1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * libata-sff.c - helper library for PCI IDE BMDMA
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
24 static struct workqueue_struct
*ata_sff_wq
;
26 const struct ata_port_operations ata_sff_port_ops
= {
27 .inherits
= &ata_base_port_ops
,
29 .qc_prep
= ata_noop_qc_prep
,
30 .qc_issue
= ata_sff_qc_issue
,
31 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
33 .freeze
= ata_sff_freeze
,
35 .prereset
= ata_sff_prereset
,
36 .softreset
= ata_sff_softreset
,
37 .hardreset
= sata_sff_hardreset
,
38 .postreset
= ata_sff_postreset
,
39 .error_handler
= ata_sff_error_handler
,
41 .sff_dev_select
= ata_sff_dev_select
,
42 .sff_check_status
= ata_sff_check_status
,
43 .sff_tf_load
= ata_sff_tf_load
,
44 .sff_tf_read
= ata_sff_tf_read
,
45 .sff_exec_command
= ata_sff_exec_command
,
46 .sff_data_xfer
= ata_sff_data_xfer
,
47 .sff_drain_fifo
= ata_sff_drain_fifo
,
49 .lost_interrupt
= ata_sff_lost_interrupt
,
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
62 * Inherited from caller.
64 u8
ata_sff_check_status(struct ata_port
*ap
)
66 return ioread8(ap
->ioaddr
.status_addr
);
68 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
74 * Reads ATA taskfile alternate status register for
75 * currently-selected device and return its value.
77 * Note: may NOT be used as the check_altstatus() entry in
78 * ata_port_operations.
81 * Inherited from caller.
83 static u8
ata_sff_altstatus(struct ata_port
*ap
)
85 if (ap
->ops
->sff_check_altstatus
)
86 return ap
->ops
->sff_check_altstatus(ap
);
88 return ioread8(ap
->ioaddr
.altstatus_addr
);
92 * ata_sff_irq_status - Check if the device is busy
93 * @ap: port where the device is
95 * Determine if the port is currently busy. Uses altstatus
96 * if available in order to avoid clearing shared IRQ status
97 * when finding an IRQ source. Non ctl capable devices don't
98 * share interrupt lines fortunately for us.
101 * Inherited from caller.
103 static u8
ata_sff_irq_status(struct ata_port
*ap
)
107 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
108 status
= ata_sff_altstatus(ap
);
109 /* Not us: We are busy */
110 if (status
& ATA_BUSY
)
113 /* Clear INTRQ latch */
114 status
= ap
->ops
->sff_check_status(ap
);
119 * ata_sff_sync - Flush writes
120 * @ap: Port to wait for.
123 * If we have an mmio device with no ctl and no altstatus
124 * method this will fail. No such devices are known to exist.
127 * Inherited from caller.
130 static void ata_sff_sync(struct ata_port
*ap
)
132 if (ap
->ops
->sff_check_altstatus
)
133 ap
->ops
->sff_check_altstatus(ap
);
134 else if (ap
->ioaddr
.altstatus_addr
)
135 ioread8(ap
->ioaddr
.altstatus_addr
);
139 * ata_sff_pause - Flush writes and wait 400nS
140 * @ap: Port to pause for.
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
147 * Inherited from caller.
150 void ata_sff_pause(struct ata_port
*ap
)
155 EXPORT_SYMBOL_GPL(ata_sff_pause
);
158 * ata_sff_dma_pause - Pause before commencing DMA
159 * @ap: Port to pause for.
161 * Perform I/O fencing and ensure sufficient cycle delays occur
162 * for the HDMA1:0 transition
165 void ata_sff_dma_pause(struct ata_port
*ap
)
167 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
168 /* An altstatus read will cause the needed delay without
169 messing up the IRQ status */
170 ata_sff_altstatus(ap
);
173 /* There are no DMA controllers without ctl. BUG here to ensure
174 we never violate the HDMA1:0 transition timing and risk
178 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
181 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
182 * @ap: port containing status register to be polled
183 * @tmout_pat: impatience timeout in msecs
184 * @tmout: overall timeout in msecs
186 * Sleep until ATA Status register bit BSY clears,
187 * or a timeout occurs.
190 * Kernel thread context (may sleep).
193 * 0 on success, -errno otherwise.
195 int ata_sff_busy_sleep(struct ata_port
*ap
,
196 unsigned long tmout_pat
, unsigned long tmout
)
198 unsigned long timer_start
, timeout
;
201 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
202 timer_start
= jiffies
;
203 timeout
= ata_deadline(timer_start
, tmout_pat
);
204 while (status
!= 0xff && (status
& ATA_BUSY
) &&
205 time_before(jiffies
, timeout
)) {
207 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
210 if (status
!= 0xff && (status
& ATA_BUSY
))
212 "port is slow to respond, please be patient (Status 0x%x)\n",
215 timeout
= ata_deadline(timer_start
, tmout
);
216 while (status
!= 0xff && (status
& ATA_BUSY
) &&
217 time_before(jiffies
, timeout
)) {
219 status
= ap
->ops
->sff_check_status(ap
);
225 if (status
& ATA_BUSY
) {
227 "port failed to respond (%lu secs, Status 0x%x)\n",
228 DIV_ROUND_UP(tmout
, 1000), status
);
234 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
236 static int ata_sff_check_ready(struct ata_link
*link
)
238 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
240 return ata_check_ready(status
);
244 * ata_sff_wait_ready - sleep until BSY clears, or timeout
245 * @link: SFF link to wait ready status for
246 * @deadline: deadline jiffies for the operation
248 * Sleep until ATA Status register bit BSY clears, or timeout
252 * Kernel thread context (may sleep).
255 * 0 on success, -errno otherwise.
257 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
259 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
261 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
264 * ata_sff_set_devctl - Write device control reg
265 * @ap: port where the device is
266 * @ctl: value to write
268 * Writes ATA taskfile device control register.
270 * Note: may NOT be used as the sff_set_devctl() entry in
271 * ata_port_operations.
274 * Inherited from caller.
276 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
278 if (ap
->ops
->sff_set_devctl
)
279 ap
->ops
->sff_set_devctl(ap
, ctl
);
281 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
285 * ata_sff_dev_select - Select device 0/1 on ATA bus
286 * @ap: ATA channel to manipulate
287 * @device: ATA device (numbered from zero) to select
289 * Use the method defined in the ATA specification to
290 * make either device 0, or device 1, active on the
291 * ATA channel. Works with both PIO and MMIO.
293 * May be used as the dev_select() entry in ata_port_operations.
298 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
303 tmp
= ATA_DEVICE_OBS
;
305 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
307 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
308 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
310 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
313 * ata_dev_select - Select device 0/1 on ATA bus
314 * @ap: ATA channel to manipulate
315 * @device: ATA device (numbered from zero) to select
316 * @wait: non-zero to wait for Status register BSY bit to clear
317 * @can_sleep: non-zero if context allows sleeping
319 * Use the method defined in the ATA specification to
320 * make either device 0, or device 1, active on the
323 * This is a high-level version of ata_sff_dev_select(), which
324 * additionally provides the services of inserting the proper
325 * pauses and status polling, where needed.
330 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
331 unsigned int wait
, unsigned int can_sleep
)
333 if (ata_msg_probe(ap
))
334 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
340 ap
->ops
->sff_dev_select(ap
, device
);
343 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
350 * ata_sff_irq_on - Enable interrupts on a port.
351 * @ap: Port on which interrupts are enabled.
353 * Enable interrupts on a legacy IDE device using MMIO or PIO,
354 * wait for idle, clear any pending interrupts.
356 * Note: may NOT be used as the sff_irq_on() entry in
357 * ata_port_operations.
360 * Inherited from caller.
362 void ata_sff_irq_on(struct ata_port
*ap
)
364 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
366 if (ap
->ops
->sff_irq_on
) {
367 ap
->ops
->sff_irq_on(ap
);
371 ap
->ctl
&= ~ATA_NIEN
;
372 ap
->last_ctl
= ap
->ctl
;
374 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
375 ata_sff_set_devctl(ap
, ap
->ctl
);
378 if (ap
->ops
->sff_irq_clear
)
379 ap
->ops
->sff_irq_clear(ap
);
381 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
384 * ata_sff_tf_load - send taskfile registers to host controller
385 * @ap: Port to which output is sent
386 * @tf: ATA taskfile register set
388 * Outputs ATA taskfile to standard ATA host controller.
391 * Inherited from caller.
