4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages
;
53 static int least_priority
;
55 static const char Bad_file
[] = "Bad swap file entry ";
56 static const char Unused_file
[] = "Unused swap file entry ";
57 static const char Bad_offset
[] = "Bad swap offset entry ";
58 static const char Unused_offset
[] = "Unused swap offset entry ";
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
64 PLIST_HEAD(swap_active_head
);
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
78 static PLIST_HEAD(swap_avail_head
);
79 static DEFINE_SPINLOCK(swap_avail_lock
);
81 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
83 static DEFINE_MUTEX(swapon_mutex
);
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
89 static inline unsigned char swap_count(unsigned char ent
)
91 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
94 /* returns 1 if swap entry is freed */
96 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
98 swp_entry_t entry
= swp_entry(si
->type
, offset
);
102 page
= find_get_page(swap_address_space(entry
), entry
.val
);
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
112 if (trylock_page(page
)) {
113 ret
= try_to_free_swap(page
);
116 page_cache_release(page
);
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct
*si
)
126 struct swap_extent
*se
;
127 sector_t start_block
;
131 /* Do not discard the swap header page! */
132 se
= &si
->first_swap_extent
;
133 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
134 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
136 err
= blkdev_issue_discard(si
->bdev
, start_block
,
137 nr_blocks
, GFP_KERNEL
, 0);
143 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
144 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
145 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
147 err
= blkdev_issue_discard(si
->bdev
, start_block
,
148 nr_blocks
, GFP_KERNEL
, 0);
154 return err
; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct
*si
,
162 pgoff_t start_page
, pgoff_t nr_pages
)
164 struct swap_extent
*se
= si
->curr_swap_extent
;
165 int found_extent
= 0;
168 struct list_head
*lh
;
170 if (se
->start_page
<= start_page
&&
171 start_page
< se
->start_page
+ se
->nr_pages
) {
172 pgoff_t offset
= start_page
- se
->start_page
;
173 sector_t start_block
= se
->start_block
+ offset
;
174 sector_t nr_blocks
= se
->nr_pages
- offset
;
176 if (nr_blocks
> nr_pages
)
177 nr_blocks
= nr_pages
;
178 start_page
+= nr_blocks
;
179 nr_pages
-= nr_blocks
;
182 si
->curr_swap_extent
= se
;
184 start_block
<<= PAGE_SHIFT
- 9;
185 nr_blocks
<<= PAGE_SHIFT
- 9;
186 if (blkdev_issue_discard(si
->bdev
, start_block
,
187 nr_blocks
, GFP_NOIO
, 0))
192 se
= list_entry(lh
, struct swap_extent
, list
);
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
199 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
205 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
210 static inline void cluster_set_count(struct swap_cluster_info
*info
,
216 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
217 unsigned int c
, unsigned int f
)
223 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
228 static inline void cluster_set_next(struct swap_cluster_info
*info
,
234 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
235 unsigned int n
, unsigned int f
)
241 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
243 return info
->flags
& CLUSTER_FLAG_FREE
;
246 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
248 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
251 static inline void cluster_set_null(struct swap_cluster_info
*info
)
253 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
267 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
268 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
270 if (cluster_is_null(&si
->discard_cluster_head
)) {
271 cluster_set_next_flag(&si
->discard_cluster_head
,
273 cluster_set_next_flag(&si
->discard_cluster_tail
,
276 unsigned int tail
= cluster_next(&si
->discard_cluster_tail
);
277 cluster_set_next(&si
->cluster_info
[tail
], idx
);
278 cluster_set_next_flag(&si
->discard_cluster_tail
,
282 schedule_work(&si
->discard_work
);
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
289 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
291 struct swap_cluster_info
*info
;
294 info
= si
->cluster_info
;
296 while (!cluster_is_null(&si
->discard_cluster_head
)) {
297 idx
= cluster_next(&si
->discard_cluster_head
);
299 cluster_set_next_flag(&si
->discard_cluster_head
,
300 cluster_next(&info
[idx
]), 0);
301 if (cluster_next(&si
->discard_cluster_tail
) == idx
) {
302 cluster_set_null(&si
->discard_cluster_head
);
303 cluster_set_null(&si
->discard_cluster_tail
);
305 spin_unlock(&si
->lock
);
307 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
310 spin_lock(&si
->lock
);
311 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
312 if (cluster_is_null(&si
->free_cluster_head
)) {
313 cluster_set_next_flag(&si
->free_cluster_head
,
315 cluster_set_next_flag(&si
->free_cluster_tail
,
320 tail
= cluster_next(&si
->free_cluster_tail
);
321 cluster_set_next(&info
[tail
], idx
);
322 cluster_set_next_flag(&si
->free_cluster_tail
,
325 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
326 0, SWAPFILE_CLUSTER
);
330 static void swap_discard_work(struct work_struct
*work
)
332 struct swap_info_struct
*si
;
334 si
= container_of(work
, struct swap_info_struct
, discard_work
);
336 spin_lock(&si
->lock
);
337 swap_do_scheduled_discard(si
);
338 spin_unlock(&si
->lock
);
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
345 static void inc_cluster_info_page(struct swap_info_struct
*p
,
346 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
348 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
352 if (cluster_is_free(&cluster_info
[idx
])) {
353 VM_BUG_ON(cluster_next(&p
->free_cluster_head
) != idx
);
354 cluster_set_next_flag(&p
->free_cluster_head
,
355 cluster_next(&cluster_info
[idx
]), 0);
356 if (cluster_next(&p
->free_cluster_tail
) == idx
) {
357 cluster_set_null(&p
->free_cluster_tail
);
358 cluster_set_null(&p
->free_cluster_head
);
360 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
363 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
364 cluster_set_count(&cluster_info
[idx
],
365 cluster_count(&cluster_info
[idx
]) + 1);
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
373 static void dec_cluster_info_page(struct swap_info_struct
*p
,
374 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
376 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
381 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
382 cluster_set_count(&cluster_info
[idx
],
383 cluster_count(&cluster_info
[idx
]) - 1);
385 if (cluster_count(&cluster_info
[idx
]) == 0) {
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
391 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
392 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
393 swap_cluster_schedule_discard(p
, idx
);
397 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
398 if (cluster_is_null(&p
->free_cluster_head
)) {
399 cluster_set_next_flag(&p
->free_cluster_head
, idx
, 0);
400 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
402 unsigned int tail
= cluster_next(&p
->free_cluster_tail
);
403 cluster_set_next(&cluster_info
[tail
], idx
);
404 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
415 unsigned long offset
)
417 struct percpu_cluster
*percpu_cluster
;
420 offset
/= SWAPFILE_CLUSTER
;
421 conflict
= !cluster_is_null(&si
->free_cluster_head
) &&
422 offset
!= cluster_next(&si
->free_cluster_head
) &&
423 cluster_is_free(&si
->cluster_info
[offset
]);
428 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
429 cluster_set_null(&percpu_cluster
->index
);
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
438 unsigned long *offset
, unsigned long *scan_base
)
440 struct percpu_cluster
*cluster
;
445 cluster
= this_cpu_ptr(si
->percpu_cluster
);
446 if (cluster_is_null(&cluster
->index
)) {
447 if (!cluster_is_null(&si
->free_cluster_head
)) {
448 cluster
->index
= si
->free_cluster_head
;
449 cluster
->next
= cluster_next(&cluster
->index
) *
451 } else if (!cluster_is_null(&si
->discard_cluster_head
)) {
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
456 swap_do_scheduled_discard(si
);
457 *scan_base
= *offset
= si
->cluster_next
;
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
470 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
472 if (!si
->swap_map
[tmp
]) {
479 cluster_set_null(&cluster
->index
);
482 cluster
->next
= tmp
+ 1;
487 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
490 unsigned long offset
;
491 unsigned long scan_base
;
492 unsigned long last_in_cluster
= 0;
493 int latency_ration
