4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
25 #include <trace/events/f2fs.h>
27 static void f2fs_read_end_io(struct bio
*bio
, int err
)
32 bio_for_each_segment_all(bvec
, bio
, i
) {
33 struct page
*page
= bvec
->bv_page
;
36 SetPageUptodate(page
);
38 ClearPageUptodate(page
);
46 static void f2fs_write_end_io(struct bio
*bio
, int err
)
48 struct f2fs_sb_info
*sbi
= bio
->bi_private
;
52 bio_for_each_segment_all(bvec
, bio
, i
) {
53 struct page
*page
= bvec
->bv_page
;
57 set_bit(AS_EIO
, &page
->mapping
->flags
);
58 f2fs_stop_checkpoint(sbi
);
60 end_page_writeback(page
);
61 dec_page_count(sbi
, F2FS_WRITEBACK
);
65 complete(sbi
->wait_io
);
69 if (!get_pages(sbi
, F2FS_WRITEBACK
) &&
70 !list_empty(&sbi
->cp_wait
.task_list
))
71 wake_up(&sbi
->cp_wait
);
77 * Low-level block read/write IO operations.
79 static struct bio
*__bio_alloc(struct f2fs_sb_info
*sbi
, block_t blk_addr
,
80 int npages
, bool is_read
)
84 /* No failure on bio allocation */
85 bio
= bio_alloc(GFP_NOIO
, npages
);
87 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
88 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(blk_addr
);
89 bio
->bi_end_io
= is_read
? f2fs_read_end_io
: f2fs_write_end_io
;
90 bio
->bi_private
= sbi
;
95 static void __submit_merged_bio(struct f2fs_bio_info
*io
)
97 struct f2fs_io_info
*fio
= &io
->fio
;
105 if (is_read_io(rw
)) {
106 trace_f2fs_submit_read_bio(io
->sbi
->sb
, rw
,
108 submit_bio(rw
, io
->bio
);
110 trace_f2fs_submit_write_bio(io
->sbi
->sb
, rw
,
113 * META_FLUSH is only from the checkpoint procedure, and we
114 * should wait this metadata bio for FS consistency.
116 if (fio
->type
== META_FLUSH
) {
117 DECLARE_COMPLETION_ONSTACK(wait
);
118 io
->sbi
->wait_io
= &wait
;
119 submit_bio(rw
, io
->bio
);
120 wait_for_completion(&wait
);
122 submit_bio(rw
, io
->bio
);
129 void f2fs_submit_merged_bio(struct f2fs_sb_info
*sbi
,
130 enum page_type type
, int rw
)
132 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
133 struct f2fs_bio_info
*io
;
135 io
= is_read_io(rw
) ? &sbi
->read_io
: &sbi
->write_io
[btype
];
137 down_write(&io
->io_rwsem
);
139 /* change META to META_FLUSH in the checkpoint procedure */
140 if (type
>= META_FLUSH
) {
141 io
->fio
.type
= META_FLUSH
;
142 if (test_opt(sbi
, NOBARRIER
))
143 io
->fio
.rw
= WRITE_FLUSH
| REQ_META
| REQ_PRIO
;
145 io
->fio
.rw
= WRITE_FLUSH_FUA
| REQ_META
| REQ_PRIO
;
147 __submit_merged_bio(io
);
148 up_write(&io
->io_rwsem
);
152 * Fill the locked page with data located in the block address.
153 * Return unlocked page.