393 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
395 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
396 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
398 if (tf
->ctl
!= ap
->last_ctl
) {
399 if (ioaddr
->ctl_addr
)
400 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
401 ap
->last_ctl
= tf
->ctl
;
405 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
406 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
407 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
408 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
409 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
410 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
411 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
412 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
421 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
422 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
423 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
424 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
425 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
426 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
434 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
435 iowrite8(tf
->device
, ioaddr
->device_addr
);
436 VPRINTK("device 0x%X\n", tf
->device
);
441 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
444 * ata_sff_tf_read - input device's ATA taskfile shadow registers
445 * @ap: Port from which input is read
446 * @tf: ATA taskfile register set for storing input
448 * Reads ATA taskfile registers for currently-selected device
449 * into @tf. Assumes the device has a fully SFF compliant task file
450 * layout and behaviour. If you device does not (eg has a different
451 * status method) then you will need to provide a replacement tf_read
454 * Inherited from caller.
456 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
458 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
460 tf
->command
= ata_sff_check_status(ap
);
461 tf
->feature
= ioread8(ioaddr
->error_addr
);
462 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
463 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
464 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
465 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
466 tf
->device
= ioread8(ioaddr
->device_addr
);
468 if (tf
->flags
& ATA_TFLAG_LBA48
) {
469 if (likely(ioaddr
->ctl_addr
)) {
470 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
471 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
472 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
473 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
474 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
475 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
476 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
477 ap
->last_ctl
= tf
->ctl
;
482 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
485 * ata_sff_exec_command - issue ATA command to host controller
486 * @ap: port to which command is being issued
487 * @tf: ATA taskfile register set
489 * Issues ATA command, with proper synchronization with interrupt
490 * handler / other threads.
493 * spin_lock_irqsave(host lock)
495 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
497 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
499 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
502 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
505 * ata_tf_to_host - issue ATA taskfile to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA taskfile register set to ATA host controller,
510 * with proper synchronization with interrupt handler and
514 * spin_lock_irqsave(host lock)
516 static inline void ata_tf_to_host(struct ata_port
*ap
,
517 const struct ata_taskfile
*tf
)
519 ap
->ops
->sff_tf_load(ap
, tf
);
520 ap
->ops
->sff_exec_command(ap
, tf
);
524 * ata_sff_data_xfer - Transfer data by PIO
525 * @qc: queued command
527 * @buflen: buffer length
530 * Transfer data from/to the device data register by PIO.
533 * Inherited from caller.
538 unsigned int ata_sff_data_xfer(struct ata_queued_cmd
*qc
, unsigned char *buf
,
539 unsigned int buflen
, int rw
)
541 struct ata_port
*ap
= qc
->dev
->link
->ap
;
542 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
543 unsigned int words
= buflen
>> 1;
545 /* Transfer multiple of 2 bytes */
547 ioread16_rep(data_addr
, buf
, words
);
549 iowrite16_rep(data_addr
, buf
, words
);
551 /* Transfer trailing byte, if any. */
552 if (unlikely(buflen
& 0x01)) {
553 unsigned char pad
[2] = { };
555 /* Point buf to the tail of buffer */
559 * Use io*16_rep() accessors here as well to avoid pointlessly
560 * swapping bytes to and from on the big endian machines...
563 ioread16_rep(data_addr
, pad
, 1);
567 iowrite16_rep(data_addr
, pad
, 1);
574 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
577 * ata_sff_data_xfer32 - Transfer data by PIO
578 * @qc: queued command
580 * @buflen: buffer length
583 * Transfer data from/to the device data register by PIO using 32bit
587 * Inherited from caller.
593 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd
*qc
, unsigned char *buf
,
594 unsigned int buflen
, int rw
)
596 struct ata_device
*dev
= qc
->dev
;
597 struct ata_port
*ap
= dev
->link
->ap
;
598 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
599 unsigned int words
= buflen
>> 2;
600 int slop
= buflen
& 3;
602 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
603 return ata_sff_data_xfer(qc
, buf
, buflen
, rw
);
605 /* Transfer multiple of 4 bytes */
607 ioread32_rep(data_addr
, buf
, words
);
609 iowrite32_rep(data_addr
, buf
, words
);
611 /* Transfer trailing bytes, if any */
612 if (unlikely(slop
)) {
613 unsigned char pad
[4] = { };
615 /* Point buf to the tail of buffer */
616 buf
+= buflen
- slop
;
619 * Use io*_rep() accessors here as well to avoid pointlessly
620 * swapping bytes to and from on the big endian machines...
624 ioread16_rep(data_addr
, pad
, 1);
626 ioread32_rep(data_addr
, pad
, 1);
627 memcpy(buf
, pad
, slop
);
629 memcpy(pad
, buf
, slop
);
631 iowrite16_rep(data_addr
, pad
, 1);
633 iowrite32_rep(data_addr
, pad
, 1);
636 return (buflen
+ 1) & ~1;
638 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
641 * ata_pio_sector - Transfer a sector of data.
642 * @qc: Command on going
644 * Transfer qc->sect_size bytes of data from/to the ATA device.
647 * Inherited from caller.
649 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
651 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
652 struct ata_port
*ap
= qc
->ap
;
658 qc
->curbytes
= qc
->nbytes
;
661 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
662 ap
->hsm_task_state
= HSM_ST_LAST
;
664 page
= sg_page(qc
->cursg
);
665 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
667 /* get the current page and offset */
668 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
671 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
673 /* do the actual data transfer */
674 buf
= kmap_atomic(page
);
675 ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, qc
->sect_size
, do_write
);
678 if (!do_write
&& !PageSlab(page
))
679 flush_dcache_page(page
);
681 qc
->curbytes
+= qc
->sect_size
;
682 qc
->cursg_ofs
+= qc
->sect_size
;
684 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
685 qc
->cursg
= sg_next(qc
->cursg
);
687 ap
->hsm_task_state
= HSM_ST_LAST
;
693 * ata_pio_sectors - Transfer one or many sectors.
694 * @qc: Command on going
696 * Transfer one or many sectors of data from/to the
697 * ATA device for the DRQ request.
700 * Inherited from caller.
702 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
704 if (is_multi_taskfile(&qc
->tf
)) {
705 /* READ/WRITE MULTIPLE */
708 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
710 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
711 qc
->dev
->multi_count
);
717 ata_sff_sync(qc
->ap
); /* flush */
721 * atapi_send_cdb - Write CDB bytes to hardware
722 * @ap: Port to which ATAPI device is attached.
723 * @qc: Taskfile currently active
725 * When device has indicated its readiness to accept
726 * a CDB, this function is called. Send the CDB.
731 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
734 DPRINTK("send cdb\n");
735 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
737 ap
->ops
->sff_data_xfer(qc
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
739 /* FIXME: If the CDB is for DMA do we need to do the transition delay
740 or is bmdma_start guaranteed to do it ? */
741 switch (qc
->tf
.protocol
) {
743 ap
->hsm_task_state
= HSM_ST
;
745 case ATAPI_PROT_NODATA
:
746 ap
->hsm_task_state
= HSM_ST_LAST
;
748 #ifdef CONFIG_ATA_BMDMA
750 ap
->hsm_task_state
= HSM_ST_LAST
;
752 ap
->ops
->bmdma_start(qc
);
754 #endif /* CONFIG_ATA_BMDMA */
761 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
762 * @qc: Command on going
763 * @bytes: number of bytes
765 * Transfer Transfer data from/to the ATAPI device.
768 * Inherited from caller.
771 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
773 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
774 struct ata_port
*ap
= qc
->ap
;
775 struct ata_device
*dev
= qc
->dev
;
776 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
777 struct scatterlist
*sg
;
780 unsigned int offset
, count
, consumed
;
785 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
786 "buf=%u cur=%u bytes=%u",
787 qc
->nbytes
, qc
->curbytes
, bytes
);
792 offset
= sg
->offset
+ qc
->cursg_ofs
;
794 /* get the current page and offset */
795 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
798 /* don't overrun current sg */
799 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
801 /* don't cross page boundaries */
802 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
804 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
806 /* do the actual data transfer */
807 buf
= kmap_atomic(page
);
808 consumed
= ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, count
, rw
);
811 bytes
-= min(bytes
, consumed
);
812 qc
->curbytes
+= count
;
813 qc
->cursg_ofs
+= count
;
815 if (qc
->cursg_ofs
== sg
->length
) {
816 qc
->cursg
= sg_next(qc
->cursg
);
821 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
822 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
823 * check correctly as it doesn't know if it is the last request being
824 * made. Somebody should implement a proper sanity check.
832 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
833 * @qc: Command on going
835 * Transfer Transfer data from/to the ATAPI device.
838 * Inherited from caller.
840 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
842 struct ata_port
*ap
= qc
->ap
;
843 struct ata_device
*dev
= qc
->dev
;
844 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
845 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
846 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
848 /* Abuse qc->result_tf for temp storage of intermediate TF
849 * here to save some kernel stack usage.
850 * For normal completion, qc->result_tf is not relevant. For
851 * error, qc->result_tf is later overwritten by ata_qc_complete().
852 * So, the correctness of qc->result_tf is not affected.
