1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
200 * Tracking user of a slab.
202 #define TRACK_ADDRS_COUNT 16
204 unsigned long addr
; /* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
208 int cpu
; /* Was running on cpu */
209 int pid
; /* Pid context */
210 unsigned long when
; /* When did the operation occur */
213 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
216 static int sysfs_slab_add(struct kmem_cache
*);
217 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
219 static void sysfs_slab_remove(struct kmem_cache
*s
);
221 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
225 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
235 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
248 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
249 unsigned long ptr_addr
)
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
262 return (void *)((unsigned long)ptr
^ s
->random
^
263 (unsigned long)kasan_reset_tag((void *)ptr_addr
));
269 /* Returns the freelist pointer recorded at location ptr_addr. */
270 static inline void *freelist_dereference(const struct kmem_cache
*s
,
273 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
274 (unsigned long)ptr_addr
);
277 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
279 return freelist_dereference(s
, object
+ s
->offset
);
282 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
284 prefetch(object
+ s
->offset
);
287 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
289 unsigned long freepointer_addr
;
292 if (!debug_pagealloc_enabled())
293 return get_freepointer(s
, object
);
295 freepointer_addr
= (unsigned long)object
+ s
->offset
;
296 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
297 return freelist_ptr(s
, p
, freepointer_addr
);
300 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
302 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
308 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
311 /* Loop over all objects in a slab */
312 #define for_each_object(__p, __s, __addr, __objects) \
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
317 /* Determine object index from a given position */
318 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
320 return (kasan_reset_tag(p
) - addr
) / s
->size
;
323 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
325 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
328 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
331 struct kmem_cache_order_objects x
= {
332 (order
<< OO_SHIFT
) + order_objects(order
, size
)
338 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
340 return x
.x
>> OO_SHIFT
;
343 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
345 return x
.x
& OO_MASK
;
349 * Per slab locking using the pagelock
351 static __always_inline
void slab_lock(struct page
*page
)
353 VM_BUG_ON_PAGE(PageTail(page
), page
);
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 VM_BUG_ON_PAGE(PageTail(page
), page
);
360 __bit_spin_unlock(PG_locked
, &page
->flags
);
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
365 void *freelist_old
, unsigned long counters_old
,
366 void *freelist_new
, unsigned long counters_new
,
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s
->flags
& __CMPXCHG_DOUBLE
) {
373 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
374 freelist_old
, counters_old
,
375 freelist_new
, counters_new
))
381 if (page
->freelist
== freelist_old
&&
382 page
->counters
== counters_old
) {
383 page
->freelist
= freelist_new
;
384 page
->counters
= counters_new
;
392 stat(s
, CMPXCHG_DOUBLE_FAIL
);
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
401 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
402 void *freelist_old
, unsigned long counters_old
,
403 void *freelist_new
, unsigned long counters_new
,
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s
->flags
& __CMPXCHG_DOUBLE
) {
409 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
410 freelist_old
, counters_old
,
411 freelist_new
, counters_new
))
418 local_irq_save(flags
);
420 if (page
->freelist
== freelist_old
&&
421 page
->counters
== counters_old
) {
422 page
->freelist
= freelist_new
;
423 page
->counters
= counters_new
;
425 local_irq_restore(flags
);
429 local_irq_restore(flags
);
433 stat(s
, CMPXCHG_DOUBLE_FAIL
);
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
442 #ifdef CONFIG_SLUB_DEBUG
444 * Determine a map of object in use on a page.
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
449 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
452 void *addr
= page_address(page
);
454 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
455 set_bit(slab_index(p
, s
, addr
), map
);
458 static inline unsigned int size_from_object(struct kmem_cache
*s
)
460 if (s
->flags
& SLAB_RED_ZONE
)
461 return s
->size
- s
->red_left_pad
;
466 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
468 if (s
->flags
& SLAB_RED_ZONE
)
469 p
-= s
->red_left_pad
;
477 #if defined(CONFIG_SLUB_DEBUG_ON)
478 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
480 static slab_flags_t slub_debug
;
483 static char *slub_debug_slabs
;
484 static int disable_higher_order_debug
;
487 * slub is about to manipulate internal object metadata. This memory lies
488 * outside the range of the allocated object, so accessing it would normally
489 * be reported by kasan as a bounds error. metadata_access_enable() is used
490 * to tell kasan that these accesses are OK.
492 static inline void metadata_access_enable(void)
494 kasan_disable_current();
497 static inline void metadata_access_disable(void)
499 kasan_enable_current();
506 /* Verify that a pointer has an address that is valid within a slab page */
507 static inline int check_valid_pointer(struct kmem_cache
*s
,
508 struct page
*page
, void *object
)
515 base
= page_address(page
);
516 object
= kasan_reset_tag(object
);
517 object
= restore_red_left(s
, object
);
518 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
519 (object
- base
) % s
->size
) {
526 static void print_section(char *level
, char *text
, u8
*addr
,
529 metadata_access_enable();
530 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
532 metadata_access_disable();
535 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
536 enum track_item alloc
)
541 p
= object
+ s
->offset
+ sizeof(void *);
543 p
= object
+ s
->inuse
;
548 static void set_track(struct kmem_cache
*s
, void *object
,
549 enum track_item alloc
, unsigned long addr
)
551 struct track
*p
= get_track(s
, object
, alloc
);
554 #ifdef CONFIG_STACKTRACE
555 struct stack_trace trace
;
558 trace
.nr_entries
= 0;
559 trace
.max_entries
= TRACK_ADDRS_COUNT
;
560 trace
.entries
= p
->addrs
;
562 metadata_access_enable();
563 save_stack_trace(&trace
);
564 metadata_access_disable();
566 /* See rant in lockdep.c */
567 if (trace
.nr_entries
!= 0 &&
568 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
571 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
575 p
->cpu
= smp_processor_id();
576 p
->pid
= current
->pid
;
579 memset(p
, 0, sizeof(struct track
));
582 static void init_tracking(struct kmem_cache
*s
, void *object
)
584 if (!(s
->flags
& SLAB_STORE_USER
))
587 set_track(s
, object
, TRACK_FREE
, 0UL);
588 set_track(s
, object
, TRACK_ALLOC
, 0UL);
591 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
597 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
598 #ifdef CONFIG_STACKTRACE
601 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
603 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
610 static void print_tracking(struct kmem_cache
*s
, void *object
)
612 unsigned long pr_time
= jiffies
;
613 if (!(s
->flags
& SLAB_STORE_USER
))
616 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
617 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
620 static void print_page_info(struct page
*page
)
622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
623 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
627 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
629 struct va_format vaf
;
635 pr_err("=============================================================================\n");
636 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
637 pr_err("-----------------------------------------------------------------------------\n\n");
639 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
643 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
645 struct va_format vaf
;
651 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
655 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
657 unsigned int off
; /* Offset of last byte */
658 u8
*addr
= page_address(page
);
660 print_tracking(s
, p
);
662 print_page_info(page
);
664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
665 p
, p
- addr
, get_freepointer(s
, p
));
667 if (s
->flags
& SLAB_RED_ZONE
)
668 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
670 else if (p
> addr
+ 16)
671 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
673 print_section(KERN_ERR
, "Object ", p
,
674 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
675 if (s
->flags
& SLAB_RED_ZONE
)
676 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
677 s
->inuse
- s
->object_size
);
680 off
= s
->offset
+ sizeof(void *);
684 if (s
->flags
& SLAB_STORE_USER
)
685 off
+= 2 * sizeof(struct track
);
687 off
+= kasan_metadata_size(s
);
689 if (off
!= size_from_object(s
))
690 /* Beginning of the filler is the free pointer */
691 print_section(KERN_ERR
, "Padding ", p
+ off
,
692 size_from_object(s
) - off
);
697 void object_err(struct kmem_cache
*s
, struct page
*page
,
698 u8
*object
, char *reason
)
700 slab_bug(s
, "%s", reason
);
701 print_trailer(s
, page
, object
);
704 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
705 const char *fmt
, ...)
711 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
713 slab_bug(s
, "%s", buf
);
714 print_page_info(page
);
718 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
722 if (s
->flags
& SLAB_RED_ZONE
)
723 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
725 if (s
->flags
& __OBJECT_POISON
) {
726 memset(p
, POISON_FREE
, s
->object_size
- 1);
727 p
[s
->object_size
- 1] = POISON_END
;
730 if (s
->flags
& SLAB_RED_ZONE
)
731 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
734 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
735 void *from
, void *to
)
737 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
738 memset(from
, data
, to
- from
);
741 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
742 u8
*object
, char *what
,
743 u8
*start
, unsigned int value
, unsigned int bytes
)
748 metadata_access_enable();
749 fault
= memchr_inv(start
, value
, bytes
);
750 metadata_access_disable();
755 while (end
> fault
&& end
[-1] == value
)
758 slab_bug(s
, "%s overwritten", what
);
759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
760 fault
, end
- 1, fault
[0], value
);
761 print_trailer(s
, page
, object
);
763 restore_bytes(s
, what
, value
, fault
, end
);
771 * Bytes of the object to be managed.
772 * If the freepointer may overlay the object then the free
773 * pointer is the first word of the object.
775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
778 * object + s->object_size
779 * Padding to reach word boundary. This is also used for Redzoning.
780 * Padding is extended by another word if Redzoning is enabled and
781 * object_size == inuse.
783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
784 * 0xcc (RED_ACTIVE) for objects in use.
787 * Meta data starts here.
789 * A. Free pointer (if we cannot overwrite object on free)
790 * B. Tracking data for SLAB_STORE_USER
791 * C. Padding to reach required alignment boundary or at mininum
792 * one word if debugging is on to be able to detect writes
793 * before the word boundary.
795 * Padding is done using 0x5a (POISON_INUSE)
798 * Nothing is used beyond s->size.
800 * If slabcaches are merged then the object_size and inuse boundaries are mostly
801 * ignored. And therefore no slab options that rely on these boundaries
802 * may be used with merged slabcaches.
805 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
807 unsigned long off
= s
->inuse
; /* The end of info */
810 /* Freepointer is placed after the object. */
811 off
+= sizeof(void *);
813 if (s
->flags
& SLAB_STORE_USER
)
814 /* We also have user information there */
815 off
+= 2 * sizeof(struct track
);
817 off
+= kasan_metadata_size(s
);
819 if (size_from_object(s
) == off
)
822 return check_bytes_and_report(s
, page
, p
, "Object padding",
823 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
826 /* Check the pad bytes at the end of a slab page */
827 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
836 if (!(s
->flags
& SLAB_POISON
))
839 start
= page_address(page
);
840 length
= PAGE_SIZE
<< compound_order(page
);
841 end
= start
+ length
;
842 remainder
= length
% s
->size
;
846 pad
= end
- remainder
;
847 metadata_access_enable();
848 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
849 metadata_access_disable();
852 while (end
> fault
&& end
[-1] == POISON_INUSE
)
855 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
856 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
858 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
862 static int check_object(struct kmem_cache
*s
, struct page
*page
,
863 void *object
, u8 val
)
866 u8
*endobject
= object
+ s
->object_size
;
868 if (s
->flags
& SLAB_RED_ZONE
) {
869 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
870 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
873 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
874 endobject
, val
, s
->inuse
- s
->object_size
))
877 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
878 check_bytes_and_report(s
, page
, p
, "Alignment padding",
879 endobject
, POISON_INUSE
,
880 s
->inuse
- s
->object_size
);
884 if (s
->flags
& SLAB_POISON
) {
885 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
886 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
887 POISON_FREE
, s
->object_size
- 1) ||
888 !check_bytes_and_report(s
, page
, p
, "Poison",
889 p
+ s
->object_size
- 1, POISON_END
, 1)))
892 * check_pad_bytes cleans up on its own.
894 check_pad_bytes(s
, page
, p
);
897 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
899 * Object and freepointer overlap. Cannot check
900 * freepointer while object is allocated.
904 /* Check free pointer validity */
905 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
906 object_err(s
, page
, p
, "Freepointer corrupt");
908 * No choice but to zap it and thus lose the remainder
909 * of the free objects in this slab. May cause
910 * another error because the object count is now wrong.
912 set_freepointer(s
, p
, NULL
);
918 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
922 VM_BUG_ON(!irqs_disabled());
924 if (!PageSlab(page
)) {
925 slab_err(s
, page
, "Not a valid slab page");
929 maxobj
= order_objects(compound_order(page
), s
->size
);
930 if (page
->objects
> maxobj
) {
931 slab_err(s
, page
, "objects %u > max %u",
932 page
->objects
, maxobj
);
935 if (page
->inuse
> page
->objects
) {
936 slab_err(s
, page
, "inuse %u > max %u",
937 page
->inuse
, page
->objects
);
940 /* Slab_pad_check fixes things up after itself */
941 slab_pad_check(s
, page
);
946 * Determine if a certain object on a page is on the freelist. Must hold the
947 * slab lock to guarantee that the chains are in a consistent state.
949 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
957 while (fp
&& nr
<= page
->objects
) {
960 if (!check_valid_pointer(s
, page
, fp
)) {
962 object_err(s
, page
, object
,
963 "Freechain corrupt");
964 set_freepointer(s
, object
, NULL
);
966 slab_err(s
, page
, "Freepointer corrupt");
967 page
->freelist
= NULL
;
968 page
->inuse
= page
->objects
;
969 slab_fix(s
, "Freelist cleared");
975 fp
= get_freepointer(s
, object
);
979 max_objects
= order_objects(compound_order(page
), s
->size
);
980 if (max_objects
> MAX_OBJS_PER_PAGE
)
981 max_objects
= MAX_OBJS_PER_PAGE
;
983 if (page
->objects
!= max_objects
) {
984 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
985 page
->objects
, max_objects
);
986 page
->objects
= max_objects
;
987 slab_fix(s
, "Number of objects adjusted.");
989 if (page
->inuse
!= page
->objects
- nr
) {
990 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
991 page
->inuse
, page
->objects
- nr
);
992 page
->inuse
= page
->objects
- nr
;
993 slab_fix(s
, "Object count adjusted.");
995 return search
== NULL
;
998 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1001 if (s
->flags
& SLAB_TRACE
) {
1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1004 alloc
? "alloc" : "free",
1005 object
, page
->inuse
,
1009 print_section(KERN_INFO
, "Object ", (void *)object
,
1017 * Tracking of fully allocated slabs for debugging purposes.