155 int f2fs_submit_page_bio(struct f2fs_sb_info
*sbi
, struct page
*page
,
156 block_t blk_addr
, int rw
)
160 trace_f2fs_submit_page_bio(page
, blk_addr
, rw
);
162 /* Allocate a new bio */
163 bio
= __bio_alloc(sbi
, blk_addr
, 1, is_read_io(rw
));
165 if (bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) < PAGE_CACHE_SIZE
) {
167 f2fs_put_page(page
, 1);
175 void f2fs_submit_page_mbio(struct f2fs_sb_info
*sbi
, struct page
*page
,
176 block_t blk_addr
, struct f2fs_io_info
*fio
)
178 enum page_type btype
= PAGE_TYPE_OF_BIO(fio
->type
);
179 struct f2fs_bio_info
*io
;
180 bool is_read
= is_read_io(fio
->rw
);
182 io
= is_read
? &sbi
->read_io
: &sbi
->write_io
[btype
];
184 verify_block_addr(sbi
, blk_addr
);
186 down_write(&io
->io_rwsem
);
189 inc_page_count(sbi
, F2FS_WRITEBACK
);
191 if (io
->bio
&& (io
->last_block_in_bio
!= blk_addr
- 1 ||
192 io
->fio
.rw
!= fio
->rw
))
193 __submit_merged_bio(io
);
195 if (io
->bio
== NULL
) {
196 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
198 io
->bio
= __bio_alloc(sbi
, blk_addr
, bio_blocks
, is_read
);
202 if (bio_add_page(io
->bio
, page
, PAGE_CACHE_SIZE
, 0) <
204 __submit_merged_bio(io
);
208 io
->last_block_in_bio
= blk_addr
;
210 up_write(&io
->io_rwsem
);
211 trace_f2fs_submit_page_mbio(page
, fio
->rw
, fio
->type
, blk_addr
);
215 * Lock ordering for the change of data block address:
218 * update block addresses in the node page
220 static void __set_data_blkaddr(struct dnode_of_data
*dn
, block_t new_addr
)
222 struct f2fs_node
*rn
;
224 struct page
*node_page
= dn
->node_page
;
225 unsigned int ofs_in_node
= dn
->ofs_in_node
;
227 f2fs_wait_on_page_writeback(node_page
, NODE
);
229 rn
= F2FS_NODE(node_page
);
231 /* Get physical address of data block */
232 addr_array
= blkaddr_in_node(rn
);
233 addr_array
[ofs_in_node
] = cpu_to_le32(new_addr
);
234 set_page_dirty(node_page
);
237 int reserve_new_block(struct dnode_of_data
*dn
)
239 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
241 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
243 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
246 trace_f2fs_reserve_new_block(dn
->inode
, dn
->nid
, dn
->ofs_in_node
);
248 __set_data_blkaddr(dn
, NEW_ADDR
);
249 dn
->data_blkaddr
= NEW_ADDR
;
250 mark_inode_dirty(dn
->inode
);
255 int f2fs_reserve_block(struct dnode_of_data
*dn
, pgoff_t index
)
257 bool need_put
= dn
->inode_page
? false : true;
260 /* if inode_page exists, index should be zero */
261 f2fs_bug_on(F2FS_I_SB(dn
->inode
), !need_put
&& index
);
263 err
= get_dnode_of_data(dn
, index
, ALLOC_NODE
);
267 if (dn
->data_blkaddr
== NULL_ADDR
)
268 err
= reserve_new_block(dn
);
274 static int check_extent_cache(struct inode
*inode
, pgoff_t pgofs
,
275 struct buffer_head
*bh_result
)
277 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
278 pgoff_t start_fofs
, end_fofs
;
279 block_t start_blkaddr
;
281 if (is_inode_flag_set(fi
, FI_NO_EXTENT
))
284 read_lock(&fi
->ext
.ext_lock
);
285 if (fi
->ext
.len
== 0) {
286 read_unlock(&fi
->ext
.ext_lock
);
290 stat_inc_total_hit(inode
->i_sb
);
292 start_fofs
= fi
->ext
.fofs
;
293 end_fofs
= fi
->ext
.fofs
+ fi
->ext
.len
