2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
55 unsigned head
; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features
;
61 unsigned incompat_features
;
62 unsigned header_length
; /* size of aio_ring */
65 struct io_event io_events
[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx
*table
[];
77 unsigned reqs_available
;
81 struct percpu_ref users
;
84 struct percpu_ref reqs
;
86 unsigned long user_id
;
88 struct __percpu kioctx_cpu
*cpu
;
91 * For percpu reqs_available, number of slots we move to/from global
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
99 * The real limit is nr_events - 1, which will be larger (see
104 /* Size of ringbuffer, in units of struct io_event */
107 unsigned long mmap_base
;
108 unsigned long mmap_size
;
110 struct page
**ring_pages
;
113 struct work_struct free_work
;
116 * signals when all in-flight requests are done
118 struct completion
*requests_done
;
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
127 * We batch accesses to it with a percpu version.
129 atomic_t reqs_available
;
130 } ____cacheline_aligned_in_smp
;
134 struct list_head active_reqs
; /* used for cancellation */
135 } ____cacheline_aligned_in_smp
;
138 struct mutex ring_lock
;
139 wait_queue_head_t wait
;
140 } ____cacheline_aligned_in_smp
;
144 unsigned completed_events
;
145 spinlock_t completion_lock
;
146 } ____cacheline_aligned_in_smp
;
148 struct page
*internal_pages
[AIO_RING_PAGES
];
149 struct file
*aio_ring_file
;
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock
);
156 unsigned long aio_nr
; /* current system wide number of aio requests */
157 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
160 static struct kmem_cache
*kiocb_cachep
;
161 static struct kmem_cache
*kioctx_cachep
;
163 static struct vfsmount
*aio_mnt
;
165 static const struct file_operations aio_ring_fops
;
166 static const struct address_space_operations aio_ctx_aops
;
168 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
170 struct qstr
this = QSTR_INIT("[aio]", 5);
173 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
175 return ERR_CAST(inode
);
177 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
178 inode
->i_mapping
->private_data
= ctx
;
179 inode
->i_size
= PAGE_SIZE
* nr_pages
;
181 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
184 return ERR_PTR(-ENOMEM
);
186 path
.mnt
= mntget(aio_mnt
);
188 d_instantiate(path
.dentry
, inode
);
189 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
195 file
->f_flags
= O_RDWR
;
199 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
200 int flags
, const char *dev_name
, void *data
)
202 static const struct dentry_operations ops
= {
203 .d_dname
= simple_dname
,
205 return mount_pseudo(fs_type
, "aio:", NULL
, &ops
, AIO_RING_MAGIC
);
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
212 static int __init
aio_setup(void)
214 static struct file_system_type aio_fs
= {
217 .kill_sb
= kill_anon_super
,
219 aio_mnt
= kern_mount(&aio_fs
);
221 panic("Failed to create aio fs mount.");
223 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
224 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
230 __initcall(aio_setup
);
232 static void put_aio_ring_file(struct kioctx
*ctx
)
234 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
236 truncate_setsize(aio_ring_file
->f_inode
, 0);
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
240 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
241 ctx
->aio_ring_file
= NULL
;
242 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
248 static void aio_free_ring(struct kioctx
*ctx
)
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
255 put_aio_ring_file(ctx
);
257 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
259 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
260 page_count(ctx
->ring_pages
[i
]));
261 page
= ctx
->ring_pages
[i
];
264 ctx
->ring_pages
[i
] = NULL
;
268 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
269 kfree(ctx
->ring_pages
);
270 ctx
->ring_pages
= NULL
;
274 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
276 vma
->vm_flags
|= VM_DONTEXPAND
;
277 vma
->vm_ops
= &generic_file_vm_ops
;
281 static void aio_ring_remap(struct file
*file
, struct vm_area_struct
*vma
)
283 struct mm_struct
*mm
= vma
->vm_mm
;
284 struct kioctx_table
*table
;
287 spin_lock(&mm
->ioctx_lock
);
289 table
= rcu_dereference(mm
->ioctx_table
);
290 for (i
= 0; i
< table
->nr
; i
++) {
293 ctx
= table
->table
[i
];
294 if (ctx
&& ctx
->aio_ring_file
== file
) {
295 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
301 spin_unlock(&mm
->ioctx_lock
);
304 static const struct file_operations aio_ring_fops
= {
305 .mmap
= aio_ring_mmap
,
306 .mremap
= aio_ring_remap
,
309 #if IS_ENABLED(CONFIG_MIGRATION)
310 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
311 struct page
*old
, enum migrate_mode mode
)
320 /* mapping->private_lock here protects against the kioctx teardown. */
321 spin_lock(&mapping
->private_lock
);
322 ctx
= mapping
->private_data
;
328 /* The ring_lock mutex. The prevents aio_read_events() from writing
329 * to the ring's head, and prevents page migration from mucking in
330 * a partially initialized kiotx.