1019 static void add_full(struct kmem_cache
*s
,
1020 struct kmem_cache_node
*n
, struct page
*page
)
1022 if (!(s
->flags
& SLAB_STORE_USER
))
1025 lockdep_assert_held(&n
->list_lock
);
1026 list_add(&page
->lru
, &n
->full
);
1029 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1031 if (!(s
->flags
& SLAB_STORE_USER
))
1034 lockdep_assert_held(&n
->list_lock
);
1035 list_del(&page
->lru
);
1038 /* Tracking of the number of slabs for debugging purposes */
1039 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1041 struct kmem_cache_node
*n
= get_node(s
, node
);
1043 return atomic_long_read(&n
->nr_slabs
);
1046 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1048 return atomic_long_read(&n
->nr_slabs
);
1051 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1053 struct kmem_cache_node
*n
= get_node(s
, node
);
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1062 atomic_long_inc(&n
->nr_slabs
);
1063 atomic_long_add(objects
, &n
->total_objects
);
1066 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1068 struct kmem_cache_node
*n
= get_node(s
, node
);
1070 atomic_long_dec(&n
->nr_slabs
);
1071 atomic_long_sub(objects
, &n
->total_objects
);
1074 /* Object debug checks for alloc/free paths */
1075 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1078 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1081 init_object(s
, object
, SLUB_RED_INACTIVE
);
1082 init_tracking(s
, object
);
1085 static void setup_page_debug(struct kmem_cache
*s
, void *addr
, int order
)
1087 if (!(s
->flags
& SLAB_POISON
))
1090 metadata_access_enable();
1091 memset(addr
, POISON_INUSE
, PAGE_SIZE
<< order
);
1092 metadata_access_disable();
1095 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1096 struct page
*page
, void *object
)
1098 if (!check_slab(s
, page
))
1101 if (!check_valid_pointer(s
, page
, object
)) {
1102 object_err(s
, page
, object
, "Freelist Pointer check fails");
1106 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1112 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1114 void *object
, unsigned long addr
)
1116 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1117 if (!alloc_consistency_checks(s
, page
, object
))
1121 /* Success perform special debug activities for allocs */
1122 if (s
->flags
& SLAB_STORE_USER
)
1123 set_track(s
, object
, TRACK_ALLOC
, addr
);
1124 trace(s
, page
, object
, 1);
1125 init_object(s
, object
, SLUB_RED_ACTIVE
);
1129 if (PageSlab(page
)) {
1131 * If this is a slab page then lets do the best we can
1132 * to avoid issues in the future. Marking all objects
1133 * as used avoids touching the remaining objects.
1135 slab_fix(s
, "Marking all objects used");
1136 page
->inuse
= page
->objects
;
1137 page
->freelist
= NULL
;
1142 static inline int free_consistency_checks(struct kmem_cache
*s
,
1143 struct page
*page
, void *object
, unsigned long addr
)
1145 if (!check_valid_pointer(s
, page
, object
)) {
1146 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1150 if (on_freelist(s
, page
, object
)) {
1151 object_err(s
, page
, object
, "Object already free");
1155 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1158 if (unlikely(s
!= page
->slab_cache
)) {
1159 if (!PageSlab(page
)) {
1160 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1162 } else if (!page
->slab_cache
) {
1163 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1167 object_err(s
, page
, object
,
1168 "page slab pointer corrupt.");
1174 /* Supports checking bulk free of a constructed freelist */
1175 static noinline
int free_debug_processing(
1176 struct kmem_cache
*s
, struct page
*page
,
1177 void *head
, void *tail
, int bulk_cnt
,
1180 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1181 void *object
= head
;
1183 unsigned long uninitialized_var(flags
);
1186 spin_lock_irqsave(&n
->list_lock
, flags
);
1189 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1190 if (!check_slab(s
, page
))
1197 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1198 if (!free_consistency_checks(s
, page
, object
, addr
))
1202 if (s
->flags
& SLAB_STORE_USER
)
1203 set_track(s
, object
, TRACK_FREE
, addr
);
1204 trace(s
, page
, object
, 0);
1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206 init_object(s
, object
, SLUB_RED_INACTIVE
);
1208 /* Reached end of constructed freelist yet? */
1209 if (object
!= tail
) {
1210 object
= get_freepointer(s
, object
);
1216 if (cnt
!= bulk_cnt
)
1217 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1221 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1223 slab_fix(s
, "Object at 0x%p not freed", object
);
1227 static int __init
setup_slub_debug(char *str
)
1229 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1230 if (*str
++ != '=' || !*str
)
1232 * No options specified. Switch on full debugging.
1238 * No options but restriction on slabs. This means full
1239 * debugging for slabs matching a pattern.
1246 * Switch off all debugging measures.
1251 * Determine which debug features should be switched on
1253 for (; *str
&& *str
!= ','; str
++) {
1254 switch (tolower(*str
)) {
1256 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1259 slub_debug
|= SLAB_RED_ZONE
;
1262 slub_debug
|= SLAB_POISON
;
1265 slub_debug
|= SLAB_STORE_USER
;
1268 slub_debug
|= SLAB_TRACE
;
1271 slub_debug
|= SLAB_FAILSLAB
;
1275 * Avoid enabling debugging on caches if its minimum
1276 * order would increase as a result.
1278 disable_higher_order_debug
= 1;
1281 pr_err("slub_debug option '%c' unknown. skipped\n",
1288 slub_debug_slabs
= str
+ 1;
1293 __setup("slub_debug", setup_slub_debug
);
1296 * kmem_cache_flags - apply debugging options to the cache
1297 * @object_size: the size of an object without meta data
1298 * @flags: flags to set
1299 * @name: name of the cache
1300 * @ctor: constructor function
1302 * Debug option(s) are applied to @flags. In addition to the debug
1303 * option(s), if a slab name (or multiple) is specified i.e.
1304 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1305 * then only the select slabs will receive the debug option(s).
1307 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1308 slab_flags_t flags
, const char *name
,
1309 void (*ctor
)(void *))
1314 /* If slub_debug = 0, it folds into the if conditional. */
1315 if (!slub_debug_slabs
)
1316 return flags
| slub_debug
;
1319 iter
= slub_debug_slabs
;
1324 end
= strchr(iter
, ',');
1326 end
= iter
+ strlen(iter
);
1328 glob
= strnchr(iter
, end
- iter
, '*');
1330 cmplen
= glob
- iter
;
1332 cmplen
= max_t(size_t, len
, (end
- iter
));
1334 if (!strncmp(name
, iter
, cmplen
)) {
1335 flags
|= slub_debug
;
1346 #else /* !CONFIG_SLUB_DEBUG */
1347 static inline void setup_object_debug(struct kmem_cache
*s
,
1348 struct page
*page
, void *object
) {}
1349 static inline void setup_page_debug(struct kmem_cache
*s
,
1350 void *addr
, int order
) {}
1352 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1353 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1355 static inline int free_debug_processing(
1356 struct kmem_cache
*s
, struct page
*page
,
1357 void *head
, void *tail
, int bulk_cnt
,
1358 unsigned long addr
) { return 0; }
1360 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1362 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1363 void *object
, u8 val
) { return 1; }
1364 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1365 struct page
*page
) {}
1366 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1367 struct page
*page
) {}
1368 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1369 slab_flags_t flags
, const char *name
,
1370 void (*ctor
)(void *))
1374 #define slub_debug 0
1376 #define disable_higher_order_debug 0
1378 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1380 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1382 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1384 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1387 #endif /* CONFIG_SLUB_DEBUG */
1390 * Hooks for other subsystems that check memory allocations. In a typical
1391 * production configuration these hooks all should produce no code at all.
1393 static inline void *kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1395 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
1396 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1397 kmemleak_alloc(ptr
, size
, 1, flags
);
1401 static __always_inline
void kfree_hook(void *x
)
1404 kasan_kfree_large(x
, _RET_IP_
);
1407 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1409 kmemleak_free_recursive(x
, s
->flags
);
1412 * Trouble is that we may no longer disable interrupts in the fast path
1413 * So in order to make the debug calls that expect irqs to be
1414 * disabled we need to disable interrupts temporarily.
1416 #ifdef CONFIG_LOCKDEP
1418 unsigned long flags
;
1420 local_irq_save(flags
);
1421 debug_check_no_locks_freed(x
, s
->object_size
);
1422 local_irq_restore(flags
);
1425 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1426 debug_check_no_obj_freed(x
, s
->object_size
);
1428 /* KASAN might put x into memory quarantine, delaying its reuse */
1429 return kasan_slab_free(s
, x
, _RET_IP_
);
1432 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1433 void **head
, void **tail
)
1436 * Compiler cannot detect this function can be removed if slab_free_hook()
1437 * evaluates to nothing. Thus, catch all relevant config debug options here.
1439 #if defined(CONFIG_LOCKDEP) || \
1440 defined(CONFIG_DEBUG_KMEMLEAK) || \
1441 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1442 defined(CONFIG_KASAN)
1446 void *old_tail
= *tail
? *tail
: *head
;
1448 /* Head and tail of the reconstructed freelist */
1454 next
= get_freepointer(s
, object
);
1455 /* If object's reuse doesn't have to be delayed */
1456 if (!slab_free_hook(s
, object
)) {
1457 /* Move object to the new freelist */
1458 set_freepointer(s
, object
, *head
);
1463 } while (object
!= old_tail
);
1468 return *head
!= NULL
;
1474 static void *setup_object(struct kmem_cache
*s
, struct page
*page
,
1477 setup_object_debug(s
, page
, object
);
1478 object
= kasan_init_slab_obj(s
, object
);
1479 if (unlikely(s
->ctor
)) {
1480 kasan_unpoison_object_data(s
, object
);
1482 kasan_poison_object_data(s
, object
);
1488 * Slab allocation and freeing
1490 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1491 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1494 unsigned int order
= oo_order(oo
);
1496 if (node
== NUMA_NO_NODE
)
1497 page
= alloc_pages(flags
, order
);
1499 page
= __alloc_pages_node(node
, flags
, order
);
1501 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1502 __free_pages(page
, order
);
1509 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1510 /* Pre-initialize the random sequence cache */
1511 static int init_cache_random_seq(struct kmem_cache
*s
)
1513 unsigned int count
= oo_objects(s
->oo
);
1516 /* Bailout if already initialised */
1520 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1522 pr_err("SLUB: Unable to initialize free list for %s\n",
1527 /* Transform to an offset on the set of pages */
1528 if (s
->random_seq
) {
1531 for (i
= 0; i
< count
; i
++)
1532 s
->random_seq
[i
] *= s
->size
;
1537 /* Initialize each random sequence freelist per cache */
1538 static void __init
init_freelist_randomization(void)
1540 struct kmem_cache
*s
;
1542 mutex_lock(&slab_mutex
);
1544 list_for_each_entry(s
, &slab_caches
, list
)
1545 init_cache_random_seq(s
);
1547 mutex_unlock(&slab_mutex
);
1550 /* Get the next entry on the pre-computed freelist randomized */
1551 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1552 unsigned long *pos
, void *start
,
1553 unsigned long page_limit
,
1554 unsigned long freelist_count
)
1559 * If the target page allocation failed, the number of objects on the
1560 * page might be smaller than the usual size defined by the cache.
1563 idx
= s
->random_seq
[*pos
];
1565 if (*pos
>= freelist_count
)
1567 } while (unlikely(idx
>= page_limit
));
1569 return (char *)start
+ idx
;
1572 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1573 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1578 unsigned long idx
, pos
, page_limit
, freelist_count
;
1580 if (page
->objects
< 2 || !s
->random_seq
)
1583 freelist_count
= oo_objects(s
->oo
);
1584 pos
= get_random_int() % freelist_count
;
1586 page_limit
= page
->objects
* s
->size
;
1587 start
= fixup_red_left(s
, page_address(page
));
1589 /* First entry is used as the base of the freelist */
1590 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1592 cur
= setup_object(s
, page
, cur
);
1593 page
->freelist
= cur
;
1595 for (idx
= 1; idx
< page
->objects
; idx
++) {
1596 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1598 next
= setup_object(s
, page
, next
);
1599 set_freepointer(s
, cur
, next
);
1602 set_freepointer(s
, cur
, NULL
);
1607 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1611 static inline void init_freelist_randomization(void) { }
1612 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1616 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1618 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1621 struct kmem_cache_order_objects oo
= s
->oo
;
1623 void *start
, *p
, *next
;
1627 flags
&= gfp_allowed_mask
;
1629 if (gfpflags_allow_blocking(flags
))
1632 flags
|= s
->allocflags
;
1635 * Let the initial higher-order allocation fail under memory pressure
1636 * so we fall-back to the minimum order allocation.
1638 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1639 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1640 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1642 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1643 if (unlikely(!page
)) {
1647 * Allocation may have failed due to fragmentation.
1648 * Try a lower order alloc if possible
1650 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1651 if (unlikely(!page
))
1653 stat(s
, ORDER_FALLBACK
);
1656 page
->objects
= oo_objects(oo
);
1658 order
= compound_order(page
);
1659 page
->slab_cache
= s
;
1660 __SetPageSlab(page
);
1661 if (page_is_pfmemalloc(page
))
1662 SetPageSlabPfmemalloc(page
);
1664 kasan_poison_slab(page
);
1666 start
= page_address(page
);
1668 setup_page_debug(s
, start
, order
);
1670 shuffle
= shuffle_freelist(s
, page
);
1673 start
= fixup_red_left(s
, start
);
1674 start
= setup_object(s
, page
, start
);
1675 page
->freelist
= start
;
1676 for (idx
= 0, p
= start
; idx
< page
->objects
- 1; idx
++) {
1678 next
= setup_object(s
, page
, next
);
1679 set_freepointer(s
, p
, next
);
1682 set_freepointer(s
, p
, NULL
);
1685 page
->inuse
= page
->objects
;
1689 if (gfpflags_allow_blocking(flags
))
1690 local_irq_disable();
1694 mod_lruvec_page_state(page
,
1695 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1696 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1699 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1704 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1706 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1707 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1708 flags
&= ~GFP_SLAB_BUG_MASK
;
1709 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1710 invalid_mask
, &invalid_mask
, flags
, &flags
);
1714 return allocate_slab(s
,
1715 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1718 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1720 int order
= compound_order(page
);
1721 int pages
= 1 << order
;
1723 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1726 slab_pad_check(s
, page
);
1727 for_each_object(p
, s
, page_address(page
),
1729 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1732 mod_lruvec_page_state(page
,
1733 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1734 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1737 __ClearPageSlabPfmemalloc(page
);
1738 __ClearPageSlab(page
);
1740 page
->mapping
= NULL
;
1741 if (current
->reclaim_state
)
1742 current
->reclaim_state
->reclaimed_slab
+= pages
;
1743 memcg_uncharge_slab(page
, order
, s
);
1744 __free_pages(page
, order
);
1747 static void rcu_free_slab(struct rcu_head
*h
)
1749 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1751 __free_slab(page
->slab_cache
, page
);
1754 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1756 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1757 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1759 __free_slab(s
, page
);
1762 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1764 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1769 * Management of partially allocated slabs.
