2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 static struct workqueue_struct
*xfslogd_workqueue
;
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54 # define XB_SET_OWNER(bp) do { } while (0)
55 # define XB_CLEAR_OWNER(bp) do { } while (0)
56 # define XB_GET_OWNER(bp) do { } while (0)
59 #define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
68 * Return true if the buffer is vmapped.
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
74 return bp
->b_addr
&& bp
->b_page_count
> 1;
81 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
90 * This prevents build-up of stale buffers on the LRU.
96 ASSERT(xfs_buf_islocked(bp
));
98 bp
->b_flags
|= XBF_STALE
;
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
105 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
107 spin_lock(&bp
->b_lock
);
108 atomic_set(&bp
->b_lru_ref
, 0);
109 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
110 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
111 atomic_dec(&bp
->b_hold
);
113 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
114 spin_unlock(&bp
->b_lock
);
122 ASSERT(bp
->b_maps
== NULL
);
123 bp
->b_map_count
= map_count
;
125 if (map_count
== 1) {
126 bp
->b_maps
= &bp
->__b_map
;
130 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
138 * Frees b_pages if it was allocated.
144 if (bp
->b_maps
!= &bp
->__b_map
) {
145 kmem_free(bp
->b_maps
);
152 struct xfs_buftarg
*target
,
153 struct xfs_buf_map
*map
,
155 xfs_buf_flags_t flags
)
161 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
169 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
171 atomic_set(&bp
->b_hold
, 1);
172 atomic_set(&bp
->b_lru_ref
, 1);
173 init_completion(&bp
->b_iowait
);
174 INIT_LIST_HEAD(&bp
->b_lru
);
175 INIT_LIST_HEAD(&bp
->b_list
);
176 RB_CLEAR_NODE(&bp
->b_rbnode
);
177 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
178 spin_lock_init(&bp
->b_lock
);
180 bp
->b_target
= target
;
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
188 error
= xfs_buf_get_maps(bp
, nmaps
);
190 kmem_zone_free(xfs_buf_zone
, bp
);
194 bp
->b_bn
= map
[0].bm_bn
;
196 for (i
= 0; i
< nmaps
; i
++) {
197 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
198 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
199 bp
->b_length
+= map
[i
].bm_len
;
201 bp
->b_io_length
= bp
->b_length
;
203 atomic_set(&bp
->b_pin_count
, 0);
204 init_waitqueue_head(&bp
->b_waiters
);
206 XFS_STATS_INC(xb_create
);
207 trace_xfs_buf_init(bp
, _RET_IP_
);
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
221 /* Make sure that we have a page list */
222 if (bp
->b_pages
== NULL
) {
223 bp
->b_page_count
= page_count
;
224 if (page_count
<= XB_PAGES
) {
225 bp
->b_pages
= bp
->b_page_array
;
227 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
228 page_count
, KM_NOFS
);
229 if (bp
->b_pages
== NULL
)
232 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
238 * Frees b_pages if it was allocated.
244 if (bp
->b_pages
!= bp
->b_page_array
) {
245 kmem_free(bp
->b_pages
);
251 * Releases the specified buffer.
253 * The modification state of any associated pages is left unchanged.
254 * The buffer must not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
261 trace_xfs_buf_free(bp
, _RET_IP_
);
263 ASSERT(list_empty(&bp
->b_lru
));
265 if (bp
->b_flags
& _XBF_PAGES
) {
268 if (xfs_buf_is_vmapped(bp
))
269 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
272 for (i
= 0; i
< bp
->b_page_count
; i
++) {
273 struct page
*page
= bp
->b_pages
[i
];
277 } else if (bp
->b_flags
& _XBF_KMEM
)
278 kmem_free(bp
->b_addr
);
279 _xfs_buf_free_pages(bp
);
280 xfs_buf_free_maps(bp
);
281 kmem_zone_free(xfs_buf_zone
, bp
);
285 * Allocates all the pages for buffer in question and builds it's page list.