332 if (!mutex_trylock(&ctx
->ring_lock
)) {
338 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
339 /* Make sure the old page hasn't already been changed */
340 if (ctx
->ring_pages
[idx
] != old
)
348 /* Writeback must be complete */
349 BUG_ON(PageWriteback(old
));
352 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
353 if (rc
!= MIGRATEPAGE_SUCCESS
) {
358 /* Take completion_lock to prevent other writes to the ring buffer
359 * while the old page is copied to the new. This prevents new
360 * events from being lost.
362 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
363 migrate_page_copy(new, old
);
364 BUG_ON(ctx
->ring_pages
[idx
] != old
);
365 ctx
->ring_pages
[idx
] = new;
366 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
368 /* The old page is no longer accessible. */
372 mutex_unlock(&ctx
->ring_lock
);
374 spin_unlock(&mapping
->private_lock
);
379 static const struct address_space_operations aio_ctx_aops
= {
380 .set_page_dirty
= __set_page_dirty_no_writeback
,
381 #if IS_ENABLED(CONFIG_MIGRATION)
382 .migratepage
= aio_migratepage
,
386 static int aio_setup_ring(struct kioctx
*ctx
)
388 struct aio_ring
*ring
;
389 unsigned nr_events
= ctx
->max_reqs
;
390 struct mm_struct
*mm
= current
->mm
;
391 unsigned long size
, unused
;
396 /* Compensate for the ring buffer's head/tail overlap entry */
397 nr_events
+= 2; /* 1 is required, 2 for good luck */
399 size
= sizeof(struct aio_ring
);
400 size
+= sizeof(struct io_event
) * nr_events
;
402 nr_pages
= PFN_UP(size
);
406 file
= aio_private_file(ctx
, nr_pages
);
408 ctx
->aio_ring_file
= NULL
;
412 ctx
->aio_ring_file
= file
;
413 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
414 / sizeof(struct io_event
);
416 ctx
->ring_pages
= ctx
->internal_pages
;
417 if (nr_pages
> AIO_RING_PAGES
) {
418 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
420 if (!ctx
->ring_pages
) {
421 put_aio_ring_file(ctx
);
426 for (i
= 0; i
< nr_pages
; i
++) {
428 page
= find_or_create_page(file
->f_inode
->i_mapping
,
429 i
, GFP_HIGHUSER
| __GFP_ZERO
);
432 pr_debug("pid(%d) page[%d]->count=%d\n",
433 current
->pid
, i
, page_count(page
));
434 SetPageUptodate(page
);
437 ctx
->ring_pages
[i
] = page
;
441 if (unlikely(i
!= nr_pages
)) {
446 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
447 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
449 down_write(&mm
->mmap_sem
);
450 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
451 PROT_READ
| PROT_WRITE
,
452 MAP_SHARED
, 0, &unused
);
453 up_write(&mm
->mmap_sem
);
454 if (IS_ERR((void *)ctx
->mmap_base
)) {
460 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
462 ctx
->user_id
= ctx
->mmap_base
;
463 ctx
->nr_events
= nr_events
; /* trusted copy */
465 ring
= kmap_atomic(ctx
->ring_pages
[0]);
466 ring
->nr
= nr_events
; /* user copy */
468 ring
->head
= ring
->tail
= 0;
469 ring
->magic
= AIO_RING_MAGIC
;
470 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
471 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
472 ring
->header_length
= sizeof(struct aio_ring
);
474 flush_dcache_page(ctx
->ring_pages
[0]);
479 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
480 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
481 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
483 void kiocb_set_cancel_fn(struct kiocb
*req
, kiocb_cancel_fn
*cancel
)
485 struct kioctx
*ctx
= req
->ki_ctx
;
488 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
490 if (!req
->ki_list
.next
)
491 list_add(&req
->ki_list
, &ctx
->active_reqs
);
493 req
->ki_cancel
= cancel
;
495 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
497 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
499 static int kiocb_cancel(struct kiocb
*kiocb
)
501 kiocb_cancel_fn
*old
, *cancel
;
504 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
505 * actually has a cancel function, hence the cmpxchg()
508 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
510 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
514 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
515 } while (cancel
!= old
);
517 return cancel(kiocb
);
520 static void free_ioctx(struct work_struct
*work
)
522 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
524 pr_debug("freeing %p\n", ctx
);
527 free_percpu(ctx
->cpu
);
528 percpu_ref_exit(&ctx
->reqs
);
529 percpu_ref_exit(&ctx
->users
);
530 kmem_cache_free(kioctx_cachep
, ctx
);
533 static void free_ioctx_reqs(struct percpu_ref
*ref
)
535 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
537 /* At this point we know that there are no any in-flight requests */
538 if (ctx
->requests_done
)
539 complete(ctx
->requests_done
);
541 INIT_WORK(&ctx
->free_work
, free_ioctx
);
542 schedule_work(&ctx
->free_work
);
546 * When this function runs, the kioctx has been removed from the "hash table"
547 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
548 * now it's safe to cancel any that need to be.