1772 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1775 if (tail
== DEACTIVATE_TO_TAIL
)
1776 list_add_tail(&page
->lru
, &n
->partial
);
1778 list_add(&page
->lru
, &n
->partial
);
1781 static inline void add_partial(struct kmem_cache_node
*n
,
1782 struct page
*page
, int tail
)
1784 lockdep_assert_held(&n
->list_lock
);
1785 __add_partial(n
, page
, tail
);
1788 static inline void remove_partial(struct kmem_cache_node
*n
,
1791 lockdep_assert_held(&n
->list_lock
);
1792 list_del(&page
->lru
);
1797 * Remove slab from the partial list, freeze it and
1798 * return the pointer to the freelist.
1800 * Returns a list of objects or NULL if it fails.
1802 static inline void *acquire_slab(struct kmem_cache
*s
,
1803 struct kmem_cache_node
*n
, struct page
*page
,
1804 int mode
, int *objects
)
1807 unsigned long counters
;
1810 lockdep_assert_held(&n
->list_lock
);
1813 * Zap the freelist and set the frozen bit.
1814 * The old freelist is the list of objects for the
1815 * per cpu allocation list.
1817 freelist
= page
->freelist
;
1818 counters
= page
->counters
;
1819 new.counters
= counters
;
1820 *objects
= new.objects
- new.inuse
;
1822 new.inuse
= page
->objects
;
1823 new.freelist
= NULL
;
1825 new.freelist
= freelist
;
1828 VM_BUG_ON(new.frozen
);
1831 if (!__cmpxchg_double_slab(s
, page
,
1833 new.freelist
, new.counters
,
1837 remove_partial(n
, page
);
1842 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1843 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1846 * Try to allocate a partial slab from a specific node.
1848 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1849 struct kmem_cache_cpu
*c
, gfp_t flags
)
1851 struct page
*page
, *page2
;
1852 void *object
= NULL
;
1853 unsigned int available
= 0;
1857 * Racy check. If we mistakenly see no partial slabs then we
1858 * just allocate an empty slab. If we mistakenly try to get a
1859 * partial slab and there is none available then get_partials()
1862 if (!n
|| !n
->nr_partial
)
1865 spin_lock(&n
->list_lock
);
1866 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1869 if (!pfmemalloc_match(page
, flags
))
1872 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1876 available
+= objects
;
1879 stat(s
, ALLOC_FROM_PARTIAL
);
1882 put_cpu_partial(s
, page
, 0);
1883 stat(s
, CPU_PARTIAL_NODE
);
1885 if (!kmem_cache_has_cpu_partial(s
)
1886 || available
> slub_cpu_partial(s
) / 2)
1890 spin_unlock(&n
->list_lock
);
1895 * Get a page from somewhere. Search in increasing NUMA distances.
1897 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1898 struct kmem_cache_cpu
*c
)
1901 struct zonelist
*zonelist
;
1904 enum zone_type high_zoneidx
= gfp_zone(flags
);
1906 unsigned int cpuset_mems_cookie
;
1909 * The defrag ratio allows a configuration of the tradeoffs between
1910 * inter node defragmentation and node local allocations. A lower
1911 * defrag_ratio increases the tendency to do local allocations
1912 * instead of attempting to obtain partial slabs from other nodes.
1914 * If the defrag_ratio is set to 0 then kmalloc() always
1915 * returns node local objects. If the ratio is higher then kmalloc()
1916 * may return off node objects because partial slabs are obtained
1917 * from other nodes and filled up.
1919 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1920 * (which makes defrag_ratio = 1000) then every (well almost)
1921 * allocation will first attempt to defrag slab caches on other nodes.
1922 * This means scanning over all nodes to look for partial slabs which
1923 * may be expensive if we do it every time we are trying to find a slab
1924 * with available objects.
1926 if (!s
->remote_node_defrag_ratio
||
1927 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1931 cpuset_mems_cookie
= read_mems_allowed_begin();
1932 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1933 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1934 struct kmem_cache_node
*n
;
1936 n
= get_node(s
, zone_to_nid(zone
));
1938 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1939 n
->nr_partial
> s
->min_partial
) {
1940 object
= get_partial_node(s
, n
, c
, flags
);
1943 * Don't check read_mems_allowed_retry()
1944 * here - if mems_allowed was updated in
1945 * parallel, that was a harmless race
1946 * between allocation and the cpuset
1953 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1959 * Get a partial page, lock it and return it.
1961 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1962 struct kmem_cache_cpu
*c
)
1965 int searchnode
= node
;
1967 if (node
== NUMA_NO_NODE
)
1968 searchnode
= numa_mem_id();
1969 else if (!node_present_pages(node
))
1970 searchnode
= node_to_mem_node(node
);
1972 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1973 if (object
|| node
!= NUMA_NO_NODE
)
1976 return get_any_partial(s
, flags
, c
);
1979 #ifdef CONFIG_PREEMPT
1981 * Calculate the next globally unique transaction for disambiguiation
1982 * during cmpxchg. The transactions start with the cpu number and are then
1983 * incremented by CONFIG_NR_CPUS.
1985 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1988 * No preemption supported therefore also no need to check for
1994 static inline unsigned long next_tid(unsigned long tid
)
1996 return tid
+ TID_STEP
;
1999 static inline unsigned int tid_to_cpu(unsigned long tid
)
2001 return tid
% TID_STEP
;
2004 static inline unsigned long tid_to_event(unsigned long tid
)
2006 return tid
/ TID_STEP
;
2009 static inline unsigned int init_tid(int cpu
)
2014 static inline void note_cmpxchg_failure(const char *n
,
2015 const struct kmem_cache
*s
, unsigned long tid
)
2017 #ifdef SLUB_DEBUG_CMPXCHG
2018 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2020 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2022 #ifdef CONFIG_PREEMPT
2023 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2024 pr_warn("due to cpu change %d -> %d\n",
2025 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2028 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2029 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2030 tid_to_event(tid
), tid_to_event(actual_tid
));
2032 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2033 actual_tid
, tid
, next_tid(tid
));
2035 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2038 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2042 for_each_possible_cpu(cpu
)
2043 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2047 * Remove the cpu slab
2049 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2050 void *freelist
, struct kmem_cache_cpu
*c
)
2052 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2053 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2055 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2057 int tail
= DEACTIVATE_TO_HEAD
;
2061 if (page
->freelist
) {
2062 stat(s
, DEACTIVATE_REMOTE_FREES
);
2063 tail
= DEACTIVATE_TO_TAIL
;
2067 * Stage one: Free all available per cpu objects back
2068 * to the page freelist while it is still frozen. Leave the
2071 * There is no need to take the list->lock because the page
2074 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2076 unsigned long counters
;
2079 prior
= page
->freelist
;
2080 counters
= page
->counters
;
2081 set_freepointer(s
, freelist
, prior
);
2082 new.counters
= counters
;
2084 VM_BUG_ON(!new.frozen
);
2086 } while (!__cmpxchg_double_slab(s
, page
,
2088 freelist
, new.counters
,
2089 "drain percpu freelist"));
2091 freelist
= nextfree
;
2095 * Stage two: Ensure that the page is unfrozen while the
2096 * list presence reflects the actual number of objects
2099 * We setup the list membership and then perform a cmpxchg
2100 * with the count. If there is a mismatch then the page
2101 * is not unfrozen but the page is on the wrong list.
2103 * Then we restart the process which may have to remove
2104 * the page from the list that we just put it on again
2105 * because the number of objects in the slab may have
2110 old
.freelist
= page
->freelist
;
2111 old
.counters
= page
->counters
;
2112 VM_BUG_ON(!old
.frozen
);
2114 /* Determine target state of the slab */
2115 new.counters
= old
.counters
;
2118 set_freepointer(s
, freelist
, old
.freelist
);
2119 new.freelist
= freelist
;
2121 new.freelist
= old
.freelist
;
2125 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2127 else if (new.freelist
) {
2132 * Taking the spinlock removes the possibility
2133 * that acquire_slab() will see a slab page that
2136 spin_lock(&n
->list_lock
);
2140 if (kmem_cache_debug(s
) && !lock
) {
2143 * This also ensures that the scanning of full
2144 * slabs from diagnostic functions will not see
2147 spin_lock(&n
->list_lock
);
2153 remove_partial(n
, page
);
2154 else if (l
== M_FULL
)
2155 remove_full(s
, n
, page
);
2158 add_partial(n
, page
, tail
);
2159 else if (m
== M_FULL
)
2160 add_full(s
, n
, page
);
2164 if (!__cmpxchg_double_slab(s
, page
,
2165 old
.freelist
, old
.counters
,
2166 new.freelist
, new.counters
,
2171 spin_unlock(&n
->list_lock
);
2175 else if (m
== M_FULL
)
2176 stat(s
, DEACTIVATE_FULL
);
2177 else if (m
== M_FREE
) {
2178 stat(s
, DEACTIVATE_EMPTY
);
2179 discard_slab(s
, page
);
2188 * Unfreeze all the cpu partial slabs.
2190 * This function must be called with interrupts disabled
2191 * for the cpu using c (or some other guarantee must be there
2192 * to guarantee no concurrent accesses).
2194 static void unfreeze_partials(struct kmem_cache
*s
,
2195 struct kmem_cache_cpu
*c
)
2197 #ifdef CONFIG_SLUB_CPU_PARTIAL
2198 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2199 struct page
*page
, *discard_page
= NULL
;
2201 while ((page
= c
->partial
)) {
2205 c
->partial
= page
->next
;
2207 n2
= get_node(s
, page_to_nid(page
));
2210 spin_unlock(&n
->list_lock
);
2213 spin_lock(&n
->list_lock
);
2218 old
.freelist
= page
->freelist
;
2219 old
.counters
= page
->counters
;
2220 VM_BUG_ON(!old
.frozen
);
2222 new.counters
= old
.counters
;
2223 new.freelist
= old
.freelist
;
2227 } while (!__cmpxchg_double_slab(s
, page
,
2228 old
.freelist
, old
.counters
,
2229 new.freelist
, new.counters
,
2230 "unfreezing slab"));
2232 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2233 page
->next
= discard_page
;
2234 discard_page
= page
;
2236 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2237 stat(s
, FREE_ADD_PARTIAL
);
2242 spin_unlock(&n
->list_lock
);
2244 while (discard_page
) {
2245 page
= discard_page
;
2246 discard_page
= discard_page
->next
;
2248 stat(s
, DEACTIVATE_EMPTY
);
2249 discard_slab(s
, page
);
2256 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2257 * partial page slot if available.
2259 * If we did not find a slot then simply move all the partials to the
2260 * per node partial list.
2262 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2264 #ifdef CONFIG_SLUB_CPU_PARTIAL
2265 struct page
*oldpage
;
2273 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2276 pobjects
= oldpage
->pobjects
;
2277 pages
= oldpage
->pages
;
2278 if (drain
&& pobjects
> s
->cpu_partial
) {
2279 unsigned long flags
;
2281 * partial array is full. Move the existing
2282 * set to the per node partial list.
2284 local_irq_save(flags
);
2285 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2286 local_irq_restore(flags
);
2290 stat(s
, CPU_PARTIAL_DRAIN
);
2295 pobjects
+= page
->objects
- page
->inuse
;
2297 page
->pages
= pages
;
2298 page
->pobjects
= pobjects
;
2299 page
->next
= oldpage
;
2301 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2303 if (unlikely(!s
->cpu_partial
)) {
2304 unsigned long flags
;
2306 local_irq_save(flags
);
2307 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2308 local_irq_restore(flags
);
2314 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2316 stat(s
, CPUSLAB_FLUSH
);
2317 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2319 c
->tid
= next_tid(c
->tid
);
2325 * Called from IPI handler with interrupts disabled.
2327 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2329 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2334 unfreeze_partials(s
, c
);
2337 static void flush_cpu_slab(void *d
)
2339 struct kmem_cache
*s
= d
;
2341 __flush_cpu_slab(s
, smp_processor_id());
2344 static bool has_cpu_slab(int cpu
, void *info
)
2346 struct kmem_cache
*s
= info
;
2347 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2349 return c
->page
|| slub_percpu_partial(c
);
2352 static void flush_all(struct kmem_cache
*s
)
2354 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2358 * Use the cpu notifier to insure that the cpu slabs are flushed when
2361 static int slub_cpu_dead(unsigned int cpu
)
2363 struct kmem_cache
*s
;
2364 unsigned long flags
;
2366 mutex_lock(&slab_mutex
);
2367 list_for_each_entry(s
, &slab_caches
, list
) {
2368 local_irq_save(flags
);
2369 __flush_cpu_slab(s
, cpu
);
2370 local_irq_restore(flags
);
2372 mutex_unlock(&slab_mutex
);
2377 * Check if the objects in a per cpu structure fit numa
2378 * locality expectations.
