1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
37 * Warn if that happens, once per boot.
39 static void warn_setuid_and_fcaps_mixed(const char *fname
)
43 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname
);
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
65 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
66 int cap
, unsigned int opts
)
68 struct user_namespace
*ns
= targ_ns
;
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
75 /* Do we have the necessary capabilities? */
76 if (ns
== cred
->user_ns
)
77 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
83 if (ns
->level
<= cred
->user_ns
->level
)
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
90 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
100 /* We never get here */
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
111 int cap_settime(const struct timespec64
*ts
, const struct timezone
*tz
)
113 if (!capable(CAP_SYS_TIME
))
119 * cap_ptrace_access_check - Determine whether the current process may access
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
133 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
136 const struct cred
*cred
, *child_cred
;
137 const kernel_cap_t
*caller_caps
;
140 cred
= current_cred();
141 child_cred
= __task_cred(child
);
142 if (mode
& PTRACE_MODE_FSCREDS
)
143 caller_caps
= &cred
->cap_effective
;
145 caller_caps
= &cred
->cap_permitted
;
146 if (cred
->user_ns
== child_cred
->user_ns
&&
147 cap_issubset(child_cred
->cap_permitted
, *caller_caps
))
149 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
170 int cap_ptrace_traceme(struct task_struct
*parent
)
173 const struct cred
*cred
, *child_cred
;
176 cred
= __task_cred(parent
);
177 child_cred
= current_cred();
178 if (cred
->user_ns
== child_cred
->user_ns
&&
179 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
181 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
199 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
200 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
202 const struct cred
*cred
;
204 /* Derived from kernel/capability.c:sys_capget. */
206 cred
= __task_cred(target
);
207 *effective
= cred
->cap_effective
;
208 *inheritable
= cred
->cap_inheritable
;
209 *permitted
= cred
->cap_permitted
;
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
218 static inline int cap_inh_is_capped(void)
220 /* they are so limited unless the current task has the CAP_SETPCAP
223 if (cap_capable(current_cred(), current_cred()->user_ns
,
224 CAP_SETPCAP
, CAP_OPT_NONE
) == 0)
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
241 int cap_capset(struct cred
*new,
242 const struct cred
*old
,
243 const kernel_cap_t
*effective
,
244 const kernel_cap_t
*inheritable
,
245 const kernel_cap_t
*permitted
)
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable
,
249 cap_combine(old
->cap_inheritable
,
250 old
->cap_permitted
)))
251 /* incapable of using this inheritable set */
254 if (!cap_issubset(*inheritable
,
255 cap_combine(old
->cap_inheritable
,
257 /* no new pI capabilities outside bounding set */
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted
, old
->cap_permitted
))
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective
, *permitted
))
268 new->cap_effective
= *effective
;
269 new->cap_inheritable
= *inheritable
;
270 new->cap_permitted
= *permitted
;
273 * Mask off ambient bits that are no longer both permitted and
276 new->cap_ambient
= cap_intersect(new->cap_ambient
,
277 cap_intersect(*permitted
,
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
295 int cap_inode_need_killpriv(struct dentry
*dentry
)
297 struct inode
*inode
= d_backing_inode(dentry
);
300 error
= __vfs_getxattr(dentry
, inode
, XATTR_NAME_CAPS
, NULL
, 0);
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
308 * Erase the privilege-enhancing security markings on an inode.
310 * Returns 0 if successful, -ve on error.