854 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
855 ireason
= qc
->result_tf
.nsect
;
856 bc_lo
= qc
->result_tf
.lbam
;
857 bc_hi
= qc
->result_tf
.lbah
;
858 bytes
= (bc_hi
<< 8) | bc_lo
;
860 /* shall be cleared to zero, indicating xfer of data */
861 if (unlikely(ireason
& ATAPI_COD
))
864 /* make sure transfer direction matches expected */
865 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
866 if (unlikely(do_write
!= i_write
))
869 if (unlikely(!bytes
))
872 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
874 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
876 ata_sff_sync(ap
); /* flush */
881 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
884 qc
->err_mask
|= AC_ERR_HSM
;
885 ap
->hsm_task_state
= HSM_ST_ERR
;
889 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
890 * @ap: the target ata_port
894 * 1 if ok in workqueue, 0 otherwise.
896 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
897 struct ata_queued_cmd
*qc
)
899 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
902 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
903 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
904 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
907 if (ata_is_atapi(qc
->tf
.protocol
) &&
908 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
916 * ata_hsm_qc_complete - finish a qc running on standard HSM
917 * @qc: Command to complete
918 * @in_wq: 1 if called from workqueue, 0 otherwise
920 * Finish @qc which is running on standard HSM.
923 * If @in_wq is zero, spin_lock_irqsave(host lock).
924 * Otherwise, none on entry and grabs host lock.
926 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
928 struct ata_port
*ap
= qc
->ap
;
930 if (ap
->ops
->error_handler
) {
932 /* EH might have kicked in while host lock is
935 qc
= ata_qc_from_tag(ap
, qc
->tag
);
937 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
944 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
959 * ata_sff_hsm_move - move the HSM to the next state.
960 * @ap: the target ata_port
962 * @status: current device status
963 * @in_wq: 1 if called from workqueue, 0 otherwise
966 * 1 when poll next status needed, 0 otherwise.
968 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
969 u8 status
, int in_wq
)
971 struct ata_link
*link
= qc
->dev
->link
;
972 struct ata_eh_info
*ehi
= &link
->eh_info
;
975 lockdep_assert_held(ap
->lock
);
977 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
979 /* Make sure ata_sff_qc_issue() does not throw things
980 * like DMA polling into the workqueue. Notice that
981 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
983 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
986 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
987 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
989 switch (ap
->hsm_task_state
) {
991 /* Send first data block or PACKET CDB */
993 /* If polling, we will stay in the work queue after
994 * sending the data. Otherwise, interrupt handler
995 * takes over after sending the data.
997 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
999 /* check device status */
1000 if (unlikely((status
& ATA_DRQ
) == 0)) {
1001 /* handle BSY=0, DRQ=0 as error */
1002 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1003 /* device stops HSM for abort/error */
1004 qc
->err_mask
|= AC_ERR_DEV
;
1006 /* HSM violation. Let EH handle this */
1007 ata_ehi_push_desc(ehi
,
1008 "ST_FIRST: !(DRQ|ERR|DF)");
1009 qc
->err_mask
|= AC_ERR_HSM
;
1012 ap
->hsm_task_state
= HSM_ST_ERR
;
1016 /* Device should not ask for data transfer (DRQ=1)
1017 * when it finds something wrong.
1018 * We ignore DRQ here and stop the HSM by
1019 * changing hsm_task_state to HSM_ST_ERR and
1020 * let the EH abort the command or reset the device.
1022 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1023 /* Some ATAPI tape drives forget to clear the ERR bit
1024 * when doing the next command (mostly request sense).
1025 * We ignore ERR here to workaround and proceed sending
1028 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1029 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1030 "DRQ=1 with device error, "
1031 "dev_stat 0x%X", status
);
1032 qc
->err_mask
|= AC_ERR_HSM
;
1033 ap
->hsm_task_state
= HSM_ST_ERR
;
1038 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1039 /* PIO data out protocol.
1040 * send first data block.
1043 /* ata_pio_sectors() might change the state
1044 * to HSM_ST_LAST. so, the state is changed here
1045 * before ata_pio_sectors().
1047 ap
->hsm_task_state
= HSM_ST
;
1048 ata_pio_sectors(qc
);
1051 atapi_send_cdb(ap
, qc
);
1053 /* if polling, ata_sff_pio_task() handles the rest.
1054 * otherwise, interrupt handler takes over from here.
1059 /* complete command or read/write the data register */
1060 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1061 /* ATAPI PIO protocol */
1062 if ((status
& ATA_DRQ
) == 0) {
1063 /* No more data to transfer or device error.
1064 * Device error will be tagged in HSM_ST_LAST.
1066 ap
->hsm_task_state
= HSM_ST_LAST
;
1070 /* Device should not ask for data transfer (DRQ=1)
1071 * when it finds something wrong.
1072 * We ignore DRQ here and stop the HSM by
1073 * changing hsm_task_state to HSM_ST_ERR and
1074 * let the EH abort the command or reset the device.
1076 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1077 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1078 "DRQ=1 with device error, "
1079 "dev_stat 0x%X", status
);
1080 qc
->err_mask
|= AC_ERR_HSM
;
1081 ap
->hsm_task_state
= HSM_ST_ERR
;
1085 atapi_pio_bytes(qc
);
1087 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1088 /* bad ireason reported by device */
1092 /* ATA PIO protocol */
1093 if (unlikely((status
& ATA_DRQ
) == 0)) {
1094 /* handle BSY=0, DRQ=0 as error */
1095 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1096 /* device stops HSM for abort/error */
1097 qc
->err_mask
|= AC_ERR_DEV
;
1099 /* If diagnostic failed and this is
1100 * IDENTIFY, it's likely a phantom
1101 * device. Mark hint.
1103 if (qc
->dev
->horkage
&
1104 ATA_HORKAGE_DIAGNOSTIC
)
1108 /* HSM violation. Let EH handle this.
1109 * Phantom devices also trigger this
1110 * condition. Mark hint.
1112 ata_ehi_push_desc(ehi
, "ST-ATA: "
1113 "DRQ=0 without device error, "
1114 "dev_stat 0x%X", status
);
1115 qc
->err_mask
|= AC_ERR_HSM
|
1119 ap
->hsm_task_state
= HSM_ST_ERR
;
1123 /* For PIO reads, some devices may ask for
1124 * data transfer (DRQ=1) alone with ERR=1.
1125 * We respect DRQ here and transfer one
1126 * block of junk data before changing the
1127 * hsm_task_state to HSM_ST_ERR.
1129 * For PIO writes, ERR=1 DRQ=1 doesn't make
1130 * sense since the data block has been
1131 * transferred to the device.
1133 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1134 /* data might be corrputed */
1135 qc
->err_mask
|= AC_ERR_DEV
;
1137 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1138 ata_pio_sectors(qc
);
1139 status
= ata_wait_idle(ap
);
1142 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1143 ata_ehi_push_desc(ehi
, "ST-ATA: "
1144 "BUSY|DRQ persists on ERR|DF, "
1145 "dev_stat 0x%X", status
);
1146 qc
->err_mask
|= AC_ERR_HSM
;
1149 /* There are oddball controllers with
1150 * status register stuck at 0x7f and
1151 * lbal/m/h at zero which makes it
1152 * pass all other presence detection
1153 * mechanisms we have. Set NODEV_HINT
1154 * for it. Kernel bz#7241.
1157 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1159 /* ata_pio_sectors() might change the
1160 * state to HSM_ST_LAST. so, the state
1161 * is changed after ata_pio_sectors().
1163 ap
->hsm_task_state
= HSM_ST_ERR
;
1167 ata_pio_sectors(qc
);
1169 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1170 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1172 status
= ata_wait_idle(ap
);
1181 if (unlikely(!ata_ok(status
))) {
1182 qc
->err_mask
|= __ac_err_mask(status
);
1183 ap
->hsm_task_state
= HSM_ST_ERR
;
1187 /* no more data to transfer */
1188 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1189 ap
->print_id
, qc
->dev
->devno
, status
);
1191 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1193 ap
->hsm_task_state
= HSM_ST_IDLE
;
1195 /* complete taskfile transaction */
1196 ata_hsm_qc_complete(qc
, in_wq
);
1202 ap
->hsm_task_state
= HSM_ST_IDLE
;
1204 /* complete taskfile transaction */
1205 ata_hsm_qc_complete(qc
, in_wq
);
1211 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1212 ap
->print_id
, ap
->hsm_task_state
);
1217 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1219 void ata_sff_queue_work(struct work_struct
*work
)
1221 queue_work(ata_sff_wq
, work
);
1223 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1225 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1227 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1229 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1231 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1233 struct ata_port
*ap
= link
->ap
;
1235 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1236 (ap
->sff_pio_task_link
!= link
));
1237 ap
->sff_pio_task_link
= link
;
1239 /* may fail if ata_sff_flush_pio_task() in progress */
1240 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1242 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1244 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1248 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1251 * We wanna reset the HSM state to IDLE. If we do so without
1252 * grabbing the port lock, critical sections protected by it which
1253 * expect the HSM state to stay stable may get surprised. For
1254 * example, we may set IDLE in between the time
1255 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1256 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1258 spin_lock_irq(ap
->lock
);
1259 ap
->hsm_task_state
= HSM_ST_IDLE
;
1260 spin_unlock_irq(ap
->lock
);
1262 ap
->sff_pio_task_link
= NULL
;
1264 if (ata_msg_ctl(ap
))
1265 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1268 static void ata_sff_pio_task(struct work_struct
*work
)
1270 struct ata_port
*ap
=
1271 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1272 struct ata_link
*link
= ap
->sff_pio_task_link
;
1273 struct ata_queued_cmd
*qc
;
1277 spin_lock_irq(ap
->lock
);
1279 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1280 /* qc can be NULL if timeout occurred */
1281 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1283 ap
->sff_pio_task_link
= NULL
;
1288 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1291 * This is purely heuristic. This is a fast path.