550 static void free_ioctx_users(struct percpu_ref
*ref
)
552 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
555 spin_lock_irq(&ctx
->ctx_lock
);
557 while (!list_empty(&ctx
->active_reqs
)) {
558 req
= list_first_entry(&ctx
->active_reqs
,
559 struct kiocb
, ki_list
);
561 list_del_init(&req
->ki_list
);
565 spin_unlock_irq(&ctx
->ctx_lock
);
567 percpu_ref_kill(&ctx
->reqs
);
568 percpu_ref_put(&ctx
->reqs
);
571 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
574 struct kioctx_table
*table
, *old
;
575 struct aio_ring
*ring
;
577 spin_lock(&mm
->ioctx_lock
);
578 table
= rcu_dereference_raw(mm
->ioctx_table
);
582 for (i
= 0; i
< table
->nr
; i
++)
583 if (!table
->table
[i
]) {
585 table
->table
[i
] = ctx
;
586 spin_unlock(&mm
->ioctx_lock
);
588 /* While kioctx setup is in progress,
589 * we are protected from page migration
590 * changes ring_pages by ->ring_lock.
592 ring
= kmap_atomic(ctx
->ring_pages
[0]);
598 new_nr
= (table
? table
->nr
: 1) * 4;
599 spin_unlock(&mm
->ioctx_lock
);
601 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
608 spin_lock(&mm
->ioctx_lock
);
609 old
= rcu_dereference_raw(mm
->ioctx_table
);
612 rcu_assign_pointer(mm
->ioctx_table
, table
);
613 } else if (table
->nr
> old
->nr
) {
614 memcpy(table
->table
, old
->table
,
615 old
->nr
* sizeof(struct kioctx
*));
617 rcu_assign_pointer(mm
->ioctx_table
, table
);
626 static void aio_nr_sub(unsigned nr
)
628 spin_lock(&aio_nr_lock
);
629 if (WARN_ON(aio_nr
- nr
> aio_nr
))
633 spin_unlock(&aio_nr_lock
);
637 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
639 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
641 struct mm_struct
*mm
= current
->mm
;
646 * We keep track of the number of available ringbuffer slots, to prevent
647 * overflow (reqs_available), and we also use percpu counters for this.
649 * So since up to half the slots might be on other cpu's percpu counters
650 * and unavailable, double nr_events so userspace sees what they
651 * expected: additionally, we move req_batch slots to/from percpu
652 * counters at a time, so make sure that isn't 0:
654 nr_events
= max(nr_events
, num_possible_cpus() * 4);
657 /* Prevent overflows */
658 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
659 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
660 pr_debug("ENOMEM: nr_events too high\n");
661 return ERR_PTR(-EINVAL
);
664 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
665 return ERR_PTR(-EAGAIN
);
667 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
669 return ERR_PTR(-ENOMEM
);
671 ctx
->max_reqs
= nr_events
;
673 spin_lock_init(&ctx
->ctx_lock
);
674 spin_lock_init(&ctx
->completion_lock
);
675 mutex_init(&ctx
->ring_lock
);
676 /* Protect against page migration throughout kiotx setup by keeping
677 * the ring_lock mutex held until setup is complete. */
678 mutex_lock(&ctx
->ring_lock
);
679 init_waitqueue_head(&ctx
->wait
);
681 INIT_LIST_HEAD(&ctx
->active_reqs
);
683 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
686 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
689 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
693 err
= aio_setup_ring(ctx
);
697 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
698 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
699 if (ctx
->req_batch
< 1)
702 /* limit the number of system wide aios */
703 spin_lock(&aio_nr_lock
);
704 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
705 aio_nr
+ nr_events
< aio_nr
) {
706 spin_unlock(&aio_nr_lock
);
710 aio_nr
+= ctx
->max_reqs
;
711 spin_unlock(&aio_nr_lock
);
713 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
714 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
716 err
= ioctx_add_table(ctx
, mm
);
720 /* Release the ring_lock mutex now that all setup is complete. */
721 mutex_unlock(&ctx
->ring_lock
);
723 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
724 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
728 aio_nr_sub(ctx
->max_reqs
);
732 mutex_unlock(&ctx
->ring_lock
);
733 free_percpu(ctx
->cpu
);
734 percpu_ref_exit(&ctx
->reqs
);
735 percpu_ref_exit(&ctx
->users
);
736 kmem_cache_free(kioctx_cachep
, ctx
);
737 pr_debug("error allocating ioctx %d\n", err
);
742 * Cancels all outstanding aio requests on an aio context. Used
743 * when the processes owning a context have all exited to encourage
744 * the rapid destruction of the kioctx.