- 1;
294 start_blkaddr
= fi
->ext
.blk_addr
;
296 if (pgofs
>= start_fofs
&& pgofs
<= end_fofs
) {
297 unsigned int blkbits
= inode
->i_sb
->s_blocksize_bits
;
300 clear_buffer_new(bh_result
);
301 map_bh(bh_result
, inode
->i_sb
,
302 start_blkaddr
+ pgofs
- start_fofs
);
303 count
= end_fofs
- pgofs
+ 1;
304 if (count
< (UINT_MAX
>> blkbits
))
305 bh_result
->b_size
= (count
<< blkbits
);
307 bh_result
->b_size
= UINT_MAX
;
309 stat_inc_read_hit(inode
->i_sb
);
310 read_unlock(&fi
->ext
.ext_lock
);
313 read_unlock(&fi
->ext
.ext_lock
);
317 void update_extent_cache(block_t blk_addr
, struct dnode_of_data
*dn
)
319 struct f2fs_inode_info
*fi
= F2FS_I(dn
->inode
);
320 pgoff_t fofs
, start_fofs
, end_fofs
;
321 block_t start_blkaddr
, end_blkaddr
;
322 int need_update
= true;
324 f2fs_bug_on(F2FS_I_SB(dn
->inode
), blk_addr
== NEW_ADDR
);
325 fofs
= start_bidx_of_node(ofs_of_node(dn
->node_page
), fi
) +
328 /* Update the page address in the parent node */
329 __set_data_blkaddr(dn
, blk_addr
);
331 if (is_inode_flag_set(fi
, FI_NO_EXTENT
))
334 write_lock(&fi
->ext
.ext_lock
);
336 start_fofs
= fi
->ext
.fofs
;
337 end_fofs
= fi
->ext
.fofs
+ fi
->ext
.len
- 1;
338 start_blkaddr
= fi
->ext
.blk_addr
;
339 end_blkaddr
= fi
->ext
.blk_addr
+ fi
->ext
.len
- 1;
341 /* Drop and initialize the matched extent */
342 if (fi
->ext
.len
== 1 && fofs
== start_fofs
)
346 if (fi
->ext
.len
== 0) {
347 if (blk_addr
!= NULL_ADDR
) {
349 fi
->ext
.blk_addr
= blk_addr
;
356 if (fofs
== start_fofs
- 1 && blk_addr
== start_blkaddr
- 1) {
364 if (fofs
== end_fofs
+ 1 && blk_addr
== end_blkaddr
+ 1) {
369 /* Split the existing extent */
370 if (fi
->ext
.len
> 1 &&
371 fofs
>= start_fofs
&& fofs
<= end_fofs
) {
372 if ((end_fofs
- fofs
) < (fi
->ext
.len
>> 1)) {
373 fi
->ext
.len
= fofs
- start_fofs
;
375 fi
->ext
.fofs
= fofs
+ 1;
376 fi
->ext
.blk_addr
= start_blkaddr
+
377 fofs
- start_fofs
+ 1;
378 fi
->ext
.len
-= fofs
- start_fofs
+ 1;
384 /* Finally, if the extent is very fragmented, let's drop the cache. */
385 if (fi
->ext
.len
< F2FS_MIN_EXTENT_LEN
) {
387 set_inode_flag(fi
, FI_NO_EXTENT
);
391 write_unlock(&fi
->ext
.ext_lock
);
397 struct page
*find_data_page(struct inode
*inode
, pgoff_t index
, bool sync
)
399 struct address_space
*mapping
= inode
->i_mapping
;
400 struct dnode_of_data dn
;
404 page
= find_get_page(mapping
, index
);
405 if (page
&& PageUptodate(page
))
407 f2fs_put_page(page
, 0);
409 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
410 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
415 if (dn
.data_blkaddr
== NULL_ADDR
)
416 return ERR_PTR(-ENOENT
);
418 /* By fallocate(), there is no cached page, but with NEW_ADDR */
419 if (unlikely(dn
.data_blkaddr
== NEW_ADDR
))
420 return ERR_PTR(-EINVAL
);
422 page
= grab_cache_page(mapping
, index
);
424 return ERR_PTR(-ENOMEM
);
426 if (PageUptodate(page
)) {
431 err
= f2fs_submit_page_bio(F2FS_I_SB(inode
), page
, dn
.data_blkaddr
,
432 sync
? READ_SYNC
: READA
);
437 wait_on_page_locked(page
);
438 if (unlikely(!PageUptodate(page
))) {
439 f2fs_put_page(page
, 0);
440 return ERR_PTR(-EIO
);
447 * If it tries to access a hole, return an error.