1292 * Sometimes when we enter, BSY will be cleared in
1293 * a chk-status or two. If not, the drive is probably seeking
1294 * or something. Snooze for a couple msecs, then
1295 * chk-status again. If still busy, queue delayed work.
1297 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1298 if (status
& ATA_BUSY
) {
1299 spin_unlock_irq(ap
->lock
);
1301 spin_lock_irq(ap
->lock
);
1303 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1304 if (status
& ATA_BUSY
) {
1305 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1311 * hsm_move() may trigger another command to be processed.
1312 * clean the link beforehand.
1314 ap
->sff_pio_task_link
= NULL
;
1316 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1318 /* another command or interrupt handler
1319 * may be running at this point.
1324 spin_unlock_irq(ap
->lock
);
1328 * ata_sff_qc_issue - issue taskfile to a SFF controller
1329 * @qc: command to issue to device
1331 * This function issues a PIO or NODATA command to a SFF
1335 * spin_lock_irqsave(host lock)
1338 * Zero on success, AC_ERR_* mask on failure
1340 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1342 struct ata_port
*ap
= qc
->ap
;
1343 struct ata_link
*link
= qc
->dev
->link
;
1345 /* Use polling pio if the LLD doesn't handle
1346 * interrupt driven pio and atapi CDB interrupt.
1348 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1349 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1351 /* select the device */
1352 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1354 /* start the command */
1355 switch (qc
->tf
.protocol
) {
1356 case ATA_PROT_NODATA
:
1357 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1358 ata_qc_set_polling(qc
);
1360 ata_tf_to_host(ap
, &qc
->tf
);
1361 ap
->hsm_task_state
= HSM_ST_LAST
;
1363 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1364 ata_sff_queue_pio_task(link
, 0);
1369 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1370 ata_qc_set_polling(qc
);
1372 ata_tf_to_host(ap
, &qc
->tf
);
1374 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1375 /* PIO data out protocol */
1376 ap
->hsm_task_state
= HSM_ST_FIRST
;
1377 ata_sff_queue_pio_task(link
, 0);
1379 /* always send first data block using the
1380 * ata_sff_pio_task() codepath.
1383 /* PIO data in protocol */
1384 ap
->hsm_task_state
= HSM_ST
;
1386 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1387 ata_sff_queue_pio_task(link
, 0);
1389 /* if polling, ata_sff_pio_task() handles the
1390 * rest. otherwise, interrupt handler takes
1397 case ATAPI_PROT_PIO
:
1398 case ATAPI_PROT_NODATA
:
1399 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1400 ata_qc_set_polling(qc
);
1402 ata_tf_to_host(ap
, &qc
->tf
);
1404 ap
->hsm_task_state
= HSM_ST_FIRST
;
1406 /* send cdb by polling if no cdb interrupt */
1407 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1408 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1409 ata_sff_queue_pio_task(link
, 0);
1413 return AC_ERR_SYSTEM
;
1418 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1421 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1422 * @qc: qc to fill result TF for
1424 * @qc is finished and result TF needs to be filled. Fill it
1425 * using ->sff_tf_read.
1428 * spin_lock_irqsave(host lock)
1431 * true indicating that result TF is successfully filled.
1433 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1435 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1438 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1440 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1442 ap
->stats
.idle_irq
++;
1445 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1446 ap
->ops
->sff_check_status(ap
);
1447 if (ap
->ops
->sff_irq_clear
)
1448 ap
->ops
->sff_irq_clear(ap
);
1449 ata_port_warn(ap
, "irq trap\n");
1453 return 0; /* irq not handled */
1456 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1457 struct ata_queued_cmd
*qc
,
1462 VPRINTK("ata%u: protocol %d task_state %d\n",
1463 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1465 /* Check whether we are expecting interrupt in this state */
1466 switch (ap
->hsm_task_state
) {
1468 /* Some pre-ATAPI-4 devices assert INTRQ
1469 * at this state when ready to receive CDB.
1472 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1473 * The flag was turned on only for atapi devices. No
1474 * need to check ata_is_atapi(qc->tf.protocol) again.
1476 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1477 return ata_sff_idle_irq(ap
);
1480 return ata_sff_idle_irq(ap
);
1485 /* check main status, clearing INTRQ if needed */
1486 status
= ata_sff_irq_status(ap
);
1487 if (status
& ATA_BUSY
) {
1489 /* BMDMA engine is already stopped, we're screwed */
1490 qc
->err_mask
|= AC_ERR_HSM
;
1491 ap
->hsm_task_state
= HSM_ST_ERR
;
1493 return ata_sff_idle_irq(ap
);
1496 /* clear irq events */
1497 if (ap
->ops
->sff_irq_clear
)
1498 ap
->ops
->sff_irq_clear(ap
);
1500 ata_sff_hsm_move(ap
, qc
, status
, 0);
1502 return 1; /* irq handled */
1506 * ata_sff_port_intr - Handle SFF port interrupt
1507 * @ap: Port on which interrupt arrived (possibly...)
1508 * @qc: Taskfile currently active in engine
1510 * Handle port interrupt for given queued command.
1513 * spin_lock_irqsave(host lock)
1516 * One if interrupt was handled, zero if not (shared irq).
1518 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1520 return __ata_sff_port_intr(ap
, qc
, false);
1522 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1524 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1525 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1527 struct ata_host
*host
= dev_instance
;
1528 bool retried
= false;
1530 unsigned int handled
, idle
, polling
;
1531 unsigned long flags
;
1533 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1534 spin_lock_irqsave(&host
->lock
, flags
);
1537 handled
= idle
= polling
= 0;
1538 for (i
= 0; i
< host
->n_ports
; i
++) {
1539 struct ata_port
*ap
= host
->ports
[i
];
1540 struct ata_queued_cmd
*qc
;
1542 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1544 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1545 handled
|= port_intr(ap
, qc
);
1553 * If no port was expecting IRQ but the controller is actually
1554 * asserting IRQ line, nobody cared will ensue. Check IRQ
1555 * pending status if available and clear spurious IRQ.
1557 if (!handled
&& !retried
) {
1560 for (i
= 0; i
< host
->n_ports
; i
++) {
1561 struct ata_port
*ap
= host
->ports
[i
];
1563 if (polling
& (1 << i
))
1566 if (!ap
->ops
->sff_irq_check
||
1567 !ap
->ops
->sff_irq_check(ap
))
1570 if (idle
& (1 << i
)) {
1571 ap
->ops
->sff_check_status(ap
);
1572 if (ap
->ops
->sff_irq_clear
)
1573 ap
->ops
->sff_irq_clear(ap
);
1575 /* clear INTRQ and check if BUSY cleared */
1576 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1579 * With command in flight, we can't do
1580 * sff_irq_clear() w/o racing with completion.
1591 spin_unlock_irqrestore(&host
->lock
, flags
);
1593 return IRQ_RETVAL(handled
);
1597 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1598 * @irq: irq line (unused)
1599 * @dev_instance: pointer to our ata_host information structure
1601 * Default interrupt handler for PCI IDE devices. Calls
1602 * ata_sff_port_intr() for each port that is not disabled.
1605 * Obtains host lock during operation.
1608 * IRQ_NONE or IRQ_HANDLED.
1610 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1612 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1614 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1617 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1618 * @ap: port that appears to have timed out
1620 * Called from the libata error handlers when the core code suspects
1621 * an interrupt has been lost. If it has complete anything we can and
1622 * then return. Interface must support altstatus for this faster
1623 * recovery to occur.