746 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
747 struct completion
*requests_done
)
749 struct kioctx_table
*table
;
751 if (atomic_xchg(&ctx
->dead
, 1))
755 spin_lock(&mm
->ioctx_lock
);
756 table
= rcu_dereference_raw(mm
->ioctx_table
);
757 WARN_ON(ctx
!= table
->table
[ctx
->id
]);
758 table
->table
[ctx
->id
] = NULL
;
759 spin_unlock(&mm
->ioctx_lock
);
761 /* percpu_ref_kill() will do the necessary call_rcu() */
762 wake_up_all(&ctx
->wait
);
765 * It'd be more correct to do this in free_ioctx(), after all
766 * the outstanding kiocbs have finished - but by then io_destroy
767 * has already returned, so io_setup() could potentially return
768 * -EAGAIN with no ioctxs actually in use (as far as userspace
771 aio_nr_sub(ctx
->max_reqs
);
774 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
776 ctx
->requests_done
= requests_done
;
777 percpu_ref_kill(&ctx
->users
);
781 /* wait_on_sync_kiocb:
782 * Waits on the given sync kiocb to complete.
784 ssize_t
wait_on_sync_kiocb(struct kiocb
*req
)
786 while (!req
->ki_ctx
) {
787 set_current_state(TASK_UNINTERRUPTIBLE
);
792 __set_current_state(TASK_RUNNING
);
793 return req
->ki_user_data
;
795 EXPORT_SYMBOL(wait_on_sync_kiocb
);
798 * exit_aio: called when the last user of mm goes away. At this point, there is
799 * no way for any new requests to be submited or any of the io_* syscalls to be
800 * called on the context.
802 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
805 void exit_aio(struct mm_struct
*mm
)
807 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
813 for (i
= 0; i
< table
->nr
; ++i
) {
814 struct kioctx
*ctx
= table
->table
[i
];
815 struct completion requests_done
=
816 COMPLETION_INITIALIZER_ONSTACK(requests_done
);
821 * We don't need to bother with munmap() here - exit_mmap(mm)
822 * is coming and it'll unmap everything. And we simply can't,
823 * this is not necessarily our ->mm.
824 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
825 * that it needs to unmap the area, just set it to 0.
828 kill_ioctx(mm
, ctx
, &requests_done
);
830 /* Wait until all IO for the context are done. */
831 wait_for_completion(&requests_done
);
834 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
838 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
840 struct kioctx_cpu
*kcpu
;
843 local_irq_save(flags
);
844 kcpu
= this_cpu_ptr(ctx
->cpu
);
845 kcpu
->reqs_available
+= nr
;
847 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
848 kcpu
->reqs_available
-= ctx
->req_batch
;
849 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
852 local_irq_restore(flags
);
855 static bool get_reqs_available(struct kioctx
*ctx
)
857 struct kioctx_cpu
*kcpu
;
861 local_irq_save(flags
);
862 kcpu
= this_cpu_ptr(ctx
->cpu
);
863 if (!kcpu
->reqs_available
) {
864 int old
, avail
= atomic_read(&ctx
->reqs_available
);
867 if (avail
< ctx
->req_batch
)
871 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
872 avail
, avail
- ctx
->req_batch
);
873 } while (avail
!= old
);
875 kcpu
->reqs_available
+= ctx
->req_batch
;
879 kcpu
->reqs_available
--;
881 local_irq_restore(flags
);
885 /* refill_reqs_available
886 * Updates the reqs_available reference counts used for tracking the
887 * number of free slots in the completion ring. This can be called
888 * from aio_complete() (to optimistically update reqs_available) or
889 * from aio_get_req() (the we're out of events case). It must be
890 * called holding ctx->completion_lock.
892 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
895 unsigned events_in_ring
, completed
;
897 /* Clamp head since userland can write to it. */
898 head
%= ctx
->nr_events
;
900 events_in_ring
= tail
- head
;
902 events_in_ring
= ctx
->nr_events
- (head
- tail
);
904 completed
= ctx
->completed_events
;
905 if (events_in_ring
< completed
)
906 completed
-= events_in_ring
;
913 ctx
->completed_events
-= completed
;
914 put_reqs_available(ctx
, completed
);
917 /* user_refill_reqs_available
918 * Called to refill reqs_available when aio_get_req() encounters an
919 * out of space in the completion ring.