= LATENCY_LIMIT
;
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
506 si
->flags
+= SWP_SCANNING
;
507 scan_base
= offset
= si
->cluster_next
;
510 if (si
->cluster_info
) {
511 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
515 if (unlikely(!si
->cluster_nr
--)) {
516 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
517 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
521 spin_unlock(&si
->lock
);
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
529 scan_base
= offset
= si
->lowest_bit
;
530 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
534 if (si
->swap_map
[offset
])
535 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
536 else if (offset
== last_in_cluster
) {
537 spin_lock(&si
->lock
);
538 offset
-= SWAPFILE_CLUSTER
- 1;
539 si
->cluster_next
= offset
;
540 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
543 if (unlikely(--latency_ration
< 0)) {
545 latency_ration
= LATENCY_LIMIT
;
550 spin_lock(&si
->lock
);
551 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
555 if (si
->cluster_info
) {
556 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
557 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
559 if (!(si
->flags
& SWP_WRITEOK
))
561 if (!si
->highest_bit
)
563 if (offset
> si
->highest_bit
)
564 scan_base
= offset
= si
->lowest_bit
;
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
569 spin_unlock(&si
->lock
);
570 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
571 spin_lock(&si
->lock
);
572 /* entry was freed successfully, try to use this again */
575 goto scan
; /* check next one */
578 if (si
->swap_map
[offset
])
581 if (offset
== si
->lowest_bit
)
583 if (offset
== si
->highest_bit
)
586 if (si
->inuse_pages
== si
->pages
) {
587 si
->lowest_bit
= si
->max
;
589 spin_lock(&swap_avail_lock
);
590 plist_del(&si
->avail_list
, &swap_avail_head
);
591 spin_unlock(&swap_avail_lock
);
593 si
->swap_map
[offset
] = usage
;
594 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
595 si
->cluster_next
= offset
+ 1;
596 si
->flags
-= SWP_SCANNING
;
601 spin_unlock(&si
->lock
);
602 while (++offset
<= si
->highest_bit
) {
603 if (!si
->swap_map
[offset
]) {
604 spin_lock(&si
->lock
);
607 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
608 spin_lock(&si
->lock
);
611 if (unlikely(--latency_ration
< 0)) {
613 latency_ration
= LATENCY_LIMIT
;
616 offset
= si
->lowest_bit
;
617 while (offset
< scan_base
) {
618 if (!si
->swap_map
[offset
]) {
619 spin_lock(&si
->lock
);
622 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
623 spin_lock(&si
->lock
);
626 if (unlikely(--latency_ration
< 0)) {
628 latency_ration
= LATENCY_LIMIT
;
632 spin_lock(&si
->lock
);
635 si
->flags
-= SWP_SCANNING
;
639 swp_entry_t
get_swap_page(void)
641 struct swap_info_struct
*si
, *next
;
644 if (atomic_long_read(&nr_swap_pages
) <= 0)
646 atomic_long_dec(&nr_swap_pages
);
648 spin_lock(&swap_avail_lock
);
651 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si
->avail_list
, &swap_avail_head
);
654 spin_unlock(&swap_avail_lock
);
655 spin_lock(&si
->lock
);
656 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
657 spin_lock(&swap_avail_lock
);
658 if (plist_node_empty(&si
->avail_list
)) {
659 spin_unlock(&si
->lock
);
662 WARN(!si
->highest_bit
,
663 "swap_info %d in list but !highest_bit\n",
665 WARN(!(si
->flags
& SWP_WRITEOK
),
666 "swap_info %d in list but !SWP_WRITEOK\n",
668 plist_del(&si
->avail_list
, &swap_avail_head
);
669 spin_unlock(&si
->lock
);
673 /* This is called for allocating swap entry for cache */
674 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
675 spin_unlock(&si
->lock
);
677 return swp_entry(si
->type
, offset
);
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
680 spin_lock(&swap_avail_lock
);
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
692 if (plist_node_empty(&next
->avail_list
))
696 spin_unlock(&swap_avail_lock
);
698 atomic_long_inc(&nr_swap_pages
);
700 return (swp_entry_t
) {0};
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t
get_swap_page_of_type(int type
)
706 struct swap_info_struct
*si
;
709 si
= swap_info
[type
];
710 spin_lock(&si
->lock
);
711 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
712 atomic_long_dec(&nr_swap_pages
);
713 /* This is called for allocating swap entry, not cache */
714 offset
= scan_swap_map(si
, 1);
716 spin_unlock(&si
->lock
);
717 return swp_entry(type
, offset
);
719 atomic_long_inc(&nr_swap_pages
);
721 spin_unlock(&si
->lock
);
722 return (swp_entry_t
) {0};
725 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
727 struct swap_info_struct
*p
;
728 unsigned long offset
, type
;
732 type
= swp_type(entry
);
733 if (type
>= nr_swapfiles
)
736 if (!(p
->flags
& SWP_USED
))
738 offset
= swp_offset(entry
);
739 if (offset
>= p
->max
)
741 if (!p
->swap_map
[offset
])
747 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
750 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
753 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
756 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
761 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
762 swp_entry_t entry
, unsigned char usage
)
764 unsigned long offset
= swp_offset(entry
);
766 unsigned char has_cache
;
768 count
= p
->swap_map
[offset
];
769 has_cache
= count
& SWAP_HAS_CACHE
;
770 count
&= ~SWAP_HAS_CACHE
;
772 if (usage
== SWAP_HAS_CACHE
) {
773 VM_BUG_ON(!has_cache
);
775 } else if (count
== SWAP_MAP_SHMEM
) {
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
781 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
782 if (count
== COUNT_CONTINUED
) {
783 if (swap_count_continued(p
, offset
, count
))
784 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
786 count
= SWAP_MAP_MAX
;
792 mem_cgroup_uncharge_swap(entry
);
794 usage
= count
| has_cache
;
795 p
->swap_map
[offset
] = usage
;
797 /* free if no reference */
799 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
800 if (offset
< p
->lowest_bit
)
801 p
->lowest_bit
= offset
;
802 if (offset
> p
->highest_bit
) {
803 bool was_full
= !p
->highest_bit
;
804 p
->highest_bit
= offset
;
805 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
806 spin_lock(&swap_avail_lock
);
807 WARN_ON(!plist_node_empty(&p
->avail_list
));
808 if (plist_node_empty(&p
->avail_list
))
809 plist_add(&p
->avail_list
,
811 spin_unlock(&swap_avail_lock
);
814 atomic_long_inc(&nr_swap_pages
);
816 frontswap_invalidate_page(p
->type
, offset
);
817 if (p
->flags
& SWP_BLKDEV
) {
818 struct gendisk
*disk
= p
->bdev
->bd_disk
;
819 if (disk
->fops
->swap_slot_free_notify
)
820 disk
->fops
->swap_slot_free_notify(p
->bdev
,
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
832 void swap_free(swp_entry_t entry
)
834 struct swap_info_struct
*p
;
836 p
= swap_info_get(entry
);
838 swap_entry_free(p
, entry
, 1);
839 spin_unlock(&p
->lock
);
844 * Called after dropping swapcache to decrease refcnt to swap entries.
846 void swapcache_free(swp_entry_t entry
)
848 struct swap_info_struct
*p
;
850 p
= swap_info_get(entry
);
852 swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
853 spin_unlock(&p
->lock
);
858 * How many references to page are currently swapped out?
859 * This does not give an exact answer when swap count is continued,
860 * but does include the high COUNT_CONTINUED flag to allow for that.
862 int page_swapcount(struct page
*page
)
865 struct swap_info_struct
*p
;
868 entry
.val
= page_private(page
);
869 p
= swap_info_get(entry
);
871 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
872 spin_unlock(&p
->lock
);
878 * How many references to @entry are currently swapped out?
879 * This considers COUNT_CONTINUED so it returns exact answer.
881 int swp_swapcount(swp_entry_t entry
)
883 int count
, tmp_count
, n
;
884 struct swap_info_struct
*p
;
889 p
= swap_info_get(entry
);
893 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
894 if (!(count
& COUNT_CONTINUED
))
897 count
&= ~COUNT_CONTINUED
;
898 n
= SWAP_MAP_MAX
+ 1;
900 offset
= swp_offset(entry
);
901 page
= vmalloc_to_page(p
->swap_map
+ offset
);
902 offset
&= ~PAGE_MASK
;
903 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
906 page
= list_entry(page
->lru
.next
, struct page
, lru
);
907 map
= kmap_atomic(page
);
908 tmp_count
= map
[offset
];
911 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
912 n
*= (SWAP_CONT_MAX
+ 1);
913 } while (tmp_count
& COUNT_CONTINUED
);
915 spin_unlock(&p
->lock
);
920 * We can write to an anon page without COW if there are no other references
921 * to it. And as a side-effect, free up its swap: because the old content
922 * on disk will never be read, and seeking back there to write new content
923 * later would only waste time away from clustering.