312 int cap_inode_killpriv(struct dentry
*dentry
)
316 error
= __vfs_removexattr(dentry
, XATTR_NAME_CAPS
);
317 if (error
== -EOPNOTSUPP
)
322 static bool rootid_owns_currentns(kuid_t kroot
)
324 struct user_namespace
*ns
;
326 if (!uid_valid(kroot
))
329 for (ns
= current_user_ns(); ; ns
= ns
->parent
) {
330 if (from_kuid(ns
, kroot
) == 0)
332 if (ns
== &init_user_ns
)
339 static __u32
sansflags(__u32 m
)
341 return m
& ~VFS_CAP_FLAGS_EFFECTIVE
;
344 static bool is_v2header(size_t size
, const struct vfs_cap_data
*cap
)
346 if (size
!= XATTR_CAPS_SZ_2
)
348 return sansflags(le32_to_cpu(cap
->magic_etc
)) == VFS_CAP_REVISION_2
;
351 static bool is_v3header(size_t size
, const struct vfs_cap_data
*cap
)
353 if (size
!= XATTR_CAPS_SZ_3
)
355 return sansflags(le32_to_cpu(cap
->magic_etc
)) == VFS_CAP_REVISION_3
;
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
369 int cap_inode_getsecurity(struct inode
*inode
, const char *name
, void **buffer
,
374 uid_t root
, mappedroot
;
376 struct vfs_cap_data
*cap
;
377 struct vfs_ns_cap_data
*nscap
;
378 struct dentry
*dentry
;
379 struct user_namespace
*fs_ns
;
381 if (strcmp(name
, "capability") != 0)
384 dentry
= d_find_any_alias(inode
);
388 size
= sizeof(struct vfs_ns_cap_data
);
389 ret
= (int) vfs_getxattr_alloc(dentry
, XATTR_NAME_CAPS
,
390 &tmpbuf
, size
, GFP_NOFS
);
396 fs_ns
= inode
->i_sb
->s_user_ns
;
397 cap
= (struct vfs_cap_data
*) tmpbuf
;
398 if (is_v2header((size_t) ret
, cap
)) {
399 /* If this is sizeof(vfs_cap_data) then we're ok with the
400 * on-disk value, so return that. */
406 } else if (!is_v3header((size_t) ret
, cap
)) {
411 nscap
= (struct vfs_ns_cap_data
*) tmpbuf
;
412 root
= le32_to_cpu(nscap
->rootid
);
413 kroot
= make_kuid(fs_ns
, root
);
415 /* If the root kuid maps to a valid uid in current ns, then return
416 * this as a nscap. */
417 mappedroot
= from_kuid(current_user_ns(), kroot
);
418 if (mappedroot
!= (uid_t
)-1 && mappedroot
!= (uid_t
)0) {
421 nscap
->rootid
= cpu_to_le32(mappedroot
);
427 if (!rootid_owns_currentns(kroot
)) {
432 /* This comes from a parent namespace. Return as a v2 capability */
433 size
= sizeof(struct vfs_cap_data
);
435 *buffer
= kmalloc(size
, GFP_ATOMIC
);
437 struct vfs_cap_data
*cap
= *buffer
;
438 __le32 nsmagic
, magic
;
439 magic
= VFS_CAP_REVISION_2
;
440 nsmagic
= le32_to_cpu(nscap
->magic_etc
);
441 if (nsmagic
& VFS_CAP_FLAGS_EFFECTIVE
)
442 magic
|= VFS_CAP_FLAGS_EFFECTIVE
;
443 memcpy(&cap
->data
, &nscap
->data
, sizeof(__le32
) * 2 * VFS_CAP_U32
);
444 cap
->magic_etc
= cpu_to_le32(magic
);
453 static kuid_t
rootid_from_xattr(const void *value
, size_t size
,
454 struct user_namespace
*task_ns
)
456 const struct vfs_ns_cap_data
*nscap
= value
;
459 if (size
== XATTR_CAPS_SZ_3
)
460 rootid
= le32_to_cpu(nscap
->rootid
);
462 return make_kuid(task_ns
, rootid
);
465 static bool validheader(size_t size
, const struct vfs_cap_data
*cap
)
467 return is_v2header(size
, cap
) || is_v3header(size
, cap
);
471 * User requested a write of security.capability. If needed, update the
472 * xattr to change from v2 to v3, or to fixup the v3 rootid.
474 * If all is ok, we return the new size, on error return < 0.