921 static void user_refill_reqs_available(struct kioctx
*ctx
)
923 spin_lock_irq(&ctx
->completion_lock
);
924 if (ctx
->completed_events
) {
925 struct aio_ring
*ring
;
928 /* Access of ring->head may race with aio_read_events_ring()
929 * here, but that's okay since whether we read the old version
930 * or the new version, and either will be valid. The important
931 * part is that head cannot pass tail since we prevent
932 * aio_complete() from updating tail by holding
933 * ctx->completion_lock. Even if head is invalid, the check
934 * against ctx->completed_events below will make sure we do the
937 ring
= kmap_atomic(ctx
->ring_pages
[0]);
941 refill_reqs_available(ctx
, head
, ctx
->tail
);
944 spin_unlock_irq(&ctx
->completion_lock
);
948 * Allocate a slot for an aio request.
949 * Returns NULL if no requests are free.
951 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
955 if (!get_reqs_available(ctx
)) {
956 user_refill_reqs_available(ctx
);
957 if (!get_reqs_available(ctx
))
961 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
965 percpu_ref_get(&ctx
->reqs
);
970 put_reqs_available(ctx
, 1);
974 static void kiocb_free(struct kiocb
*req
)
978 if (req
->ki_eventfd
!= NULL
)
979 eventfd_ctx_put(req
->ki_eventfd
);
980 kmem_cache_free(kiocb_cachep
, req
);
983 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
985 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
986 struct mm_struct
*mm
= current
->mm
;
987 struct kioctx
*ctx
, *ret
= NULL
;
988 struct kioctx_table
*table
;
991 if (get_user(id
, &ring
->id
))
995 table
= rcu_dereference(mm
->ioctx_table
);
997 if (!table
|| id
>= table
->nr
)
1000 ctx
= table
->table
[id
];
1001 if (ctx
&& ctx
->user_id
== ctx_id
) {
1002 percpu_ref_get(&ctx
->users
);
1011 * Called when the io request on the given iocb is complete.
1013 void aio_complete(struct kiocb
*iocb
, long res
, long res2
)
1015 struct kioctx
*ctx
= iocb
->ki_ctx
;
1016 struct aio_ring
*ring
;
1017 struct io_event
*ev_page
, *event
;
1018 unsigned tail
, pos
, head
;
1019 unsigned long flags
;
1022 * Special case handling for sync iocbs:
1023 * - events go directly into the iocb for fast handling
1024 * - the sync task with the iocb in its stack holds the single iocb
1025 * ref, no other paths have a way to get another ref
1026 * - the sync task helpfully left a reference to itself in the iocb
1028 if (is_sync_kiocb(iocb
)) {
1029 iocb
->ki_user_data
= res
;
1031 iocb
->ki_ctx
= ERR_PTR(-EXDEV
);
1032 wake_up_process(iocb
->ki_obj
.tsk
);
1036 if (iocb
->ki_list
.next
) {
1037 unsigned long flags
;
1039 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1040 list_del(&iocb
->ki_list
);
1041 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1045 * Add a completion event to the ring buffer. Must be done holding
1046 * ctx->completion_lock to prevent other code from messing with the tail
1047 * pointer since we might be called from irq context.
1049 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1052 pos
= tail
+ AIO_EVENTS_OFFSET
;
1054 if (++tail
>= ctx
->nr_events
)
1057 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1058 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1060 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
1061 event
->data
= iocb
->ki_user_data
;
1065 kunmap_atomic(ev_page
);
1066 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1068 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1069 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1072 /* after flagging the request as done, we
1073 * must never even look at it again
1075 smp_wmb(); /* make event visible before updating tail */
1079 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1082 kunmap_atomic(ring
);
1083 flush_dcache_page(ctx
->ring_pages
[0]);
1085 ctx
->completed_events
++;
1086 if (ctx
->completed_events
> 1)
1087 refill_reqs_available(ctx
, head
, tail
);
1088 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1090 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1093 * Check if the user asked us to deliver the result through an
1094 * eventfd. The eventfd_signal() function is safe to be called
1097 if (iocb
->ki_eventfd
!= NULL
)
1098 eventfd_signal(iocb
->ki_eventfd
, 1);
1100 /* everything turned out well, dispose of the aiocb. */
1104 * We have to order our ring_info tail store above and test
1105 * of the wait list below outside the wait lock. This is
1106 * like in wake_up_bit() where clearing a bit has to be
1107 * ordered with the unlocked test.
1111 if (waitqueue_active(&ctx
->wait
))
1112 wake_up(&ctx
->wait
);
1114 percpu_ref_put(&ctx
->reqs
);
1116 EXPORT_SYMBOL(aio_complete
);
1118 /* aio_read_events_ring
1119 * Pull an event off of the ioctx's event ring. Returns the number of
1122 static long aio_read_events_ring(struct kioctx
*ctx
,
1123 struct io_event __user
*event
, long nr
)
1125 struct aio_ring
*ring
;
1126 unsigned head
, tail
, pos
;
1131 * The mutex can block and wake us up and that will cause
1132 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1133 * and repeat. This should be rare enough that it doesn't cause
1134 * peformance issues. See the comment in read_events() for more detail.
