1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Helper library for PATA timings
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/libata.h>
14 * This mode timing computation functionality is ported over from
15 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
18 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
19 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
20 * for UDMA6, which is currently supported only by Maxtor drives.
22 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
25 static const struct ata_timing ata_timing
[] = {
26 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
27 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
28 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
29 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
30 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
31 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
32 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
33 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
35 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
36 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
37 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
39 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
40 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
41 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
42 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
43 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
45 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
46 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
47 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
48 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
49 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
50 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
51 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
52 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
57 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
58 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
60 static void ata_timing_quantize(const struct ata_timing
*t
,
61 struct ata_timing
*q
, int T
, int UT
)
63 q
->setup
= EZ(t
->setup
, T
);
64 q
->act8b
= EZ(t
->act8b
, T
);
65 q
->rec8b
= EZ(t
->rec8b
, T
);
66 q
->cyc8b
= EZ(t
->cyc8b
, T
);
67 q
->active
= EZ(t
->active
, T
);
68 q
->recover
= EZ(t
->recover
, T
);
69 q
->dmack_hold
= EZ(t
->dmack_hold
, T
);
70 q
->cycle
= EZ(t
->cycle
, T
);
71 q
->udma
= EZ(t
->udma
, UT
);
74 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
75 struct ata_timing
*m
, unsigned int what
)
77 if (what
& ATA_TIMING_SETUP
)
78 m
->setup
= max(a
->setup
, b
->setup
);
79 if (what
& ATA_TIMING_ACT8B
)
80 m
->act8b
= max(a
->act8b
, b
->act8b
);
81 if (what
& ATA_TIMING_REC8B
)
82 m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
83 if (what
& ATA_TIMING_CYC8B
)
84 m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
85 if (what
& ATA_TIMING_ACTIVE
)
86 m
->active
= max(a
->active
, b
->active
);
87 if (what
& ATA_TIMING_RECOVER
)
88 m
->recover
= max(a
->recover
, b
->recover
);
89 if (what
& ATA_TIMING_DMACK_HOLD
)
90 m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
91 if (what
& ATA_TIMING_CYCLE
)
92 m
->cycle
= max(a
->cycle
, b
->cycle
);
93 if (what
& ATA_TIMING_UDMA
)
94 m
->udma
= max(a
->udma
, b
->udma
);
96 EXPORT_SYMBOL_GPL(ata_timing_merge
);
98 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
100 const struct ata_timing
*t
= ata_timing
;
102 while (xfer_mode
> t
->mode
)
105 if (xfer_mode
== t
->mode
)
108 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
109 __func__
, xfer_mode
);
113 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
115 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
116 struct ata_timing
*t
, int T
, int UT
)
118 const u16
*id
= adev
->id
;
119 const struct ata_timing
*s
;
125 s
= ata_timing_find_mode(speed
);
129 memcpy(t
, s
, sizeof(*s
));
132 * If the drive is an EIDE drive, it can tell us it needs extended
133 * PIO/MW_DMA cycle timing.
136 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
137 memset(&p
, 0, sizeof(p
));
139 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
140 if (speed
<= XFER_PIO_2
)
141 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
142 else if ((speed
<= XFER_PIO_4
) ||
143 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
144 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
145 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
146 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
148 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
152 * Convert the timing to bus clock counts.
155 ata_timing_quantize(t
, t
, T
, UT
);
158 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
159 * S.M.A.R.T * and some other commands. We have to ensure that the
160 * DMA cycle timing is slower/equal than the fastest PIO timing.
163 if (speed
> XFER_PIO_6
) {
164 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
165 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
169 * Lengthen active & recovery time so that cycle time is correct.
172 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
173 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
174 t
->rec8b
= t
->cyc8b
- t
->act8b
;
177 if (t
->active
+ t
->recover
< t
->cycle
) {
178 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
179 t
->recover
= t
->cycle
- t
->active
;
183 * In a few cases quantisation may produce enough errors to
184 * leave t->cycle too low for the sum of active and recovery
185 * if so we must correct this.
187 if (t
->active
+ t
->recover
> t
->cycle
)
188 t
->cycle
= t
->active
+ t
->recover
;
192 EXPORT_SYMBOL_GPL(ata_timing_compute
);