448 * Because, the callers, functions in dir.c and GC, should be able to know
449 * whether this page exists or not.
451 struct page
*get_lock_data_page(struct inode
*inode
, pgoff_t index
)
453 struct address_space
*mapping
= inode
->i_mapping
;
454 struct dnode_of_data dn
;
459 page
= grab_cache_page(mapping
, index
);
461 return ERR_PTR(-ENOMEM
);
463 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
464 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
466 f2fs_put_page(page
, 1);
471 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
472 f2fs_put_page(page
, 1);
473 return ERR_PTR(-ENOENT
);
476 if (PageUptodate(page
))
480 * A new dentry page is allocated but not able to be written, since its
481 * new inode page couldn't be allocated due to -ENOSPC.
482 * In such the case, its blkaddr can be remained as NEW_ADDR.
483 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
485 if (dn
.data_blkaddr
== NEW_ADDR
) {
486 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
487 SetPageUptodate(page
);
491 err
= f2fs_submit_page_bio(F2FS_I_SB(inode
), page
,
492 dn
.data_blkaddr
, READ_SYNC
);
497 if (unlikely(!PageUptodate(page
))) {
498 f2fs_put_page(page
, 1);
499 return ERR_PTR(-EIO
);
501 if (unlikely(page
->mapping
!= mapping
)) {
502 f2fs_put_page(page
, 1);
509 * Caller ensures that this data page is never allocated.
510 * A new zero-filled data page is allocated in the page cache.
512 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
514 * Note that, ipage is set only by make_empty_dir.
516 struct page
*get_new_data_page(struct inode
*inode
,
517 struct page
*ipage
, pgoff_t index
, bool new_i_size
)
519 struct address_space
*mapping
= inode
->i_mapping
;
521 struct dnode_of_data dn
;
524 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
525 err
= f2fs_reserve_block(&dn
, index
);
529 page
= grab_cache_page(mapping
, index
);
535 if (PageUptodate(page
))
538 if (dn
.data_blkaddr
== NEW_ADDR
) {
539 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
540 SetPageUptodate(page
);
542 err
= f2fs_submit_page_bio(F2FS_I_SB(inode
), page
,
543 dn
.data_blkaddr
, READ_SYNC
);
548 if (unlikely(!PageUptodate(page
))) {
549 f2fs_put_page(page
, 1);
553 if (unlikely(page
->mapping
!= mapping
)) {
554 f2fs_put_page(page
, 1);
560 i_size_read(inode
) < ((index
+ 1) << PAGE_CACHE_SHIFT
)) {
561 i_size_write(inode
, ((index
+ 1) << PAGE_CACHE_SHIFT
));
562 /* Only the directory inode sets new_i_size */
563 set_inode_flag(F2FS_I(inode
), FI_UPDATE_DIR
);
572 static int __allocate_data_block(struct dnode_of_data
*dn
)
574 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
575 struct f2fs_inode_info
*fi
= F2FS_I(dn
->inode
);
576 struct f2fs_summary sum
;
582 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
584 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
587 __set_data_blkaddr(dn
, NEW_ADDR
);
588 dn
->data_blkaddr
= NEW_ADDR
;
590 get_node_info(sbi
, dn
->nid
, &ni
);
591 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
593 type
= CURSEG_WARM_DATA
;
595 allocate_data_block(sbi
, NULL
, NULL_ADDR
, &new_blkaddr
, &sum
, type
);
597 /* direct IO doesn't use extent cache to maximize the performance */
598 set_inode_flag(F2FS_I(dn
->inode
), FI_NO_EXTENT
);
599 update_extent_cache(new_blkaddr
, dn
);
600 clear_inode_flag(F2FS_I(dn
->inode
), FI_NO_EXTENT
);
603 fofs
= start_bidx_of_node(ofs_of_node(dn
->node_page
), fi
) +
605 if (i_size_read(dn
->inode
) < ((fofs
+ 1) << PAGE_CACHE_SHIFT
))
606 i_size_write(dn
->inode
, ((fofs
+ 1) << PAGE_CACHE_SHIFT
));
608 dn
->data_blkaddr
= new_blkaddr
;
613 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
614 * If original data blocks are allocated, then give them to blockdev.