476 int cap_convert_nscap(struct dentry
*dentry
, void **ivalue
, size_t size
)
478 struct vfs_ns_cap_data
*nscap
;
480 const struct vfs_cap_data
*cap
= *ivalue
;
481 __u32 magic
, nsmagic
;
482 struct inode
*inode
= d_backing_inode(dentry
);
483 struct user_namespace
*task_ns
= current_user_ns(),
484 *fs_ns
= inode
->i_sb
->s_user_ns
;
490 if (!validheader(size
, cap
))
492 if (!capable_wrt_inode_uidgid(inode
, CAP_SETFCAP
))
494 if (size
== XATTR_CAPS_SZ_2
)
495 if (ns_capable(inode
->i_sb
->s_user_ns
, CAP_SETFCAP
))
496 /* user is privileged, just write the v2 */
499 rootid
= rootid_from_xattr(*ivalue
, size
, task_ns
);
500 if (!uid_valid(rootid
))
503 nsrootid
= from_kuid(fs_ns
, rootid
);
507 newsize
= sizeof(struct vfs_ns_cap_data
);
508 nscap
= kmalloc(newsize
, GFP_ATOMIC
);
511 nscap
->rootid
= cpu_to_le32(nsrootid
);
512 nsmagic
= VFS_CAP_REVISION_3
;
513 magic
= le32_to_cpu(cap
->magic_etc
);
514 if (magic
& VFS_CAP_FLAGS_EFFECTIVE
)
515 nsmagic
|= VFS_CAP_FLAGS_EFFECTIVE
;
516 nscap
->magic_etc
= cpu_to_le32(nsmagic
);
517 memcpy(&nscap
->data
, &cap
->data
, sizeof(__le32
) * 2 * VFS_CAP_U32
);
525 * Calculate the new process capability sets from the capability sets attached
528 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
529 struct linux_binprm
*bprm
,
533 struct cred
*new = bprm
->cred
;
537 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
540 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
543 CAP_FOR_EACH_U32(i
) {
544 __u32 permitted
= caps
->permitted
.cap
[i
];
545 __u32 inheritable
= caps
->inheritable
.cap
[i
];
548 * pP' = (X & fP) | (pI & fI)
549 * The addition of pA' is handled later.
551 new->cap_permitted
.cap
[i
] =
552 (new->cap_bset
.cap
[i
] & permitted
) |
553 (new->cap_inheritable
.cap
[i
] & inheritable
);
555 if (permitted
& ~new->cap_permitted
.cap
[i
])
556 /* insufficient to execute correctly */
561 * For legacy apps, with no internal support for recognizing they
562 * do not have enough capabilities, we return an error if they are
563 * missing some "forced" (aka file-permitted) capabilities.
565 return *effective
? ret
: 0;
569 * Extract the on-exec-apply capability sets for an executable file.
571 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
573 struct inode
*inode
= d_backing_inode(dentry
);
577 struct vfs_ns_cap_data data
, *nscaps
= &data
;
578 struct vfs_cap_data
*caps
= (struct vfs_cap_data
*) &data
;
580 struct user_namespace
*fs_ns
;
582 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
587 fs_ns
= inode
->i_sb
->s_user_ns
;
588 size
= __vfs_getxattr((struct dentry
*)dentry
, inode
,
589 XATTR_NAME_CAPS
, &data
, XATTR_CAPS_SZ
);
590 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
591 /* no data, that's ok */
597 if (size
< sizeof(magic_etc
))
600 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
->magic_etc
);
602 rootkuid
= make_kuid(fs_ns
, 0);
603 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
604 case VFS_CAP_REVISION_1
:
605 if (size
!= XATTR_CAPS_SZ_1
)
607 tocopy
= VFS_CAP_U32_1
;
609 case VFS_CAP_REVISION_2
:
610 if (size
!= XATTR_CAPS_SZ_2
)
612 tocopy
= VFS_CAP_U32_2
;
614 case VFS_CAP_REVISION_3
:
615 if (size
!= XATTR_CAPS_SZ_3
)
617 tocopy
= VFS_CAP_U32_3
;
618 rootkuid
= make_kuid(fs_ns
, le32_to_cpu(nscaps
->rootid
));
624 /* Limit the caps to the mounter of the filesystem
625 * or the more limited uid specified in the xattr.
627 if (!rootid_owns_currentns(rootkuid
))
630 CAP_FOR_EACH_U32(i
) {
633 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
->data
[i
].permitted
);
634 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
->data
[i
].inheritable
);
637 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
638 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
640 cpu_caps
->rootid
= rootkuid
;
646 * Attempt to get the on-exec apply capability sets for an executable file from
647 * its xattrs and, if present, apply them to the proposed credentials being
648 * constructed by execve().