288 xfs_buf_allocate_memory(
293 size_t nbytes
, offset
;
294 gfp_t gfp_mask
= xb_to_gfp(flags
);
295 unsigned short page_count
, i
;
296 xfs_off_t start
, end
;
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
304 size
= BBTOB(bp
->b_length
);
305 if (size
< PAGE_SIZE
) {
306 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
308 /* low memory - use alloc_page loop instead */
312 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
313 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp
->b_addr
);
319 bp
->b_offset
= offset_in_page(bp
->b_addr
);
320 bp
->b_pages
= bp
->b_page_array
;
321 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
322 bp
->b_page_count
= 1;
323 bp
->b_flags
|= _XBF_KMEM
;
328 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
329 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
331 page_count
= end
- start
;
332 error
= _xfs_buf_get_pages(bp
, page_count
);
336 offset
= bp
->b_offset
;
337 bp
->b_flags
|= _XBF_PAGES
;
339 for (i
= 0; i
< bp
->b_page_count
; i
++) {
343 page
= alloc_page(gfp_mask
);
344 if (unlikely(page
== NULL
)) {
345 if (flags
& XBF_READ_AHEAD
) {
346 bp
->b_page_count
= i
;
352 * This could deadlock.
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
357 if (!(++retries
% 100))
359 "possible memory allocation deadlock in %s (mode:0x%x)",
362 XFS_STATS_INC(xb_page_retries
);
363 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
367 XFS_STATS_INC(xb_page_found
);
369 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
371 bp
->b_pages
[i
] = page
;
377 for (i
= 0; i
< bp
->b_page_count
; i
++)
378 __free_page(bp
->b_pages
[i
]);
383 * Map buffer into kernel address-space if necessary.
390 ASSERT(bp
->b_flags
& _XBF_PAGES
);
391 if (bp
->b_page_count
== 1) {
392 /* A single page buffer is always mappable */
393 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
394 } else if (flags
& XBF_UNMAPPED
) {
401 * vm_map_ram() will allocate auxillary structures (e.g.
402 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 * memory reclaim re-entering the filesystem here and
406 * potentially deadlocking.
408 noio_flag
= memalloc_noio_save();
410 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
415 } while (retried
++ <= 1);
416 memalloc_noio_restore(noio_flag
);
420 bp
->b_addr
+= bp
->b_offset
;
427 * Finding and Reading Buffers
431 * Look up, and creates if absent, a lockable buffer for
432 * a given range of an inode. The buffer is returned
433 * locked. No I/O is implied by this call.
437 struct xfs_buftarg
*btp
,
438 struct xfs_buf_map
*map
,
440 xfs_buf_flags_t flags
,
444 struct xfs_perag
*pag
;
445 struct rb_node
**rbp
;
446 struct rb_node
*parent
;
448 xfs_daddr_t blkno
= map
[0].bm_bn
;
453 for (i
= 0; i
< nmaps
; i
++)
454 numblks
+= map
[i
].bm_len
;
455 numbytes
= BBTOB(numblks
);
457 /* Check for IOs smaller than the sector size / not sector aligned */
458 ASSERT(!(numbytes
< btp
->bt_meta_sectorsize
));
459 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
462 * Corrupted block numbers can get through to here, unfortunately, so we
463 * have to check that the buffer falls within the filesystem bounds.
465 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
468 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
469 * but none of the higher level infrastructure supports
470 * returning a specific error on buffer lookup failures.
472 xfs_alert(btp
->bt_mount
,
473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 __func__
, blkno
, eofs
);
480 pag
= xfs_perag_get(btp
->bt_mount
,
481 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
484 spin_lock(&pag
->pag_buf_lock
);
485 rbp
= &pag
->pag_buf_tree
.rb_node
;
490 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
492 if (blkno
< bp
->b_bn
)
493 rbp
= &(*rbp
)->rb_left
;
494 else if (blkno
> bp
->b_bn
)
495 rbp
= &(*rbp
)->rb_right
;
498 * found a block number match. If the range doesn't
499 * match, the only way this is allowed is if the buffer
500 * in the cache is stale and the transaction that made
501 * it stale has not yet committed. i.e. we are
502 * reallocating a busy extent. Skip this buffer and
503 * continue searching to the right for an exact match.
505 if (bp
->b_length
!= numblks
) {
506 ASSERT(bp
->b_flags
& XBF_STALE
);
507 rbp
= &(*rbp
)->rb_right
;
510 atomic_inc(&bp
->b_hold
);
517 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
518 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
519 /* the buffer keeps the perag reference until it is freed */
521 spin_unlock(&pag
->pag_buf_lock
);
523 XFS_STATS_INC(xb_miss_locked
);
524 spin_unlock(&pag
->pag_buf_lock
);
530 spin_unlock(&pag
->pag_buf_lock
);
533 if (!xfs_buf_trylock(bp
)) {
534 if (flags
& XBF_TRYLOCK
) {
536 XFS_STATS_INC(xb_busy_locked
);
540 XFS_STATS_INC(xb_get_locked_waited
);
544 * if the buffer is stale, clear all the external state associated with
545 * it. We need to keep flags such as how we allocated the buffer memory
548 if (bp
->b_flags
& XBF_STALE
) {
549 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
550 ASSERT(bp
->b_iodone
== NULL
);
551 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
555 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
556 XFS_STATS_INC(xb_get_locked
);
561 * Assembles a buffer covering the specified range. The code is optimised for
562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563 * more hits than misses.