1626 * Caller holds host lock
1629 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1632 struct ata_queued_cmd
*qc
;
1634 /* Only one outstanding command per SFF channel */
1635 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1636 /* We cannot lose an interrupt on a non-existent or polled command */
1637 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1639 /* See if the controller thinks it is still busy - if so the command
1640 isn't a lost IRQ but is still in progress */
1641 status
= ata_sff_altstatus(ap
);
1642 if (status
& ATA_BUSY
)
1645 /* There was a command running, we are no longer busy and we have
1647 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1649 /* Run the host interrupt logic as if the interrupt had not been
1651 ata_sff_port_intr(ap
, qc
);
1653 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1656 * ata_sff_freeze - Freeze SFF controller port
1657 * @ap: port to freeze
1659 * Freeze SFF controller port.
1662 * Inherited from caller.
1664 void ata_sff_freeze(struct ata_port
*ap
)
1666 ap
->ctl
|= ATA_NIEN
;
1667 ap
->last_ctl
= ap
->ctl
;
1669 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1670 ata_sff_set_devctl(ap
, ap
->ctl
);
1672 /* Under certain circumstances, some controllers raise IRQ on
1673 * ATA_NIEN manipulation. Also, many controllers fail to mask
1674 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1676 ap
->ops
->sff_check_status(ap
);
1678 if (ap
->ops
->sff_irq_clear
)
1679 ap
->ops
->sff_irq_clear(ap
);
1681 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1684 * ata_sff_thaw - Thaw SFF controller port
1687 * Thaw SFF controller port.
1690 * Inherited from caller.
1692 void ata_sff_thaw(struct ata_port
*ap
)
1694 /* clear & re-enable interrupts */
1695 ap
->ops
->sff_check_status(ap
);
1696 if (ap
->ops
->sff_irq_clear
)
1697 ap
->ops
->sff_irq_clear(ap
);
1700 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1703 * ata_sff_prereset - prepare SFF link for reset
1704 * @link: SFF link to be reset
1705 * @deadline: deadline jiffies for the operation
1707 * SFF link @link is about to be reset. Initialize it. It first
1708 * calls ata_std_prereset() and wait for !BSY if the port is
1712 * Kernel thread context (may sleep)
1715 * 0 on success, -errno otherwise.
1717 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1719 struct ata_eh_context
*ehc
= &link
->eh_context
;
1722 rc
= ata_std_prereset(link
, deadline
);
1726 /* if we're about to do hardreset, nothing more to do */
1727 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1730 /* wait for !BSY if we don't know that no device is attached */
1731 if (!ata_link_offline(link
)) {
1732 rc
= ata_sff_wait_ready(link
, deadline
);
1733 if (rc
&& rc
!= -ENODEV
) {
1735 "device not ready (errno=%d), forcing hardreset\n",
1737 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1743 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1746 * ata_devchk - PATA device presence detection
1747 * @ap: ATA channel to examine
1748 * @device: Device to examine (starting at zero)
1750 * This technique was originally described in
1751 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1752 * later found its way into the ATA/ATAPI spec.
1754 * Write a pattern to the ATA shadow registers,
1755 * and if a device is present, it will respond by
1756 * correctly storing and echoing back the
1757 * ATA shadow register contents.
1762 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1764 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1767 ap
->ops
->sff_dev_select(ap
, device
);
1769 iowrite8(0x55, ioaddr
->nsect_addr
);
1770 iowrite8(0xaa, ioaddr
->lbal_addr
);
1772 iowrite8(0xaa, ioaddr
->nsect_addr
);
1773 iowrite8(0x55, ioaddr
->lbal_addr
);
1775 iowrite8(0x55, ioaddr
->nsect_addr
);
1776 iowrite8(0xaa, ioaddr
->lbal_addr
);
1778 nsect
= ioread8(ioaddr
->nsect_addr
);
1779 lbal
= ioread8(ioaddr
->lbal_addr
);
1781 if ((nsect
== 0x55) && (lbal
== 0xaa))
1782 return 1; /* we found a device */
1784 return 0; /* nothing found */
1788 * ata_sff_dev_classify - Parse returned ATA device signature
1789 * @dev: ATA device to classify (starting at zero)
1790 * @present: device seems present
1791 * @r_err: Value of error register on completion
1793 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1794 * an ATA/ATAPI-defined set of values is placed in the ATA
1795 * shadow registers, indicating the results of device detection
1798 * Select the ATA device, and read the values from the ATA shadow
1799 * registers. Then parse according to the Error register value,
1800 * and the spec-defined values examined by ata_dev_classify().
1806 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1808 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1811 struct ata_port
*ap
= dev
->link
->ap
;
1812 struct ata_taskfile tf
;
1816 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1818 memset(&tf
, 0, sizeof(tf
));
1820 ap
->ops
->sff_tf_read(ap
, &tf
);
1825 /* see if device passed diags: continue and warn later */
1827 /* diagnostic fail : do nothing _YET_ */
1828 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1831 else if ((dev
->devno
== 0) && (err
== 0x81))
1834 return ATA_DEV_NONE
;
1836 /* determine if device is ATA or ATAPI */
1837 class = ata_dev_classify(&tf
);
1839 if (class == ATA_DEV_UNKNOWN
) {
1840 /* If the device failed diagnostic, it's likely to
1841 * have reported incorrect device signature too.
1842 * Assume ATA device if the device seems present but
1843 * device signature is invalid with diagnostic
1846 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1847 class = ATA_DEV_ATA
;
1849 class = ATA_DEV_NONE
;
1850 } else if ((class == ATA_DEV_ATA
) &&
1851 (ap
->ops
->sff_check_status(ap
) == 0))
1852 class = ATA_DEV_NONE
;
1856 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1859 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1860 * @link: SFF link which is just reset
1861 * @devmask: mask of present devices
1862 * @deadline: deadline jiffies for the operation
1864 * Wait devices attached to SFF @link to become ready after
1865 * reset. It contains preceding 150ms wait to avoid accessing TF
1866 * status register too early.
1869 * Kernel thread context (may sleep).
1872 * 0 on success, -ENODEV if some or all of devices in @devmask
1873 * don't seem to exist. -errno on other errors.
1875 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1876 unsigned long deadline
)
1878 struct ata_port
*ap
= link
->ap
;
1879 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1880 unsigned int dev0
= devmask
& (1 << 0);
1881 unsigned int dev1
= devmask
& (1 << 1);
1884 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1886 /* always check readiness of the master device */
1887 rc
= ata_sff_wait_ready(link
, deadline
);
1888 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1889 * and TF status is 0xff, bail out on it too.
1894 /* if device 1 was found in ata_devchk, wait for register
1895 * access briefly, then wait for BSY to clear.
1900 ap
->ops
->sff_dev_select(ap
, 1);
1902 /* Wait for register access. Some ATAPI devices fail
1903 * to set nsect/lbal after reset, so don't waste too
1904 * much time on it. We're gonna wait for !BSY anyway.
1906 for (i
= 0; i
< 2; i
++) {
1909 nsect
= ioread8(ioaddr
->nsect_addr
);
1910 lbal
= ioread8(ioaddr
->lbal_addr
);
1911 if ((nsect
== 1) && (lbal
== 1))
1913 ata_msleep(ap
, 50); /* give drive a breather */
1916 rc
= ata_sff_wait_ready(link
, deadline
);
1924 /* is all this really necessary? */
1925 ap
->ops
->sff_dev_select(ap
, 0);
1927 ap
->ops
->sff_dev_select(ap
, 1);
1929 ap
->ops
->sff_dev_select(ap
, 0);
1933 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1935 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1936 unsigned long deadline
)
1938 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1940 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1942 if (ap
->ioaddr
.ctl_addr
) {
1943 /* software reset. causes dev0 to be selected */
1944 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1945 udelay(20); /* FIXME: flush */
1946 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1947 udelay(20); /* FIXME: flush */
1948 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1949 ap
->last_ctl
= ap
->ctl
;
1952 /* wait the port to become ready */
1953 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
1957 * ata_sff_softreset - reset host port via ATA SRST
1958 * @link: ATA link to reset
1959 * @classes: resulting classes of attached devices
1960 * @deadline: deadline jiffies for the operation
1962 * Reset host port using ATA SRST.
1965 * Kernel thread context (may sleep)
1968 * 0 on success, -errno otherwise.
1970 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
1971 unsigned long deadline
)
1973 struct ata_port
*ap
= link
->ap
;
1974 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
1975 unsigned int devmask
= 0;
1981 /* determine if device 0/1 are present */
1982 if (ata_devchk(ap
, 0))
1983 devmask
|= (1 << 0);
1984 if (slave_possible
&& ata_devchk(ap
, 1))
1985 devmask
|= (1 << 1);
1987 /* select device 0 again */
1988 ap
->ops
->sff_dev_select(ap
, 0);
1990 /* issue bus reset */
1991 DPRINTK("about to softreset, devmask=%x\n", devmask
);
1992 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
1993 /* if link is occupied, -ENODEV too is an error */
1994 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
1995 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
1999 /* determine by signature whether we have ATA or ATAPI devices */
2000 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2001 devmask
& (1 << 0), &err
);
2002 if (slave_possible
&& err
!= 0x81)
2003 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2004 devmask
& (1 << 1), &err
);
2006 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2009 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2012 * sata_sff_hardreset - reset host port via SATA phy reset
2013 * @link: link to reset
2014 * @class: resulting class of attached device
2015 * @deadline: deadline jiffies for the operation
2017 * SATA phy-reset host port using DET bits of SControl register,
2018 * wait for !BSY and classify the attached device.