925 int reuse_swap_page(struct page
*page
)
929 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
930 if (unlikely(PageKsm(page
)))
932 count
= page_mapcount(page
);
933 if (count
<= 1 && PageSwapCache(page
)) {
934 count
+= page_swapcount(page
);
935 if (count
== 1 && !PageWriteback(page
)) {
936 delete_from_swap_cache(page
);
944 * If swap is getting full, or if there are no more mappings of this page,
945 * then try_to_free_swap is called to free its swap space.
947 int try_to_free_swap(struct page
*page
)
949 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
951 if (!PageSwapCache(page
))
953 if (PageWriteback(page
))
955 if (page_swapcount(page
))
959 * Once hibernation has begun to create its image of memory,
960 * there's a danger that one of the calls to try_to_free_swap()
961 * - most probably a call from __try_to_reclaim_swap() while
962 * hibernation is allocating its own swap pages for the image,
963 * but conceivably even a call from memory reclaim - will free
964 * the swap from a page which has already been recorded in the
965 * image as a clean swapcache page, and then reuse its swap for
966 * another page of the image. On waking from hibernation, the
967 * original page might be freed under memory pressure, then
968 * later read back in from swap, now with the wrong data.
970 * Hibernation suspends storage while it is writing the image
971 * to disk so check that here.
973 if (pm_suspended_storage())
976 delete_from_swap_cache(page
);
982 * Free the swap entry like above, but also try to
983 * free the page cache entry if it is the last user.
985 int free_swap_and_cache(swp_entry_t entry
)
987 struct swap_info_struct
*p
;
988 struct page
*page
= NULL
;
990 if (non_swap_entry(entry
))
993 p
= swap_info_get(entry
);
995 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
996 page
= find_get_page(swap_address_space(entry
),
998 if (page
&& !trylock_page(page
)) {
999 page_cache_release(page
);
1003 spin_unlock(&p
->lock
);
1007 * Not mapped elsewhere, or swap space full? Free it!
1008 * Also recheck PageSwapCache now page is locked (above).
1010 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1011 (!page_mapped(page
) || vm_swap_full())) {
1012 delete_from_swap_cache(page
);
1016 page_cache_release(page
);
1021 #ifdef CONFIG_HIBERNATION
1023 * Find the swap type that corresponds to given device (if any).
1025 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026 * from 0, in which the swap header is expected to be located.
1028 * This is needed for the suspend to disk (aka swsusp).
1030 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1032 struct block_device
*bdev
= NULL
;
1036 bdev
= bdget(device
);
1038 spin_lock(&swap_lock
);
1039 for (type
= 0; type
< nr_swapfiles
; type
++) {
1040 struct swap_info_struct
*sis
= swap_info
[type
];
1042 if (!(sis
->flags
& SWP_WRITEOK
))
1047 *bdev_p
= bdgrab(sis
->bdev
);
1049 spin_unlock(&swap_lock
);
1052 if (bdev
== sis
->bdev
) {
1053 struct swap_extent
*se
= &sis
->first_swap_extent
;
1055 if (se
->start_block
== offset
) {
1057 *bdev_p
= bdgrab(sis
->bdev
);
1059 spin_unlock(&swap_lock
);
1065 spin_unlock(&swap_lock
);
1073 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074 * corresponding to given index in swap_info (swap type).
1076 sector_t
swapdev_block(int type
, pgoff_t offset
)
1078 struct block_device
*bdev
;
1080 if ((unsigned int)type
>= nr_swapfiles
)
1082 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1084 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1088 * Return either the total number of swap pages of given type, or the number
1089 * of free pages of that type (depending on @free)
1091 * This is needed for software suspend
1093 unsigned int count_swap_pages(int type
, int free
)
1097 spin_lock(&swap_lock
);
1098 if ((unsigned int)type
< nr_swapfiles
) {
1099 struct swap_info_struct
*sis
= swap_info
[type
];
1101 spin_lock(&sis
->lock
);
1102 if (sis
->flags
& SWP_WRITEOK
) {
1105 n
-= sis
->inuse_pages
;
1107 spin_unlock(&sis
->lock
);
1109 spin_unlock(&swap_lock
);
1112 #endif /* CONFIG_HIBERNATION */
1114 static inline int maybe_same_pte(pte_t pte
, pte_t swp_pte
)
1116 #ifdef CONFIG_MEM_SOFT_DIRTY
1118 * When pte keeps soft dirty bit the pte generated
1119 * from swap entry does not has it, still it's same
1120 * pte from logical point of view.
1122 pte_t swp_pte_dirty
= pte_swp_mksoft_dirty(swp_pte
);
1123 return pte_same(pte
, swp_pte
) || pte_same(pte
, swp_pte_dirty
);
1125 return pte_same(pte
, swp_pte
);
1130 * No need to decide whether this PTE shares the swap entry with others,
1131 * just let do_wp_page work it out if a write is requested later - to
1132 * force COW, vm_page_prot omits write permission from any private vma.
1134 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1135 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1137 struct page
*swapcache
;
1138 struct mem_cgroup
*memcg
;
1144 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1145 if (unlikely(!page
))
1148 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
)) {
1153 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1154 if (unlikely(!maybe_same_pte(*pte
, swp_entry_to_pte(entry
)))) {
1155 mem_cgroup_cancel_charge(page
, memcg
);
1160 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1161 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1163 set_pte_at(vma
->vm_mm
, addr
, pte
,
1164 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1165 if (page
== swapcache
) {
1166 page_add_anon_rmap(page
, vma
, addr
);
1167 mem_cgroup_commit_charge(page
, memcg
, true);
1168 } else { /* ksm created a completely new copy */
1169 page_add_new_anon_rmap(page
, vma
, addr
);
1170 mem_cgroup_commit_charge(page
, memcg
, false);
1171 lru_cache_add_active_or_unevictable(page
, vma
);
1175 * Move the page to the active list so it is not
1176 * immediately swapped out again after swapon.
1178 activate_page(page
);
1180 pte_unmap_unlock(pte
, ptl
);
1182 if (page
!= swapcache
) {
1189 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1190 unsigned long addr
, unsigned long end
,
1191 swp_entry_t entry
, struct page
*page
)
1193 pte_t swp_pte
= swp_entry_to_pte(entry
);
1198 * We don't actually need pte lock while scanning for swp_pte: since
1199 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1200 * page table while we're scanning; though it could get zapped, and on
1201 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1202 * of unmatched parts which look like swp_pte, so unuse_pte must
1203 * recheck under pte lock. Scanning without pte lock lets it be
1204 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1206 pte
= pte_offset_map(pmd
, addr
);
1209 * swapoff spends a _lot_ of time in this loop!
1210 * Test inline before going to call unuse_pte.