2380 static inline int node_match(struct page
*page
, int node
)
2383 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2389 #ifdef CONFIG_SLUB_DEBUG
2390 static int count_free(struct page
*page
)
2392 return page
->objects
- page
->inuse
;
2395 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2397 return atomic_long_read(&n
->total_objects
);
2399 #endif /* CONFIG_SLUB_DEBUG */
2401 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2402 static unsigned long count_partial(struct kmem_cache_node
*n
,
2403 int (*get_count
)(struct page
*))
2405 unsigned long flags
;
2406 unsigned long x
= 0;
2409 spin_lock_irqsave(&n
->list_lock
, flags
);
2410 list_for_each_entry(page
, &n
->partial
, lru
)
2411 x
+= get_count(page
);
2412 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2415 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2417 static noinline
void
2418 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2420 #ifdef CONFIG_SLUB_DEBUG
2421 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2422 DEFAULT_RATELIMIT_BURST
);
2424 struct kmem_cache_node
*n
;
2426 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2430 nid
, gfpflags
, &gfpflags
);
2431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2432 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2435 if (oo_order(s
->min
) > get_order(s
->object_size
))
2436 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2439 for_each_kmem_cache_node(s
, node
, n
) {
2440 unsigned long nr_slabs
;
2441 unsigned long nr_objs
;
2442 unsigned long nr_free
;
2444 nr_free
= count_partial(n
, count_free
);
2445 nr_slabs
= node_nr_slabs(n
);
2446 nr_objs
= node_nr_objs(n
);
2448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2449 node
, nr_slabs
, nr_objs
, nr_free
);
2454 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2455 int node
, struct kmem_cache_cpu
**pc
)
2458 struct kmem_cache_cpu
*c
= *pc
;
2461 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2463 freelist
= get_partial(s
, flags
, node
, c
);
2468 page
= new_slab(s
, flags
, node
);
2470 c
= raw_cpu_ptr(s
->cpu_slab
);
2475 * No other reference to the page yet so we can
2476 * muck around with it freely without cmpxchg
2478 freelist
= page
->freelist
;
2479 page
->freelist
= NULL
;
2481 stat(s
, ALLOC_SLAB
);
2489 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2491 if (unlikely(PageSlabPfmemalloc(page
)))
2492 return gfp_pfmemalloc_allowed(gfpflags
);
2498 * Check the page->freelist of a page and either transfer the freelist to the
2499 * per cpu freelist or deactivate the page.
2501 * The page is still frozen if the return value is not NULL.
2503 * If this function returns NULL then the page has been unfrozen.
2505 * This function must be called with interrupt disabled.
2507 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2510 unsigned long counters
;
2514 freelist
= page
->freelist
;
2515 counters
= page
->counters
;
2517 new.counters
= counters
;
2518 VM_BUG_ON(!new.frozen
);
2520 new.inuse
= page
->objects
;
2521 new.frozen
= freelist
!= NULL
;
2523 } while (!__cmpxchg_double_slab(s
, page
,
2532 * Slow path. The lockless freelist is empty or we need to perform
2535 * Processing is still very fast if new objects have been freed to the
2536 * regular freelist. In that case we simply take over the regular freelist
2537 * as the lockless freelist and zap the regular freelist.
2539 * If that is not working then we fall back to the partial lists. We take the
2540 * first element of the freelist as the object to allocate now and move the
2541 * rest of the freelist to the lockless freelist.
2543 * And if we were unable to get a new slab from the partial slab lists then
2544 * we need to allocate a new slab. This is the slowest path since it involves
2545 * a call to the page allocator and the setup of a new slab.
2547 * Version of __slab_alloc to use when we know that interrupts are
2548 * already disabled (which is the case for bulk allocation).
2550 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2551 unsigned long addr
, struct kmem_cache_cpu
*c
)
2561 if (unlikely(!node_match(page
, node
))) {
2562 int searchnode
= node
;
2564 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2565 searchnode
= node_to_mem_node(node
);
2567 if (unlikely(!node_match(page
, searchnode
))) {
2568 stat(s
, ALLOC_NODE_MISMATCH
);
2569 deactivate_slab(s
, page
, c
->freelist
, c
);
2575 * By rights, we should be searching for a slab page that was
2576 * PFMEMALLOC but right now, we are losing the pfmemalloc
2577 * information when the page leaves the per-cpu allocator
2579 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2580 deactivate_slab(s
, page
, c
->freelist
, c
);
2584 /* must check again c->freelist in case of cpu migration or IRQ */
2585 freelist
= c
->freelist
;
2589 freelist
= get_freelist(s
, page
);
2593 stat(s
, DEACTIVATE_BYPASS
);
2597 stat(s
, ALLOC_REFILL
);
2601 * freelist is pointing to the list of objects to be used.
2602 * page is pointing to the page from which the objects are obtained.
2603 * That page must be frozen for per cpu allocations to work.
2605 VM_BUG_ON(!c
->page
->frozen
);
2606 c
->freelist
= get_freepointer(s
, freelist
);
2607 c
->tid
= next_tid(c
->tid
);
2612 if (slub_percpu_partial(c
)) {
2613 page
= c
->page
= slub_percpu_partial(c
);
2614 slub_set_percpu_partial(c
, page
);
2615 stat(s
, CPU_PARTIAL_ALLOC
);
2619 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2621 if (unlikely(!freelist
)) {
2622 slab_out_of_memory(s
, gfpflags
, node
);
2627 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2630 /* Only entered in the debug case */
2631 if (kmem_cache_debug(s
) &&
2632 !alloc_debug_processing(s
, page
, freelist
, addr
))
2633 goto new_slab
; /* Slab failed checks. Next slab needed */
2635 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2640 * Another one that disabled interrupt and compensates for possible
2641 * cpu changes by refetching the per cpu area pointer.
2643 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2644 unsigned long addr
, struct kmem_cache_cpu
*c
)
2647 unsigned long flags
;
2649 local_irq_save(flags
);
2650 #ifdef CONFIG_PREEMPT
2652 * We may have been preempted and rescheduled on a different
2653 * cpu before disabling interrupts. Need to reload cpu area
2656 c
= this_cpu_ptr(s
->cpu_slab
);
2659 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2660 local_irq_restore(flags
);
2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2666 * have the fastpath folded into their functions. So no function call
2667 * overhead for requests that can be satisfied on the fastpath.
2669 * The fastpath works by first checking if the lockless freelist can be used.
2670 * If not then __slab_alloc is called for slow processing.
2672 * Otherwise we can simply pick the next object from the lockless free list.
2674 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2675 gfp_t gfpflags
, int node
, unsigned long addr
)
2678 struct kmem_cache_cpu
*c
;
2682 s
= slab_pre_alloc_hook(s
, gfpflags
);
2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2688 * enabled. We may switch back and forth between cpus while
2689 * reading from one cpu area. That does not matter as long
2690 * as we end up on the original cpu again when doing the cmpxchg.
2692 * We should guarantee that tid and kmem_cache are retrieved on
2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2694 * to check if it is matched or not.
2697 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2698 c
= raw_cpu_ptr(s
->cpu_slab
);
2699 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2700 unlikely(tid
!= READ_ONCE(c
->tid
)));
2703 * Irqless object alloc/free algorithm used here depends on sequence
2704 * of fetching cpu_slab's data. tid should be fetched before anything
2705 * on c to guarantee that object and page associated with previous tid
2706 * won't be used with current tid. If we fetch tid first, object and
2707 * page could be one associated with next tid and our alloc/free
2708 * request will be failed. In this case, we will retry. So, no problem.
2713 * The transaction ids are globally unique per cpu and per operation on
2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2715 * occurs on the right processor and that there was no operation on the
2716 * linked list in between.
2719 object
= c
->freelist
;
2721 if (unlikely(!object
|| !node_match(page
, node
))) {
2722 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2723 stat(s
, ALLOC_SLOWPATH
);
2725 void *next_object
= get_freepointer_safe(s
, object
);
2728 * The cmpxchg will only match if there was no additional
2729 * operation and if we are on the right processor.
2731 * The cmpxchg does the following atomically (without lock
2733 * 1. Relocate first pointer to the current per cpu area.
2734 * 2. Verify that tid and freelist have not been changed
2735 * 3. If they were not changed replace tid and freelist
2737 * Since this is without lock semantics the protection is only
2738 * against code executing on this cpu *not* from access by
2741 if (unlikely(!this_cpu_cmpxchg_double(
2742 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2744 next_object
, next_tid(tid
)))) {
2746 note_cmpxchg_failure("slab_alloc", s
, tid
);
2749 prefetch_freepointer(s
, next_object
);
2750 stat(s
, ALLOC_FASTPATH
);
2753 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2754 memset(object
, 0, s
->object_size
);
2756 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2761 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2762 gfp_t gfpflags
, unsigned long addr
)
2764 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2767 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2769 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2771 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2776 EXPORT_SYMBOL(kmem_cache_alloc
);
2778 #ifdef CONFIG_TRACING
2779 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2781 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2782 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2783 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2786 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2790 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2792 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2794 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2795 s
->object_size
, s
->size
, gfpflags
, node
);
2799 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2801 #ifdef CONFIG_TRACING
2802 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2804 int node
, size_t size
)
2806 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2808 trace_kmalloc_node(_RET_IP_
, ret
,
2809 size
, s
->size
, gfpflags
, node
);
2811 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2814 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2819 * Slow path handling. This may still be called frequently since objects
2820 * have a longer lifetime than the cpu slabs in most processing loads.
2822 * So we still attempt to reduce cache line usage. Just take the slab
2823 * lock and free the item. If there is no additional partial page
2824 * handling required then we can return immediately.
2826 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2827 void *head
, void *tail
, int cnt
,
2834 unsigned long counters
;
2835 struct kmem_cache_node
*n
= NULL
;
2836 unsigned long uninitialized_var(flags
);
2838 stat(s
, FREE_SLOWPATH
);
2840 if (kmem_cache_debug(s
) &&
2841 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2846 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2849 prior
= page
->freelist
;
2850 counters
= page
->counters
;
2851 set_freepointer(s
, tail
, prior
);
2852 new.counters
= counters
;
2853 was_frozen
= new.frozen
;
2855 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2857 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2860 * Slab was on no list before and will be
2862 * We can defer the list move and instead
2867 } else { /* Needs to be taken off a list */
2869 n
= get_node(s
, page_to_nid(page
));
2871 * Speculatively acquire the list_lock.
2872 * If the cmpxchg does not succeed then we may
2873 * drop the list_lock without any processing.
2875 * Otherwise the list_lock will synchronize with
2876 * other processors updating the list of slabs.
2878 spin_lock_irqsave(&n
->list_lock
, flags
);
2883 } while (!cmpxchg_double_slab(s
, page
,
2891 * If we just froze the page then put it onto the
2892 * per cpu partial list.
2894 if (new.frozen
&& !was_frozen
) {
2895 put_cpu_partial(s
, page
, 1);
2896 stat(s
, CPU_PARTIAL_FREE
);
2899 * The list lock was not taken therefore no list
2900 * activity can be necessary.
2903 stat(s
, FREE_FROZEN
);
2907 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2911 * Objects left in the slab. If it was not on the partial list before
2914 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2915 if (kmem_cache_debug(s
))
2916 remove_full(s
, n
, page
);
2917 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2918 stat(s
, FREE_ADD_PARTIAL
);
2920 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2926 * Slab on the partial list.
2928 remove_partial(n
, page
);
2929 stat(s
, FREE_REMOVE_PARTIAL
);
2931 /* Slab must be on the full list */
2932 remove_full(s
, n
, page
);
2935 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2937 discard_slab(s
, page
);
2941 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2942 * can perform fastpath freeing without additional function calls.
2944 * The fastpath is only possible if we are freeing to the current cpu slab
2945 * of this processor. This typically the case if we have just allocated
2948 * If fastpath is not possible then fall back to __slab_free where we deal
2949 * with all sorts of special processing.
2951 * Bulk free of a freelist with several objects (all pointing to the
2952 * same page) possible by specifying head and tail ptr, plus objects
2953 * count (cnt). Bulk free indicated by tail pointer being set.
2955 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2956 struct page
*page
, void *head
, void *tail
,
2957 int cnt
, unsigned long addr
)
2959 void *tail_obj
= tail
? : head
;
2960 struct kmem_cache_cpu
*c
;
2964 * Determine the currently cpus per cpu slab.
2965 * The cpu may change afterward. However that does not matter since
2966 * data is retrieved via this pointer. If we are on the same cpu
2967 * during the cmpxchg then the free will succeed.
2970 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2971 c
= raw_cpu_ptr(s
->cpu_slab
);
2972 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2973 unlikely(tid
!= READ_ONCE(c
->tid
)));
2975 /* Same with comment on barrier() in slab_alloc_node() */
2978 if (likely(page
== c
->page
)) {
2979 set_freepointer(s
, tail_obj
, c
->freelist
);
2981 if (unlikely(!this_cpu_cmpxchg_double(
2982 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2984 head
, next_tid(tid
)))) {
2986 note_cmpxchg_failure("slab_free", s
, tid
);
2989 stat(s
, FREE_FASTPATH
);
2991 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2995 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2996 void *head
, void *tail
, int cnt
,
3000 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3001 * to remove objects, whose reuse must be delayed.
3003 if (slab_free_freelist_hook(s
, &head
, &tail
))
3004 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3007 #ifdef CONFIG_KASAN_GENERIC
3008 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3010 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3014 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3016 s
= cache_from_obj(s
, x
);
3019 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3020 trace_kmem_cache_free(_RET_IP_
, x
);
3022 EXPORT_SYMBOL(kmem_cache_free
);
3024 struct detached_freelist
{
3029 struct kmem_cache
*s
;
3033 * This function progressively scans the array with free objects (with
3034 * a limited look ahead) and extract objects belonging to the same
3035 * page. It builds a detached freelist directly within the given
3036 * page/objects. This can happen without any need for
3037 * synchronization, because the objects are owned by running process.
3038 * The freelist is build up as a single linked list in the objects.
3039 * The idea is, that this detached freelist can then be bulk
3040 * transferred to the real freelist(s), but only requiring a single
3041 * synchronization primitive. Look ahead in the array is limited due
3042 * to performance reasons.
3045 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3046 void **p
, struct detached_freelist
*df
)
3048 size_t first_skipped_index
= 0;
3053 /* Always re-init detached_freelist */
3058 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3059 } while (!object
&& size
);
3064 page
= virt_to_head_page(object
);
3066 /* Handle kalloc'ed objects */
3067 if (unlikely(!PageSlab(page
))) {
3068 BUG_ON(!PageCompound(page
));
3070 __free_pages(page
, compound_order(page
));
3071 p
[size
] = NULL
; /* mark object processed */
3074 /* Derive kmem_cache from object */
3075 df
->s
= page
->slab_cache
;
3077 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3080 /* Start new detached freelist */
3082 set_freepointer(df
->s
, object
, NULL
);
3084 df
->freelist
= object
;
3085 p
[size
] = NULL
; /* mark object processed */
3091 continue; /* Skip processed objects */
3093 /* df->page is always set at this point */
3094 if (df
->page
== virt_to_head_page(object
)) {
3095 /* Opportunity build freelist */
3096 set_freepointer(df
->s
, object
, df
->freelist
);
3097 df
->freelist
= object
;
3099 p
[size
] = NULL
; /* mark object processed */
3104 /* Limit look ahead search */
3108 if (!first_skipped_index
)
3109 first_skipped_index
= size
+ 1;
3112 return first_skipped_index
;
3115 /* Note that interrupts must be enabled when calling this function. */
3116 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3122 struct detached_freelist df
;
3124 size
= build_detached_freelist(s
, size
, p
, &df
);
3128 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3129 } while (likely(size
));
3131 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3133 /* Note that interrupts must be enabled when calling this function. */
3134 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3137 struct kmem_cache_cpu
*c
;
3140 /* memcg and kmem_cache debug support */
3141 s
= slab_pre_alloc_hook(s
, flags
);
3145 * Drain objects in the per cpu slab, while disabling local
3146 * IRQs, which protects against PREEMPT and interrupts
3147 * handlers invoking normal fastpath.