1136 sched_annotate_sleep();
1137 mutex_lock(&ctx
->ring_lock
);
1139 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1140 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1143 kunmap_atomic(ring
);
1146 * Ensure that once we've read the current tail pointer, that
1147 * we also see the events that were stored up to the tail.
1151 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1156 head
%= ctx
->nr_events
;
1157 tail
%= ctx
->nr_events
;
1161 struct io_event
*ev
;
1164 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1168 avail
= min(avail
, nr
- ret
);
1169 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1170 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1172 pos
= head
+ AIO_EVENTS_OFFSET
;
1173 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1174 pos
%= AIO_EVENTS_PER_PAGE
;
1177 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1178 sizeof(*ev
) * avail
);
1181 if (unlikely(copy_ret
)) {
1188 head
%= ctx
->nr_events
;
1191 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1193 kunmap_atomic(ring
);
1194 flush_dcache_page(ctx
->ring_pages
[0]);
1196 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1198 mutex_unlock(&ctx
->ring_lock
);
1203 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1204 struct io_event __user
*event
, long *i
)
1206 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1211 if (unlikely(atomic_read(&ctx
->dead
)))
1217 return ret
< 0 || *i
>= min_nr
;
1220 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1221 struct io_event __user
*event
,
1222 struct timespec __user
*timeout
)
1224 ktime_t until
= { .tv64
= KTIME_MAX
};
1230 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1233 until
= timespec_to_ktime(ts
);
1237 * Note that aio_read_events() is being called as the conditional - i.e.
1238 * we're calling it after prepare_to_wait() has set task state to
1239 * TASK_INTERRUPTIBLE.
1241 * But aio_read_events() can block, and if it blocks it's going to flip
1242 * the task state back to TASK_RUNNING.
1244 * This should be ok, provided it doesn't flip the state back to
1245 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1246 * will only happen if the mutex_lock() call blocks, and we then find
1247 * the ringbuffer empty. So in practice we should be ok, but it's
1248 * something to be aware of when touching this code.
1250 if (until
.tv64
== 0)
1251 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1253 wait_event_interruptible_hrtimeout(ctx
->wait
,
1254 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1257 if (!ret
&& signal_pending(current
))
1264 * Create an aio_context capable of receiving at least nr_events.
1265 * ctxp must not point to an aio_context that already exists, and
1266 * must be initialized to 0 prior to the call. On successful
1267 * creation of the aio_context, *ctxp is filled in with the resulting
1268 * handle. May fail with -EINVAL if *ctxp is not initialized,
1269 * if the specified nr_events exceeds internal limits. May fail
1270 * with -EAGAIN if the specified nr_events exceeds the user's limit
1271 * of available events. May fail with -ENOMEM if insufficient kernel
1272 * resources are available. May fail with -EFAULT if an invalid
1273 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1276 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1278 struct kioctx
*ioctx
= NULL
;
1282 ret
= get_user(ctx
, ctxp
);
1287 if (unlikely(ctx
|| nr_events
== 0)) {
1288 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1293 ioctx
= ioctx_alloc(nr_events
);
1294 ret
= PTR_ERR(ioctx
);
1295 if (!IS_ERR(ioctx
)) {
1296 ret
= put_user(ioctx
->user_id
, ctxp
);
1298 kill_ioctx(current
->mm
, ioctx
, NULL
);
1299 percpu_ref_put(&ioctx
->users
);
1307 * Destroy the aio_context specified. May cancel any outstanding
1308 * AIOs and block on completion. Will fail with -ENOSYS if not
1309 * implemented. May fail with -EINVAL if the context pointed to
1312 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1314 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1315 if (likely(NULL
!= ioctx
)) {
1316 struct completion requests_done
=
1317 COMPLETION_INITIALIZER_ONSTACK(requests_done
);
1320 /* Pass requests_done to kill_ioctx() where it can be set
1321 * in a thread-safe way. If we try to set it here then we have
1322 * a race condition if two io_destroy() called simultaneously.