1212 if (unlikely(maybe_same_pte(*pte
, swp_pte
))) {
1214 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1217 pte
= pte_offset_map(pmd
, addr
);
1219 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1225 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1226 unsigned long addr
, unsigned long end
,
1227 swp_entry_t entry
, struct page
*page
)
1233 pmd
= pmd_offset(pud
, addr
);
1235 next
= pmd_addr_end(addr
, end
);
1236 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1238 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1241 } while (pmd
++, addr
= next
, addr
!= end
);
1245 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1246 unsigned long addr
, unsigned long end
,
1247 swp_entry_t entry
, struct page
*page
)
1253 pud
= pud_offset(pgd
, addr
);
1255 next
= pud_addr_end(addr
, end
);
1256 if (pud_none_or_clear_bad(pud
))
1258 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1261 } while (pud
++, addr
= next
, addr
!= end
);
1265 static int unuse_vma(struct vm_area_struct
*vma
,
1266 swp_entry_t entry
, struct page
*page
)
1269 unsigned long addr
, end
, next
;
1272 if (page_anon_vma(page
)) {
1273 addr
= page_address_in_vma(page
, vma
);
1274 if (addr
== -EFAULT
)
1277 end
= addr
+ PAGE_SIZE
;
1279 addr
= vma
->vm_start
;
1283 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1285 next
= pgd_addr_end(addr
, end
);
1286 if (pgd_none_or_clear_bad(pgd
))
1288 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1291 } while (pgd
++, addr
= next
, addr
!= end
);
1295 static int unuse_mm(struct mm_struct
*mm
,
1296 swp_entry_t entry
, struct page
*page
)
1298 struct vm_area_struct
*vma
;
1301 if (!down_read_trylock(&mm
->mmap_sem
)) {
1303 * Activate page so shrink_inactive_list is unlikely to unmap
1304 * its ptes while lock is dropped, so swapoff can make progress.
1306 activate_page(page
);
1308 down_read(&mm
->mmap_sem
);
1311 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1312 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1315 up_read(&mm
->mmap_sem
);
1316 return (ret
< 0)? ret
: 0;
1320 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1321 * from current position to next entry still in use.
1322 * Recycle to start on reaching the end, returning 0 when empty.
1324 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1325 unsigned int prev
, bool frontswap
)
1327 unsigned int max
= si
->max
;
1328 unsigned int i
= prev
;
1329 unsigned char count
;
1332 * No need for swap_lock here: we're just looking
1333 * for whether an entry is in use, not modifying it; false
1334 * hits are okay, and sys_swapoff() has already prevented new
1335 * allocations from this area (while holding swap_lock).
1344 * No entries in use at top of swap_map,
1345 * loop back to start and recheck there.
1352 if (frontswap_test(si
, i
))
1357 count
= READ_ONCE(si
->swap_map
[i
]);
1358 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1365 * We completely avoid races by reading each swap page in advance,
1366 * and then search for the process using it. All the necessary
1367 * page table adjustments can then be made atomically.
1369 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1370 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1372 int try_to_unuse(unsigned int type
, bool frontswap
,
1373 unsigned long pages_to_unuse
)
1375 struct swap_info_struct
*si
= swap_info
[type
];
1376 struct mm_struct
*start_mm
;
1377 volatile unsigned char *swap_map
; /* swap_map is accessed without
1378 * locking. Mark it as volatile
1379 * to prevent compiler doing
1382 unsigned char swcount
;
1389 * When searching mms for an entry, a good strategy is to
1390 * start at the first mm we freed the previous entry from
1391 * (though actually we don't notice whether we or coincidence
1392 * freed the entry). Initialize this start_mm with a hold.
1394 * A simpler strategy would be to start at the last mm we
1395 * freed the previous entry from; but that would take less
1396 * advantage of mmlist ordering, which clusters forked mms
1397 * together, child after parent. If we race with dup_mmap(), we
1398 * prefer to resolve parent before child, lest we miss entries
1399 * duplicated after we scanned child: using last mm would invert
1402 start_mm
= &init_mm
;
1403 atomic_inc(&init_mm
.mm_users
);
1406 * Keep on scanning until all entries have gone. Usually,
1407 * one pass through swap_map is enough, but not necessarily:
1408 * there are races when an instance of an entry might be missed.
1410 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1411 if (signal_pending(current
)) {
1417 * Get a page for the entry, using the existing swap
1418 * cache page if there is one. Otherwise, get a clean
1419 * page and read the swap into it.
1421 swap_map
= &si
->swap_map
[i
];
1422 entry
= swp_entry(type
, i
);
1423 page
= read_swap_cache_async(entry
,
1424 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1427 * Either swap_duplicate() failed because entry
1428 * has been freed independently, and will not be
1429 * reused since sys_swapoff() already disabled
1430 * allocation from here, or alloc_page() failed.
1432 swcount
= *swap_map
;
1434 * We don't hold lock here, so the swap entry could be
1435 * SWAP_MAP_BAD (when the cluster is discarding).
1436 * Instead of fail out, We can just skip the swap
1437 * entry because swapoff will wait for discarding
1440 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1447 * Don't hold on to start_mm if it looks like exiting.
1449 if (atomic_read(&start_mm
->mm_users
) == 1) {
1451 start_mm
= &init_mm
;
1452 atomic_inc(&init_mm
.mm_users
);
1456 * Wait for and lock page. When do_swap_page races with
1457 * try_to_unuse, do_swap_page can handle the fault much
1458 * faster than try_to_unuse can locate the entry. This
1459 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1460 * defer to do_swap_page in such a case - in some tests,
1461 * do_swap_page and try_to_unuse repeatedly compete.
1463 wait_on_page_locked(page
);
1464 wait_on_page_writeback(page
);
1466 wait_on_page_writeback(page
);
1469 * Remove all references to entry.
1471 swcount
= *swap_map
;
1472 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1473 retval
= shmem_unuse(entry
, page
);
1474 /* page has already been unlocked and released */
1479 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1480 retval
= unuse_mm(start_mm
, entry
, page
);
1482 if (swap_count(*swap_map
)) {
1483 int set_start_mm
= (*swap_map
>= swcount
);
1484 struct list_head
*p
= &start_mm
->mmlist
;
1485 struct mm_struct
*new_start_mm
= start_mm
;
1486 struct mm_struct
*prev_mm
= start_mm
;
1487 struct mm_struct
*mm
;
1489 atomic_inc(&new_start_mm
->mm_users
);
1490 atomic_inc(&prev_mm
->mm_users
);
1491 spin_lock(&mmlist_lock
);
1492 while (swap_count(*swap_map
) && !retval
&&
1493 (p
= p
->next
) != &start_mm
->mmlist
) {
1494 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1495 if (!atomic_inc_not_zero(&mm
->mm_users
))
1497 spin_unlock(&mmlist_lock
);
1503 swcount
= *swap_map
;
1504 if (!swap_count(swcount
)) /* any usage ? */
1506 else if (mm
== &init_mm
)
1509 retval
= unuse_mm(mm
, entry
, page
);
1511 if (set_start_mm
&& *swap_map
< swcount
) {
1512 mmput(new_start_mm
);
1513 atomic_inc(&mm
->mm_users
);
1517 spin_lock(&mmlist_lock
);
1519 spin_unlock(&mmlist_lock
);
1522 start_mm
= new_start_mm
;
1526 page_cache_release(page
);
1531 * If a reference remains (rare), we would like to leave
1532 * the page in the swap cache; but try_to_unmap could
1533 * then re-duplicate the entry once we drop page lock,
1534 * so we might loop indefinitely; also, that page could
1535 * not be swapped out to other storage meanwhile. So:
1536 * delete from cache even if there's another reference,
1537 * after ensuring that the data has been saved to disk -
1538 * since if the reference remains (rarer), it will be
1539 * read from disk into another page. Splitting into two
1540 * pages would be incorrect if swap supported "shared
1541 * private" pages, but they are handled by tmpfs files.
1543 * Given how unuse_vma() targets one particular offset
1544 * in an anon_vma, once the anon_vma has been determined,
1545 * this splitting happens to be just what is needed to
1546 * handle where KSM pages have been swapped out: re-reading
1547 * is unnecessarily slow, but we can fix that later on.
1549 if (swap_count(*swap_map
) &&
1550 PageDirty(page
) && PageSwapCache(page
)) {
1551 struct writeback_control wbc
= {
1552 .sync_mode
= WB_SYNC_NONE
,
1555 swap_writepage(page
, &wbc
);
1557 wait_on_page_writeback(page
);
1561 * It is conceivable that a racing task removed this page from
1562 * swap cache just before we acquired the page lock at the top,
1563 * or while we dropped it in unuse_mm(). The page might even
1564 * be back in swap cache on another swap area: that we must not
1565 * delete, since it may not have been written out to swap yet.
1567 if (PageSwapCache(page
) &&
1568 likely(page_private(page
) == entry
.val
))
1569 delete_from_swap_cache(page
);
1572 * So we could skip searching mms once swap count went
1573 * to 1, we did not mark any present ptes as dirty: must
1574 * mark page dirty so shrink_page_list will preserve it.
