable_pages);
547 void kimage_terminate(struct kimage *image)
549 if (*image->entry != 0)
550 image->entry++;
552 *image->entry = IND_DONE;
555 #define for_each_kimage_entry(image, ptr, entry) \
556 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
557 ptr = (entry & IND_INDIRECTION) ? \
558 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
560 static void kimage_free_entry(kimage_entry_t entry)
562 struct page *page;
564 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
565 kimage_free_pages(page);
568 void kimage_free(struct kimage *image)
570 kimage_entry_t *ptr, entry;
571 kimage_entry_t ind = 0;
573 if (!image)
574 return;
576 kimage_free_extra_pages(image);
577 for_each_kimage_entry(image, ptr, entry) {
578 if (entry & IND_INDIRECTION) {
579 /* Free the previous indirection page */
580 if (ind & IND_INDIRECTION)
581 kimage_free_entry(ind);
582 /* Save this indirection page until we are
583 * done with it.
585 ind = entry;
586 } else if (entry & IND_SOURCE)
587 kimage_free_entry(entry);
589 /* Free the final indirection page */
590 if (ind & IND_INDIRECTION)
591 kimage_free_entry(ind);
593 /* Handle any machine specific cleanup */
594 machine_kexec_cleanup(image);
596 /* Free the kexec control pages... */
597 kimage_free_page_list(&image->control_pages);
600 * Free up any temporary buffers allocated. This might hit if
601 * error occurred much later after buffer allocation.
603 if (image->file_mode)
604 kimage_file_post_load_cleanup(image);
606 kfree(image);
609 static kimage_entry_t *kimage_dst_used(struct kimage *image,
610 unsigned long page)
612 kimage_entry_t *ptr, entry;
613 unsigned long destination = 0;
615 for_each_kimage_entry(image, ptr, entry) {
616 if (entry & IND_DESTINATION)
617 destination = entry & PAGE_MASK;
618 else if (entry & IND_SOURCE) {
619 if (page == destination)
620 return ptr;
621 destination += PAGE_SIZE;
625 return NULL;
628 static struct page *kimage_alloc_page(struct kimage *image,
629 gfp_t gfp_mask,
630 unsigned long destination)
633 * Here we implement safeguards to ensure that a source page
634 * is not copied to its destination page before the data on
635 * the destination page is no longer useful.
637 * To do this we maintain the invariant that a source page is
638 * either its own destination page, or it is not a
639 * destination page at all.
641 * That is slightly stronger than required, but the proof
642 * that no problems will not occur is trivial, and the
643 * implementation is simply to verify.
645 * When allocating all pages normally this algorithm will run
646 * in O(N) time, but in the worst case it will run in O(N^2)
647 * time. If the runtime is a problem the data structures can
648 * be fixed.
650 struct page *page;
651 unsigned long addr;
654 * Walk through the list of destination pages, and see if I
655 * have a match.
657 list_for_each_entry(page, &image->dest_pages, lru) {
658 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
659 if (addr == destination) {
660 list_del(&page->lru);
661 return page;
664 page = NULL;
665 while (1) {
666 kimage_entry_t *old;
668 /* Allocate a page, if we run out of memory give up */
669 page = kimage_alloc_pages(gfp_mask, 0);
670 if (!page)
671 return NULL;
672 /* If the page cannot be used file it away */
673 if (page_to_boot_pfn(page) >
674 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
675 list_add(&page->lru, &image->unusable_pages);
676 continue;
678 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
680 /* If it is the destination page we want use it */
681 if (addr == destination)
682 break;
684 /* If the page is not a destination page use it */
685 if (!kimage_is_destination_range(image, addr,
686 addr + PAGE_SIZE))
687 break;
690 * I know that the page is someones destination page.
691 * See if there is already a source page for this
692 * destination page. And if so swap the source pages.
694 old = kimage_dst_used(image, addr);
695 if (old) {
696 /* If so move it */
697 unsigned long old_addr;
698 struct page *old_page;
700 old_addr = *old & PAGE_MASK;
701 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
702 copy_highpage(page, old_page);
703 *old = addr | (*old & ~PAGE_MASK);
705 /* The old page I have found cannot be a
706 * destination page, so return it if it's
707 * gfp_flags honor the ones passed in.