650 static int get_file_caps(struct linux_binprm
*bprm
, struct file
*file
,
651 bool *effective
, bool *has_fcap
)
654 struct cpu_vfs_cap_data vcaps
;
656 cap_clear(bprm
->cred
->cap_permitted
);
658 if (!file_caps_enabled
)
661 if (!mnt_may_suid(file
->f_path
.mnt
))
665 * This check is redundant with mnt_may_suid() but is kept to make
666 * explicit that capability bits are limited to s_user_ns and its
669 if (!current_in_userns(file
->f_path
.mnt
->mnt_sb
->s_user_ns
))
672 rc
= get_vfs_caps_from_disk(file
->f_path
.dentry
, &vcaps
);
675 printk(KERN_NOTICE
"Invalid argument reading file caps for %s\n",
677 else if (rc
== -ENODATA
)
682 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_fcap
);
686 cap_clear(bprm
->cred
->cap_permitted
);
691 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT
); }
693 static inline bool __is_real(kuid_t uid
, struct cred
*cred
)
694 { return uid_eq(cred
->uid
, uid
); }
696 static inline bool __is_eff(kuid_t uid
, struct cred
*cred
)
697 { return uid_eq(cred
->euid
, uid
); }
699 static inline bool __is_suid(kuid_t uid
, struct cred
*cred
)
700 { return !__is_real(uid
, cred
) && __is_eff(uid
, cred
); }
703 * handle_privileged_root - Handle case of privileged root
704 * @bprm: The execution parameters, including the proposed creds
705 * @has_fcap: Are any file capabilities set?
706 * @effective: Do we have effective root privilege?
707 * @root_uid: This namespace' root UID WRT initial USER namespace
709 * Handle the case where root is privileged and hasn't been neutered by
710 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
711 * set UID root and nothing is changed. If we are root, cap_permitted is
712 * updated. If we have become set UID root, the effective bit is set.
714 static void handle_privileged_root(struct linux_binprm
*bprm
, bool has_fcap
,
715 bool *effective
, kuid_t root_uid
)
717 const struct cred
*old
= current_cred();
718 struct cred
*new = bprm
->cred
;
720 if (!root_privileged())
723 * If the legacy file capability is set, then don't set privs
724 * for a setuid root binary run by a non-root user. Do set it
725 * for a root user just to cause least surprise to an admin.
727 if (has_fcap
&& __is_suid(root_uid
, new)) {
728 warn_setuid_and_fcaps_mixed(bprm
->filename
);
732 * To support inheritance of root-permissions and suid-root
733 * executables under compatibility mode, we override the
734 * capability sets for the file.
736 if (__is_eff(root_uid
, new) || __is_real(root_uid
, new)) {
737 /* pP' = (cap_bset & ~0) | (pI & ~0) */
738 new->cap_permitted
= cap_combine(old
->cap_bset
,
739 old
->cap_inheritable
);
742 * If only the real uid is 0, we do not set the effective bit.
744 if (__is_eff(root_uid
, new))
748 #define __cap_gained(field, target, source) \
749 !cap_issubset(target->cap_##field, source->cap_##field)
750 #define __cap_grew(target, source, cred) \
751 !cap_issubset(cred->cap_##target, cred->cap_##source)
752 #define __cap_full(field, cred) \
753 cap_issubset(CAP_FULL_SET, cred->cap_##field)
755 static inline bool __is_setuid(struct cred
*new, const struct cred
*old
)
756 { return !uid_eq(new->euid
, old
->uid
); }
758 static inline bool __is_setgid(struct cred
*new, const struct cred
*old
)
759 { return !gid_eq(new->egid
, old
->gid
); }
762 * 1) Audit candidate if current->cap_effective is set
764 * We do not bother to audit if 3 things are true:
765 * 1) cap_effective has all caps
766 * 2) we became root *OR* are were already root
767 * 3) root is supposed to have all caps (SECURE_NOROOT)
768 * Since this is just a normal root execing a process.
770 * Number 1 above might fail if you don't have a full bset, but I think
771 * that is interesting information to audit.