1578 page_cache_release(page
);
1581 * Make sure that we aren't completely killing
1582 * interactive performance.
1585 if (frontswap
&& pages_to_unuse
> 0) {
1586 if (!--pages_to_unuse
)
1596 * After a successful try_to_unuse, if no swap is now in use, we know
1597 * we can empty the mmlist. swap_lock must be held on entry and exit.
1598 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1599 * added to the mmlist just after page_duplicate - before would be racy.
1601 static void drain_mmlist(void)
1603 struct list_head
*p
, *next
;
1606 for (type
= 0; type
< nr_swapfiles
; type
++)
1607 if (swap_info
[type
]->inuse_pages
)
1609 spin_lock(&mmlist_lock
);
1610 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1612 spin_unlock(&mmlist_lock
);
1616 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1617 * corresponds to page offset for the specified swap entry.
1618 * Note that the type of this function is sector_t, but it returns page offset
1619 * into the bdev, not sector offset.
1621 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1623 struct swap_info_struct
*sis
;
1624 struct swap_extent
*start_se
;
1625 struct swap_extent
*se
;
1628 sis
= swap_info
[swp_type(entry
)];
1631 offset
= swp_offset(entry
);
1632 start_se
= sis
->curr_swap_extent
;
1636 struct list_head
*lh
;
1638 if (se
->start_page
<= offset
&&
1639 offset
< (se
->start_page
+ se
->nr_pages
)) {
1640 return se
->start_block
+ (offset
- se
->start_page
);
1643 se
= list_entry(lh
, struct swap_extent
, list
);
1644 sis
->curr_swap_extent
= se
;
1645 BUG_ON(se
== start_se
); /* It *must* be present */
1650 * Returns the page offset into bdev for the specified page's swap entry.
1652 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1655 entry
.val
= page_private(page
);
1656 return map_swap_entry(entry
, bdev
);
1660 * Free all of a swapdev's extent information
1662 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1664 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1665 struct swap_extent
*se
;
1667 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1668 struct swap_extent
, list
);
1669 list_del(&se
->list
);
1673 if (sis
->flags
& SWP_FILE
) {
1674 struct file
*swap_file
= sis
->swap_file
;
1675 struct address_space
*mapping
= swap_file
->f_mapping
;
1677 sis
->flags
&= ~SWP_FILE
;
1678 mapping
->a_ops
->swap_deactivate(swap_file
);
1683 * Add a block range (and the corresponding page range) into this swapdev's
1684 * extent list. The extent list is kept sorted in page order.
1686 * This function rather assumes that it is called in ascending page order.
1689 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1690 unsigned long nr_pages
, sector_t start_block
)
1692 struct swap_extent
*se
;
1693 struct swap_extent
*new_se
;
1694 struct list_head
*lh
;
1696 if (start_page
== 0) {
1697 se
= &sis
->first_swap_extent
;
1698 sis
->curr_swap_extent
= se
;
1700 se
->nr_pages
= nr_pages
;
1701 se
->start_block
= start_block
;
1704 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1705 se
= list_entry(lh
, struct swap_extent
, list
);
1706 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1707 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1709 se
->nr_pages
+= nr_pages
;
1715 * No merge. Insert a new extent, preserving ordering.
1717 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1720 new_se
->start_page
= start_page
;
1721 new_se
->nr_pages
= nr_pages
;
1722 new_se
->start_block
= start_block
;
1724 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1729 * A `swap extent' is a simple thing which maps a contiguous range of pages
1730 * onto a contiguous range of disk blocks. An ordered list of swap extents
1731 * is built at swapon time and is then used at swap_writepage/swap_readpage
1732 * time for locating where on disk a page belongs.
1734 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1735 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1736 * swap files identically.
1738 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1739 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1740 * swapfiles are handled *identically* after swapon time.
1742 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1743 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1744 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1745 * requirements, they are simply tossed out - we will never use those blocks
1748 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1749 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1750 * which will scribble on the fs.
1752 * The amount of disk space which a single swap extent represents varies.
1753 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1754 * extents in the list. To avoid much list walking, we cache the previous
1755 * search location in `curr_swap_extent', and start new searches from there.
1756 * This is extremely effective. The average number of iterations in
1757 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1759 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1761 struct file
*swap_file
= sis
->swap_file
;
1762 struct address_space
*mapping
= swap_file
->f_mapping
;
1763 struct inode
*inode
= mapping
->host
;
1766 if (S_ISBLK(inode
->i_mode
)) {
1767 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1772 if (mapping
->a_ops
->swap_activate
) {
1773 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1775 sis
->flags
|= SWP_FILE
;
1776 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1782 return generic_swapfile_activate(sis
, swap_file
, span
);
1785 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1786 unsigned char *swap_map
,
1787 struct swap_cluster_info
*cluster_info
)
1792 p
->prio
= --least_priority
;
1794 * the plist prio is negated because plist ordering is
1795 * low-to-high, while swap ordering is high-to-low
1797 p
->list
.prio
= -p
->prio
;
1798 p
->avail_list
.prio
= -p
->prio
;
1799 p
->swap_map
= swap_map
;
1800 p
->cluster_info
= cluster_info
;
1801 p
->flags
|= SWP_WRITEOK
;
1802 atomic_long_add(p
->pages
, &nr_swap_pages
);
1803 total_swap_pages
+= p
->pages
;
1805 assert_spin_locked(&swap_lock
);
1807 * both lists are plists, and thus priority ordered.
1808 * swap_active_head needs to be priority ordered for swapoff(),
1809 * which on removal of any swap_info_struct with an auto-assigned
1810 * (i.e. negative) priority increments the auto-assigned priority
1811 * of any lower-priority swap_info_structs.