567 struct xfs_buftarg
*target
,
568 struct xfs_buf_map
*map
,
570 xfs_buf_flags_t flags
)
573 struct xfs_buf
*new_bp
;
576 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
580 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
581 if (unlikely(!new_bp
))
584 error
= xfs_buf_allocate_memory(new_bp
, flags
);
586 xfs_buf_free(new_bp
);
590 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
592 xfs_buf_free(new_bp
);
597 xfs_buf_free(new_bp
);
601 error
= _xfs_buf_map_pages(bp
, flags
);
602 if (unlikely(error
)) {
603 xfs_warn(target
->bt_mount
,
604 "%s: failed to map pagesn", __func__
);
610 XFS_STATS_INC(xb_get
);
611 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
618 xfs_buf_flags_t flags
)
620 ASSERT(!(flags
& XBF_WRITE
));
621 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
623 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
624 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
626 if (flags
& XBF_ASYNC
) {
630 return xfs_buf_submit_wait(bp
);
635 struct xfs_buftarg
*target
,
636 struct xfs_buf_map
*map
,
638 xfs_buf_flags_t flags
,
639 const struct xfs_buf_ops
*ops
)
645 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
647 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
649 if (!XFS_BUF_ISDONE(bp
)) {
650 XFS_STATS_INC(xb_get_read
);
652 _xfs_buf_read(bp
, flags
);
653 } else if (flags
& XBF_ASYNC
) {
655 * Read ahead call which is already satisfied,
661 /* We do not want read in the flags */
662 bp
->b_flags
&= ~XBF_READ
;
670 * If we are not low on memory then do the readahead in a deadlock
674 xfs_buf_readahead_map(
675 struct xfs_buftarg
*target
,
676 struct xfs_buf_map
*map
,
678 const struct xfs_buf_ops
*ops
)
680 if (bdi_read_congested(target
->bt_bdi
))
683 xfs_buf_read_map(target
, map
, nmaps
,
684 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
688 * Read an uncached buffer from disk. Allocates and returns a locked
689 * buffer containing the disk contents or nothing.
692 xfs_buf_read_uncached(
693 struct xfs_buftarg
*target
,
697 struct xfs_buf
**bpp
,
698 const struct xfs_buf_ops
*ops
)
704 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
708 /* set up the buffer for a read IO */
709 ASSERT(bp
->b_map_count
== 1);
710 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
711 bp
->b_maps
[0].bm_bn
= daddr
;
712 bp
->b_flags
|= XBF_READ
;
715 xfs_buf_submit_wait(bp
);
717 int error
= bp
->b_error
;
727 * Return a buffer allocated as an empty buffer and associated to external
728 * memory via xfs_buf_associate_memory() back to it's empty state.
736 _xfs_buf_free_pages(bp
);
739 bp
->b_page_count
= 0;
741 bp
->b_length
= numblks
;
742 bp
->b_io_length
= numblks
;
744 ASSERT(bp
->b_map_count
== 1);
745 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
746 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
747 bp
->b_maps
[0].bm_len
= bp
->b_length
;
750 static inline struct page
*
754 if ((!is_vmalloc_addr(addr
))) {
755 return virt_to_page(addr
);
757 return vmalloc_to_page(addr
);
762 xfs_buf_associate_memory(
769 unsigned long pageaddr
;
770 unsigned long offset
;
774 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
775 offset
= (unsigned long)mem
- pageaddr
;
776 buflen
= PAGE_ALIGN(len
+ offset
);
777 page_count
= buflen
>> PAGE_SHIFT
;
779 /* Free any previous set of page pointers */
781 _xfs_buf_free_pages(bp
);
786 rval
= _xfs_buf_get_pages(bp
, page_count
);
790 bp
->b_offset
= offset
;
792 for (i
= 0; i
< bp
->b_page_count
; i
++) {
793 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
794 pageaddr
+= PAGE_SIZE
;
797 bp
->b_io_length
= BTOBB(len
);
798 bp
->b_length
= BTOBB(buflen
);
804 xfs_buf_get_uncached(
805 struct xfs_buftarg
*target
,
809 unsigned long page_count
;
812 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
814 bp
= _xfs_buf_alloc(target
, &map
, 1, 0);
815 if (unlikely(bp
== NULL
))
818 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
819 error
= _xfs_buf_get_pages(bp
, page_count
);
823 for (i
= 0; i
< page_count
; i
++) {
824 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
828 bp
->b_flags
|= _XBF_PAGES
;
830 error
= _xfs_buf_map_pages(bp
, 0);
831 if (unlikely(error
)) {
832 xfs_warn(target
->bt_mount
,
833 "%s: failed to map pages", __func__
);
837 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
842 __free_page(bp
->b_pages
[i
]);
843 _xfs_buf_free_pages(bp
);
845 xfs_buf_free_maps(bp
);
846 kmem_zone_free(xfs_buf_zone
, bp
);
852 * Increment reference count on buffer, to hold the buffer concurrently
853 * with another thread which may release (free) the buffer asynchronously.