616 * a. preallocate requested block addresses
617 * b. do not use extent cache for better performance
618 * c. give the block addresses to blockdev
620 static int __get_data_block(struct inode
*inode
, sector_t iblock
,
621 struct buffer_head
*bh_result
, int create
, bool fiemap
)
623 unsigned int blkbits
= inode
->i_sb
->s_blocksize_bits
;
624 unsigned maxblocks
= bh_result
->b_size
>> blkbits
;
625 struct dnode_of_data dn
;
626 int mode
= create
? ALLOC_NODE
: LOOKUP_NODE_RA
;
627 pgoff_t pgofs
, end_offset
;
628 int err
= 0, ofs
= 1;
629 bool allocated
= false;
631 /* Get the page offset from the block offset(iblock) */
632 pgofs
= (pgoff_t
)(iblock
>> (PAGE_CACHE_SHIFT
- blkbits
));
634 if (check_extent_cache(inode
, pgofs
, bh_result
))
638 f2fs_balance_fs(F2FS_I_SB(inode
));
639 f2fs_lock_op(F2FS_I_SB(inode
));
642 /* When reading holes, we need its node page */
643 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
644 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
650 if (dn
.data_blkaddr
== NEW_ADDR
&& !fiemap
)
653 if (dn
.data_blkaddr
!= NULL_ADDR
) {
654 map_bh(bh_result
, inode
->i_sb
, dn
.data_blkaddr
);
656 err
= __allocate_data_block(&dn
);
660 map_bh(bh_result
, inode
->i_sb
, dn
.data_blkaddr
);
665 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
666 bh_result
->b_size
= (((size_t)1) << blkbits
);
671 if (dn
.ofs_in_node
>= end_offset
) {
673 sync_inode_page(&dn
);
677 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
678 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
684 if (dn
.data_blkaddr
== NEW_ADDR
&& !fiemap
)
687 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
690 if (maxblocks
> (bh_result
->b_size
>> blkbits
)) {
691 block_t blkaddr
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
692 if (blkaddr
== NULL_ADDR
&& create
) {
693 err
= __allocate_data_block(&dn
);
697 blkaddr
= dn
.data_blkaddr
;
699 /* Give more consecutive addresses for the readahead */
700 if (blkaddr
== (bh_result
->b_blocknr
+ ofs
)) {
704 bh_result
->b_size
+= (((size_t)1) << blkbits
);
710 sync_inode_page(&dn
);
715 f2fs_unlock_op(F2FS_I_SB(inode
));
717 trace_f2fs_get_data_block(inode
, iblock
, bh_result
, err
);
721 static int get_data_block(struct inode
*inode
, sector_t iblock
,
722 struct buffer_head
*bh_result
, int create
)
724 return __get_data_block(inode
, iblock
, bh_result
, create
, false);
727 static int get_data_block_fiemap(struct inode
*inode
, sector_t iblock
,
728 struct buffer_head
*bh_result
, int create
)
730 return __get_data_block(inode
, iblock
, bh_result
, create
, true);
733 int f2fs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
736 return generic_block_fiemap(inode
, fieinfo
,
737 start
, len
, get_data_block_fiemap
);
740 static int f2fs_read_data_page(struct file
*file
, struct page
*page
)
742 struct inode
*inode
= page
->mapping
->host
;
745 trace_f2fs_readpage(page
, DATA
);
747 /* If the file has inline data, try to read it directly */
748 if (f2fs_has_inline_data(inode
))
749 ret
= f2fs_read_inline_data(inode
, page
);
751 ret
= mpage_readpage(page
, get_data_block
);