1812 * swap_avail_head needs to be priority ordered for get_swap_page(),
1813 * which allocates swap pages from the highest available priority
1816 plist_add(&p
->list
, &swap_active_head
);
1817 spin_lock(&swap_avail_lock
);
1818 plist_add(&p
->avail_list
, &swap_avail_head
);
1819 spin_unlock(&swap_avail_lock
);
1822 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1823 unsigned char *swap_map
,
1824 struct swap_cluster_info
*cluster_info
,
1825 unsigned long *frontswap_map
)
1827 frontswap_init(p
->type
, frontswap_map
);
1828 spin_lock(&swap_lock
);
1829 spin_lock(&p
->lock
);
1830 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1831 spin_unlock(&p
->lock
);
1832 spin_unlock(&swap_lock
);
1835 static void reinsert_swap_info(struct swap_info_struct
*p
)
1837 spin_lock(&swap_lock
);
1838 spin_lock(&p
->lock
);
1839 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1840 spin_unlock(&p
->lock
);
1841 spin_unlock(&swap_lock
);
1844 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1846 struct swap_info_struct
*p
= NULL
;
1847 unsigned char *swap_map
;
1848 struct swap_cluster_info
*cluster_info
;
1849 unsigned long *frontswap_map
;
1850 struct file
*swap_file
, *victim
;
1851 struct address_space
*mapping
;
1852 struct inode
*inode
;
1853 struct filename
*pathname
;
1855 unsigned int old_block_size
;
1857 if (!capable(CAP_SYS_ADMIN
))
1860 BUG_ON(!current
->mm
);
1862 pathname
= getname(specialfile
);
1863 if (IS_ERR(pathname
))
1864 return PTR_ERR(pathname
);
1866 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1867 err
= PTR_ERR(victim
);
1871 mapping
= victim
->f_mapping
;
1872 spin_lock(&swap_lock
);
1873 plist_for_each_entry(p
, &swap_active_head
, list
) {
1874 if (p
->flags
& SWP_WRITEOK
) {
1875 if (p
->swap_file
->f_mapping
== mapping
) {
1883 spin_unlock(&swap_lock
);
1886 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1887 vm_unacct_memory(p
->pages
);
1890 spin_unlock(&swap_lock
);
1893 spin_lock(&swap_avail_lock
);
1894 plist_del(&p
->avail_list
, &swap_avail_head
);
1895 spin_unlock(&swap_avail_lock
);
1896 spin_lock(&p
->lock
);
1898 struct swap_info_struct
*si
= p
;
1900 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1903 si
->avail_list
.prio
--;
1907 plist_del(&p
->list
, &swap_active_head
);
1908 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1909 total_swap_pages
-= p
->pages
;
1910 p
->flags
&= ~SWP_WRITEOK
;
1911 spin_unlock(&p
->lock
);
1912 spin_unlock(&swap_lock
);
1914 set_current_oom_origin();
1915 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1916 clear_current_oom_origin();
1919 /* re-insert swap space back into swap_list */
1920 reinsert_swap_info(p
);
1924 flush_work(&p
->discard_work
);
1926 destroy_swap_extents(p
);
1927 if (p
->flags
& SWP_CONTINUED
)
1928 free_swap_count_continuations(p
);
1930 mutex_lock(&swapon_mutex
);
1931 spin_lock(&swap_lock
);
1932 spin_lock(&p
->lock
);
1935 /* wait for anyone still in scan_swap_map */
1936 p
->highest_bit
= 0; /* cuts scans short */
1937 while (p
->flags
>= SWP_SCANNING
) {
1938 spin_unlock(&p
->lock
);
1939 spin_unlock(&swap_lock
);
1940 schedule_timeout_uninterruptible(1);
1941 spin_lock(&swap_lock
);
1942 spin_lock(&p
->lock
);
1945 swap_file
= p
->swap_file
;
1946 old_block_size
= p
->old_block_size
;
1947 p
->swap_file
= NULL
;
1949 swap_map
= p
->swap_map
;
1951 cluster_info
= p
->cluster_info
;
1952 p
->cluster_info
= NULL
;
1953 frontswap_map
= frontswap_map_get(p
);
1954 spin_unlock(&p
->lock
);
1955 spin_unlock(&swap_lock
);
1956 frontswap_invalidate_area(p
->type
);
1957 frontswap_map_set(p
, NULL
);
1958 mutex_unlock(&swapon_mutex
);
1959 free_percpu(p
->percpu_cluster
);
1960 p
->percpu_cluster
= NULL
;
1962 vfree(cluster_info
);
1963 vfree(frontswap_map
);
1964 /* Destroy swap account information */
1965 swap_cgroup_swapoff(p
->type
);
1967 inode
= mapping
->host
;
1968 if (S_ISBLK(inode
->i_mode
)) {
1969 struct block_device
*bdev
= I_BDEV(inode
);
1970 set_blocksize(bdev
, old_block_size
);
1971 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1973 mutex_lock(&inode
->i_mutex
);
1974 inode
->i_flags
&= ~S_SWAPFILE
;
1975 mutex_unlock(&inode
->i_mutex
);
1977 filp_close(swap_file
, NULL
);
1980 * Clear the SWP_USED flag after all resources are freed so that swapon
1981 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1982 * not hold p->lock after we cleared its SWP_WRITEOK.
1984 spin_lock(&swap_lock
);
1986 spin_unlock(&swap_lock
);
1989 atomic_inc(&proc_poll_event
);
1990 wake_up_interruptible(&proc_poll_wait
);
1993 filp_close(victim
, NULL
);
1999 #ifdef CONFIG_PROC_FS
2000 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2002 struct seq_file
*seq
= file
->private_data
;
2004 poll_wait(file
, &proc_poll_wait
, wait
);
2006 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2007 seq
->poll_event
= atomic_read(&proc_poll_event
);
2008 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2011 return POLLIN
| POLLRDNORM
;
2015 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2017 struct swap_info_struct
*si
;
2021 mutex_lock(&swapon_mutex
);
2024 return SEQ_START_TOKEN
;
2026 for (type
= 0; type
< nr_swapfiles
; type
++) {
2027 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2028 si
= swap_info
[type
];
2029 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2038 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2040 struct swap_info_struct
*si
= v
;
2043 if (v
== SEQ_START_TOKEN
)
2046 type
= si
->type
+ 1;
2048 for (; type
< nr_swapfiles
; type
++) {
2049 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2050 si
= swap_info
[type
];
2051 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2060 static void swap_stop(struct seq_file
*swap
, void *v
)
2062 mutex_unlock(&swapon_mutex
);
2065 static int swap_show(struct seq_file
*swap
, void *v
)
2067 struct swap_info_struct
*si
= v
;
2071 if (si
== SEQ_START_TOKEN
) {
2072 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2076 file
= si
->swap_file
;
2077 len
= seq_file_path(swap
, file
, " \t\n\\");
2078 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2079 len
< 40 ? 40 - len
: 1, " ",
2080 S_ISBLK(file_inode(file
)->i_mode
) ?
2081 "partition" : "file\t",
2082 si
->pages
<< (PAGE_SHIFT
- 10),
2083 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2088 static const struct seq_operations swaps_op
= {
2089 .start
= swap_start
,
2095 static int swaps_open(struct inode
*inode
, struct file
*file
)
2097 struct seq_file
*seq
;
2100 ret
= seq_open(file
, &swaps_op
);
2104 seq
= file
->private_data
;
2105 seq
->poll_event
= atomic_read(&proc_poll_event
);
2109 static const struct file_operations proc_swaps_operations
= {
2112 .llseek
= seq_lseek
,
2113 .release
= seq_release
,
2117 static int __init
procswaps_init(void)
2119 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2122 __initcall(procswaps_init
);
2123 #endif /* CONFIG_PROC_FS */
2125 #ifdef MAX_SWAPFILES_CHECK
2126 static int __init
max_swapfiles_check(void)
2128 MAX_SWAPFILES_CHECK();
2131 late_initcall(max_swapfiles_check
);
2134 static struct swap_info_struct
*alloc_swap_info(void)
2136 struct swap_info_struct
*p
;
2139 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2141 return ERR_PTR(-ENOMEM
);
2143 spin_lock(&swap_lock
);
2144 for (type
= 0; type
< nr_swapfiles
; type
++) {
2145 if (!(swap_info
[type
]->flags
& SWP_USED
))
2148 if (type
>= MAX_SWAPFILES
) {
2149 spin_unlock(&swap_lock
);
2151 return ERR_PTR(-EPERM
);
2153 if (type
>= nr_swapfiles
) {
2155 swap_info
[type
] = p
;
2157 * Write swap_info[type] before nr_swapfiles, in case a
2158 * racing procfs swap_start() or swap_next() is reading them.
2159 * (We never shrink nr_swapfiles, we never free this entry.)
2165 p
= swap_info
[type
];
2167 * Do not memset this entry: a racing procfs swap_next()
2168 * would be relying on p->type to remain valid.