709 if (!(gfp_mask & __GFP_HIGHMEM) &&
710 PageHighMem(old_page)) {
711 kimage_free_pages(old_page);
712 continue;
714 addr = old_addr;
715 page = old_page;
716 break;
718 /* Place the page on the destination list, to be used later */
719 list_add(&page->lru, &image->dest_pages);
722 return page;
725 static int kimage_load_normal_segment(struct kimage *image,
726 struct kexec_segment *segment)
728 unsigned long maddr;
729 size_t ubytes, mbytes;
730 int result;
731 unsigned char __user *buf = NULL;
732 unsigned char *kbuf = NULL;
734 result = 0;
735 if (image->file_mode)
736 kbuf = segment->kbuf;
737 else
738 buf = segment->buf;
739 ubytes = segment->bufsz;
740 mbytes = segment->memsz;
741 maddr = segment->mem;
743 result = kimage_set_destination(image, maddr);
744 if (result < 0)
745 goto out;
747 while (mbytes) {
748 struct page *page;
749 char *ptr;
750 size_t uchunk, mchunk;
752 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
753 if (!page) {
754 result = -ENOMEM;
755 goto out;
757 result = kimage_add_page(image, page_to_boot_pfn(page)
758 << PAGE_SHIFT);
759 if (result < 0)
760 goto out;
762 ptr = kmap(page);
763 /* Start with a clear page */
764 clear_page(ptr);
765 ptr += maddr & ~PAGE_MASK;
766 mchunk = min_t(size_t, mbytes,
767 PAGE_SIZE - (maddr & ~PAGE_MASK));
768 uchunk = min(ubytes, mchunk);
770 /* For file based kexec, source pages are in kernel memory */
771 if (image->file_mode)
772 memcpy(ptr, kbuf, uchunk);
773 else
774 result = copy_from_user(ptr, buf, uchunk);
775 kunmap(page);
776 if (result) {
777 result = -EFAULT;
778 goto out;
780 ubytes -= uchunk;
781 maddr += mchunk;
782 if (image->file_mode)
783 kbuf += mchunk;
784 else
785 buf += mchunk;
786 mbytes -= mchunk;
788 out:
789 return result;
792 static int kimage_load_crash_segment(struct kimage *image,
793 struct kexec_segment *segment)
795 /* For crash dumps kernels we simply copy the data from
796 * user space to it's destination.
797 * We do things a page at a time for the sake of kmap.
799 unsigned long maddr;
800 size_t ubytes, mbytes;
801 int result;
802 unsigned char __user *buf = NULL;
803 unsigned char *kbuf = NULL;
805 result = 0;
806 if (image->file_mode)
807 kbuf = segment->kbuf;
808 else
809 buf = segment->buf;
810 ubytes = segment->bufsz;
811 mbytes = segment->memsz;
812 maddr = segment->mem;
813 while (mbytes) {
814 struct page *page;
815 char *ptr;
816 size_t uchunk, mchunk;
818 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
819 if (!page) {
820 result = -ENOMEM;
821 goto out;
823 ptr = kmap(page);
824 ptr += maddr & ~PAGE_MASK;
825 mchunk = min_t(size_t, mbytes,
826 PAGE_SIZE - (maddr & ~PAGE_MASK));
827 uchunk = min(ubytes, mchunk);
828 if (mchunk > uchunk) {
829 /* Zero the trailing part of the page */
830 memset(ptr + uchunk, 0, mchunk - uchunk);
833 /* For file based kexec, source pages are in kernel memory */
834 if (image->file_mode)
835 memcpy(ptr, kbuf, uchunk);
836 else
837 result = copy_from_user(ptr, buf, uchunk);
838 kexec_flush_icache_page(page);
839 kunmap(page);
840 if (result) {
841 result = -EFAULT;
842 goto out;
844 ubytes -= uchunk;
845 maddr += mchunk;
846 if (image->file_mode)
847 kbuf += mchunk;
848 else
849 buf += mchunk;
850 mbytes -= mchunk;
852 out:
853 return result;
856 int kimage_load_segment(struct kimage *image,
857 struct kexec_segment *segment)
859 int result = -ENOMEM;
861 switch (image->type) {
862 case KEXEC_TYPE_DEFAULT:
863 result = kimage_load_normal_segment(image, segment);
864 break;
865 case KEXEC_TYPE_CRASH:
866 result = kimage_load_crash_segment(image, segment);
867 break;
870 return result;
873 struct kimage *kexec_image;
874 struct kimage *kexec_crash_image;
875 int kexec_load_disabled;
878 * No panic_cpu check version of crash_kexec(). This function is called
879 * only when panic_cpu holds the current CPU number; this is the only CPU
880 * which processes crash_kexec routines.