3149 local_irq_disable();
3150 c
= this_cpu_ptr(s
->cpu_slab
);
3152 for (i
= 0; i
< size
; i
++) {
3153 void *object
= c
->freelist
;
3155 if (unlikely(!object
)) {
3157 * Invoking slow path likely have side-effect
3158 * of re-populating per CPU c->freelist
3160 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3162 if (unlikely(!p
[i
]))
3165 c
= this_cpu_ptr(s
->cpu_slab
);
3166 continue; /* goto for-loop */
3168 c
->freelist
= get_freepointer(s
, object
);
3171 c
->tid
= next_tid(c
->tid
);
3174 /* Clear memory outside IRQ disabled fastpath loop */
3175 if (unlikely(flags
& __GFP_ZERO
)) {
3178 for (j
= 0; j
< i
; j
++)
3179 memset(p
[j
], 0, s
->object_size
);
3182 /* memcg and kmem_cache debug support */
3183 slab_post_alloc_hook(s
, flags
, size
, p
);
3187 slab_post_alloc_hook(s
, flags
, i
, p
);
3188 __kmem_cache_free_bulk(s
, i
, p
);
3191 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3195 * Object placement in a slab is made very easy because we always start at
3196 * offset 0. If we tune the size of the object to the alignment then we can
3197 * get the required alignment by putting one properly sized object after
3200 * Notice that the allocation order determines the sizes of the per cpu
3201 * caches. Each processor has always one slab available for allocations.
3202 * Increasing the allocation order reduces the number of times that slabs
3203 * must be moved on and off the partial lists and is therefore a factor in
3208 * Mininum / Maximum order of slab pages. This influences locking overhead
3209 * and slab fragmentation. A higher order reduces the number of partial slabs
3210 * and increases the number of allocations possible without having to
3211 * take the list_lock.
3213 static unsigned int slub_min_order
;
3214 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3215 static unsigned int slub_min_objects
;
3218 * Calculate the order of allocation given an slab object size.
3220 * The order of allocation has significant impact on performance and other
3221 * system components. Generally order 0 allocations should be preferred since
3222 * order 0 does not cause fragmentation in the page allocator. Larger objects
3223 * be problematic to put into order 0 slabs because there may be too much
3224 * unused space left. We go to a higher order if more than 1/16th of the slab
3227 * In order to reach satisfactory performance we must ensure that a minimum
3228 * number of objects is in one slab. Otherwise we may generate too much
3229 * activity on the partial lists which requires taking the list_lock. This is
3230 * less a concern for large slabs though which are rarely used.
3232 * slub_max_order specifies the order where we begin to stop considering the
3233 * number of objects in a slab as critical. If we reach slub_max_order then
3234 * we try to keep the page order as low as possible. So we accept more waste
3235 * of space in favor of a small page order.
3237 * Higher order allocations also allow the placement of more objects in a
3238 * slab and thereby reduce object handling overhead. If the user has
3239 * requested a higher mininum order then we start with that one instead of
3240 * the smallest order which will fit the object.
3242 static inline unsigned int slab_order(unsigned int size
,
3243 unsigned int min_objects
, unsigned int max_order
,
3244 unsigned int fract_leftover
)
3246 unsigned int min_order
= slub_min_order
;
3249 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3250 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3252 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3253 order
<= max_order
; order
++) {
3255 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3258 rem
= slab_size
% size
;
3260 if (rem
<= slab_size
/ fract_leftover
)
3267 static inline int calculate_order(unsigned int size
)
3270 unsigned int min_objects
;
3271 unsigned int max_objects
;
3274 * Attempt to find best configuration for a slab. This
3275 * works by first attempting to generate a layout with
3276 * the best configuration and backing off gradually.
3278 * First we increase the acceptable waste in a slab. Then
3279 * we reduce the minimum objects required in a slab.
3281 min_objects
= slub_min_objects
;
3283 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3284 max_objects
= order_objects(slub_max_order
, size
);
3285 min_objects
= min(min_objects
, max_objects
);
3287 while (min_objects
> 1) {
3288 unsigned int fraction
;
3291 while (fraction
>= 4) {
3292 order
= slab_order(size
, min_objects
,
3293 slub_max_order
, fraction
);
3294 if (order
<= slub_max_order
)
3302 * We were unable to place multiple objects in a slab. Now
3303 * lets see if we can place a single object there.
3305 order
= slab_order(size
, 1, slub_max_order
, 1);
3306 if (order
<= slub_max_order
)
3310 * Doh this slab cannot be placed using slub_max_order.
3312 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3313 if (order
< MAX_ORDER
)
3319 init_kmem_cache_node(struct kmem_cache_node
*n
)
3322 spin_lock_init(&n
->list_lock
);
3323 INIT_LIST_HEAD(&n
->partial
);
3324 #ifdef CONFIG_SLUB_DEBUG
3325 atomic_long_set(&n
->nr_slabs
, 0);
3326 atomic_long_set(&n
->total_objects
, 0);
3327 INIT_LIST_HEAD(&n
->full
);
3331 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3333 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3334 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3337 * Must align to double word boundary for the double cmpxchg
3338 * instructions to work; see __pcpu_double_call_return_bool().
3340 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3341 2 * sizeof(void *));
3346 init_kmem_cache_cpus(s
);
3351 static struct kmem_cache
*kmem_cache_node
;
3354 * No kmalloc_node yet so do it by hand. We know that this is the first
3355 * slab on the node for this slabcache. There are no concurrent accesses
3358 * Note that this function only works on the kmem_cache_node
3359 * when allocating for the kmem_cache_node. This is used for bootstrapping
3360 * memory on a fresh node that has no slab structures yet.
3362 static void early_kmem_cache_node_alloc(int node
)
3365 struct kmem_cache_node
*n
;
3367 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3369 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3372 if (page_to_nid(page
) != node
) {
3373 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3374 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3379 #ifdef CONFIG_SLUB_DEBUG
3380 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3381 init_tracking(kmem_cache_node
, n
);
3383 n
= kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3385 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3388 kmem_cache_node
->node
[node
] = n
;
3389 init_kmem_cache_node(n
);
3390 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3393 * No locks need to be taken here as it has just been
3394 * initialized and there is no concurrent access.
3396 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3399 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3402 struct kmem_cache_node
*n
;
3404 for_each_kmem_cache_node(s
, node
, n
) {
3405 s
->node
[node
] = NULL
;
3406 kmem_cache_free(kmem_cache_node
, n
);
3410 void __kmem_cache_release(struct kmem_cache
*s
)
3412 cache_random_seq_destroy(s
);
3413 free_percpu(s
->cpu_slab
);
3414 free_kmem_cache_nodes(s
);
3417 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3421 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3422 struct kmem_cache_node
*n
;
3424 if (slab_state
== DOWN
) {
3425 early_kmem_cache_node_alloc(node
);
3428 n
= kmem_cache_alloc_node(kmem_cache_node
,
3432 free_kmem_cache_nodes(s
);
3436 init_kmem_cache_node(n
);
3442 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3444 if (min
< MIN_PARTIAL
)
3446 else if (min
> MAX_PARTIAL
)
3448 s
->min_partial
= min
;
3451 static void set_cpu_partial(struct kmem_cache
*s
)
3453 #ifdef CONFIG_SLUB_CPU_PARTIAL
3455 * cpu_partial determined the maximum number of objects kept in the
3456 * per cpu partial lists of a processor.
3458 * Per cpu partial lists mainly contain slabs that just have one
3459 * object freed. If they are used for allocation then they can be
3460 * filled up again with minimal effort. The slab will never hit the
3461 * per node partial lists and therefore no locking will be required.
3463 * This setting also determines
3465 * A) The number of objects from per cpu partial slabs dumped to the
3466 * per node list when we reach the limit.
3467 * B) The number of objects in cpu partial slabs to extract from the
3468 * per node list when we run out of per cpu objects. We only fetch
3469 * 50% to keep some capacity around for frees.
3471 if (!kmem_cache_has_cpu_partial(s
))
3473 else if (s
->size
>= PAGE_SIZE
)
3475 else if (s
->size
>= 1024)
3477 else if (s
->size
>= 256)
3478 s
->cpu_partial
= 13;
3480 s
->cpu_partial
= 30;
3485 * calculate_sizes() determines the order and the distribution of data within
3488 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3490 slab_flags_t flags
= s
->flags
;
3491 unsigned int size
= s
->object_size
;
3495 * Round up object size to the next word boundary. We can only
3496 * place the free pointer at word boundaries and this determines
3497 * the possible location of the free pointer.
3499 size
= ALIGN(size
, sizeof(void *));
3501 #ifdef CONFIG_SLUB_DEBUG
3503 * Determine if we can poison the object itself. If the user of
3504 * the slab may touch the object after free or before allocation
3505 * then we should never poison the object itself.
3507 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3509 s
->flags
|= __OBJECT_POISON
;
3511 s
->flags
&= ~__OBJECT_POISON
;
3515 * If we are Redzoning then check if there is some space between the
3516 * end of the object and the free pointer. If not then add an
3517 * additional word to have some bytes to store Redzone information.
3519 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3520 size
+= sizeof(void *);
3524 * With that we have determined the number of bytes in actual use
3525 * by the object. This is the potential offset to the free pointer.
3529 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3532 * Relocate free pointer after the object if it is not
3533 * permitted to overwrite the first word of the object on
3536 * This is the case if we do RCU, have a constructor or
3537 * destructor or are poisoning the objects.
3540 size
+= sizeof(void *);
3543 #ifdef CONFIG_SLUB_DEBUG
3544 if (flags
& SLAB_STORE_USER
)
3546 * Need to store information about allocs and frees after
3549 size
+= 2 * sizeof(struct track
);
3552 kasan_cache_create(s
, &size
, &s
->flags
);
3553 #ifdef CONFIG_SLUB_DEBUG
3554 if (flags
& SLAB_RED_ZONE
) {
3556 * Add some empty padding so that we can catch
3557 * overwrites from earlier objects rather than let
3558 * tracking information or the free pointer be
3559 * corrupted if a user writes before the start
3562 size
+= sizeof(void *);
3564 s
->red_left_pad
= sizeof(void *);
3565 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3566 size
+= s
->red_left_pad
;
3571 * SLUB stores one object immediately after another beginning from
3572 * offset 0. In order to align the objects we have to simply size
3573 * each object to conform to the alignment.
3575 size
= ALIGN(size
, s
->align
);
3577 if (forced_order
>= 0)
3578 order
= forced_order
;
3580 order
= calculate_order(size
);
3587 s
->allocflags
|= __GFP_COMP
;
3589 if (s
->flags
& SLAB_CACHE_DMA
)
3590 s
->allocflags
|= GFP_DMA
;
3592 if (s
->flags
& SLAB_CACHE_DMA32
)
3593 s
->allocflags
|= GFP_DMA32
;
3595 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3596 s
->allocflags
|= __GFP_RECLAIMABLE
;
3599 * Determine the number of objects per slab
3601 s
->oo
= oo_make(order
, size
);
3602 s
->min
= oo_make(get_order(size
), size
);
3603 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3606 return !!oo_objects(s
->oo
);
3609 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3611 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3612 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3613 s
->random
= get_random_long();
3616 if (!calculate_sizes(s
, -1))
3618 if (disable_higher_order_debug
) {
3620 * Disable debugging flags that store metadata if the min slab
3623 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3624 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3626 if (!calculate_sizes(s
, -1))
3631 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3632 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3633 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3634 /* Enable fast mode */
3635 s
->flags
|= __CMPXCHG_DOUBLE
;
3639 * The larger the object size is, the more pages we want on the partial
3640 * list to avoid pounding the page allocator excessively.
3642 set_min_partial(s
, ilog2(s
->size
) / 2);
3647 s
->remote_node_defrag_ratio
= 1000;
3650 /* Initialize the pre-computed randomized freelist if slab is up */
3651 if (slab_state
>= UP
) {
3652 if (init_cache_random_seq(s
))
3656 if (!init_kmem_cache_nodes(s
))
3659 if (alloc_kmem_cache_cpus(s
))
3662 free_kmem_cache_nodes(s
);
3664 if (flags
& SLAB_PANIC
)
3665 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3666 s
->name
, s
->size
, s
->size
,
3667 oo_order(s
->oo
), s
->offset
, (unsigned long)flags
);
3671 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3674 #ifdef CONFIG_SLUB_DEBUG
3675 void *addr
= page_address(page
);
3677 unsigned long *map
= bitmap_zalloc(page
->objects
, GFP_ATOMIC
);
3680 slab_err(s
, page
, text
, s
->name
);
3683 get_map(s
, page
, map
);
3684 for_each_object(p
, s
, addr
, page
->objects
) {
3686 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3687 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3688 print_tracking(s
, p
);
3697 * Attempt to free all partial slabs on a node.
3698 * This is called from __kmem_cache_shutdown(). We must take list_lock
3699 * because sysfs file might still access partial list after the shutdowning.
3701 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3704 struct page
*page
, *h
;
3706 BUG_ON(irqs_disabled());
3707 spin_lock_irq(&n
->list_lock
);
3708 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3710 remove_partial(n
, page
);
3711 list_add(&page
->lru
, &discard
);
3713 list_slab_objects(s
, page
,
3714 "Objects remaining in %s on __kmem_cache_shutdown()");
3717 spin_unlock_irq(&n
->list_lock
);
3719 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3720 discard_slab(s
, page
);
3723 bool __kmem_cache_empty(struct kmem_cache
*s
)
3726 struct kmem_cache_node
*n
;
3728 for_each_kmem_cache_node(s
, node
, n
)
3729 if (n
->nr_partial
|| slabs_node(s
, node
))
3735 * Release all resources used by a slab cache.