2171 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2172 plist_node_init(&p
->list
, 0);
2173 plist_node_init(&p
->avail_list
, 0);
2174 p
->flags
= SWP_USED
;
2175 spin_unlock(&swap_lock
);
2176 spin_lock_init(&p
->lock
);
2181 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2185 if (S_ISBLK(inode
->i_mode
)) {
2186 p
->bdev
= bdgrab(I_BDEV(inode
));
2187 error
= blkdev_get(p
->bdev
,
2188 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2193 p
->old_block_size
= block_size(p
->bdev
);
2194 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2197 p
->flags
|= SWP_BLKDEV
;
2198 } else if (S_ISREG(inode
->i_mode
)) {
2199 p
->bdev
= inode
->i_sb
->s_bdev
;
2200 mutex_lock(&inode
->i_mutex
);
2201 if (IS_SWAPFILE(inode
))
2209 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2210 union swap_header
*swap_header
,
2211 struct inode
*inode
)
2214 unsigned long maxpages
;
2215 unsigned long swapfilepages
;
2216 unsigned long last_page
;
2218 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2219 pr_err("Unable to find swap-space signature\n");
2223 /* swap partition endianess hack... */
2224 if (swab32(swap_header
->info
.version
) == 1) {
2225 swab32s(&swap_header
->info
.version
);
2226 swab32s(&swap_header
->info
.last_page
);
2227 swab32s(&swap_header
->info
.nr_badpages
);
2228 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2229 swab32s(&swap_header
->info
.badpages
[i
]);
2231 /* Check the swap header's sub-version */
2232 if (swap_header
->info
.version
!= 1) {
2233 pr_warn("Unable to handle swap header version %d\n",
2234 swap_header
->info
.version
);
2239 p
->cluster_next
= 1;
2243 * Find out how many pages are allowed for a single swap
2244 * device. There are two limiting factors: 1) the number
2245 * of bits for the swap offset in the swp_entry_t type, and
2246 * 2) the number of bits in the swap pte as defined by the
2247 * different architectures. In order to find the
2248 * largest possible bit mask, a swap entry with swap type 0
2249 * and swap offset ~0UL is created, encoded to a swap pte,
2250 * decoded to a swp_entry_t again, and finally the swap
2251 * offset is extracted. This will mask all the bits from
2252 * the initial ~0UL mask that can't be encoded in either
2253 * the swp_entry_t or the architecture definition of a
2256 maxpages
= swp_offset(pte_to_swp_entry(
2257 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2258 last_page
= swap_header
->info
.last_page
;
2259 if (last_page
> maxpages
) {
2260 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2261 maxpages
<< (PAGE_SHIFT
- 10),
2262 last_page
<< (PAGE_SHIFT
- 10));
2264 if (maxpages
> last_page
) {
2265 maxpages
= last_page
+ 1;
2266 /* p->max is an unsigned int: don't overflow it */
2267 if ((unsigned int)maxpages
== 0)
2268 maxpages
= UINT_MAX
;
2270 p
->highest_bit
= maxpages
- 1;
2274 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2275 if (swapfilepages
&& maxpages
> swapfilepages
) {
2276 pr_warn("Swap area shorter than signature indicates\n");
2279 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2281 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2287 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2288 union swap_header
*swap_header
,
2289 unsigned char *swap_map
,
2290 struct swap_cluster_info
*cluster_info
,
2291 unsigned long maxpages
,
2295 unsigned int nr_good_pages
;
2297 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2298 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2300 nr_good_pages
= maxpages
- 1; /* omit header page */
2302 cluster_set_null(&p
->free_cluster_head
);
2303 cluster_set_null(&p
->free_cluster_tail
);
2304 cluster_set_null(&p
->discard_cluster_head
);
2305 cluster_set_null(&p
->discard_cluster_tail
);
2307 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2308 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2309 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2311 if (page_nr
< maxpages
) {
2312 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2315 * Haven't marked the cluster free yet, no list
2316 * operation involved
2318 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2322 /* Haven't marked the cluster free yet, no list operation involved */
2323 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2324 inc_cluster_info_page(p
, cluster_info
, i
);
2326 if (nr_good_pages
) {
2327 swap_map
[0] = SWAP_MAP_BAD
;
2329 * Not mark the cluster free yet, no list
2330 * operation involved
2332 inc_cluster_info_page(p
, cluster_info
, 0);
2334 p
->pages
= nr_good_pages
;
2335 nr_extents
= setup_swap_extents(p
, span
);
2338 nr_good_pages
= p
->pages
;
2340 if (!nr_good_pages
) {
2341 pr_warn("Empty swap-file\n");
2348 for (i
= 0; i
< nr_clusters
; i
++) {
2349 if (!cluster_count(&cluster_info
[idx
])) {
2350 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2351 if (cluster_is_null(&p
->free_cluster_head
)) {
2352 cluster_set_next_flag(&p
->free_cluster_head
,
2354 cluster_set_next_flag(&p
->free_cluster_tail
,
2359 tail
= cluster_next(&p
->free_cluster_tail
);
2360 cluster_set_next(&cluster_info
[tail
], idx
);
2361 cluster_set_next_flag(&p
->free_cluster_tail
,
2366 if (idx
== nr_clusters
)
2373 * Helper to sys_swapon determining if a given swap
2374 * backing device queue supports DISCARD operations.
2376 static bool swap_discardable(struct swap_info_struct
*si
)
2378 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2380 if (!q
|| !blk_queue_discard(q
))
2386 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2388 struct swap_info_struct
*p
;
2389 struct filename
*name
;
2390 struct file
*swap_file
= NULL
;
2391 struct address_space
*mapping
;
2394 union swap_header
*swap_header
;
2397 unsigned long maxpages
;
2398 unsigned char *swap_map
= NULL
;
2399 struct swap_cluster_info
*cluster_info
= NULL
;
2400 unsigned long *frontswap_map
= NULL
;
2401 struct page
*page
= NULL
;
2402 struct inode
*inode
= NULL
;
2404 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2407 if (!capable(CAP_SYS_ADMIN
))
2410 p
= alloc_swap_info();
2414 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2416 name
= getname(specialfile
);
2418 error
= PTR_ERR(name
);
2422 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2423 if (IS_ERR(swap_file
)) {
2424 error
= PTR_ERR(swap_file
);
2429 p
->swap_file
= swap_file
;
2430 mapping
= swap_file
->f_mapping
;
2431 inode
= mapping
->host
;
2433 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2434 error
= claim_swapfile(p
, inode
);
2435 if (unlikely(error
))
2439 * Read the swap header.
2441 if (!mapping
->a_ops
->readpage
) {
2445 page
= read_mapping_page(mapping
, 0, swap_file
);
2447 error
= PTR_ERR(page
);
2450 swap_header
= kmap(page
);
2452 maxpages
= read_swap_header(p
, swap_header
, inode
);
2453 if (unlikely(!maxpages
)) {
2458 /* OK, set up the swap map and apply the bad block list */
2459 swap_map
= vzalloc(maxpages
);
2464 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2467 p
->flags
|= SWP_SOLIDSTATE
;
2469 * select a random position to start with to help wear leveling
2472 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2474 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2475 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2476 if (!cluster_info
) {
2480 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2481 if (!p
->percpu_cluster
) {
2485 for_each_possible_cpu(cpu
) {
2486 struct percpu_cluster
*cluster
;
2487 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2488 cluster_set_null(&cluster
->index
);
2492 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2496 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2497 cluster_info
, maxpages
, &span
);
2498 if (unlikely(nr_extents
< 0)) {
2502 /* frontswap enabled? set up bit-per-page map for frontswap */
2503 if (frontswap_enabled
)
2504 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2506 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2508 * When discard is enabled for swap with no particular
2509 * policy flagged, we set all swap discard flags here in
2510 * order to sustain backward compatibility with older
2511 * swapon(8) releases.
2513 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2517 * By flagging sys_swapon, a sysadmin can tell us to
2518 * either do single-time area discards only, or to just
2519 * perform discards for released swap page-clusters.
2520 * Now it's time to adjust the p->flags accordingly.
2522 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2523 p
->flags
&= ~SWP_PAGE_DISCARD
;
2524 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2525 p
->flags
&= ~SWP_AREA_DISCARD
;
2527 /* issue a swapon-time discard if it's still required */
2528 if (p
->flags
& SWP_AREA_DISCARD
) {
2529 int err
= discard_swap(p
);
2531 pr_err("swapon: discard_swap(%p): %d\n",
2536 mutex_lock(&swapon_mutex
);
2538 if (swap_flags
& SWAP_FLAG_PREFER
)
2540 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2541 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2543 pr_info("Adding %uk swap on %s. "
2544 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2545 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2546 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2547 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2548 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2549 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2550 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2551 (frontswap_map
) ? "FS" : "");
2553 mutex_unlock(&swapon_mutex
);
2554 atomic_inc(&proc_poll_event
);
2555 wake_up_interruptible(&proc_poll_wait
);
2557 if (S_ISREG(inode
->i_mode
))
2558 inode
->i_flags
|= S_SWAPFILE
;
2562 free_percpu(p
->percpu_cluster
);
2563 p
->percpu_cluster
= NULL
;
2564 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2565 set_blocksize(p
->bdev
, p
->old_block_size
);
2566 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2568 destroy_swap_extents(p
);
2569 swap_cgroup_swapoff(p
->type
);
2570 spin_lock(&swap_lock
);
2571 p
->swap_file
= NULL
;
2573 spin_unlock(&swap_lock
);
2575 vfree(cluster_info
);
2577 if (inode
&& S_ISREG(inode
->i_mode
)) {
2578 mutex_unlock(&inode
->i_mutex
);
2581 filp_close(swap_file
, NULL
);
2584 if (page
&& !IS_ERR(page
)) {
2586 page_cache_release(page
);
2590 if (inode
&& S_ISREG(inode
->i_mode
))
2591 mutex_unlock(&inode
->i_mutex
);
2595 void si_swapinfo(struct sysinfo
*val
)
2598 unsigned long nr_to_be_unused
= 0;
2600 spin_lock(&swap_lock
);
2601 for (type
= 0; type
< nr_swapfiles
; type
++) {
2602 struct swap_info_struct
*si
= swap_info
[type
];
2604 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2605 nr_to_be_unused
+= si
->inuse_pages
;
2607 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2608 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2609 spin_unlock(&swap_lock
);
2613 * Verify that a swap entry is valid and increment its swap map count.