2021 * Kernel thread context (may sleep)
2024 * 0 on success, -errno otherwise.
2026 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2027 unsigned long deadline
)
2029 struct ata_eh_context
*ehc
= &link
->eh_context
;
2030 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2034 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2035 ata_sff_check_ready
);
2037 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2039 DPRINTK("EXIT, class=%u\n", *class);
2042 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2045 * ata_sff_postreset - SFF postreset callback
2046 * @link: the target SFF ata_link
2047 * @classes: classes of attached devices
2049 * This function is invoked after a successful reset. It first
2050 * calls ata_std_postreset() and performs SFF specific postreset
2054 * Kernel thread context (may sleep)
2056 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2058 struct ata_port
*ap
= link
->ap
;
2060 ata_std_postreset(link
, classes
);
2062 /* is double-select really necessary? */
2063 if (classes
[0] != ATA_DEV_NONE
)
2064 ap
->ops
->sff_dev_select(ap
, 1);
2065 if (classes
[1] != ATA_DEV_NONE
)
2066 ap
->ops
->sff_dev_select(ap
, 0);
2068 /* bail out if no device is present */
2069 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2070 DPRINTK("EXIT, no device\n");
2074 /* set up device control */
2075 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2076 ata_sff_set_devctl(ap
, ap
->ctl
);
2077 ap
->last_ctl
= ap
->ctl
;
2080 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2083 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2086 * Drain the FIFO and device of any stuck data following a command
2087 * failing to complete. In some cases this is necessary before a
2088 * reset will recover the device.
2092 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2095 struct ata_port
*ap
;
2097 /* We only need to flush incoming data when a command was running */
2098 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2102 /* Drain up to 64K of data before we give up this recovery method */
2103 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2104 && count
< 65536; count
+= 2)
2105 ioread16(ap
->ioaddr
.data_addr
);
2107 /* Can become DEBUG later */
2109 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2112 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2115 * ata_sff_error_handler - Stock error handler for SFF controller
2116 * @ap: port to handle error for
2118 * Stock error handler for SFF controller. It can handle both
2119 * PATA and SATA controllers. Many controllers should be able to
2120 * use this EH as-is or with some added handling before and
2124 * Kernel thread context (may sleep)
2126 void ata_sff_error_handler(struct ata_port
*ap
)
2128 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2129 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2130 struct ata_queued_cmd
*qc
;
2131 unsigned long flags
;
2133 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2134 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2137 spin_lock_irqsave(ap
->lock
, flags
);
2140 * We *MUST* do FIFO draining before we issue a reset as
2141 * several devices helpfully clear their internal state and
2142 * will lock solid if we touch the data port post reset. Pass
2143 * qc in case anyone wants to do different PIO/DMA recovery or
2144 * has per command fixups
2146 if (ap
->ops
->sff_drain_fifo
)
2147 ap
->ops
->sff_drain_fifo(qc
);
2149 spin_unlock_irqrestore(ap
->lock
, flags
);
2151 /* ignore built-in hardresets if SCR access is not available */
2152 if ((hardreset
== sata_std_hardreset
||
2153 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2156 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2157 ap
->ops
->postreset
);
2159 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2162 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2163 * @ioaddr: IO address structure to be initialized
2165 * Utility function which initializes data_addr, error_addr,
2166 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2167 * device_addr, status_addr, and command_addr to standard offsets
2168 * relative to cmd_addr.
2170 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2172 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2174 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2175 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2176 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2177 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2178 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2179 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2180 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2181 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2182 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2183 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2185 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2189 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2193 /* Check the PCI resources for this channel are enabled */
2195 for (i
= 0; i
< 2; i
++) {
2196 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2197 pci_resource_len(pdev
, port
+ i
) == 0)
2204 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2205 * @host: target ATA host
2207 * Acquire native PCI ATA resources for @host and initialize the
2208 * first two ports of @host accordingly. Ports marked dummy are
2209 * skipped and allocation failure makes the port dummy.
2211 * Note that native PCI resources are valid even for legacy hosts
2212 * as we fix up pdev resources array early in boot, so this
2213 * function can be used for both native and legacy SFF hosts.
2216 * Inherited from calling layer (may sleep).
2219 * 0 if at least one port is initialized, -ENODEV if no port is
2222 int ata_pci_sff_init_host(struct ata_host
*host
)
2224 struct device
*gdev
= host
->dev
;
2225 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2226 unsigned int mask
= 0;
2229 /* request, iomap BARs and init port addresses accordingly */
2230 for (i
= 0; i
< 2; i
++) {
2231 struct ata_port
*ap
= host
->ports
[i
];
2233 void __iomem
* const *iomap
;
2235 if (ata_port_is_dummy(ap
))
2238 /* Discard disabled ports. Some controllers show
2239 * their unused channels this way. Disabled ports are
2242 if (!ata_resources_present(pdev
, i
)) {
2243 ap
->ops
= &ata_dummy_port_ops
;
2247 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2248 dev_driver_string(gdev
));
2251 "failed to request/iomap BARs for port %d (errno=%d)\n",
2254 pcim_pin_device(pdev
);
2255 ap
->ops
= &ata_dummy_port_ops
;
2258 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2260 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2261 ap
->ioaddr
.altstatus_addr
=
2262 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2263 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2264 ata_sff_std_ports(&ap
->ioaddr
);
2266 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2267 (unsigned long long)pci_resource_start(pdev
, base
),
2268 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2274 dev_err(gdev
, "no available native port\n");
2280 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2283 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2284 * @pdev: target PCI device
2285 * @ppi: array of port_info, must be enough for two ports
2286 * @r_host: out argument for the initialized ATA host
2288 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2289 * all PCI resources and initialize it accordingly in one go.
2292 * Inherited from calling layer (may sleep).
2295 * 0 on success, -errno otherwise.
2297 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2298 const struct ata_port_info
* const *ppi
,
2299 struct ata_host
**r_host
)
2301 struct ata_host
*host
;
2304 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2307 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2309 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2314 rc
= ata_pci_sff_init_host(host
);
2318 devres_remove_group(&pdev
->dev
, NULL
);
2323 devres_release_group(&pdev
->dev
, NULL
);
2326 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2329 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2330 * @host: target SFF ATA host
2331 * @irq_handler: irq_handler used when requesting IRQ(s)
2332 * @sht: scsi_host_template to use when registering the host
2334 * This is the counterpart of ata_host_activate() for SFF ATA
2335 * hosts. This separate helper is necessary because SFF hosts
2336 * use two separate interrupts in legacy mode.
2339 * Inherited from calling layer (may sleep).
2342 * 0 on success, -errno otherwise.
2344 int ata_pci_sff_activate_host(struct ata_host
*host
,
2345 irq_handler_t irq_handler
,
2346 struct scsi_host_template
*sht
)
2348 struct device
*dev
= host
->dev
;
2349 struct pci_dev
*pdev
= to_pci_dev(dev
);
2350 const char *drv_name
= dev_driver_string(host
->dev
);
2351 int legacy_mode
= 0, rc
;
2353 rc
= ata_host_start(host
);
2357 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2361 * ATA spec says we should use legacy mode when one
2362 * port is in legacy mode, but disabled ports on some
2363 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2364 * on which the secondary port is not wired, so
2365 * ignore ports that are marked as 'dummy' during
2368 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2369 if (!ata_port_is_dummy(host
->ports
[0]))
2371 if (!ata_port_is_dummy(host
->ports
[1]))
2373 if ((tmp8
& mask
) != mask
)
2377 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2380 if (!legacy_mode
&& pdev
->irq
) {
2383 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2384 IRQF_SHARED
, drv_name
, host
);
2388 for (i
= 0; i
< 2; i
++) {
2389 if (ata_port_is_dummy(host
->ports
[i
]))
2391 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2393 } else if (legacy_mode
) {
2394 if (!ata_port_is_dummy(host
->ports
[0])) {
2395 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2396 irq_handler
, IRQF_SHARED
,
2401 ata_port_desc(host
->ports
[0], "irq %d",
2402 ATA_PRIMARY_IRQ(pdev
));
2405 if (!ata_port_is_dummy(host
->ports
[1])) {
2406 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2407 irq_handler
, IRQF_SHARED
,
2412 ata_port_desc(host
->ports
[1], "irq %d",
2413 ATA_SECONDARY_IRQ(pdev
));
2417 rc
= ata_host_register(host
, sht
);
2420 devres_remove_group(dev
, NULL
);
2422 devres_release_group(dev
, NULL
);
2426 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2428 static const struct ata_port_info
*ata_sff_find_valid_pi(
2429 const struct ata_port_info
* const *ppi
)
2433 /* look up the first valid port_info */
2434 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2435 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2441 static int ata_pci_init_one(struct pci_dev
*pdev
,
2442 const struct ata_port_info
* const *ppi
,
2443 struct scsi_host_template
*sht
, void *host_priv
,
2444 int hflags
, bool bmdma
)
2446 struct device
*dev
= &pdev
->dev
;
2447 const struct ata_port_info
*pi
;
2448 struct ata_host
*host
= NULL
;
2453 pi
= ata_sff_find_valid_pi(ppi
);
2455 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2459 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2462 rc
= pcim_enable_device(pdev
);
2466 #ifdef CONFIG_ATA_BMDMA
2468 /* prepare and activate BMDMA host */
2469 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2472 /* prepare and activate SFF host */
2473 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2476 host
->private_data
= host_priv
;
2477 host
->flags
|= hflags
;
2479 #ifdef CONFIG_ATA_BMDMA
2481 pci_set_master(pdev
);
2482 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2485 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2488 devres_remove_group(&pdev
->dev
, NULL
);
2490 devres_release_group(&pdev
->dev
, NULL
);
2496 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2497 * @pdev: Controller to be initialized
2498 * @ppi: array of port_info, must be enough for two ports
2499 * @sht: scsi_host_template to use when registering the host
2500 * @host_priv: host private_data
2501 * @hflag: host flags
2503 * This is a helper function which can be called from a driver's
2504 * xxx_init_one() probe function if the hardware uses traditional
2505 * IDE taskfile registers and is PIO only.