3737 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3740 struct kmem_cache_node
*n
;
3743 /* Attempt to free all objects */
3744 for_each_kmem_cache_node(s
, node
, n
) {
3746 if (n
->nr_partial
|| slabs_node(s
, node
))
3749 sysfs_slab_remove(s
);
3753 /********************************************************************
3755 *******************************************************************/
3757 static int __init
setup_slub_min_order(char *str
)
3759 get_option(&str
, (int *)&slub_min_order
);
3764 __setup("slub_min_order=", setup_slub_min_order
);
3766 static int __init
setup_slub_max_order(char *str
)
3768 get_option(&str
, (int *)&slub_max_order
);
3769 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3774 __setup("slub_max_order=", setup_slub_max_order
);
3776 static int __init
setup_slub_min_objects(char *str
)
3778 get_option(&str
, (int *)&slub_min_objects
);
3783 __setup("slub_min_objects=", setup_slub_min_objects
);
3785 void *__kmalloc(size_t size
, gfp_t flags
)
3787 struct kmem_cache
*s
;
3790 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3791 return kmalloc_large(size
, flags
);
3793 s
= kmalloc_slab(size
, flags
);
3795 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3798 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3800 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3802 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3806 EXPORT_SYMBOL(__kmalloc
);
3809 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3814 flags
|= __GFP_COMP
;
3815 page
= alloc_pages_node(node
, flags
, get_order(size
));
3817 ptr
= page_address(page
);
3819 return kmalloc_large_node_hook(ptr
, size
, flags
);
3822 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3824 struct kmem_cache
*s
;
3827 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3828 ret
= kmalloc_large_node(size
, flags
, node
);
3830 trace_kmalloc_node(_RET_IP_
, ret
,
3831 size
, PAGE_SIZE
<< get_order(size
),
3837 s
= kmalloc_slab(size
, flags
);
3839 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3842 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3844 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3846 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3850 EXPORT_SYMBOL(__kmalloc_node
);
3853 #ifdef CONFIG_HARDENED_USERCOPY
3855 * Rejects incorrectly sized objects and objects that are to be copied
3856 * to/from userspace but do not fall entirely within the containing slab
3857 * cache's usercopy region.
3859 * Returns NULL if check passes, otherwise const char * to name of cache
3860 * to indicate an error.
3862 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3865 struct kmem_cache
*s
;
3866 unsigned int offset
;
3869 ptr
= kasan_reset_tag(ptr
);
3871 /* Find object and usable object size. */
3872 s
= page
->slab_cache
;
3874 /* Reject impossible pointers. */
3875 if (ptr
< page_address(page
))
3876 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3879 /* Find offset within object. */
3880 offset
= (ptr
- page_address(page
)) % s
->size
;
3882 /* Adjust for redzone and reject if within the redzone. */
3883 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3884 if (offset
< s
->red_left_pad
)
3885 usercopy_abort("SLUB object in left red zone",
3886 s
->name
, to_user
, offset
, n
);
3887 offset
-= s
->red_left_pad
;
3890 /* Allow address range falling entirely within usercopy region. */
3891 if (offset
>= s
->useroffset
&&
3892 offset
- s
->useroffset
<= s
->usersize
&&
3893 n
<= s
->useroffset
- offset
+ s
->usersize
)
3897 * If the copy is still within the allocated object, produce
3898 * a warning instead of rejecting the copy. This is intended
3899 * to be a temporary method to find any missing usercopy
3902 object_size
= slab_ksize(s
);
3903 if (usercopy_fallback
&&
3904 offset
<= object_size
&& n
<= object_size
- offset
) {
3905 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3909 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3911 #endif /* CONFIG_HARDENED_USERCOPY */
3913 static size_t __ksize(const void *object
)
3917 if (unlikely(object
== ZERO_SIZE_PTR
))
3920 page
= virt_to_head_page(object
);
3922 if (unlikely(!PageSlab(page
))) {
3923 WARN_ON(!PageCompound(page
));
3924 return PAGE_SIZE
<< compound_order(page
);
3927 return slab_ksize(page
->slab_cache
);
3930 size_t ksize(const void *object
)
3932 size_t size
= __ksize(object
);
3933 /* We assume that ksize callers could use whole allocated area,
3934 * so we need to unpoison this area.
3936 kasan_unpoison_shadow(object
, size
);
3939 EXPORT_SYMBOL(ksize
);
3941 void kfree(const void *x
)
3944 void *object
= (void *)x
;
3946 trace_kfree(_RET_IP_
, x
);
3948 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3951 page
= virt_to_head_page(x
);
3952 if (unlikely(!PageSlab(page
))) {
3953 BUG_ON(!PageCompound(page
));
3955 __free_pages(page
, compound_order(page
));
3958 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3960 EXPORT_SYMBOL(kfree
);
3962 #define SHRINK_PROMOTE_MAX 32
3965 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3966 * up most to the head of the partial lists. New allocations will then
3967 * fill those up and thus they can be removed from the partial lists.
3969 * The slabs with the least items are placed last. This results in them
3970 * being allocated from last increasing the chance that the last objects
3971 * are freed in them.
3973 int __kmem_cache_shrink(struct kmem_cache
*s
)
3977 struct kmem_cache_node
*n
;
3980 struct list_head discard
;
3981 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3982 unsigned long flags
;
3986 for_each_kmem_cache_node(s
, node
, n
) {
3987 INIT_LIST_HEAD(&discard
);
3988 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3989 INIT_LIST_HEAD(promote
+ i
);
3991 spin_lock_irqsave(&n
->list_lock
, flags
);
3994 * Build lists of slabs to discard or promote.
3996 * Note that concurrent frees may occur while we hold the
3997 * list_lock. page->inuse here is the upper limit.
3999 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
4000 int free
= page
->objects
- page
->inuse
;
4002 /* Do not reread page->inuse */
4005 /* We do not keep full slabs on the list */
4008 if (free
== page
->objects
) {
4009 list_move(&page
->lru
, &discard
);
4011 } else if (free
<= SHRINK_PROMOTE_MAX
)
4012 list_move(&page
->lru
, promote
+ free
- 1);
4016 * Promote the slabs filled up most to the head of the
4019 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4020 list_splice(promote
+ i
, &n
->partial
);
4022 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4024 /* Release empty slabs */
4025 list_for_each_entry_safe(page
, t
, &discard
, lru
)
4026 discard_slab(s
, page
);
4028 if (slabs_node(s
, node
))
4036 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
4039 * Called with all the locks held after a sched RCU grace period.
4040 * Even if @s becomes empty after shrinking, we can't know that @s
4041 * doesn't have allocations already in-flight and thus can't
4042 * destroy @s until the associated memcg is released.
4044 * However, let's remove the sysfs files for empty caches here.
4045 * Each cache has a lot of interface files which aren't
4046 * particularly useful for empty draining caches; otherwise, we can
4047 * easily end up with millions of unnecessary sysfs files on
4048 * systems which have a lot of memory and transient cgroups.
4050 if (!__kmem_cache_shrink(s
))
4051 sysfs_slab_remove(s
);
4054 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4057 * Disable empty slabs caching. Used to avoid pinning offline
4058 * memory cgroups by kmem pages that can be freed.
4060 slub_set_cpu_partial(s
, 0);
4064 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4065 * we have to make sure the change is visible before shrinking.
4067 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4071 static int slab_mem_going_offline_callback(void *arg
)
4073 struct kmem_cache
*s
;
4075 mutex_lock(&slab_mutex
);
4076 list_for_each_entry(s
, &slab_caches
, list
)
4077 __kmem_cache_shrink(s
);
4078 mutex_unlock(&slab_mutex
);
4083 static void slab_mem_offline_callback(void *arg
)
4085 struct kmem_cache_node
*n
;
4086 struct kmem_cache
*s
;
4087 struct memory_notify
*marg
= arg
;
4090 offline_node
= marg
->status_change_nid_normal
;
4093 * If the node still has available memory. we need kmem_cache_node
4096 if (offline_node
< 0)
4099 mutex_lock(&slab_mutex
);
4100 list_for_each_entry(s
, &slab_caches
, list
) {
4101 n
= get_node(s
, offline_node
);
4104 * if n->nr_slabs > 0, slabs still exist on the node
4105 * that is going down. We were unable to free them,
4106 * and offline_pages() function shouldn't call this
4107 * callback. So, we must fail.
4109 BUG_ON(slabs_node(s
, offline_node
));
4111 s
->node
[offline_node
] = NULL
;
4112 kmem_cache_free(kmem_cache_node
, n
);
4115 mutex_unlock(&slab_mutex
);
4118 static int slab_mem_going_online_callback(void *arg
)
4120 struct kmem_cache_node
*n
;
4121 struct kmem_cache
*s
;
4122 struct memory_notify
*marg
= arg
;
4123 int nid
= marg
->status_change_nid_normal
;
4127 * If the node's memory is already available, then kmem_cache_node is
4128 * already created. Nothing to do.
4134 * We are bringing a node online. No memory is available yet. We must
4135 * allocate a kmem_cache_node structure in order to bring the node
4138 mutex_lock(&slab_mutex
);
4139 list_for_each_entry(s
, &slab_caches
, list
) {
4141 * XXX: kmem_cache_alloc_node will fallback to other nodes
4142 * since memory is not yet available from the node that
4145 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4150 init_kmem_cache_node(n
);
4154 mutex_unlock(&slab_mutex
);
4158 static int slab_memory_callback(struct notifier_block
*self
,
4159 unsigned long action
, void *arg
)
4164 case MEM_GOING_ONLINE
:
4165 ret
= slab_mem_going_online_callback(arg
);
4167 case MEM_GOING_OFFLINE
:
4168 ret
= slab_mem_going_offline_callback(arg
);
4171 case MEM_CANCEL_ONLINE
:
4172 slab_mem_offline_callback(arg
);
4175 case MEM_CANCEL_OFFLINE
:
4179 ret
= notifier_from_errno(ret
);
4185 static struct notifier_block slab_memory_callback_nb
= {
4186 .notifier_call
= slab_memory_callback
,
4187 .priority
= SLAB_CALLBACK_PRI
,
4190 /********************************************************************
4191 * Basic setup of slabs
4192 *******************************************************************/
4195 * Used for early kmem_cache structures that were allocated using
4196 * the page allocator. Allocate them properly then fix up the pointers
4197 * that may be pointing to the wrong kmem_cache structure.
4200 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4203 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4204 struct kmem_cache_node
*n
;
4206 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4209 * This runs very early, and only the boot processor is supposed to be
4210 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4213 __flush_cpu_slab(s
, smp_processor_id());
4214 for_each_kmem_cache_node(s
, node
, n
) {
4217 list_for_each_entry(p
, &n
->partial
, lru
)
4220 #ifdef CONFIG_SLUB_DEBUG
4221 list_for_each_entry(p
, &n
->full
, lru
)
4225 slab_init_memcg_params(s
);
4226 list_add(&s
->list
, &slab_caches
);
4227 memcg_link_cache(s
);
4231 void __init
kmem_cache_init(void)
4233 static __initdata
struct kmem_cache boot_kmem_cache
,
4234 boot_kmem_cache_node
;
4236 if (debug_guardpage_minorder())
4239 kmem_cache_node
= &boot_kmem_cache_node
;
4240 kmem_cache
= &boot_kmem_cache
;
4242 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4243 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4245 register_hotmemory_notifier(&slab_memory_callback_nb
);
4247 /* Able to allocate the per node structures */
4248 slab_state
= PARTIAL
;
4250 create_boot_cache(kmem_cache
, "kmem_cache",
4251 offsetof(struct kmem_cache
, node
) +
4252 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4253 SLAB_HWCACHE_ALIGN
, 0, 0);
4255 kmem_cache
= bootstrap(&boot_kmem_cache
);
4256 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4258 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4259 setup_kmalloc_cache_index_table();
4260 create_kmalloc_caches(0);
4262 /* Setup random freelists for each cache */
4263 init_freelist_randomization();
4265 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4268 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4270 slub_min_order
, slub_max_order
, slub_min_objects
,
4271 nr_cpu_ids
, nr_node_ids
);
4274 void __init
kmem_cache_init_late(void)
4279 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4280 slab_flags_t flags
, void (*ctor
)(void *))
4282 struct kmem_cache
*s
, *c
;
4284 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4289 * Adjust the object sizes so that we clear
4290 * the complete object on kzalloc.
4292 s
->object_size
= max(s
->object_size
, size
);
4293 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4295 for_each_memcg_cache(c
, s
) {
4296 c
->object_size
= s
->object_size
;
4297 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4300 if (sysfs_slab_alias(s
, name
)) {
4309 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4313 err
= kmem_cache_open(s
, flags
);
4317 /* Mutex is not taken during early boot */
4318 if (slab_state
<= UP
)
4321 memcg_propagate_slab_attrs(s
);
4322 err
= sysfs_slab_add(s
);
4324 __kmem_cache_release(s
);
4329 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4331 struct kmem_cache
*s
;
4334 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4335 return kmalloc_large(size
, gfpflags
);
4337 s
= kmalloc_slab(size
, gfpflags
);
4339 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4342 ret
= slab_alloc(s
, gfpflags
, caller
);
4344 /* Honor the call site pointer we received. */
4345 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4351 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4352 int node
, unsigned long caller
)
4354 struct kmem_cache
*s
;
4357 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4358 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4360 trace_kmalloc_node(caller
, ret
,
4361 size
, PAGE_SIZE
<< get_order(size
),
4367 s
= kmalloc_slab(size
, gfpflags
);
4369 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4372 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4374 /* Honor the call site pointer we received. */
4375 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4382 static int count_inuse(struct page
*page
)
4387 static int count_total(struct page
*page
)
4389 return page
->objects
;
4393 #ifdef CONFIG_SLUB_DEBUG
4394 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4398 void *addr
= page_address(page
);
4400 if (!check_slab(s
, page
) ||
4401 !on_freelist(s
, page
, NULL
))
4404 /* Now we know that a valid freelist exists */
4405 bitmap_zero(map
, page
->objects
);
4407 get_map(s
, page
, map
);
4408 for_each_object(p
, s
, addr
, page
->objects
) {
4409 if (test_bit(slab_index(p
, s
, addr
), map
))
4410 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4414 for_each_object(p
, s
, addr
, page
->objects
)
4415 if (!test_bit(slab_index(p
, s
, addr
), map
))
4416 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4421 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4425 validate_slab(s
, page
, map
);
4429 static int validate_slab_node(struct kmem_cache
*s
,
4430 struct kmem_cache_node
*n
, unsigned long *map
)
4432 unsigned long count
= 0;
4434 unsigned long flags
;
4436 spin_lock_irqsave(&n
->list_lock
, flags
);
4438 list_for_each_entry(page
, &n
->partial
, lru
) {
4439 validate_slab_slab(s
, page
, map
);
4442 if (count
!= n
->nr_partial
)
4443 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4444 s
->name
, count
, n
->nr_partial
);
4446 if (!(s
->flags
& SLAB_STORE_USER
))
4449 list_for_each_entry(page
, &n
->full
, lru
) {
4450 validate_slab_slab(s
, page
, map
);
4453 if (count
!= atomic_long_read(&n
->nr_slabs
))
4454 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4455 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4458 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4462 static long validate_slab_cache(struct kmem_cache
*s
)
4465 unsigned long count
= 0;
4466 struct kmem_cache_node
*n
;
4467 unsigned long *map
= bitmap_alloc(oo_objects(s
->max
), GFP_KERNEL
);
4473 for_each_kmem_cache_node(s
, node
, n
)
4474 count
+= validate_slab_node(s
, n
, map
);
4479 * Generate lists of code addresses where slabcache objects are allocated
4484 unsigned long count
;
4491 DECLARE_BITMAP(cpus
, NR_CPUS
);
4497 unsigned long count
;
4498 struct location
*loc
;
4501 static void free_loc_track(struct loc_track
*t
)
4504 free_pages((unsigned long)t
->loc
,
4505 get_order(sizeof(struct location
) * t
->max
));
4508 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4513 order
= get_order(sizeof(struct location
) * max
);
4515 l
= (void *)__get_free_pages(flags
, order
);
4520 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4528 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4529 const struct track
*track
)
4531 long start
, end
, pos
;
4533 unsigned long caddr
;
4534 unsigned long age
= jiffies
- track
->when
;
4540 pos
= start
+ (end
- start
+ 1) / 2;
4543 * There is nothing at "end". If we end up there
4544 * we need to add something to before end.