854 * Must hold the buffer already to call this function.
860 trace_xfs_buf_hold(bp
, _RET_IP_
);
861 atomic_inc(&bp
->b_hold
);
865 * Releases a hold on the specified buffer. If the
866 * the hold count is 1, calls xfs_buf_free.
872 struct xfs_perag
*pag
= bp
->b_pag
;
874 trace_xfs_buf_rele(bp
, _RET_IP_
);
877 ASSERT(list_empty(&bp
->b_lru
));
878 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
879 if (atomic_dec_and_test(&bp
->b_hold
))
884 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
886 ASSERT(atomic_read(&bp
->b_hold
) > 0);
887 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
888 spin_lock(&bp
->b_lock
);
889 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
891 * If the buffer is added to the LRU take a new
892 * reference to the buffer for the LRU and clear the
893 * (now stale) dispose list state flag
895 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
896 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
897 atomic_inc(&bp
->b_hold
);
899 spin_unlock(&bp
->b_lock
);
900 spin_unlock(&pag
->pag_buf_lock
);
903 * most of the time buffers will already be removed from
904 * the LRU, so optimise that case by checking for the
905 * XFS_BSTATE_DISPOSE flag indicating the last list the
906 * buffer was on was the disposal list
908 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
909 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
911 ASSERT(list_empty(&bp
->b_lru
));
913 spin_unlock(&bp
->b_lock
);
915 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
916 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
917 spin_unlock(&pag
->pag_buf_lock
);
926 * Lock a buffer object, if it is not already locked.
928 * If we come across a stale, pinned, locked buffer, we know that we are
929 * being asked to lock a buffer that has been reallocated. Because it is
930 * pinned, we know that the log has not been pushed to disk and hence it
931 * will still be locked. Rather than continuing to have trylock attempts
932 * fail until someone else pushes the log, push it ourselves before
933 * returning. This means that the xfsaild will not get stuck trying
934 * to push on stale inode buffers.
942 locked
= down_trylock(&bp
->b_sema
) == 0;
946 trace_xfs_buf_trylock(bp
, _RET_IP_
);
951 * Lock a buffer object.
953 * If we come across a stale, pinned, locked buffer, we know that we
954 * are being asked to lock a buffer that has been reallocated. Because
955 * it is pinned, we know that the log has not been pushed to disk and
956 * hence it will still be locked. Rather than sleeping until someone
957 * else pushes the log, push it ourselves before trying to get the lock.
963 trace_xfs_buf_lock(bp
, _RET_IP_
);
965 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
966 xfs_log_force(bp
->b_target
->bt_mount
, 0);
970 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
980 trace_xfs_buf_unlock(bp
, _RET_IP_
);
987 DECLARE_WAITQUEUE (wait
, current
);
989 if (atomic_read(&bp
->b_pin_count
) == 0)
992 add_wait_queue(&bp
->b_waiters
, &wait
);
994 set_current_state(TASK_UNINTERRUPTIBLE
);
995 if (atomic_read(&bp
->b_pin_count
) == 0)
999 remove_wait_queue(&bp
->b_waiters
, &wait
);
1000 set_current_state(TASK_RUNNING
);
1004 * Buffer Utility Routines
1011 bool read
= bp
->b_flags
& XBF_READ
;
1013 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1015 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1018 * Pull in IO completion errors now. We are guaranteed to be running
1019 * single threaded, so we don't need the lock to read b_io_error.