2615 * Returns error code in following case.
2617 * - swp_entry is invalid -> EINVAL
2618 * - swp_entry is migration entry -> EINVAL
2619 * - swap-cache reference is requested but there is already one. -> EEXIST
2620 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2621 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2623 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2625 struct swap_info_struct
*p
;
2626 unsigned long offset
, type
;
2627 unsigned char count
;
2628 unsigned char has_cache
;
2631 if (non_swap_entry(entry
))
2634 type
= swp_type(entry
);
2635 if (type
>= nr_swapfiles
)
2637 p
= swap_info
[type
];
2638 offset
= swp_offset(entry
);
2640 spin_lock(&p
->lock
);
2641 if (unlikely(offset
>= p
->max
))
2644 count
= p
->swap_map
[offset
];
2647 * swapin_readahead() doesn't check if a swap entry is valid, so the
2648 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2650 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2655 has_cache
= count
& SWAP_HAS_CACHE
;
2656 count
&= ~SWAP_HAS_CACHE
;
2659 if (usage
== SWAP_HAS_CACHE
) {
2661 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2662 if (!has_cache
&& count
)
2663 has_cache
= SWAP_HAS_CACHE
;
2664 else if (has_cache
) /* someone else added cache */
2666 else /* no users remaining */
2669 } else if (count
|| has_cache
) {
2671 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2673 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2675 else if (swap_count_continued(p
, offset
, count
))
2676 count
= COUNT_CONTINUED
;
2680 err
= -ENOENT
; /* unused swap entry */
2682 p
->swap_map
[offset
] = count
| has_cache
;
2685 spin_unlock(&p
->lock
);
2690 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2695 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2696 * (in which case its reference count is never incremented).
2698 void swap_shmem_alloc(swp_entry_t entry
)
2700 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2704 * Increase reference count of swap entry by 1.
2705 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2706 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2707 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2708 * might occur if a page table entry has got corrupted.
2710 int swap_duplicate(swp_entry_t entry
)
2714 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2715 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2720 * @entry: swap entry for which we allocate swap cache.
2722 * Called when allocating swap cache for existing swap entry,
2723 * This can return error codes. Returns 0 at success.
2724 * -EBUSY means there is a swap cache.
2725 * Note: return code is different from swap_duplicate().
2727 int swapcache_prepare(swp_entry_t entry
)
2729 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2732 struct swap_info_struct
*page_swap_info(struct page
*page
)
2734 swp_entry_t swap
= { .val
= page_private(page
) };
2735 BUG_ON(!PageSwapCache(page
));
2736 return swap_info
[swp_type(swap
)];
2740 * out-of-line __page_file_ methods to avoid include hell.
2742 struct address_space
*__page_file_mapping(struct page
*page
)
2744 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2745 return page_swap_info(page
)->swap_file
->f_mapping
;
2747 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2749 pgoff_t
__page_file_index(struct page
*page
)
2751 swp_entry_t swap
= { .val
= page_private(page
) };
2752 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2753 return swp_offset(swap
);
2755 EXPORT_SYMBOL_GPL(__page_file_index
);
2758 * add_swap_count_continuation - called when a swap count is duplicated
2759 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2760 * page of the original vmalloc'ed swap_map, to hold the continuation count
2761 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2762 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2764 * These continuation pages are seldom referenced: the common paths all work
2765 * on the original swap_map, only referring to a continuation page when the
2766 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2768 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2769 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2770 * can be called after dropping locks.
2772 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2774 struct swap_info_struct
*si
;
2777 struct page
*list_page
;
2779 unsigned char count
;
2782 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2783 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2785 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2787 si
= swap_info_get(entry
);
2790 * An acceptable race has occurred since the failing
2791 * __swap_duplicate(): the swap entry has been freed,
2792 * perhaps even the whole swap_map cleared for swapoff.
2797 offset
= swp_offset(entry
);
2798 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2800 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2802 * The higher the swap count, the more likely it is that tasks
2803 * will race to add swap count continuation: we need to avoid
2804 * over-provisioning.
2810 spin_unlock(&si
->lock
);
2815 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2816 * no architecture is using highmem pages for kernel page tables: so it
2817 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2819 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2820 offset
&= ~PAGE_MASK
;
2823 * Page allocation does not initialize the page's lru field,
2824 * but it does always reset its private field.
2826 if (!page_private(head
)) {
2827 BUG_ON(count
& COUNT_CONTINUED
);
2828 INIT_LIST_HEAD(&head
->lru
);
2829 set_page_private(head
, SWP_CONTINUED
);
2830 si
->flags
|= SWP_CONTINUED
;
2833 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2837 * If the previous map said no continuation, but we've found
2838 * a continuation page, free our allocation and use this one.
2840 if (!(count
& COUNT_CONTINUED
))
2843 map
= kmap_atomic(list_page
) + offset
;
2848 * If this continuation count now has some space in it,
2849 * free our allocation and use this one.
2851 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2855 list_add_tail(&page
->lru
, &head
->lru
);
2856 page
= NULL
; /* now it's attached, don't free it */
2858 spin_unlock(&si
->lock
);
2866 * swap_count_continued - when the original swap_map count is incremented
2867 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2868 * into, carry if so, or else fail until a new continuation page is allocated;
2869 * when the original swap_map count is decremented from 0 with continuation,
2870 * borrow from the continuation and report whether it still holds more.
2871 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2873 static bool swap_count_continued(struct swap_info_struct
*si
,
2874 pgoff_t offset
, unsigned char count
)
2880 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2881 if (page_private(head
) != SWP_CONTINUED
) {
2882 BUG_ON(count
& COUNT_CONTINUED
);
2883 return false; /* need to add count continuation */
2886 offset
&= ~PAGE_MASK
;
2887 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2888 map
= kmap_atomic(page
) + offset
;
2890 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2891 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2893 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2895 * Think of how you add 1 to 999
2897 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2899 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2900 BUG_ON(page
== head
);
2901 map
= kmap_atomic(page
) + offset
;
2903 if (*map
== SWAP_CONT_MAX
) {
2905 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2907 return false; /* add count continuation */
2908 map
= kmap_atomic(page
) + offset
;
2909 init_map
: *map
= 0; /* we didn't zero the page */
2913 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2914 while (page
!= head
) {
2915 map
= kmap_atomic(page
) + offset
;
2916 *map
= COUNT_CONTINUED
;
2918 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2920 return true; /* incremented */
2922 } else { /* decrementing */
2924 * Think of how you subtract 1 from 1000
2926 BUG_ON(count
!= COUNT_CONTINUED
);
2927 while (*map
== COUNT_CONTINUED
) {
2929 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2930 BUG_ON(page
== head
);
2931 map
= kmap_atomic(page
) + offset
;
2938 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2939 while (page
!= head
) {
2940 map
= kmap_atomic(page
) + offset
;
2941 *map
= SWAP_CONT_MAX
| count
;
2942 count
= COUNT_CONTINUED
;
2944 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2946 return count
== COUNT_CONTINUED
;
2951 * free_swap_count_continuations - swapoff free all the continuation pages
2952 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2954 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2958 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2960 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2961 if (page_private(head
)) {
2962 struct list_head
*this, *next
;
2963 list_for_each_safe(this, next
, &head
->lru
) {
2965 page
= list_entry(this, struct page
, lru
);