773 * A number of other conditions require logging:
774 * 2) something prevented setuid root getting all caps
775 * 3) non-setuid root gets fcaps
776 * 4) non-setuid root gets ambient
778 static inline bool nonroot_raised_pE(struct cred
*new, const struct cred
*old
,
779 kuid_t root
, bool has_fcap
)
783 if ((__cap_grew(effective
, ambient
, new) &&
784 !(__cap_full(effective
, new) &&
785 (__is_eff(root
, new) || __is_real(root
, new)) &&
786 root_privileged())) ||
787 (root_privileged() &&
788 __is_suid(root
, new) &&
789 !__cap_full(effective
, new)) ||
790 (!__is_setuid(new, old
) &&
792 __cap_gained(permitted
, new, old
)) ||
793 __cap_gained(ambient
, new, old
))))
801 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
802 * @bprm: The execution parameters, including the proposed creds
803 * @file: The file to pull the credentials from
805 * Set up the proposed credentials for a new execution context being
806 * constructed by execve(). The proposed creds in @bprm->cred is altered,
807 * which won't take effect immediately. Returns 0 if successful, -ve on error.
809 int cap_bprm_creds_from_file(struct linux_binprm
*bprm
, struct file
*file
)
811 /* Process setpcap binaries and capabilities for uid 0 */
812 const struct cred
*old
= current_cred();
813 struct cred
*new = bprm
->cred
;
814 bool effective
= false, has_fcap
= false, is_setid
;
818 if (WARN_ON(!cap_ambient_invariant_ok(old
)))
821 ret
= get_file_caps(bprm
, file
, &effective
, &has_fcap
);
825 root_uid
= make_kuid(new->user_ns
, 0);
827 handle_privileged_root(bprm
, has_fcap
, &effective
, root_uid
);
829 /* if we have fs caps, clear dangerous personality flags */
830 if (__cap_gained(permitted
, new, old
))
831 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
833 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
834 * credentials unless they have the appropriate permit.
836 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
838 is_setid
= __is_setuid(new, old
) || __is_setgid(new, old
);
840 if ((is_setid
|| __cap_gained(permitted
, new, old
)) &&
841 ((bprm
->unsafe
& ~LSM_UNSAFE_PTRACE
) ||
842 !ptracer_capable(current
, new->user_ns
))) {
843 /* downgrade; they get no more than they had, and maybe less */
844 if (!ns_capable(new->user_ns
, CAP_SETUID
) ||
845 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
846 new->euid
= new->uid
;
847 new->egid
= new->gid
;
849 new->cap_permitted
= cap_intersect(new->cap_permitted
,
853 new->suid
= new->fsuid
= new->euid
;
854 new->sgid
= new->fsgid
= new->egid
;
856 /* File caps or setid cancels ambient. */
857 if (has_fcap
|| is_setid
)
858 cap_clear(new->cap_ambient
);
861 * Now that we've computed pA', update pP' to give:
862 * pP' = (X & fP) | (pI & fI) | pA'
864 new->cap_permitted
= cap_combine(new->cap_permitted
, new->cap_ambient
);
867 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
868 * this is the same as pE' = (fE ? pP' : 0) | pA'.
871 new->cap_effective
= new->cap_permitted
;
873 new->cap_effective
= new->cap_ambient
;
875 if (WARN_ON(!cap_ambient_invariant_ok(new)))
878 if (nonroot_raised_pE(new, old
, root_uid
, has_fcap
)) {
879 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
884 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
886 if (WARN_ON(!cap_ambient_invariant_ok(new)))
889 /* Check for privilege-elevated exec. */
891 (!__is_real(root_uid
, new) &&
893 __cap_grew(permitted
, ambient
, new))))
894 bprm
->secureexec
= 1;
900 * cap_inode_setxattr - Determine whether an xattr may be altered
901 * @dentry: The inode/dentry being altered
902 * @name: The name of the xattr to be changed
903 * @value: The value that the xattr will be changed to
904 * @size: The size of value
905 * @flags: The replacement flag
907 * Determine whether an xattr may be altered or set on an inode, returning 0 if
908 * permission is granted, -ve if denied.
910 * This is used to make sure security xattrs don't get updated or set by those
911 * who aren't privileged to do so.