756 static int f2fs_read_data_pages(struct file
*file
,
757 struct address_space
*mapping
,
758 struct list_head
*pages
, unsigned nr_pages
)
760 struct inode
*inode
= file
->f_mapping
->host
;
762 /* If the file has inline data, skip readpages */
763 if (f2fs_has_inline_data(inode
))
766 return mpage_readpages(mapping
, pages
, nr_pages
, get_data_block
);
769 int do_write_data_page(struct page
*page
, struct f2fs_io_info
*fio
)
771 struct inode
*inode
= page
->mapping
->host
;
772 block_t old_blkaddr
, new_blkaddr
;
773 struct dnode_of_data dn
;
776 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
777 err
= get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
781 old_blkaddr
= dn
.data_blkaddr
;
783 /* This page is already truncated */
784 if (old_blkaddr
== NULL_ADDR
)
787 set_page_writeback(page
);
790 * If current allocation needs SSR,
791 * it had better in-place writes for updated data.
793 if (unlikely(old_blkaddr
!= NEW_ADDR
&&
794 !is_cold_data(page
) &&
795 need_inplace_update(inode
))) {
796 rewrite_data_page(page
, old_blkaddr
, fio
);
797 set_inode_flag(F2FS_I(inode
), FI_UPDATE_WRITE
);
799 write_data_page(page
, &dn
, &new_blkaddr
, fio
);
800 update_extent_cache(new_blkaddr
, &dn
);
801 set_inode_flag(F2FS_I(inode
), FI_APPEND_WRITE
);
808 static int f2fs_write_data_page(struct page
*page
,
809 struct writeback_control
*wbc
)
811 struct inode
*inode
= page
->mapping
->host
;
812 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
813 loff_t i_size
= i_size_read(inode
);
814 const pgoff_t end_index
= ((unsigned long long) i_size
)
817 bool need_balance_fs
= false;
819 struct f2fs_io_info fio
= {
821 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
824 trace_f2fs_writepage(page
, DATA
);
826 if (page
->index
< end_index
)
830 * If the offset is out-of-range of file size,
831 * this page does not have to be written to disk.
833 offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
834 if ((page
->index
>= end_index
+ 1) || !offset
)
837 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
839 if (unlikely(sbi
->por_doing
))
842 /* Dentry blocks are controlled by checkpoint */
843 if (S_ISDIR(inode
->i_mode
)) {
844 if (unlikely(f2fs_cp_error(sbi
)))
846 err
= do_write_data_page(page
, &fio
);
850 /* we should bypass data pages to proceed the kworkder jobs */
851 if (unlikely(f2fs_cp_error(sbi
))) {
857 if (!wbc
->for_reclaim
)
858 need_balance_fs
= true;
859 else if (has_not_enough_free_secs(sbi
, 0))
863 if (f2fs_has_inline_data(inode
) || f2fs_may_inline(inode
))
864 err
= f2fs_write_inline_data(inode
, page
, offset
);
866 err
= do_write_data_page(page
, &fio
);
869 if (err
&& err
!= -ENOENT
)
872 clear_cold_data(page
);
874 inode_dec_dirty_pages(inode
);
877 f2fs_balance_fs(sbi
);
878 if (wbc
->for_reclaim
)
879 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
883 redirty_page_for_writepage(wbc
, page
);
884 return AOP_WRITEPAGE_ACTIVATE
;
887 static int __f2fs_writepage(struct page
*page
, struct writeback_control
*wbc
,
890 struct address_space
*mapping
= data
;
891 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