882 void __noclone __crash_kexec(struct pt_regs *regs)
884 /* Take the kexec_mutex here to prevent sys_kexec_load
885 * running on one cpu from replacing the crash kernel
886 * we are using after a panic on a different cpu.
888 * If the crash kernel was not located in a fixed area
889 * of memory the xchg(&kexec_crash_image) would be
890 * sufficient. But since I reuse the memory...
892 if (mutex_trylock(&kexec_mutex)) {
893 if (kexec_crash_image) {
894 struct pt_regs fixed_regs;
896 crash_setup_regs(&fixed_regs, regs);
897 crash_save_vmcoreinfo();
898 machine_crash_shutdown(&fixed_regs);
899 machine_kexec(kexec_crash_image);
901 mutex_unlock(&kexec_mutex);
904 STACK_FRAME_NON_STANDARD(__crash_kexec);
906 void crash_kexec(struct pt_regs *regs)
908 int old_cpu, this_cpu;
911 * Only one CPU is allowed to execute the crash_kexec() code as with
912 * panic(). Otherwise parallel calls of panic() and crash_kexec()
913 * may stop each other. To exclude them, we use panic_cpu here too.
915 this_cpu = raw_smp_processor_id();
916 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
917 if (old_cpu == PANIC_CPU_INVALID) {
918 /* This is the 1st CPU which comes here, so go ahead. */
919 printk_nmi_flush_on_panic();
920 __crash_kexec(regs);
923 * Reset panic_cpu to allow another panic()/crash_kexec()
924 * call.
926 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
930 size_t crash_get_memory_size(void)
932 size_t size = 0;
934 mutex_lock(&kexec_mutex);
935 if (crashk_res.end != crashk_res.start)
936 size = resource_size(&crashk_res);
937 mutex_unlock(&kexec_mutex);
938 return size;
941 void __weak crash_free_reserved_phys_range(unsigned long begin,
942 unsigned long end)
944 unsigned long addr;
946 for (addr = begin; addr < end; addr += PAGE_SIZE)
947 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
950 int crash_shrink_memory(unsigned long new_size)
952 int ret = 0;
953 unsigned long start, end;
954 unsigned long old_size;
955 struct resource *ram_res;
957 mutex_lock(&kexec_mutex);
959 if (kexec_crash_image) {
960 ret = -ENOENT;
961 goto unlock;
963 start = crashk_res.start;
964 end = crashk_res.end;
965 old_size = (end == 0) ? 0 : end - start + 1;
966 if (new_size >= old_size) {
967 ret = (new_size == old_size) ? 0 : -EINVAL;
968 goto unlock;
971 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
972 if (!ram_res) {
973 ret = -ENOMEM;
974 goto unlock;
977 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
978 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
980 crash_free_reserved_phys_range(end, crashk_res.end);
982 if ((start == end) && (crashk_res.parent != NULL))
983 release_resource(&crashk_res);
985 ram_res->start = end;
986 ram_res->end = crashk_res.end;
987 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
988 ram_res->name = "System RAM";
990 crashk_res.end = end - 1;
992 insert_resource(&iomem_resource, ram_res);
994 unlock:
995 mutex_unlock(&kexec_mutex);
996 return ret;
999 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1000 size_t data_len)
1002 struct elf_note note;
1004 note.n_namesz = strlen(name) + 1;
1005 note.n_descsz = data_len;
1006 note.n_type = type;
1007 memcpy(buf, &note, sizeof(note));
1008 buf += (sizeof(note) + 3)/4;
1009 memcpy(buf, name, note.n_namesz);
1010 buf += (note.n_namesz + 3)/4;
1011 memcpy(buf, data, note.n_descsz);
1012 buf += (note.n_descsz + 3)/4;
1014 return buf;
1017 static void final_note(u32 *buf)
1019 struct elf_note note;
1021 note.n_namesz = 0;
1022 note.n_descsz = 0;
1023 note.n_type = 0;
1024 memcpy(buf, &note, sizeof(note));
1027 void crash_save_cpu(struct pt_regs *regs, int cpu)
1029 struct elf_prstatus prstatus;
1030 u32 *buf;
1032 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1033 return;
1035 /* Using ELF notes here is opportunistic.