913 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
914 const void *value
, size_t size
, int flags
)
916 struct user_namespace
*user_ns
= dentry
->d_sb
->s_user_ns
;
918 /* Ignore non-security xattrs */
919 if (strncmp(name
, XATTR_SECURITY_PREFIX
,
920 XATTR_SECURITY_PREFIX_LEN
) != 0)
924 * For XATTR_NAME_CAPS the check will be done in
925 * cap_convert_nscap(), called by setxattr()
927 if (strcmp(name
, XATTR_NAME_CAPS
) == 0)
930 if (!ns_capable(user_ns
, CAP_SYS_ADMIN
))
936 * cap_inode_removexattr - Determine whether an xattr may be removed
937 * @dentry: The inode/dentry being altered
938 * @name: The name of the xattr to be changed
940 * Determine whether an xattr may be removed from an inode, returning 0 if
941 * permission is granted, -ve if denied.
943 * This is used to make sure security xattrs don't get removed by those who
944 * aren't privileged to remove them.
946 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
948 struct user_namespace
*user_ns
= dentry
->d_sb
->s_user_ns
;
950 /* Ignore non-security xattrs */
951 if (strncmp(name
, XATTR_SECURITY_PREFIX
,
952 XATTR_SECURITY_PREFIX_LEN
) != 0)
955 if (strcmp(name
, XATTR_NAME_CAPS
) == 0) {
956 /* security.capability gets namespaced */
957 struct inode
*inode
= d_backing_inode(dentry
);
960 if (!capable_wrt_inode_uidgid(inode
, CAP_SETFCAP
))
965 if (!ns_capable(user_ns
, CAP_SYS_ADMIN
))
971 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
972 * a process after a call to setuid, setreuid, or setresuid.
974 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
975 * {r,e,s}uid != 0, the permitted and effective capabilities are
978 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
979 * capabilities of the process are cleared.
981 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
982 * capabilities are set to the permitted capabilities.
984 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
989 * cevans - New behaviour, Oct '99
990 * A process may, via prctl(), elect to keep its capabilities when it
991 * calls setuid() and switches away from uid==0. Both permitted and
992 * effective sets will be retained.
993 * Without this change, it was impossible for a daemon to drop only some
994 * of its privilege. The call to setuid(!=0) would drop all privileges!
995 * Keeping uid 0 is not an option because uid 0 owns too many vital
997 * Thanks to Olaf Kirch and Peter Benie for spotting this.
999 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
1001 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
1003 if ((uid_eq(old
->uid
, root_uid
) ||
1004 uid_eq(old
->euid
, root_uid
) ||
1005 uid_eq(old
->suid
, root_uid
)) &&
1006 (!uid_eq(new->uid
, root_uid
) &&
1007 !uid_eq(new->euid
, root_uid
) &&
1008 !uid_eq(new->suid
, root_uid
))) {
1009 if (!issecure(SECURE_KEEP_CAPS
)) {
1010 cap_clear(new->cap_permitted
);
1011 cap_clear(new->cap_effective
);
1015 * Pre-ambient programs expect setresuid to nonroot followed
1016 * by exec to drop capabilities. We should make sure that
1017 * this remains the case.
1019 cap_clear(new->cap_ambient
);
1021 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
1022 cap_clear(new->cap_effective
);
1023 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
1024 new->cap_effective
= new->cap_permitted
;
1028 * cap_task_fix_setuid - Fix up the results of setuid() call
1029 * @new: The proposed credentials
1030 * @old: The current task's current credentials
1031 * @flags: Indications of what has changed
1033 * Fix up the results of setuid() call before the credential changes are
1034 * actually applied, returning 0 to grant the changes, -ve to deny them.
1036 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
1042 /* juggle the capabilities to follow [RES]UID changes unless
1043 * otherwise suppressed */
1044 if (!issecure(SECURE_NO_SETUID_FIXUP
))
1045 cap_emulate_setxuid(new, old
);
1049 /* juggle the capabilties to follow FSUID changes, unless
1050 * otherwise suppressed
1052 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1053 * if not, we might be a bit too harsh here.
1055 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
1056 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
1057 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
1058 new->cap_effective
=
1059 cap_drop_fs_set(new->cap_effective
);
1061 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
1062 new->cap_effective
=
1063 cap_raise_fs_set(new->cap_effective
,
1064 new->cap_permitted
);
1076 * Rationale: code calling task_setscheduler, task_setioprio, and
1077 * task_setnice, assumes that
1078 * . if capable(cap_sys_nice), then those actions should be allowed
1079 * . if not capable(cap_sys_nice), but acting on your own processes,
1080 * then those actions should be allowed
1081 * This is insufficient now since you can call code without suid, but
1082 * yet with increased caps.