892 mapping_set_error(mapping
, ret
);
896 static int f2fs_write_data_pages(struct address_space
*mapping
,
897 struct writeback_control
*wbc
)
899 struct inode
*inode
= mapping
->host
;
900 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
905 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
907 /* deal with chardevs and other special file */
908 if (!mapping
->a_ops
->writepage
)
911 if (S_ISDIR(inode
->i_mode
) && wbc
->sync_mode
== WB_SYNC_NONE
&&
912 get_dirty_pages(inode
) < nr_pages_to_skip(sbi
, DATA
) &&
913 available_free_memory(sbi
, DIRTY_DENTS
))
916 diff
= nr_pages_to_write(sbi
, DATA
, wbc
);
918 if (!S_ISDIR(inode
->i_mode
)) {
919 mutex_lock(&sbi
->writepages
);
922 ret
= write_cache_pages(mapping
, wbc
, __f2fs_writepage
, mapping
);
924 mutex_unlock(&sbi
->writepages
);
926 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
928 remove_dirty_dir_inode(inode
);
930 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
934 wbc
->pages_skipped
+= get_dirty_pages(inode
);
938 static void f2fs_write_failed(struct address_space
*mapping
, loff_t to
)
940 struct inode
*inode
= mapping
->host
;
942 if (to
> inode
->i_size
) {
943 truncate_pagecache(inode
, inode
->i_size
);
944 truncate_blocks(inode
, inode
->i_size
, true);
948 static int f2fs_write_begin(struct file
*file
, struct address_space
*mapping
,
949 loff_t pos
, unsigned len
, unsigned flags
,
950 struct page
**pagep
, void **fsdata
)
952 struct inode
*inode
= mapping
->host
;
953 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
955 pgoff_t index
= ((unsigned long long) pos
) >> PAGE_CACHE_SHIFT
;
956 struct dnode_of_data dn
;
959 trace_f2fs_write_begin(inode
, pos
, len
, flags
);
961 f2fs_balance_fs(sbi
);
963 err
= f2fs_convert_inline_data(inode
, pos
+ len
, NULL
);
967 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
973 /* to avoid latency during memory pressure */
978 if (f2fs_has_inline_data(inode
) && (pos
+ len
) <= MAX_INLINE_DATA
)
982 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
983 err
= f2fs_reserve_block(&dn
, index
);
986 f2fs_put_page(page
, 0);
991 if (unlikely(page
->mapping
!= mapping
)) {
992 f2fs_put_page(page
, 1);
996 f2fs_wait_on_page_writeback(page
, DATA
);
998 if ((len
== PAGE_CACHE_SIZE
) || PageUptodate(page
))
1001 if ((pos
& PAGE_CACHE_MASK
) >= i_size_read(inode
)) {
1002 unsigned start
= pos
& (PAGE_CACHE_SIZE
- 1);
1003 unsigned end
= start
+ len
;
1005 /* Reading beyond i_size is simple: memset to zero */
1006 zero_user_segments(page
, 0, start
, end
, PAGE_CACHE_SIZE
);
1010 if (dn
.data_blkaddr
== NEW_ADDR
) {
1011 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
1013 if (f2fs_has_inline_data(inode
)) {
1014 err
= f2fs_read_inline_data(inode
, page
);
1016 page_cache_release(page
);
1020 err
= f2fs_submit_page_bio(sbi
, page
, dn
.data_blkaddr
,
1027 if (unlikely(!PageUptodate(page
))) {
1028 f2fs_put_page(page
, 1);
1032 if (unlikely(page
->mapping
!= mapping
)) {
1033 f2fs_put_page(page
, 1);
1038 SetPageUptodate(page
);
1039 clear_cold_data(page
);
1042 f2fs_write_failed(mapping
, pos
+ len
);