1036 * I need a well defined structure format
1037 * for the data I pass, and I need tags
1038 * on the data to indicate what information I have
1039 * squirrelled away. ELF notes happen to provide
1040 * all of that, so there is no need to invent something new.
1042 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1043 if (!buf)
1044 return;
1045 memset(&prstatus, 0, sizeof(prstatus));
1046 prstatus.pr_pid = current->pid;
1047 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1048 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1049 &prstatus, sizeof(prstatus));
1050 final_note(buf);
1053 static int __init crash_notes_memory_init(void)
1055 /* Allocate memory for saving cpu registers. */
1056 size_t size, align;
1059 * crash_notes could be allocated across 2 vmalloc pages when percpu
1060 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1061 * pages are also on 2 continuous physical pages. In this case the
1062 * 2nd part of crash_notes in 2nd page could be lost since only the
1063 * starting address and size of crash_notes are exported through sysfs.
1064 * Here round up the size of crash_notes to the nearest power of two
1065 * and pass it to __alloc_percpu as align value. This can make sure
1066 * crash_notes is allocated inside one physical page.
1068 size = sizeof(note_buf_t);
1069 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1072 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1073 * definitely will be in 2 pages with that.
1075 BUILD_BUG_ON(size > PAGE_SIZE);
1077 crash_notes = __alloc_percpu(size, align);
1078 if (!crash_notes) {
1079 pr_warn("Memory allocation for saving cpu register states failed\n");
1080 return -ENOMEM;
1082 return 0;
1084 subsys_initcall(crash_notes_memory_init);
1088 * parsing the "crashkernel" commandline
1090 * this code is intended to be called from architecture specific code
1095 * This function parses command lines in the format
1097 * crashkernel=ramsize-range:size[,...][@offset]
1099 * The function returns 0 on success and -EINVAL on failure.
1101 static int __init parse_crashkernel_mem(char *cmdline,
1102 unsigned long long system_ram,
1103 unsigned long long *crash_size,
1104 unsigned long long *crash_base)
1106 char *cur = cmdline, *tmp;
1108 /* for each entry of the comma-separated list */
1109 do {
1110 unsigned long long start, end = ULLONG_MAX, size;
1112 /* get the start of the range */
1113 start = memparse(cur, &tmp);
1114 if (cur == tmp) {
1115 pr_warn("crashkernel: Memory value expected\n");
1116 return -EINVAL;
1118 cur = tmp;
1119 if (*cur != '-') {
1120 pr_warn("crashkernel: '-' expected\n");
1121 return -EINVAL;
1123 cur++;
1125 /* if no ':' is here, than we read the end */
1126 if (*cur != ':') {
1127 end = memparse(cur, &tmp);
1128 if (cur == tmp) {
1129 pr_warn("crashkernel: Memory value expected\n");
1130 return -EINVAL;
1132 cur = tmp;
1133 if (end <= start) {
1134 pr_warn("crashkernel: end <= start\n");
1135 return -EINVAL;
1139 if (*cur != ':') {
1140 pr_warn("crashkernel: ':' expected\n");
1141 return -EINVAL;
1143 cur++;
1145 size = memparse(cur, &tmp);
1146 if (cur == tmp) {
1147 pr_warn("Memory value expected\n");
1148 return -EINVAL;
1150 cur = tmp;
1151 if (size >= system_ram) {
1152 pr_warn("crashkernel: invalid size\n");
1153 return -EINVAL;
1156 /* match ? */
1157 if (system_ram >= start && system_ram < end) {
1158 *crash_size = size;
1159 break;
1161 } while (*cur++ == ',');
1163 if (*crash_size > 0) {
1164 while (*cur && *cur != ' ' && *cur != '@')
1165 cur++;
1166 if (*cur == '@') {
1167 cur++;
1168 *crash_base = memparse(cur, &tmp);
1169 if (cur == tmp) {
1170 pr_warn("Memory value expected after '@'\n");
1171 return -EINVAL;
1176 return 0;
1180 * That function parses "simple" (old) crashkernel command lines like
1182 * crashkernel=size[@offset]
1184 * It returns 0 on success and -EINVAL on failure.