1083 * So we check for increased caps on the target process.
1085 static int cap_safe_nice(struct task_struct
*p
)
1087 int is_subset
, ret
= 0;
1090 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
1091 current_cred()->cap_permitted
);
1092 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
1100 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1101 * @p: The task to affect
1103 * Detemine if the requested scheduler policy change is permitted for the
1104 * specified task, returning 0 if permission is granted, -ve if denied.
1106 int cap_task_setscheduler(struct task_struct
*p
)
1108 return cap_safe_nice(p
);
1112 * cap_task_ioprio - Detemine if I/O priority change is permitted
1113 * @p: The task to affect
1114 * @ioprio: The I/O priority to set
1116 * Detemine if the requested I/O priority change is permitted for the specified
1117 * task, returning 0 if permission is granted, -ve if denied.
1119 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
1121 return cap_safe_nice(p
);
1125 * cap_task_ioprio - Detemine if task priority change is permitted
1126 * @p: The task to affect
1127 * @nice: The nice value to set
1129 * Detemine if the requested task priority change is permitted for the
1130 * specified task, returning 0 if permission is granted, -ve if denied.
1132 int cap_task_setnice(struct task_struct
*p
, int nice
)
1134 return cap_safe_nice(p
);
1138 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1139 * the current task's bounding set. Returns 0 on success, -ve on error.
1141 static int cap_prctl_drop(unsigned long cap
)
1145 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
1147 if (!cap_valid(cap
))
1150 new = prepare_creds();
1153 cap_lower(new->cap_bset
, cap
);
1154 return commit_creds(new);
1158 * cap_task_prctl - Implement process control functions for this security module
1159 * @option: The process control function requested
1160 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1162 * Allow process control functions (sys_prctl()) to alter capabilities; may
1163 * also deny access to other functions not otherwise implemented here.
1165 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1166 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1167 * modules will consider performing the function.
1169 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1170 unsigned long arg4
, unsigned long arg5
)
1172 const struct cred
*old
= current_cred();
1176 case PR_CAPBSET_READ
:
1177 if (!cap_valid(arg2
))
1179 return !!cap_raised(old
->cap_bset
, arg2
);
1181 case PR_CAPBSET_DROP
:
1182 return cap_prctl_drop(arg2
);
1185 * The next four prctl's remain to assist with transitioning a
1186 * system from legacy UID=0 based privilege (when filesystem
1187 * capabilities are not in use) to a system using filesystem
1188 * capabilities only - as the POSIX.1e draft intended.
1192 * PR_SET_SECUREBITS =
1193 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1194 * | issecure_mask(SECURE_NOROOT)
1195 * | issecure_mask(SECURE_NOROOT_LOCKED)
1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1199 * will ensure that the current process and all of its
1200 * children will be locked into a pure
1201 * capability-based-privilege environment.
1203 case PR_SET_SECUREBITS
:
1204 if ((((old
->securebits
& SECURE_ALL_LOCKS
) >> 1)
1205 & (old
->securebits
^ arg2
)) /*[1]*/
1206 || ((old
->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
1207 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
1208 || (cap_capable(current_cred(),
1209 current_cred()->user_ns
,
1211 CAP_OPT_NONE
) != 0) /*[4]*/
1213 * [1] no changing of bits that are locked
1214 * [2] no unlocking of locks
1215 * [3] no setting of unsupported bits
1216 * [4] doing anything requires privilege (go read about
1217 * the "sendmail capabilities bug")
1220 /* cannot change a locked bit */
1223 new = prepare_creds();
1226 new->securebits