1021 if (!bp
->b_error
&& bp
->b_io_error
)
1022 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1024 /* Only validate buffers that were read without errors */
1025 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1026 ASSERT(!bp
->b_iodone
);
1027 bp
->b_ops
->verify_read(bp
);
1031 bp
->b_flags
|= XBF_DONE
;
1034 (*(bp
->b_iodone
))(bp
);
1035 else if (bp
->b_flags
& XBF_ASYNC
)
1038 complete(&bp
->b_iowait
);
1043 struct work_struct
*work
)
1045 struct xfs_buf
*bp
=
1046 container_of(work
, xfs_buf_t
, b_iodone_work
);
1052 xfs_buf_ioend_async(
1055 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_ioend_work
);
1056 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1064 ASSERT(error
<= 0 && error
>= -1000);
1065 bp
->b_error
= error
;
1066 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1070 xfs_buf_ioerror_alert(
1074 xfs_alert(bp
->b_target
->bt_mount
,
1075 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1076 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1085 ASSERT(xfs_buf_islocked(bp
));
1087 bp
->b_flags
|= XBF_WRITE
;
1088 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1089 XBF_WRITE_FAIL
| XBF_DONE
);
1091 error
= xfs_buf_submit_wait(bp
);
1093 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1094 SHUTDOWN_META_IO_ERROR
);
1104 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1107 * don't overwrite existing errors - otherwise we can lose errors on
1108 * buffers that require multiple bios to complete.
1111 spin_lock(&bp
->b_lock
);
1112 if (!bp
->b_io_error
)
1113 bp
->b_io_error
= error
;
1114 spin_unlock(&bp
->b_lock
);
1117 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1118 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1120 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1121 xfs_buf_ioend_async(bp
);
1126 xfs_buf_ioapply_map(
1134 int total_nr_pages
= bp
->b_page_count
;
1137 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1141 total_nr_pages
= bp
->b_page_count
;
1143 /* skip the pages in the buffer before the start offset */
1145 offset
= *buf_offset
;
1146 while (offset
>= PAGE_SIZE
) {
1148 offset
-= PAGE_SIZE
;
1152 * Limit the IO size to the length of the current vector, and update the
1153 * remaining IO count for the next time around.
1155 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1157 *buf_offset
+= size
;
1160 atomic_inc(&bp
->b_io_remaining
);
1161 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1162 if (nr_pages
> total_nr_pages
)
1163 nr_pages
= total_nr_pages
;
1165 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1166 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1167 bio
->bi_iter
.bi_sector
= sector
;
1168 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1169 bio
->bi_private
= bp
;
1172 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1173 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1178 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1180 if (rbytes
< nbytes
)
1184 sector
+= BTOBB(nbytes
);
1189 if (likely(bio
->bi_iter
.bi_size
)) {
1190 if (xfs_buf_is_vmapped(bp
)) {
1191 flush_kernel_vmap_range(bp
->b_addr
,
1192 xfs_buf_vmap_len(bp
));
1194 submit_bio(rw
, bio
);
1199 * This is guaranteed not to be the last io reference count
1200 * because the caller (xfs_buf_submit) holds a count itself.
1202 atomic_dec(&bp
->b_io_remaining
);
1203 xfs_buf_ioerror(bp
, -EIO
);
1213 struct blk_plug plug
;
1220 * Make sure we capture only current IO errors rather than stale errors
1221 * left over from previous use of the buffer (e.g. failed readahead).
1225 if (bp
->b_flags
& XBF_WRITE
) {
1226 if (bp
->b_flags
& XBF_SYNCIO
)
1230 if (bp
->b_flags
& XBF_FUA
)
1232 if (bp
->b_flags
& XBF_FLUSH
)
1236 * Run the write verifier callback function if it exists. If
1237 * this function fails it will mark the buffer with an error and
1238 * the IO should not be dispatched.
1241 bp
->b_ops
->verify_write(bp
);
1243 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1244 SHUTDOWN_CORRUPT_INCORE
);
1247 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1248 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1251 * non-crc filesystems don't attach verifiers during
1252 * log recovery, so don't warn for such filesystems.