1324 ret
= kill_ioctx(current
->mm
, ioctx
, &requests_done
);
1325 percpu_ref_put(&ioctx
->users
);
1327 /* Wait until all IO for the context are done. Otherwise kernel
1328 * keep using user-space buffers even if user thinks the context
1332 wait_for_completion(&requests_done
);
1336 pr_debug("EINVAL: invalid context id\n");
1340 typedef ssize_t (aio_rw_op
)(struct kiocb
*, const struct iovec
*,
1341 unsigned long, loff_t
);
1342 typedef ssize_t (rw_iter_op
)(struct kiocb
*, struct iov_iter
*);
1344 static ssize_t
aio_setup_vectored_rw(struct kiocb
*kiocb
,
1345 int rw
, char __user
*buf
,
1346 unsigned long *nr_segs
,
1347 struct iovec
**iovec
,
1352 *nr_segs
= kiocb
->ki_nbytes
;
1354 #ifdef CONFIG_COMPAT
1356 ret
= compat_rw_copy_check_uvector(rw
,
1357 (struct compat_iovec __user
*)buf
,
1358 *nr_segs
, UIO_FASTIOV
, *iovec
, iovec
);
1361 ret
= rw_copy_check_uvector(rw
,
1362 (struct iovec __user
*)buf
,
1363 *nr_segs
, UIO_FASTIOV
, *iovec
, iovec
);
1367 /* ki_nbytes now reflect bytes instead of segs */
1368 kiocb
->ki_nbytes
= ret
;
1372 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
,
1373 int rw
, char __user
*buf
,
1374 unsigned long *nr_segs
,
1375 struct iovec
*iovec
)
1377 if (unlikely(!access_ok(!rw
, buf
, kiocb
->ki_nbytes
)))
1380 iovec
->iov_base
= buf
;
1381 iovec
->iov_len
= kiocb
->ki_nbytes
;
1388 * Performs the initial checks and io submission.
1390 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1391 char __user
*buf
, bool compat
)
1393 struct file
*file
= req
->ki_filp
;
1395 unsigned long nr_segs
;
1399 rw_iter_op
*iter_op
;
1400 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1401 struct iov_iter iter
;
1404 case IOCB_CMD_PREAD
:
1405 case IOCB_CMD_PREADV
:
1408 rw_op
= file
->f_op
->aio_read
;
1409 iter_op
= file
->f_op
->read_iter
;
1412 case IOCB_CMD_PWRITE
:
1413 case IOCB_CMD_PWRITEV
:
1416 rw_op
= file
->f_op
->aio_write
;
1417 iter_op
= file
->f_op
->write_iter
;
1420 if (unlikely(!(file
->f_mode
& mode
)))
1423 if (!rw_op
&& !iter_op
)
1426 ret
= (opcode
== IOCB_CMD_PREADV
||
1427 opcode
== IOCB_CMD_PWRITEV
)
1428 ? aio_setup_vectored_rw(req
, rw
, buf
, &nr_segs
,
1430 : aio_setup_single_vector(req
, rw
, buf
, &nr_segs
,
1433 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
, req
->ki_nbytes
);
1435 if (iovec
!= inline_vecs
)
1440 req
->ki_nbytes
= ret
;
1442 /* XXX: move/kill - rw_verify_area()? */
1443 /* This matches the pread()/pwrite() logic */
1444 if (req
->ki_pos
< 0) {
1450 file_start_write(file
);
1453 iov_iter_init(&iter
, rw
, iovec
, nr_segs
, req
->ki_nbytes
);
1454 ret
= iter_op(req
, &iter
);
1456 ret
= rw_op(req
, iovec
, nr_segs
, req
->ki_pos
);
1460 file_end_write(file
);
1463 case IOCB_CMD_FDSYNC
:
1464 if (!file
->f_op
->aio_fsync
)
1467 ret
= file
->f_op
->aio_fsync(req
, 1);
1470 case IOCB_CMD_FSYNC
:
1471 if (!file
->f_op
->aio_fsync
)
1474 ret
= file
->f_op
->aio_fsync(req
, 0);
1478 pr_debug("EINVAL: no operation provided\n");
1482 if (iovec
!= inline_vecs
)
1485 if (ret
!= -EIOCBQUEUED
) {
1487 * There's no easy way to restart the syscall since other AIO's
1488 * may be already running. Just fail this IO with EINTR.
1490 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1491 ret
== -ERESTARTNOHAND
||
1492 ret
== -ERESTART_RESTARTBLOCK
))
1494 aio_complete(req
, ret
, 0);
1500 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1501 struct iocb
*iocb
, bool compat
)
1506 /* enforce forwards compatibility on users */
1507 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1508 pr_debug("EINVAL: reserve field set\n");
1512 /* prevent overflows */
1514 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1515 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1516 ((ssize_t
)iocb
->aio_nbytes
< 0)
1518 pr_debug("EINVAL: overflow check\n");
1522 req
= aio_get_req(ctx
);
1526 req
->ki_filp
= fget(iocb
->aio_fildes
);
1527 if (unlikely(!req
->ki_filp
)) {
1532 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1534 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1535 * instance of the file* now. The file descriptor must be
1536 * an eventfd() fd, and will be signaled for each completed
1537 * event using the eventfd_signal() function.