1186 static int __init parse_crashkernel_simple(char *cmdline,
1187 unsigned long long *crash_size,
1188 unsigned long long *crash_base)
1190 char *cur = cmdline;
1192 *crash_size = memparse(cmdline, &cur);
1193 if (cmdline == cur) {
1194 pr_warn("crashkernel: memory value expected\n");
1195 return -EINVAL;
1198 if (*cur == '@')
1199 *crash_base = memparse(cur+1, &cur);
1200 else if (*cur != ' ' && *cur != '\0') {
1201 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1202 return -EINVAL;
1205 return 0;
1208 #define SUFFIX_HIGH 0
1209 #define SUFFIX_LOW 1
1210 #define SUFFIX_NULL 2
1211 static __initdata char *suffix_tbl[] = {
1212 [SUFFIX_HIGH] = ",high",
1213 [SUFFIX_LOW] = ",low",
1214 [SUFFIX_NULL] = NULL,
1218 * That function parses "suffix" crashkernel command lines like
1220 * crashkernel=size,[high|low]
1222 * It returns 0 on success and -EINVAL on failure.
1224 static int __init parse_crashkernel_suffix(char *cmdline,
1225 unsigned long long *crash_size,
1226 const char *suffix)
1228 char *cur = cmdline;
1230 *crash_size = memparse(cmdline, &cur);
1231 if (cmdline == cur) {
1232 pr_warn("crashkernel: memory value expected\n");
1233 return -EINVAL;
1236 /* check with suffix */
1237 if (strncmp(cur, suffix, strlen(suffix))) {
1238 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1239 return -EINVAL;
1241 cur += strlen(suffix);
1242 if (*cur != ' ' && *cur != '\0') {
1243 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1244 return -EINVAL;
1247 return 0;
1250 static __init char *get_last_crashkernel(char *cmdline,
1251 const char *name,
1252 const char *suffix)
1254 char *p = cmdline, *ck_cmdline = NULL;
1256 /* find crashkernel and use the last one if there are more */
1257 p = strstr(p, name);
1258 while (p) {
1259 char *end_p = strchr(p, ' ');
1260 char *q;
1262 if (!end_p)
1263 end_p = p + strlen(p);
1265 if (!suffix) {
1266 int i;
1268 /* skip the one with any known suffix */
1269 for (i = 0; suffix_tbl[i]; i++) {
1270 q = end_p - strlen(suffix_tbl[i]);
1271 if (!strncmp(q, suffix_tbl[i],
1272 strlen(suffix_tbl[i])))
1273 goto next;
1275 ck_cmdline = p;
1276 } else {
1277 q = end_p - strlen(suffix);
1278 if (!strncmp(q, suffix, strlen(suffix)))
1279 ck_cmdline = p;
1281 next:
1282 p = strstr(p+1, name);
1285 if (!ck_cmdline)
1286 return NULL;
1288 return ck_cmdline;
1291 static int __init __parse_crashkernel(char *cmdline,
1292 unsigned long long system_ram,
1293 unsigned long long *crash_size,
1294 unsigned long long *crash_base,
1295 const char *name,
1296 const char *suffix)
1298 char *first_colon, *first_space;
1299 char *ck_cmdline;
1301 BUG_ON(!crash_size || !crash_base);
1302 *crash_size = 0;
1303 *crash_base = 0;
1305 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1307 if (!ck_cmdline)
1308 return -EINVAL;
1310 ck_cmdline += strlen(name);
1312 if (suffix)
1313 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1314 suffix);
1316 * if the commandline contains a ':', then that's the extended
1317 * syntax -- if not, it must be the classic syntax
1319 first_colon = strchr(ck_cmdline, ':');
1320 first_space = strchr(ck_cmdline, ' ');
1321 if (first_colon && (!first_space || first_colon < first_space))
1322 return parse_crashkernel_mem(ck_cmdline, system_ram,
1323 crash_size, crash_base);
1325 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1329 * That function is the entry point for command line parsing and should be
1330 * called from the arch-specific code.