1254 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1256 "%s: no ops on block 0x%llx/0x%x",
1257 __func__
, bp
->b_bn
, bp
->b_length
);
1258 xfs_hex_dump(bp
->b_addr
, 64);
1262 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1268 /* we only use the buffer cache for meta-data */
1272 * Walk all the vectors issuing IO on them. Set up the initial offset
1273 * into the buffer and the desired IO size before we start -
1274 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1277 offset
= bp
->b_offset
;
1278 size
= BBTOB(bp
->b_io_length
);
1279 blk_start_plug(&plug
);
1280 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1281 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, rw
);
1285 break; /* all done */
1287 blk_finish_plug(&plug
);
1291 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1292 * the current reference to the IO. It is not safe to reference the buffer after
1293 * a call to this function unless the caller holds an additional reference
1300 trace_xfs_buf_submit(bp
, _RET_IP_
);
1302 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1303 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1305 /* on shutdown we stale and complete the buffer immediately */
1306 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1307 xfs_buf_ioerror(bp
, -EIO
);
1308 bp
->b_flags
&= ~XBF_DONE
;
1314 if (bp
->b_flags
& XBF_WRITE
)
1315 xfs_buf_wait_unpin(bp
);
1317 /* clear the internal error state to avoid spurious errors */
1321 * The caller's reference is released during I/O completion.
1322 * This occurs some time after the last b_io_remaining reference is
1323 * released, so after we drop our Io reference we have to have some
1324 * other reference to ensure the buffer doesn't go away from underneath
1325 * us. Take a direct reference to ensure we have safe access to the
1326 * buffer until we are finished with it.
1331 * Set the count to 1 initially, this will stop an I/O completion
1332 * callout which happens before we have started all the I/O from calling
1333 * xfs_buf_ioend too early.
1335 atomic_set(&bp
->b_io_remaining
, 1);
1336 _xfs_buf_ioapply(bp
);
1339 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1340 * reference we took above. If we drop it to zero, run completion so
1341 * that we don't return to the caller with completion still pending.
1343 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1347 xfs_buf_ioend_async(bp
);
1351 /* Note: it is not safe to reference bp now we've dropped our ref */
1355 * Synchronous buffer IO submission path, read or write.
1358 xfs_buf_submit_wait(
1363 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1365 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1367 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1368 xfs_buf_ioerror(bp
, -EIO
);
1370 bp
->b_flags
&= ~XBF_DONE
;
1374 if (bp
->b_flags
& XBF_WRITE
)
1375 xfs_buf_wait_unpin(bp
);
1377 /* clear the internal error state to avoid spurious errors */
1381 * For synchronous IO, the IO does not inherit the submitters reference
1382 * count, nor the buffer lock. Hence we cannot release the reference we
1383 * are about to take until we've waited for all IO completion to occur,
1384 * including any xfs_buf_ioend_async() work that may be pending.
1389 * Set the count to 1 initially, this will stop an I/O completion
1390 * callout which happens before we have started all the I/O from calling
1391 * xfs_buf_ioend too early.
1393 atomic_set(&bp
->b_io_remaining
, 1);
1394 _xfs_buf_ioapply(bp
);
1397 * make sure we run completion synchronously if it raced with us and is
1400 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1403 /* wait for completion before gathering the error from the buffer */
1404 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1405 wait_for_completion(&bp
->b_iowait
);
1406 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1407 error
= bp
->b_error
;
1410 * all done now, we can release the hold that keeps the buffer
1411 * referenced for the entire IO.
1425 return bp
->b_addr
+ offset
;
1427 offset
+= bp
->b_offset
;
1428 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1429 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1433 * Move data into or out of a buffer.
1437 xfs_buf_t
*bp
, /* buffer to process */
1438 size_t boff
, /* starting buffer offset */
1439 size_t bsize
, /* length to copy */
1440 void *data
, /* data address */
1441 xfs_buf_rw_t mode
) /* read/write/zero flag */
1445 bend
= boff
+ bsize
;
1446 while (boff
< bend
) {
1448 int page_index
, page_offset
, csize
;
1450 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1451 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1452 page
= bp
->b_pages
[page_index
];
1453 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1454 BBTOB(bp
->b_io_length
) - boff
);
1456 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1460 memset(page_address(page
) + page_offset
, 0, csize
);
1463 memcpy(data
, page_address(page
) + page_offset
, csize
);
1466 memcpy(page_address(page
) + page_offset
, data
, csize
);
1475 * Handling of buffer targets (buftargs).
1479 * Wait for any bufs with callbacks that have been submitted but have not yet
1480 * returned. These buffers will have an elevated hold count, so wait on those
1481 * while freeing all the buffers only held by the LRU.