4549 caddr
= t
->loc
[pos
].addr
;
4550 if (track
->addr
== caddr
) {
4556 if (age
< l
->min_time
)
4558 if (age
> l
->max_time
)
4561 if (track
->pid
< l
->min_pid
)
4562 l
->min_pid
= track
->pid
;
4563 if (track
->pid
> l
->max_pid
)
4564 l
->max_pid
= track
->pid
;
4566 cpumask_set_cpu(track
->cpu
,
4567 to_cpumask(l
->cpus
));
4569 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4573 if (track
->addr
< caddr
)
4580 * Not found. Insert new tracking element.
4582 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4588 (t
->count
- pos
) * sizeof(struct location
));
4591 l
->addr
= track
->addr
;
4595 l
->min_pid
= track
->pid
;
4596 l
->max_pid
= track
->pid
;
4597 cpumask_clear(to_cpumask(l
->cpus
));
4598 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4599 nodes_clear(l
->nodes
);
4600 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4604 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4605 struct page
*page
, enum track_item alloc
,
4608 void *addr
= page_address(page
);
4611 bitmap_zero(map
, page
->objects
);
4612 get_map(s
, page
, map
);
4614 for_each_object(p
, s
, addr
, page
->objects
)
4615 if (!test_bit(slab_index(p
, s
, addr
), map
))
4616 add_location(t
, s
, get_track(s
, p
, alloc
));
4619 static int list_locations(struct kmem_cache
*s
, char *buf
,
4620 enum track_item alloc
)
4624 struct loc_track t
= { 0, 0, NULL
};
4626 struct kmem_cache_node
*n
;
4627 unsigned long *map
= bitmap_alloc(oo_objects(s
->max
), GFP_KERNEL
);
4629 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4632 return sprintf(buf
, "Out of memory\n");
4634 /* Push back cpu slabs */
4637 for_each_kmem_cache_node(s
, node
, n
) {
4638 unsigned long flags
;
4641 if (!atomic_long_read(&n
->nr_slabs
))
4644 spin_lock_irqsave(&n
->list_lock
, flags
);
4645 list_for_each_entry(page
, &n
->partial
, lru
)
4646 process_slab(&t
, s
, page
, alloc
, map
);
4647 list_for_each_entry(page
, &n
->full
, lru
)
4648 process_slab(&t
, s
, page
, alloc
, map
);
4649 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4652 for (i
= 0; i
< t
.count
; i
++) {
4653 struct location
*l
= &t
.loc
[i
];
4655 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4657 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4660 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4662 len
+= sprintf(buf
+ len
, "<not-available>");
4664 if (l
->sum_time
!= l
->min_time
) {
4665 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4667 (long)div_u64(l
->sum_time
, l
->count
),
4670 len
+= sprintf(buf
+ len
, " age=%ld",
4673 if (l
->min_pid
!= l
->max_pid
)
4674 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4675 l
->min_pid
, l
->max_pid
);
4677 len
+= sprintf(buf
+ len
, " pid=%ld",
4680 if (num_online_cpus() > 1 &&
4681 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4682 len
< PAGE_SIZE
- 60)
4683 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4685 cpumask_pr_args(to_cpumask(l
->cpus
)));
4687 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4688 len
< PAGE_SIZE
- 60)
4689 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4691 nodemask_pr_args(&l
->nodes
));
4693 len
+= sprintf(buf
+ len
, "\n");
4699 len
+= sprintf(buf
, "No data\n");
4704 #ifdef SLUB_RESILIENCY_TEST
4705 static void __init
resiliency_test(void)
4708 int type
= KMALLOC_NORMAL
;
4710 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4712 pr_err("SLUB resiliency testing\n");
4713 pr_err("-----------------------\n");
4714 pr_err("A. Corruption after allocation\n");
4716 p
= kzalloc(16, GFP_KERNEL
);
4718 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4721 validate_slab_cache(kmalloc_caches
[type
][4]);
4723 /* Hmmm... The next two are dangerous */
4724 p
= kzalloc(32, GFP_KERNEL
);
4725 p
[32 + sizeof(void *)] = 0x34;
4726 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4728 pr_err("If allocated object is overwritten then not detectable\n\n");
4730 validate_slab_cache(kmalloc_caches
[type
][5]);
4731 p
= kzalloc(64, GFP_KERNEL
);
4732 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4734 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4736 pr_err("If allocated object is overwritten then not detectable\n\n");
4737 validate_slab_cache(kmalloc_caches
[type
][6]);
4739 pr_err("\nB. Corruption after free\n");
4740 p
= kzalloc(128, GFP_KERNEL
);
4743 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4744 validate_slab_cache(kmalloc_caches
[type
][7]);
4746 p
= kzalloc(256, GFP_KERNEL
);
4749 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4750 validate_slab_cache(kmalloc_caches
[type
][8]);
4752 p
= kzalloc(512, GFP_KERNEL
);
4755 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4756 validate_slab_cache(kmalloc_caches
[type
][9]);
4760 static void resiliency_test(void) {};
4765 enum slab_stat_type
{
4766 SL_ALL
, /* All slabs */
4767 SL_PARTIAL
, /* Only partially allocated slabs */
4768 SL_CPU
, /* Only slabs used for cpu caches */
4769 SL_OBJECTS
, /* Determine allocated objects not slabs */
4770 SL_TOTAL
/* Determine object capacity not slabs */
4773 #define SO_ALL (1 << SL_ALL)
4774 #define SO_PARTIAL (1 << SL_PARTIAL)
4775 #define SO_CPU (1 << SL_CPU)
4776 #define SO_OBJECTS (1 << SL_OBJECTS)
4777 #define SO_TOTAL (1 << SL_TOTAL)
4780 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4782 static int __init
setup_slub_memcg_sysfs(char *str
)
4786 if (get_option(&str
, &v
) > 0)
4787 memcg_sysfs_enabled
= v
;
4792 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4795 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4796 char *buf
, unsigned long flags
)
4798 unsigned long total
= 0;
4801 unsigned long *nodes
;
4803 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4807 if (flags
& SO_CPU
) {
4810 for_each_possible_cpu(cpu
) {
4811 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4816 page
= READ_ONCE(c
->page
);
4820 node
= page_to_nid(page
);
4821 if (flags
& SO_TOTAL
)
4823 else if (flags
& SO_OBJECTS
)
4831 page
= slub_percpu_partial_read_once(c
);
4833 node
= page_to_nid(page
);
4834 if (flags
& SO_TOTAL
)
4836 else if (flags
& SO_OBJECTS
)
4847 #ifdef CONFIG_SLUB_DEBUG
4848 if (flags
& SO_ALL
) {
4849 struct kmem_cache_node
*n
;
4851 for_each_kmem_cache_node(s
, node
, n
) {
4853 if (flags
& SO_TOTAL
)
4854 x
= atomic_long_read(&n
->total_objects
);
4855 else if (flags
& SO_OBJECTS
)
4856 x
= atomic_long_read(&n
->total_objects
) -
4857 count_partial(n
, count_free
);
4859 x
= atomic_long_read(&n
->nr_slabs
);
4866 if (flags
& SO_PARTIAL
) {
4867 struct kmem_cache_node
*n
;
4869 for_each_kmem_cache_node(s
, node
, n
) {
4870 if (flags
& SO_TOTAL
)
4871 x
= count_partial(n
, count_total
);
4872 else if (flags
& SO_OBJECTS
)
4873 x
= count_partial(n
, count_inuse
);
4880 x
= sprintf(buf
, "%lu", total
);
4882 for (node
= 0; node
< nr_node_ids
; node
++)
4884 x
+= sprintf(buf
+ x
, " N%d=%lu",
4889 return x
+ sprintf(buf
+ x
, "\n");
4892 #ifdef CONFIG_SLUB_DEBUG
4893 static int any_slab_objects(struct kmem_cache
*s
)
4896 struct kmem_cache_node
*n
;
4898 for_each_kmem_cache_node(s
, node
, n
)
4899 if (atomic_long_read(&n
->total_objects
))
4906 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4907 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4909 struct slab_attribute
{
4910 struct attribute attr
;
4911 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4912 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4915 #define SLAB_ATTR_RO(_name) \
4916 static struct slab_attribute _name##_attr = \
4917 __ATTR(_name, 0400, _name##_show, NULL)
4919 #define SLAB_ATTR(_name) \
4920 static struct slab_attribute _name##_attr = \
4921 __ATTR(_name, 0600, _name##_show, _name##_store)
4923 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4925 return sprintf(buf
, "%u\n", s
->size
);
4927 SLAB_ATTR_RO(slab_size
);
4929 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4931 return sprintf(buf
, "%u\n", s
->align
);
4933 SLAB_ATTR_RO(align
);
4935 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4937 return sprintf(buf
, "%u\n", s
->object_size
);
4939 SLAB_ATTR_RO(object_size
);
4941 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4943 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4945 SLAB_ATTR_RO(objs_per_slab
);
4947 static ssize_t
order_store(struct kmem_cache
*s
,
4948 const char *buf
, size_t length
)
4953 err
= kstrtouint(buf
, 10, &order
);
4957 if (order
> slub_max_order
|| order
< slub_min_order
)
4960 calculate_sizes(s
, order
);
4964 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4966 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
4970 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4972 return sprintf(buf
, "%lu\n", s
->min_partial
);
4975 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4981 err
= kstrtoul(buf
, 10, &min
);
4985 set_min_partial(s
, min
);
4988 SLAB_ATTR(min_partial
);
4990 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4992 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4995 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4998 unsigned int objects
;
5001 err
= kstrtouint(buf
, 10, &objects
);
5004 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5007 slub_set_cpu_partial(s
, objects
);
5011 SLAB_ATTR(cpu_partial
);
5013 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5017 return sprintf(buf
, "%pS\n", s
->ctor
);
5021 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5023 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5025 SLAB_ATTR_RO(aliases
);
5027 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5029 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5031 SLAB_ATTR_RO(partial
);
5033 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5035 return show_slab_objects(s
, buf
, SO_CPU
);
5037 SLAB_ATTR_RO(cpu_slabs
);
5039 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5041 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5043 SLAB_ATTR_RO(objects
);
5045 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5047 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5049 SLAB_ATTR_RO(objects_partial
);
5051 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5058 for_each_online_cpu(cpu
) {
5061 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5064 pages
+= page
->pages
;
5065 objects
+= page
->pobjects
;
5069 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5072 for_each_online_cpu(cpu
) {
5075 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5077 if (page
&& len
< PAGE_SIZE
- 20)
5078 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5079 page
->pobjects
, page
->pages
);
5082 return len
+ sprintf(buf
+ len
, "\n");
5084 SLAB_ATTR_RO(slabs_cpu_partial
);
5086 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5088 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5091 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5092 const char *buf
, size_t length
)
5094 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5096 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5099 SLAB_ATTR(reclaim_account
);
5101 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5103 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5105 SLAB_ATTR_RO(hwcache_align
);
5107 #ifdef CONFIG_ZONE_DMA
5108 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5110 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5112 SLAB_ATTR_RO(cache_dma
);
5115 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5117 return sprintf(buf
, "%u\n", s
->usersize
);
5119 SLAB_ATTR_RO(usersize
);
5121 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5123 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5125 SLAB_ATTR_RO(destroy_by_rcu
);
5127 #ifdef CONFIG_SLUB_DEBUG
5128 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5130 return show_slab_objects(s
, buf
, SO_ALL
);
5132 SLAB_ATTR_RO(slabs
);
5134 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5136 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5138 SLAB_ATTR_RO(total_objects
);
5140 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5142 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5145 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5146 const char *buf
, size_t length
)
5148 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5149 if (buf
[0] == '1') {
5150 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5151 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5155 SLAB_ATTR(sanity_checks
);
5157 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5159 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5162 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5166 * Tracing a merged cache is going to give confusing results
5167 * as well as cause other issues like converting a mergeable
5168 * cache into an umergeable one.