1332 int __init parse_crashkernel(char *cmdline,
1333 unsigned long long system_ram,
1334 unsigned long long *crash_size,
1335 unsigned long long *crash_base)
1337 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1338 "crashkernel=", NULL);
1341 int __init parse_crashkernel_high(char *cmdline,
1342 unsigned long long system_ram,
1343 unsigned long long *crash_size,
1344 unsigned long long *crash_base)
1346 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1347 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1350 int __init parse_crashkernel_low(char *cmdline,
1351 unsigned long long system_ram,
1352 unsigned long long *crash_size,
1353 unsigned long long *crash_base)
1355 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1356 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1359 static void update_vmcoreinfo_note(void)
1361 u32 *buf = vmcoreinfo_note;
1363 if (!vmcoreinfo_size)
1364 return;
1365 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1366 vmcoreinfo_size);
1367 final_note(buf);
1370 void crash_save_vmcoreinfo(void)
1372 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1373 update_vmcoreinfo_note();
1376 void vmcoreinfo_append_str(const char *fmt, ...)
1378 va_list args;
1379 char buf[0x50];
1380 size_t r;
1382 va_start(args, fmt);
1383 r = vscnprintf(buf, sizeof(buf), fmt, args);
1384 va_end(args);
1386 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1388 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1390 vmcoreinfo_size += r;
1394 * provide an empty default implementation here -- architecture
1395 * code may override this
1397 void __weak arch_crash_save_vmcoreinfo(void)
1400 phys_addr_t __weak paddr_vmcoreinfo_note(void)
1402 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1405 static int __init crash_save_vmcoreinfo_init(void)
1407 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1408 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1410 VMCOREINFO_SYMBOL(init_uts_ns);
1411 VMCOREINFO_SYMBOL(node_online_map);
1412 #ifdef CONFIG_MMU
1413 VMCOREINFO_SYMBOL(swapper_pg_dir);
1414 #endif
1415 VMCOREINFO_SYMBOL(_stext);
1416 VMCOREINFO_SYMBOL(vmap_area_list);
1418 #ifndef CONFIG_NEED_MULTIPLE_NODES
1419 VMCOREINFO_SYMBOL(mem_map);
1420 VMCOREINFO_SYMBOL(contig_page_data);
1421 #endif
1422 #ifdef CONFIG_SPARSEMEM
1423 VMCOREINFO_SYMBOL(mem_section);
1424 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1425 VMCOREINFO_STRUCT_SIZE(mem_section);
1426 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1427 #endif
1428 VMCOREINFO_STRUCT_SIZE(page);
1429 VMCOREINFO_STRUCT_SIZE(pglist_data);
1430 VMCOREINFO_STRUCT_SIZE(zone);
1431 VMCOREINFO_STRUCT_SIZE(free_area);
1432 VMCOREINFO_STRUCT_SIZE(list_head);
1433 VMCOREINFO_SIZE(nodemask_t);
1434 VMCOREINFO_OFFSET(page, flags);
1435 VMCOREINFO_OFFSET(page, _refcount);
1436 VMCOREINFO_OFFSET(page, mapping);
1437 VMCOREINFO_OFFSET(page, lru);
1438 VMCOREINFO_OFFSET(page, _mapcount);
1439 VMCOREINFO_OFFSET(page, private);
1440 VMCOREINFO_OFFSET(page, compound_dtor);
1441 VMCOREINFO_OFFSET(page, compound_order);
1442 VMCOREINFO_OFFSET(page, compound_head);
1443 VMCOREINFO_OFFSET(pglist_data, node_zones);
1444 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1445 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1446 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1447 #endif
1448 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1449 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1450 VMCOREINFO_OFFSET(pglist_data, node_id);
1451 VMCOREINFO_OFFSET(zone, free_area);
1452 VMCOREINFO_OFFSET(zone, vm_stat);