1483 static enum lru_status
1484 xfs_buftarg_wait_rele(
1485 struct list_head
*item
,
1486 spinlock_t
*lru_lock
,
1490 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1491 struct list_head
*dispose
= arg
;
1493 if (atomic_read(&bp
->b_hold
) > 1) {
1494 /* need to wait, so skip it this pass */
1495 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1498 if (!spin_trylock(&bp
->b_lock
))
1502 * clear the LRU reference count so the buffer doesn't get
1503 * ignored in xfs_buf_rele().
1505 atomic_set(&bp
->b_lru_ref
, 0);
1506 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1507 list_move(item
, dispose
);
1508 spin_unlock(&bp
->b_lock
);
1514 struct xfs_buftarg
*btp
)
1519 /* loop until there is nothing left on the lru list. */
1520 while (list_lru_count(&btp
->bt_lru
)) {
1521 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1522 &dispose
, LONG_MAX
);
1524 while (!list_empty(&dispose
)) {
1526 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1527 list_del_init(&bp
->b_lru
);
1528 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1529 xfs_alert(btp
->bt_mount
,
1530 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1531 "Please run xfs_repair to determine the extent of the problem.",
1532 (long long)bp
->b_bn
);
1541 static enum lru_status
1542 xfs_buftarg_isolate(
1543 struct list_head
*item
,
1544 spinlock_t
*lru_lock
,
1547 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1548 struct list_head
*dispose
= arg
;
1551 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1552 * If we fail to get the lock, just skip it.
1554 if (!spin_trylock(&bp
->b_lock
))
1557 * Decrement the b_lru_ref count unless the value is already
1558 * zero. If the value is already zero, we need to reclaim the
1559 * buffer, otherwise it gets another trip through the LRU.
1561 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1562 spin_unlock(&bp
->b_lock
);
1566 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1567 list_move(item
, dispose
);
1568 spin_unlock(&bp
->b_lock
);
1572 static unsigned long
1573 xfs_buftarg_shrink_scan(
1574 struct shrinker
*shrink
,
1575 struct shrink_control
*sc
)
1577 struct xfs_buftarg
*btp
= container_of(shrink
,
1578 struct xfs_buftarg
, bt_shrinker
);
1580 unsigned long freed
;
1581 unsigned long nr_to_scan
= sc
->nr_to_scan
;
1583 freed
= list_lru_walk_node(&btp
->bt_lru
, sc
->nid
, xfs_buftarg_isolate
,
1584 &dispose
, &nr_to_scan
);
1586 while (!list_empty(&dispose
)) {
1588 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1589 list_del_init(&bp
->b_lru
);
1596 static unsigned long
1597 xfs_buftarg_shrink_count(
1598 struct shrinker
*shrink
,
1599 struct shrink_control
*sc
)
1601 struct xfs_buftarg
*btp
= container_of(shrink
,
1602 struct xfs_buftarg
, bt_shrinker
);
1603 return list_lru_count_node(&btp
->bt_lru
, sc
->nid
);
1608 struct xfs_mount
*mp
,
1609 struct xfs_buftarg
*btp
)
1611 unregister_shrinker(&btp
->bt_shrinker
);
1612 list_lru_destroy(&btp
->bt_lru
);
1614 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1615 xfs_blkdev_issue_flush(btp
);
1621 xfs_setsize_buftarg(
1623 unsigned int sectorsize
)
1625 /* Set up metadata sector size info */
1626 btp
->bt_meta_sectorsize
= sectorsize
;
1627 btp
->bt_meta_sectormask
= sectorsize
- 1;
1629 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1630 char name
[BDEVNAME_SIZE
];
1632 bdevname(btp
->bt_bdev
, name
);
1634 xfs_warn(btp
->bt_mount
,
1635 "Cannot set_blocksize to %u on device %s",
1640 /* Set up device logical sector size mask */
1641 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1642 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1648 * When allocating the initial buffer target we have not yet
1649 * read in the superblock, so don't know what sized sectors
1650 * are being used at this early stage. Play safe.
1653 xfs_setsize_buftarg_early(
1655 struct block_device
*bdev
)
1657 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1662 struct xfs_mount
*mp
,
1663 struct block_device
*bdev
)
1667 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1670 btp
->bt_dev
= bdev
->bd_dev
;
1671 btp
->bt_bdev
= bdev
;
1672 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1674 if (xfs_setsize_buftarg_early(btp
, bdev
))
1677 if (list_lru_init(&btp
->bt_lru
))
1680 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1681 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1682 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1683 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1684 register_shrinker(&btp
->bt_shrinker
);
1693 * Add a buffer to the delayed write list.