2508 * Nobody makes a single channel controller that appears solely as
2509 * the secondary legacy port on PCI.
2512 * Inherited from PCI layer (may sleep).
2515 * Zero on success, negative on errno-based value on error.
2517 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2518 const struct ata_port_info
* const *ppi
,
2519 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2521 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2523 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2525 #endif /* CONFIG_PCI */
2531 #ifdef CONFIG_ATA_BMDMA
2533 const struct ata_port_operations ata_bmdma_port_ops
= {
2534 .inherits
= &ata_sff_port_ops
,
2536 .error_handler
= ata_bmdma_error_handler
,
2537 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2539 .qc_prep
= ata_bmdma_qc_prep
,
2540 .qc_issue
= ata_bmdma_qc_issue
,
2542 .sff_irq_clear
= ata_bmdma_irq_clear
,
2543 .bmdma_setup
= ata_bmdma_setup
,
2544 .bmdma_start
= ata_bmdma_start
,
2545 .bmdma_stop
= ata_bmdma_stop
,
2546 .bmdma_status
= ata_bmdma_status
,
2548 .port_start
= ata_bmdma_port_start
,
2550 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2552 const struct ata_port_operations ata_bmdma32_port_ops
= {
2553 .inherits
= &ata_bmdma_port_ops
,
2555 .sff_data_xfer
= ata_sff_data_xfer32
,
2556 .port_start
= ata_bmdma_port_start32
,
2558 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2561 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2562 * @qc: Metadata associated with taskfile to be transferred
2564 * Fill PCI IDE PRD (scatter-gather) table with segments
2565 * associated with the current disk command.
2568 * spin_lock_irqsave(host lock)
2571 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2573 struct ata_port
*ap
= qc
->ap
;
2574 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2575 struct scatterlist
*sg
;
2576 unsigned int si
, pi
;
2579 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2583 /* determine if physical DMA addr spans 64K boundary.
2584 * Note h/w doesn't support 64-bit, so we unconditionally
2585 * truncate dma_addr_t to u32.
2587 addr
= (u32
) sg_dma_address(sg
);
2588 sg_len
= sg_dma_len(sg
);
2591 offset
= addr
& 0xffff;
2593 if ((offset
+ sg_len
) > 0x10000)
2594 len
= 0x10000 - offset
;
2596 prd
[pi
].addr
= cpu_to_le32(addr
);
2597 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2598 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2606 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2610 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2611 * @qc: Metadata associated with taskfile to be transferred
2613 * Fill PCI IDE PRD (scatter-gather) table with segments
2614 * associated with the current disk command. Perform the fill
2615 * so that we avoid writing any length 64K records for
2616 * controllers that don't follow the spec.
2619 * spin_lock_irqsave(host lock)
2622 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2624 struct ata_port
*ap
= qc
->ap
;
2625 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2626 struct scatterlist
*sg
;
2627 unsigned int si
, pi
;
2630 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2632 u32 sg_len
, len
, blen
;
2634 /* determine if physical DMA addr spans 64K boundary.
2635 * Note h/w doesn't support 64-bit, so we unconditionally
2636 * truncate dma_addr_t to u32.
2638 addr
= (u32
) sg_dma_address(sg
);
2639 sg_len
= sg_dma_len(sg
);
2642 offset
= addr
& 0xffff;
2644 if ((offset
+ sg_len
) > 0x10000)
2645 len
= 0x10000 - offset
;
2647 blen
= len
& 0xffff;
2648 prd
[pi
].addr
= cpu_to_le32(addr
);
2650 /* Some PATA chipsets like the CS5530 can't
2651 cope with 0x0000 meaning 64K as the spec
2653 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2655 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2657 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2658 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2666 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2670 * ata_bmdma_qc_prep - Prepare taskfile for submission
2671 * @qc: Metadata associated with taskfile to be prepared
2673 * Prepare ATA taskfile for submission.
2676 * spin_lock_irqsave(host lock)
2678 enum ata_completion_errors
ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2680 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2683 ata_bmdma_fill_sg(qc
);
2687 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2690 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2691 * @qc: Metadata associated with taskfile to be prepared
2693 * Prepare ATA taskfile for submission.
2696 * spin_lock_irqsave(host lock)
2698 enum ata_completion_errors
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2700 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2703 ata_bmdma_fill_sg_dumb(qc
);
2707 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2710 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711 * @qc: command to issue to device
2713 * This function issues a PIO, NODATA or DMA command to a
2714 * SFF/BMDMA controller. PIO and NODATA are handled by
2715 * ata_sff_qc_issue().
2718 * spin_lock_irqsave(host lock)
2721 * Zero on success, AC_ERR_* mask on failure
2723 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2725 struct ata_port
*ap
= qc
->ap
;
2726 struct ata_link
*link
= qc
->dev
->link
;
2728 /* defer PIO handling to sff_qc_issue */
2729 if (!ata_is_dma(qc
->tf
.protocol
))
2730 return ata_sff_qc_issue(qc
);
2732 /* select the device */
2733 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2735 /* start the command */
2736 switch (qc
->tf
.protocol
) {
2738 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2740 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2741 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2742 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2743 ap
->hsm_task_state
= HSM_ST_LAST
;
2746 case ATAPI_PROT_DMA
:
2747 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2749 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2750 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2751 ap
->hsm_task_state
= HSM_ST_FIRST
;
2753 /* send cdb by polling if no cdb interrupt */
2754 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2755 ata_sff_queue_pio_task(link
, 0);
2760 return AC_ERR_SYSTEM
;
2765 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2768 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2769 * @ap: Port on which interrupt arrived (possibly...)
2770 * @qc: Taskfile currently active in engine
2772 * Handle port interrupt for given queued command.
2775 * spin_lock_irqsave(host lock)
2778 * One if interrupt was handled, zero if not (shared irq).
2780 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2782 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2784 bool bmdma_stopped
= false;
2785 unsigned int handled
;
2787 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2788 /* check status of DMA engine */
2789 host_stat
= ap
->ops
->bmdma_status(ap
);
2790 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2792 /* if it's not our irq... */
2793 if (!(host_stat
& ATA_DMA_INTR
))
2794 return ata_sff_idle_irq(ap
);
2796 /* before we do anything else, clear DMA-Start bit */
2797 ap
->ops
->bmdma_stop(qc
);
2798 bmdma_stopped
= true;
2800 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2801 /* error when transferring data to/from memory */
2802 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2803 ap
->hsm_task_state
= HSM_ST_ERR
;
2807 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2809 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2810 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2817 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 * @irq: irq line (unused)
2819 * @dev_instance: pointer to our ata_host information structure
2821 * Default interrupt handler for PCI IDE devices. Calls
2822 * ata_bmdma_port_intr() for each port that is not disabled.
2825 * Obtains host lock during operation.
2828 * IRQ_NONE or IRQ_HANDLED.