1453 VMCOREINFO_OFFSET(zone, spanned_pages);
1454 VMCOREINFO_OFFSET(free_area, free_list);
1455 VMCOREINFO_OFFSET(list_head, next);
1456 VMCOREINFO_OFFSET(list_head, prev);
1457 VMCOREINFO_OFFSET(vmap_area, va_start);
1458 VMCOREINFO_OFFSET(vmap_area, list);
1459 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1460 log_buf_kexec_setup();
1461 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1462 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1463 VMCOREINFO_NUMBER(PG_lru);
1464 VMCOREINFO_NUMBER(PG_private);
1465 VMCOREINFO_NUMBER(PG_swapcache);
1466 VMCOREINFO_NUMBER(PG_slab);
1467 #ifdef CONFIG_MEMORY_FAILURE
1468 VMCOREINFO_NUMBER(PG_hwpoison);
1469 #endif
1470 VMCOREINFO_NUMBER(PG_head_mask);
1471 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1472 #ifdef CONFIG_X86
1473 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1474 #endif
1475 #ifdef CONFIG_HUGETLB_PAGE
1476 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
1477 #endif
1479 arch_crash_save_vmcoreinfo();
1480 update_vmcoreinfo_note();
1482 return 0;
1485 subsys_initcall(crash_save_vmcoreinfo_init);
1488 * Move into place and start executing a preloaded standalone
1489 * executable. If nothing was preloaded return an error.
1491 int kernel_kexec(void)
1493 int error = 0;
1495 if (!mutex_trylock(&kexec_mutex))
1496 return -EBUSY;
1497 if (!kexec_image) {
1498 error = -EINVAL;
1499 goto Unlock;
1502 #ifdef CONFIG_KEXEC_JUMP
1503 if (kexec_image->preserve_context) {
1504 lock_system_sleep();
1505 pm_prepare_console();
1506 error = freeze_processes();
1507 if (error) {
1508 error = -EBUSY;
1509 goto Restore_console;
1511 suspend_console();
1512 error = dpm_suspend_start(PMSG_FREEZE);
1513 if (error)
1514 goto Resume_console;
1515 /* At this point, dpm_suspend_start() has been called,
1516 * but *not* dpm_suspend_end(). We *must* call
1517 * dpm_suspend_end() now. Otherwise, drivers for
1518 * some devices (e.g. interrupt controllers) become
1519 * desynchronized with the actual state of the
1520 * hardware at resume time, and evil weirdness ensues.
1522 error = dpm_suspend_end(PMSG_FREEZE);
1523 if (error)
1524 goto Resume_devices;
1525 error = disable_nonboot_cpus();
1526 if (error)
1527 goto Enable_cpus;
1528 local_irq_disable();
1529 error = syscore_suspend();
1530 if (error)
1531 goto Enable_irqs;
1532 } else
1533 #endif
1535 kexec_in_progress = true;
1536 kernel_restart_prepare(NULL);
1537 migrate_to_reboot_cpu();
1540 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1541 * no further code needs to use CPU hotplug (which is true in
1542 * the reboot case). However, the kexec path depends on using
1543 * CPU hotplug again; so re-enable it here.
1545 cpu_hotplug_enable();
1546 pr_emerg("Starting new kernel\n");
1547 machine_shutdown();
1550 machine_kexec(kexec_image);
1552 #ifdef CONFIG_KEXEC_JUMP
1553 if (kexec_image->preserve_context) {
1554 syscore_resume();
1555 Enable_irqs:
1556 local_irq_enable();
1557 Enable_cpus:
1558 enable_nonboot_cpus();
1559 dpm_resume_start(PMSG_RESTORE);
1560 Resume_devices:
1561 dpm_resume_end(PMSG_RESTORE);
1562 Resume_console:
1563 resume_console();
1564 thaw_processes();
1565 Restore_console:
1566 pm_restore_console();
1567 unlock_system_sleep();
1569 #endif
1571 Unlock:
1572 mutex_unlock(&kexec_mutex);
1573 return error;
1577 * Protection mechanism for crashkernel reserved memory after
1578 * the kdump kernel is loaded.
1580 * Provide an empty default implementation here -- architecture
1581 * code may override this
1583 void __weak arch_kexec_protect_crashkres(void)
1586 void __weak arch_kexec_unprotect_crashkres(void)