1695 * This queues a buffer for writeout if it hasn't already been. Note that
1696 * neither this routine nor the buffer list submission functions perform
1697 * any internal synchronization. It is expected that the lists are thread-local
1700 * Returns true if we queued up the buffer, or false if it already had
1701 * been on the buffer list.
1704 xfs_buf_delwri_queue(
1706 struct list_head
*list
)
1708 ASSERT(xfs_buf_islocked(bp
));
1709 ASSERT(!(bp
->b_flags
& XBF_READ
));
1712 * If the buffer is already marked delwri it already is queued up
1713 * by someone else for imediate writeout. Just ignore it in that
1716 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1717 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1721 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1724 * If a buffer gets written out synchronously or marked stale while it
1725 * is on a delwri list we lazily remove it. To do this, the other party
1726 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1727 * It remains referenced and on the list. In a rare corner case it
1728 * might get readded to a delwri list after the synchronous writeout, in
1729 * which case we need just need to re-add the flag here.
1731 bp
->b_flags
|= _XBF_DELWRI_Q
;
1732 if (list_empty(&bp
->b_list
)) {
1733 atomic_inc(&bp
->b_hold
);
1734 list_add_tail(&bp
->b_list
, list
);
1741 * Compare function is more complex than it needs to be because
1742 * the return value is only 32 bits and we are doing comparisons
1748 struct list_head
*a
,
1749 struct list_head
*b
)
1751 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1752 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1755 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1764 __xfs_buf_delwri_submit(
1765 struct list_head
*buffer_list
,
1766 struct list_head
*io_list
,
1769 struct blk_plug plug
;
1770 struct xfs_buf
*bp
, *n
;
1773 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1775 if (xfs_buf_ispinned(bp
)) {
1779 if (!xfs_buf_trylock(bp
))
1786 * Someone else might have written the buffer synchronously or
1787 * marked it stale in the meantime. In that case only the
1788 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1789 * reference and remove it from the list here.
1791 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1792 list_del_init(&bp
->b_list
);
1797 list_move_tail(&bp
->b_list
, io_list
);
1798 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1801 list_sort(NULL
, io_list
, xfs_buf_cmp
);
1803 blk_start_plug(&plug
);
1804 list_for_each_entry_safe(bp
, n
, io_list
, b_list
) {
1805 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_ASYNC
| XBF_WRITE_FAIL
);
1806 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
1809 * we do all Io submission async. This means if we need to wait
1810 * for IO completion we need to take an extra reference so the
1811 * buffer is still valid on the other side.
1816 list_del_init(&bp
->b_list
);
1820 blk_finish_plug(&plug
);
1826 * Write out a buffer list asynchronously.
1828 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1829 * out and not wait for I/O completion on any of the buffers. This interface
1830 * is only safely useable for callers that can track I/O completion by higher
1831 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1835 xfs_buf_delwri_submit_nowait(
1836 struct list_head
*buffer_list
)
1838 LIST_HEAD (io_list
);
1839 return __xfs_buf_delwri_submit(buffer_list
, &io_list
, false);
1843 * Write out a buffer list synchronously.
1845 * This will take the @buffer_list, write all buffers out and wait for I/O
1846 * completion on all of the buffers. @buffer_list is consumed by the function,
1847 * so callers must have some other way of tracking buffers if they require such
1851 xfs_buf_delwri_submit(
1852 struct list_head
*buffer_list
)
1854 LIST_HEAD (io_list
);
1855 int error
= 0, error2
;
1858 __xfs_buf_delwri_submit(buffer_list
, &io_list
, true);
1860 /* Wait for IO to complete. */
1861 while (!list_empty(&io_list
)) {
1862 bp
= list_first_entry(&io_list
, struct xfs_buf
, b_list
);
1864 list_del_init(&bp
->b_list
);
1866 /* locking the buffer will wait for async IO completion. */
1868 error2
= bp
->b_error
;
1880 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1881 KM_ZONE_HWALIGN
, NULL
);
1885 xfslogd_workqueue
= alloc_workqueue("xfslogd",
1886 WQ_MEM_RECLAIM
| WQ_HIGHPRI
| WQ_FREEZABLE
, 1);
1887 if (!xfslogd_workqueue
)
1888 goto out_free_buf_zone
;
1893 kmem_zone_destroy(xfs_buf_zone
);
1899 xfs_buf_terminate(void)
1901 destroy_workqueue(xfslogd_workqueue
);
1902 kmem_zone_destroy(xfs_buf_zone
);