2830 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2832 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2837 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 * @ap: port to handle error for
2840 * Stock error handler for BMDMA controller. It can handle both
2841 * PATA and SATA controllers. Most BMDMA controllers should be
2842 * able to use this EH as-is or with some added handling before
2846 * Kernel thread context (may sleep)
2848 void ata_bmdma_error_handler(struct ata_port
*ap
)
2850 struct ata_queued_cmd
*qc
;
2851 unsigned long flags
;
2854 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2855 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2858 /* reset PIO HSM and stop DMA engine */
2859 spin_lock_irqsave(ap
->lock
, flags
);
2861 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2864 host_stat
= ap
->ops
->bmdma_status(ap
);
2866 /* BMDMA controllers indicate host bus error by
2867 * setting DMA_ERR bit and timing out. As it wasn't
2868 * really a timeout event, adjust error mask and
2869 * cancel frozen state.
2871 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2872 qc
->err_mask
= AC_ERR_HOST_BUS
;
2876 ap
->ops
->bmdma_stop(qc
);
2878 /* if we're gonna thaw, make sure IRQ is clear */
2880 ap
->ops
->sff_check_status(ap
);
2881 if (ap
->ops
->sff_irq_clear
)
2882 ap
->ops
->sff_irq_clear(ap
);
2886 spin_unlock_irqrestore(ap
->lock
, flags
);
2889 ata_eh_thaw_port(ap
);
2891 ata_sff_error_handler(ap
);
2893 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2896 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897 * @qc: internal command to clean up
2900 * Kernel thread context (may sleep)
2902 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2904 struct ata_port
*ap
= qc
->ap
;
2905 unsigned long flags
;
2907 if (ata_is_dma(qc
->tf
.protocol
)) {
2908 spin_lock_irqsave(ap
->lock
, flags
);
2909 ap
->ops
->bmdma_stop(qc
);
2910 spin_unlock_irqrestore(ap
->lock
, flags
);
2913 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2916 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917 * @ap: Port associated with this ATA transaction.
2919 * Clear interrupt and error flags in DMA status register.
2921 * May be used as the irq_clear() entry in ata_port_operations.
2924 * spin_lock_irqsave(host lock)
2926 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2928 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2933 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2935 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2938 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939 * @qc: Info associated with this ATA transaction.
2942 * spin_lock_irqsave(host lock)
2944 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2946 struct ata_port
*ap
= qc
->ap
;
2947 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2950 /* load PRD table addr. */
2951 mb(); /* make sure PRD table writes are visible to controller */
2952 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2954 /* specify data direction, triple-check start bit is clear */
2955 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2956 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2958 dmactl
|= ATA_DMA_WR
;
2959 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2961 /* issue r/w command */
2962 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
2964 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
2967 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968 * @qc: Info associated with this ATA transaction.
2971 * spin_lock_irqsave(host lock)
2973 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
2975 struct ata_port
*ap
= qc
->ap
;
2978 /* start host DMA transaction */
2979 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2980 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2982 /* Strictly, one may wish to issue an ioread8() here, to
2983 * flush the mmio write. However, control also passes
2984 * to the hardware at this point, and it will interrupt
2985 * us when we are to resume control. So, in effect,
2986 * we don't care when the mmio write flushes.
2987 * Further, a read of the DMA status register _immediately_
2988 * following the write may not be what certain flaky hardware
2989 * is expected, so I think it is best to not add a readb()
2990 * without first all the MMIO ATA cards/mobos.
2991 * Or maybe I'm just being paranoid.
2993 * FIXME: The posting of this write means I/O starts are
2994 * unnecessarily delayed for MMIO
2997 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3000 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001 * @qc: Command we are ending DMA for
3003 * Clears the ATA_DMA_START flag in the dma control register
3005 * May be used as the bmdma_stop() entry in ata_port_operations.
3008 * spin_lock_irqsave(host lock)
3010 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3012 struct ata_port
*ap
= qc
->ap
;
3013 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3015 /* clear start/stop bit */
3016 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3017 mmio
+ ATA_DMA_CMD
);
3019 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020 ata_sff_dma_pause(ap
);
3022 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3025 * ata_bmdma_status - Read PCI IDE BMDMA status
3026 * @ap: Port associated with this ATA transaction.
3028 * Read and return BMDMA status register.
3030 * May be used as the bmdma_status() entry in ata_port_operations.
3033 * spin_lock_irqsave(host lock)
3035 u8
ata_bmdma_status(struct ata_port
*ap
)
3037 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3039 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3043 * ata_bmdma_port_start - Set port up for bmdma.
3044 * @ap: Port to initialize
3046 * Called just after data structures for each port are
3047 * initialized. Allocates space for PRD table.
3049 * May be used as the port_start() entry in ata_port_operations.
3052 * Inherited from caller.
3054 int ata_bmdma_port_start(struct ata_port
*ap
)
3056 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3058 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3059 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3066 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3069 * ata_bmdma_port_start32 - Set port up for dma.
3070 * @ap: Port to initialize
3072 * Called just after data structures for each port are
3073 * initialized. Enables 32bit PIO and allocates space for PRD
3076 * May be used as the port_start() entry in ata_port_operations for
3077 * devices that are capable of 32bit PIO.
3080 * Inherited from caller.
3082 int ata_bmdma_port_start32(struct ata_port
*ap
)
3084 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3085 return ata_bmdma_port_start(ap
);
3087 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3092 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3095 * Some PCI ATA devices report simplex mode but in fact can be told to
3096 * enter non simplex mode. This implements the necessary logic to
3097 * perform the task on such devices. Calling it on other devices will
3098 * have -undefined- behaviour.
3100 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3102 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3108 simplex
= inb(bmdma
+ 0x02);
3109 outb(simplex
& 0x60, bmdma
+ 0x02);
3110 simplex
= inb(bmdma
+ 0x02);
3115 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3117 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3121 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3123 for (i
= 0; i
< 2; i
++) {
3124 host
->ports
[i
]->mwdma_mask
= 0;
3125 host
->ports
[i
]->udma_mask
= 0;
3130 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131 * @host: target ATA host
3133 * Acquire PCI BMDMA resources and initialize @host accordingly.
3136 * Inherited from calling layer (may sleep).
3138 void ata_pci_bmdma_init(struct ata_host
*host
)
3140 struct device
*gdev
= host
->dev
;
3141 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3144 /* No BAR4 allocation: No DMA */
3145 if (pci_resource_start(pdev
, 4) == 0) {
3146 ata_bmdma_nodma(host
, "BAR4 is zero");
3151 * Some controllers require BMDMA region to be initialized
3152 * even if DMA is not in use to clear IRQ status via
3153 * ->sff_irq_clear method. Try to initialize bmdma_addr
3154 * regardless of dma masks.
3156 rc
= dma_set_mask_and_coherent(&pdev
->dev
, ATA_DMA_MASK
);
3158 ata_bmdma_nodma(host
, "failed to set dma mask");
3160 /* request and iomap DMA region */
3161 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3163 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3166 host
->iomap
= pcim_iomap_table(pdev
);
3168 for (i
= 0; i
< 2; i
++) {
3169 struct ata_port
*ap
= host
->ports
[i
];
3170 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3172 if (ata_port_is_dummy(ap
))
3175 ap
->ioaddr
.bmdma_addr
= bmdma
;
3176 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3177 (ioread8(bmdma
+ 2) & 0x80))
3178 host
->flags
|= ATA_HOST_SIMPLEX
;
3180 ata_port_desc(ap
, "bmdma 0x%llx",
3181 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3187 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188 * @pdev: target PCI device
3189 * @ppi: array of port_info, must be enough for two ports
3190 * @r_host: out argument for the initialized ATA host
3192 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193 * resources and initialize it accordingly in one go.
3196 * Inherited from calling layer (may sleep).
3199 * 0 on success, -errno otherwise.
3201 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3202 const struct ata_port_info
* const * ppi
,
3203 struct ata_host
**r_host
)
3207 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3211 ata_pci_bmdma_init(*r_host
);
3214 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3217 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218 * @pdev: Controller to be initialized
3219 * @ppi: array of port_info, must be enough for two ports
3220 * @sht: scsi_host_template to use when registering the host
3221 * @host_priv: host private_data
3222 * @hflags: host flags
3224 * This function is similar to ata_pci_sff_init_one() but also
3225 * takes care of BMDMA initialization.
3228 * Inherited from PCI layer (may sleep).
3231 * Zero on success, negative on errno-based value on error.
3233 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3234 const struct ata_port_info
* const * ppi
,
3235 struct scsi_host_template
*sht
, void *host_priv
,
3238 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3242 #endif /* CONFIG_PCI */
3243 #endif /* CONFIG_ATA_BMDMA */
3246 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247 * @ap: Port to initialize
3249 * Called on port allocation to initialize SFF/BMDMA specific
3255 void ata_sff_port_init(struct ata_port
*ap
)
3257 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3258 ap
->ctl
= ATA_DEVCTL_OBS
;
3259 ap
->last_ctl
= 0xFF;
3262 int __init
ata_sff_init(void)
3264 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3271 void ata_sff_exit(void)
3273 destroy_workqueue(ata_sff_wq
);