5170 if (s
->refcount
> 1)
5173 s
->flags
&= ~SLAB_TRACE
;
5174 if (buf
[0] == '1') {
5175 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5176 s
->flags
|= SLAB_TRACE
;
5182 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5184 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5187 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5188 const char *buf
, size_t length
)
5190 if (any_slab_objects(s
))
5193 s
->flags
&= ~SLAB_RED_ZONE
;
5194 if (buf
[0] == '1') {
5195 s
->flags
|= SLAB_RED_ZONE
;
5197 calculate_sizes(s
, -1);
5200 SLAB_ATTR(red_zone
);
5202 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5204 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5207 static ssize_t
poison_store(struct kmem_cache
*s
,
5208 const char *buf
, size_t length
)
5210 if (any_slab_objects(s
))
5213 s
->flags
&= ~SLAB_POISON
;
5214 if (buf
[0] == '1') {
5215 s
->flags
|= SLAB_POISON
;
5217 calculate_sizes(s
, -1);
5222 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5224 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5227 static ssize_t
store_user_store(struct kmem_cache
*s
,
5228 const char *buf
, size_t length
)
5230 if (any_slab_objects(s
))
5233 s
->flags
&= ~SLAB_STORE_USER
;
5234 if (buf
[0] == '1') {
5235 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5236 s
->flags
|= SLAB_STORE_USER
;
5238 calculate_sizes(s
, -1);
5241 SLAB_ATTR(store_user
);
5243 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5248 static ssize_t
validate_store(struct kmem_cache
*s
,
5249 const char *buf
, size_t length
)
5253 if (buf
[0] == '1') {
5254 ret
= validate_slab_cache(s
);
5260 SLAB_ATTR(validate
);
5262 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5264 if (!(s
->flags
& SLAB_STORE_USER
))
5266 return list_locations(s
, buf
, TRACK_ALLOC
);
5268 SLAB_ATTR_RO(alloc_calls
);
5270 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5272 if (!(s
->flags
& SLAB_STORE_USER
))
5274 return list_locations(s
, buf
, TRACK_FREE
);
5276 SLAB_ATTR_RO(free_calls
);
5277 #endif /* CONFIG_SLUB_DEBUG */
5279 #ifdef CONFIG_FAILSLAB
5280 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5282 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5285 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5288 if (s
->refcount
> 1)
5291 s
->flags
&= ~SLAB_FAILSLAB
;
5293 s
->flags
|= SLAB_FAILSLAB
;
5296 SLAB_ATTR(failslab
);
5299 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5304 static ssize_t
shrink_store(struct kmem_cache
*s
,
5305 const char *buf
, size_t length
)
5308 kmem_cache_shrink(s
);
5316 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5318 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5321 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5322 const char *buf
, size_t length
)
5327 err
= kstrtouint(buf
, 10, &ratio
);
5333 s
->remote_node_defrag_ratio
= ratio
* 10;
5337 SLAB_ATTR(remote_node_defrag_ratio
);
5340 #ifdef CONFIG_SLUB_STATS
5341 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5343 unsigned long sum
= 0;
5346 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5351 for_each_online_cpu(cpu
) {
5352 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5358 len
= sprintf(buf
, "%lu", sum
);
5361 for_each_online_cpu(cpu
) {
5362 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5363 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5367 return len
+ sprintf(buf
+ len
, "\n");
5370 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5374 for_each_online_cpu(cpu
)
5375 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5378 #define STAT_ATTR(si, text) \
5379 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5381 return show_stat(s, buf, si); \
5383 static ssize_t text##_store(struct kmem_cache *s, \
5384 const char *buf, size_t length) \
5386 if (buf[0] != '0') \
5388 clear_stat(s, si); \
5393 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5394 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5395 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5396 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5397 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5398 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5399 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5400 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5401 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5402 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5403 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5404 STAT_ATTR(FREE_SLAB
, free_slab
);
5405 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5406 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5407 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5408 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5409 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5410 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5411 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5412 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5413 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5414 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5415 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5416 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5417 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5418 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5421 static struct attribute
*slab_attrs
[] = {
5422 &slab_size_attr
.attr
,
5423 &object_size_attr
.attr
,
5424 &objs_per_slab_attr
.attr
,
5426 &min_partial_attr
.attr
,
5427 &cpu_partial_attr
.attr
,
5429 &objects_partial_attr
.attr
,
5431 &cpu_slabs_attr
.attr
,
5435 &hwcache_align_attr
.attr
,
5436 &reclaim_account_attr
.attr
,
5437 &destroy_by_rcu_attr
.attr
,
5439 &slabs_cpu_partial_attr
.attr
,
5440 #ifdef CONFIG_SLUB_DEBUG
5441 &total_objects_attr
.attr
,
5443 &sanity_checks_attr
.attr
,
5445 &red_zone_attr
.attr
,
5447 &store_user_attr
.attr
,
5448 &validate_attr
.attr
,
5449 &alloc_calls_attr
.attr
,
5450 &free_calls_attr
.attr
,
5452 #ifdef CONFIG_ZONE_DMA
5453 &cache_dma_attr
.attr
,
5456 &remote_node_defrag_ratio_attr
.attr
,
5458 #ifdef CONFIG_SLUB_STATS
5459 &alloc_fastpath_attr
.attr
,
5460 &alloc_slowpath_attr
.attr
,
5461 &free_fastpath_attr
.attr
,
5462 &free_slowpath_attr
.attr
,
5463 &free_frozen_attr
.attr
,
5464 &free_add_partial_attr
.attr
,
5465 &free_remove_partial_attr
.attr
,
5466 &alloc_from_partial_attr
.attr
,
5467 &alloc_slab_attr
.attr
,
5468 &alloc_refill_attr
.attr
,
5469 &alloc_node_mismatch_attr
.attr
,
5470 &free_slab_attr
.attr
,
5471 &cpuslab_flush_attr
.attr
,
5472 &deactivate_full_attr
.attr
,
5473 &deactivate_empty_attr
.attr
,
5474 &deactivate_to_head_attr
.attr
,
5475 &deactivate_to_tail_attr
.attr
,
5476 &deactivate_remote_frees_attr
.attr
,
5477 &deactivate_bypass_attr
.attr
,
5478 &order_fallback_attr
.attr
,
5479 &cmpxchg_double_fail_attr
.attr
,
5480 &cmpxchg_double_cpu_fail_attr
.attr
,
5481 &cpu_partial_alloc_attr
.attr
,
5482 &cpu_partial_free_attr
.attr
,
5483 &cpu_partial_node_attr
.attr
,
5484 &cpu_partial_drain_attr
.attr
,
5486 #ifdef CONFIG_FAILSLAB
5487 &failslab_attr
.attr
,
5489 &usersize_attr
.attr
,
5494 static const struct attribute_group slab_attr_group
= {
5495 .attrs
= slab_attrs
,
5498 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5499 struct attribute
*attr
,
5502 struct slab_attribute
*attribute
;
5503 struct kmem_cache
*s
;
5506 attribute
= to_slab_attr(attr
);
5509 if (!attribute
->show
)
5512 err
= attribute
->show(s
, buf
);
5517 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5518 struct attribute
*attr
,
5519 const char *buf
, size_t len
)
5521 struct slab_attribute
*attribute
;
5522 struct kmem_cache
*s
;
5525 attribute
= to_slab_attr(attr
);
5528 if (!attribute
->store
)
5531 err
= attribute
->store(s
, buf
, len
);
5533 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5534 struct kmem_cache
*c
;
5536 mutex_lock(&slab_mutex
);
5537 if (s
->max_attr_size
< len
)
5538 s
->max_attr_size
= len
;
5541 * This is a best effort propagation, so this function's return
5542 * value will be determined by the parent cache only. This is
5543 * basically because not all attributes will have a well
5544 * defined semantics for rollbacks - most of the actions will
5545 * have permanent effects.
5547 * Returning the error value of any of the children that fail
5548 * is not 100 % defined, in the sense that users seeing the
5549 * error code won't be able to know anything about the state of
5552 * Only returning the error code for the parent cache at least
5553 * has well defined semantics. The cache being written to
5554 * directly either failed or succeeded, in which case we loop
5555 * through the descendants with best-effort propagation.
5557 for_each_memcg_cache(c
, s
)
5558 attribute
->store(c
, buf
, len
);
5559 mutex_unlock(&slab_mutex
);
5565 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5569 char *buffer
= NULL
;
5570 struct kmem_cache
*root_cache
;
5572 if (is_root_cache(s
))
5575 root_cache
= s
->memcg_params
.root_cache
;
5578 * This mean this cache had no attribute written. Therefore, no point
5579 * in copying default values around
5581 if (!root_cache
->max_attr_size
)
5584 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5587 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5590 if (!attr
|| !attr
->store
|| !attr
->show
)
5594 * It is really bad that we have to allocate here, so we will
5595 * do it only as a fallback. If we actually allocate, though,
5596 * we can just use the allocated buffer until the end.
5598 * Most of the slub attributes will tend to be very small in
5599 * size, but sysfs allows buffers up to a page, so they can
5600 * theoretically happen.
5604 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5607 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5608 if (WARN_ON(!buffer
))
5613 len
= attr
->show(root_cache
, buf
);
5615 attr
->store(s
, buf
, len
);
5619 free_page((unsigned long)buffer
);
5623 static void kmem_cache_release(struct kobject
*k
)
5625 slab_kmem_cache_release(to_slab(k
));
5628 static const struct sysfs_ops slab_sysfs_ops
= {
5629 .show
= slab_attr_show
,
5630 .store
= slab_attr_store
,
5633 static struct kobj_type slab_ktype
= {
5634 .sysfs_ops
= &slab_sysfs_ops
,
5635 .release
= kmem_cache_release
,
5638 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5640 struct kobj_type
*ktype
= get_ktype(kobj
);
5642 if (ktype
== &slab_ktype
)
5647 static const struct kset_uevent_ops slab_uevent_ops
= {
5648 .filter
= uevent_filter
,
5651 static struct kset
*slab_kset
;
5653 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5656 if (!is_root_cache(s
))
5657 return s
->memcg_params
.root_cache
->memcg_kset
;
5662 #define ID_STR_LENGTH 64
5664 /* Create a unique string id for a slab cache:
5666 * Format :[flags-]size
5668 static char *create_unique_id(struct kmem_cache
*s
)
5670 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5677 * First flags affecting slabcache operations. We will only
5678 * get here for aliasable slabs so we do not need to support
5679 * too many flags. The flags here must cover all flags that
5680 * are matched during merging to guarantee that the id is
5683 if (s
->flags
& SLAB_CACHE_DMA
)
5685 if (s
->flags
& SLAB_CACHE_DMA32
)
5687 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5689 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5691 if (s
->flags
& SLAB_ACCOUNT
)
5695 p
+= sprintf(p
, "%07u", s
->size
);
5697 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5701 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5703 struct kmem_cache
*s
=
5704 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5706 if (!s
->kobj
.state_in_sysfs
)
5708 * For a memcg cache, this may be called during
5709 * deactivation and again on shutdown. Remove only once.
5710 * A cache is never shut down before deactivation is
5711 * complete, so no need to worry about synchronization.
5716 kset_unregister(s
->memcg_kset
);
5718 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5720 kobject_put(&s
->kobj
);
5723 static int sysfs_slab_add(struct kmem_cache
*s
)
5727 struct kset
*kset
= cache_kset(s
);
5728 int unmergeable
= slab_unmergeable(s
);
5730 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5733 kobject_init(&s
->kobj
, &slab_ktype
);
5737 if (!unmergeable
&& disable_higher_order_debug
&&
5738 (slub_debug
& DEBUG_METADATA_FLAGS
))
5743 * Slabcache can never be merged so we can use the name proper.
5744 * This is typically the case for debug situations. In that
5745 * case we can catch duplicate names easily.
5747 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5751 * Create a unique name for the slab as a target
5754 name
= create_unique_id(s
);
5757 s
->kobj
.kset
= kset
;
5758 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5762 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5767 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5768 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5769 if (!s
->memcg_kset
) {
5776 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5778 /* Setup first alias */
5779 sysfs_slab_alias(s
, s
->name
);
5786 kobject_del(&s
->kobj
);
5790 static void sysfs_slab_remove(struct kmem_cache
*s
)
5792 if (slab_state
< FULL
)
5794 * Sysfs has not been setup yet so no need to remove the
5799 kobject_get(&s
->kobj
);
5800 schedule_work(&s
->kobj_remove_work
);
5803 void sysfs_slab_unlink(struct kmem_cache
*s
)
5805 if (slab_state
>= FULL
)
5806 kobject_del(&s
->kobj
);
5809 void sysfs_slab_release(struct kmem_cache
*s
)
5811 if (slab_state
>= FULL
)
5812 kobject_put(&s
->kobj
);
5816 * Need to buffer aliases during bootup until sysfs becomes
5817 * available lest we lose that information.
5819 struct saved_alias
{
5820 struct kmem_cache
*s
;
5822 struct saved_alias
*next
;
5825 static struct saved_alias
*alias_list
;
5827 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5829 struct saved_alias
*al
;
5831 if (slab_state
== FULL
) {
5833 * If we have a leftover link then remove it.
5835 sysfs_remove_link(&slab_kset
->kobj
, name
);
5836 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5839 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5845 al
->next
= alias_list
;
5850 static int __init
slab_sysfs_init(void)
5852 struct kmem_cache
*s
;
5855 mutex_lock(&slab_mutex
);
5857 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5859 mutex_unlock(&slab_mutex
);
5860 pr_err("Cannot register slab subsystem.\n");
5866 list_for_each_entry(s
, &slab_caches
, list
) {
5867 err
= sysfs_slab_add(s
);
5869 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5873 while (alias_list
) {
5874 struct saved_alias
*al
= alias_list
;
5876 alias_list
= alias_list
->next
;
5877 err
= sysfs_slab_alias(al
->s
, al
->name
);
5879 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5884 mutex_unlock(&slab_mutex
);
5889 __initcall(slab_sysfs_init
);
5890 #endif /* CONFIG_SYSFS */
5893 * The /proc/slabinfo ABI
5895 #ifdef CONFIG_SLUB_DEBUG
5896 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5898 unsigned long nr_slabs
= 0;
5899 unsigned long nr_objs
= 0;
5900 unsigned long nr_free
= 0;
5902 struct kmem_cache_node
*n
;
5904 for_each_kmem_cache_node(s
, node
, n
) {
5905 nr_slabs
+= node_nr_slabs(n
);
5906 nr_objs
+= node_nr_objs(n
);
5907 nr_free
+= count_partial(n
, count_free
);
5910 sinfo
->active_objs
= nr_objs
- nr_free
;
5911 sinfo
->num_objs
= nr_objs
;
5912 sinfo
->active_slabs
= nr_slabs
;
5913 sinfo
->num_slabs
= nr_slabs
;
5914 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5915 sinfo
->cache_order
= oo_order(s
->oo
);
5918 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5922 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5923 size_t count
, loff_t
*ppos
)
5927 #endif /* CONFIG_SLUB_DEBUG */