1046 static int f2fs_write_end(struct file
*file
,
1047 struct address_space
*mapping
,
1048 loff_t pos
, unsigned len
, unsigned copied
,
1049 struct page
*page
, void *fsdata
)
1051 struct inode
*inode
= page
->mapping
->host
;
1053 trace_f2fs_write_end(inode
, pos
, len
, copied
);
1055 if (f2fs_is_atomic_file(inode
) || f2fs_is_volatile_file(inode
))
1056 register_inmem_page(inode
, page
);
1058 set_page_dirty(page
);
1060 if (pos
+ copied
> i_size_read(inode
)) {
1061 i_size_write(inode
, pos
+ copied
);
1062 mark_inode_dirty(inode
);
1063 update_inode_page(inode
);
1066 f2fs_put_page(page
, 1);
1070 static int check_direct_IO(struct inode
*inode
, int rw
,
1071 struct iov_iter
*iter
, loff_t offset
)
1073 unsigned blocksize_mask
= inode
->i_sb
->s_blocksize
- 1;
1078 if (offset
& blocksize_mask
)
1081 if (iov_iter_alignment(iter
) & blocksize_mask
)
1087 static ssize_t
f2fs_direct_IO(int rw
, struct kiocb
*iocb
,
1088 struct iov_iter
*iter
, loff_t offset
)
1090 struct file
*file
= iocb
->ki_filp
;
1091 struct address_space
*mapping
= file
->f_mapping
;
1092 struct inode
*inode
= mapping
->host
;
1093 size_t count
= iov_iter_count(iter
);
1096 /* Let buffer I/O handle the inline data case. */
1097 if (f2fs_has_inline_data(inode
))
1100 if (check_direct_IO(inode
, rw
, iter
, offset
))
1103 trace_f2fs_direct_IO_enter(inode
, offset
, count
, rw
);
1105 err
= blockdev_direct_IO(rw
, iocb
, inode
, iter
, offset
, get_data_block
);
1106 if (err
< 0 && (rw
& WRITE
))
1107 f2fs_write_failed(mapping
, offset
+ count
);
1109 trace_f2fs_direct_IO_exit(inode
, offset
, count
, rw
, err
);
1114 static void f2fs_invalidate_data_page(struct page
*page
, unsigned int offset
,
1115 unsigned int length
)
1117 struct inode
*inode
= page
->mapping
->host
;
1119 if (offset
% PAGE_CACHE_SIZE
|| length
!= PAGE_CACHE_SIZE
)
1122 if (PageDirty(page
))
1123 inode_dec_dirty_pages(inode
);
1124 ClearPagePrivate(page
);
1127 static int f2fs_release_data_page(struct page
*page
, gfp_t wait
)
1129 ClearPagePrivate(page
);
1133 static int f2fs_set_data_page_dirty(struct page
*page
)
1135 struct address_space
*mapping
= page
->mapping
;
1136 struct inode
*inode
= mapping
->host
;
1138 trace_f2fs_set_page_dirty(page
, DATA
);
1140 SetPageUptodate(page
);
1141 mark_inode_dirty(inode
);
1143 if (!PageDirty(page
)) {
1144 __set_page_dirty_nobuffers(page
);
1145 update_dirty_page(inode
, page
);
1151 static sector_t
f2fs_bmap(struct address_space
*mapping
, sector_t block
)
1153 struct inode
*inode
= mapping
->host
;
1155 if (f2fs_has_inline_data(inode
))
1158 return generic_block_bmap(mapping
, block
, get_data_block
);
1161 const struct address_space_operations f2fs_dblock_aops
= {
1162 .readpage
= f2fs_read_data_page
,
1163 .readpages
= f2fs_read_data_pages
,
1164 .writepage
= f2fs_write_data_page
,
1165 .writepages
= f2fs_write_data_pages
,
1166 .write_begin
= f2fs_write_begin
,
1167 .write_end
= f2fs_write_end
,
1168 .set_page_dirty
= f2fs_set_data_page_dirty
,
1169 .invalidatepage
= f2fs_invalidate_data_page
,
1170 .releasepage
= f2fs_release_data_page
,
1171 .direct_IO
= f2fs_direct_IO
,