1539 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1540 if (IS_ERR(req
->ki_eventfd
)) {
1541 ret
= PTR_ERR(req
->ki_eventfd
);
1542 req
->ki_eventfd
= NULL
;
1547 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1548 if (unlikely(ret
)) {
1549 pr_debug("EFAULT: aio_key\n");
1553 req
->ki_obj
.user
= user_iocb
;
1554 req
->ki_user_data
= iocb
->aio_data
;
1555 req
->ki_pos
= iocb
->aio_offset
;
1556 req
->ki_nbytes
= iocb
->aio_nbytes
;
1558 ret
= aio_run_iocb(req
, iocb
->aio_lio_opcode
,
1559 (char __user
*)(unsigned long)iocb
->aio_buf
,
1566 put_reqs_available(ctx
, 1);
1567 percpu_ref_put(&ctx
->reqs
);
1572 long do_io_submit(aio_context_t ctx_id
, long nr
,
1573 struct iocb __user
*__user
*iocbpp
, bool compat
)
1578 struct blk_plug plug
;
1580 if (unlikely(nr
< 0))
1583 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1584 nr
= LONG_MAX
/sizeof(*iocbpp
);
1586 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1589 ctx
= lookup_ioctx(ctx_id
);
1590 if (unlikely(!ctx
)) {
1591 pr_debug("EINVAL: invalid context id\n");
1595 blk_start_plug(&plug
);
1598 * AKPM: should this return a partial result if some of the IOs were
1599 * successfully submitted?
1601 for (i
=0; i
<nr
; i
++) {
1602 struct iocb __user
*user_iocb
;
1605 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1610 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1615 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1619 blk_finish_plug(&plug
);
1621 percpu_ref_put(&ctx
->users
);
1626 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1627 * the number of iocbs queued. May return -EINVAL if the aio_context
1628 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1629 * *iocbpp[0] is not properly initialized, if the operation specified
1630 * is invalid for the file descriptor in the iocb. May fail with
1631 * -EFAULT if any of the data structures point to invalid data. May
1632 * fail with -EBADF if the file descriptor specified in the first
1633 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1634 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1635 * fail with -ENOSYS if not implemented.
1637 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1638 struct iocb __user
* __user
*, iocbpp
)
1640 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1644 * Finds a given iocb for cancellation.
1646 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1649 struct list_head
*pos
;
1651 assert_spin_locked(&ctx
->ctx_lock
);
1653 if (key
!= KIOCB_KEY
)
1656 /* TODO: use a hash or array, this sucks. */
1657 list_for_each(pos
, &ctx
->active_reqs
) {
1658 struct kiocb
*kiocb
= list_kiocb(pos
);
1659 if (kiocb
->ki_obj
.user
== iocb
)
1666 * Attempts to cancel an iocb previously passed to io_submit. If
1667 * the operation is successfully cancelled, the resulting event is
1668 * copied into the memory pointed to by result without being placed
1669 * into the completion queue and 0 is returned. May fail with
1670 * -EFAULT if any of the data structures pointed to are invalid.
1671 * May fail with -EINVAL if aio_context specified by ctx_id is
1672 * invalid. May fail with -EAGAIN if the iocb specified was not
1673 * cancelled. Will fail with -ENOSYS if not implemented.
1675 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1676 struct io_event __user
*, result
)
1679 struct kiocb
*kiocb
;
1683 ret
= get_user(key
, &iocb
->aio_key
);
1687 ctx
= lookup_ioctx(ctx_id
);
1691 spin_lock_irq(&ctx
->ctx_lock
);
1693 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1695 ret
= kiocb_cancel(kiocb
);
1699 spin_unlock_irq(&ctx
->ctx_lock
);
1703 * The result argument is no longer used - the io_event is
1704 * always delivered via the ring buffer. -EINPROGRESS indicates
1705 * cancellation is progress:
1710 percpu_ref_put(&ctx
->users
);
1716 * Attempts to read at least min_nr events and up to nr events from
1717 * the completion queue for the aio_context specified by ctx_id. If
1718 * it succeeds, the number of read events is returned. May fail with
1719 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1720 * out of range, if timeout is out of range. May fail with -EFAULT
1721 * if any of the memory specified is invalid. May return 0 or
1722 * < min_nr if the timeout specified by timeout has elapsed
1723 * before sufficient events are available, where timeout == NULL
1724 * specifies an infinite timeout. Note that the timeout pointed to by
1725 * timeout is relative. Will fail with -ENOSYS if not implemented.
1727 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1730 struct io_event __user
*, events
,
1731 struct timespec __user
*, timeout
)
1733 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1736 if (likely(ioctx
)) {
1737 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1738 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1739 percpu_ref_put(&ioctx
->users
);