= arg2
;
1227 return commit_creds(new);
1229 case PR_GET_SECUREBITS
:
1230 return old
->securebits
;
1232 case PR_GET_KEEPCAPS
:
1233 return !!issecure(SECURE_KEEP_CAPS
);
1235 case PR_SET_KEEPCAPS
:
1236 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
1238 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
1241 new = prepare_creds();
1245 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
1247 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
1248 return commit_creds(new);
1250 case PR_CAP_AMBIENT
:
1251 if (arg2
== PR_CAP_AMBIENT_CLEAR_ALL
) {
1252 if (arg3
| arg4
| arg5
)
1255 new = prepare_creds();
1258 cap_clear(new->cap_ambient
);
1259 return commit_creds(new);
1262 if (((!cap_valid(arg3
)) | arg4
| arg5
))
1265 if (arg2
== PR_CAP_AMBIENT_IS_SET
) {
1266 return !!cap_raised(current_cred()->cap_ambient
, arg3
);
1267 } else if (arg2
!= PR_CAP_AMBIENT_RAISE
&&
1268 arg2
!= PR_CAP_AMBIENT_LOWER
) {
1271 if (arg2
== PR_CAP_AMBIENT_RAISE
&&
1272 (!cap_raised(current_cred()->cap_permitted
, arg3
) ||
1273 !cap_raised(current_cred()->cap_inheritable
,
1275 issecure(SECURE_NO_CAP_AMBIENT_RAISE
)))
1278 new = prepare_creds();
1281 if (arg2
== PR_CAP_AMBIENT_RAISE
)
1282 cap_raise(new->cap_ambient
, arg3
);
1284 cap_lower(new->cap_ambient
, arg3
);
1285 return commit_creds(new);
1289 /* No functionality available - continue with default */
1295 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1296 * @mm: The VM space in which the new mapping is to be made
1297 * @pages: The size of the mapping
1299 * Determine whether the allocation of a new virtual mapping by the current
1300 * task is permitted, returning 1 if permission is granted, 0 if not.
1302 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
1304 int cap_sys_admin
= 0;
1306 if (cap_capable(current_cred(), &init_user_ns
,
1307 CAP_SYS_ADMIN
, CAP_OPT_NOAUDIT
) == 0)
1310 return cap_sys_admin
;
1314 * cap_mmap_addr - check if able to map given addr
1315 * @addr: address attempting to be mapped
1317 * If the process is attempting to map memory below dac_mmap_min_addr they need
1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1319 * capability security module. Returns 0 if this mapping should be allowed
1322 int cap_mmap_addr(unsigned long addr
)
1326 if (addr
< dac_mmap_min_addr
) {
1327 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1331 current
->flags
|= PF_SUPERPRIV
;
1336 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
1337 unsigned long prot
, unsigned long flags
)
1342 #ifdef CONFIG_SECURITY
1344 static struct security_hook_list capability_hooks
[] __lsm_ro_after_init
= {
1345 LSM_HOOK_INIT(capable
, cap_capable
),
1346 LSM_HOOK_INIT(settime
, cap_settime
),
1347 LSM_HOOK_INIT(ptrace_access_check
, cap_ptrace_access_check
),
1348 LSM_HOOK_INIT(ptrace_traceme
, cap_ptrace_traceme
),
1349 LSM_HOOK_INIT(capget
, cap_capget
),
1350 LSM_HOOK_INIT(capset
, cap_capset
),
1351 LSM_HOOK_INIT(bprm_creds_from_file
, cap_bprm_creds_from_file
),
1352 LSM_HOOK_INIT(inode_need_killpriv
, cap_inode_need_killpriv
),
1353 LSM_HOOK_INIT(inode_killpriv
, cap_inode_killpriv
),
1354 LSM_HOOK_INIT(inode_getsecurity
, cap_inode_getsecurity
),
1355 LSM_HOOK_INIT(mmap_addr
, cap_mmap_addr
),
1356 LSM_HOOK_INIT(mmap_file
, cap_mmap_file
),
1357 LSM_HOOK_INIT(task_fix_setuid
, cap_task_fix_setuid
),
1358 LSM_HOOK_INIT(task_prctl
, cap_task_prctl
),
1359 LSM_HOOK_INIT(task_setscheduler
, cap_task_setscheduler
),
1360 LSM_HOOK_INIT(task_setioprio
, cap_task_setioprio
),
1361 LSM_HOOK_INIT(task_setnice
, cap_task_setnice
),
1362 LSM_HOOK_INIT(vm_enough_memory
, cap_vm_enough_memory
),
1365 static int __init
capability_init(void)
1367 security_add_hooks(capability_hooks
, ARRAY_SIZE(capability_hooks
),
1372 DEFINE_LSM(capability
) = {
1373 .name
= "capability",
1374 .order
= LSM_ORDER_FIRST
,
1375 .init
= capability_init
,
1378 #endif /* CONFIG_SECURITY */