2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
40 #include "xfs_dinode.h"
41 #include "xfs_icache.h"
43 #include <linux/aio.h>
44 #include <linux/dcache.h>
45 #include <linux/falloc.h>
46 #include <linux/pagevec.h>
48 static const struct vm_operations_struct xfs_file_vm_ops
;
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
59 if (type
& XFS_IOLOCK_EXCL
)
60 mutex_lock(&VFS_I(ip
)->i_mutex
);
69 xfs_iunlock(ip
, type
);
70 if (type
& XFS_IOLOCK_EXCL
)
71 mutex_unlock(&VFS_I(ip
)->i_mutex
);
79 xfs_ilock_demote(ip
, type
);
80 if (type
& XFS_IOLOCK_EXCL
)
81 mutex_unlock(&VFS_I(ip
)->i_mutex
);
87 * xfs_iozero clears the specified range of buffer supplied,
88 * and marks all the affected blocks as valid and modified. If
89 * an affected block is not allocated, it will be allocated. If
90 * an affected block is not completely overwritten, and is not
91 * valid before the operation, it will be read from disk before
92 * being partially zeroed.
96 struct xfs_inode
*ip
, /* inode */
97 loff_t pos
, /* offset in file */
98 size_t count
) /* size of data to zero */
101 struct address_space
*mapping
;
104 mapping
= VFS_I(ip
)->i_mapping
;
106 unsigned offset
, bytes
;
109 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
110 bytes
= PAGE_CACHE_SIZE
- offset
;
114 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
115 AOP_FLAG_UNINTERRUPTIBLE
,
120 zero_user(page
, offset
, bytes
);
122 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
124 WARN_ON(status
<= 0); /* can't return less than zero! */
134 * Fsync operations on directories are much simpler than on regular files,
135 * as there is no file data to flush, and thus also no need for explicit
136 * cache flush operations, and there are no non-transaction metadata updates
137 * on directories either.
146 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
147 struct xfs_mount
*mp
= ip
->i_mount
;
150 trace_xfs_dir_fsync(ip
);
152 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
153 if (xfs_ipincount(ip
))
154 lsn
= ip
->i_itemp
->ili_last_lsn
;
155 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
159 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
169 struct inode
*inode
= file
->f_mapping
->host
;
170 struct xfs_inode
*ip
= XFS_I(inode
);
171 struct xfs_mount
*mp
= ip
->i_mount
;
176 trace_xfs_file_fsync(ip
);
178 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
182 if (XFS_FORCED_SHUTDOWN(mp
))
185 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
187 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
189 * If we have an RT and/or log subvolume we need to make sure
190 * to flush the write cache the device used for file data
191 * first. This is to ensure newly written file data make
192 * it to disk before logging the new inode size in case of
193 * an extending write.
195 if (XFS_IS_REALTIME_INODE(ip
))
196 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
197 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
198 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
202 * All metadata updates are logged, which means that we just have
203 * to flush the log up to the latest LSN that touched the inode.
205 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
206 if (xfs_ipincount(ip
)) {
208 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
209 lsn
= ip
->i_itemp
->ili_last_lsn
;
211 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
214 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
217 * If we only have a single device, and the log force about was
218 * a no-op we might have to flush the data device cache here.
219 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 * an already allocated file and thus do not have any metadata to
223 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
224 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
225 !XFS_IS_REALTIME_INODE(ip
) &&
227 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
237 struct file
*file
= iocb
->ki_filp
;
238 struct inode
*inode
= file
->f_mapping
->host
;
239 struct xfs_inode
*ip
= XFS_I(inode
);
240 struct xfs_mount
*mp
= ip
->i_mount
;
241 size_t size
= iov_iter_count(to
);
245 loff_t pos
= iocb
->ki_pos
;
247 XFS_STATS_INC(xs_read_calls
);
249 if (unlikely(file
->f_flags
& O_DIRECT
))
250 ioflags
|= XFS_IO_ISDIRECT
;
251 if (file
->f_mode
& FMODE_NOCMTIME
)
252 ioflags
|= XFS_IO_INVIS
;
254 if (unlikely(ioflags
& XFS_IO_ISDIRECT
)) {
255 xfs_buftarg_t
*target
=
256 XFS_IS_REALTIME_INODE(ip
) ?
257 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
258 /* DIO must be aligned to device logical sector size */
259 if ((pos
| size
) & target
->bt_logical_sectormask
) {
260 if (pos
== i_size_read(inode
))
266 n
= mp
->m_super
->s_maxbytes
- pos
;
267 if (n
<= 0 || size
== 0)
273 if (XFS_FORCED_SHUTDOWN(mp
))
277 * Locking is a bit tricky here. If we take an exclusive lock
278 * for direct IO, we effectively serialise all new concurrent
279 * read IO to this file and block it behind IO that is currently in
280 * progress because IO in progress holds the IO lock shared. We only
281 * need to hold the lock exclusive to blow away the page cache, so
282 * only take lock exclusively if the page cache needs invalidation.
283 * This allows the normal direct IO case of no page cache pages to
284 * proceeed concurrently without serialisation.
286 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
287 if ((ioflags
& XFS_IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
288 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
289 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
291 if (inode
->i_mapping
->nrpages
) {
292 ret
= filemap_write_and_wait_range(
293 VFS_I(ip
)->i_mapping
,
294 pos
, pos
+ size
- 1);
296 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
301 * Invalidate whole pages. This can return an error if
302 * we fail to invalidate a page, but this should never
303 * happen on XFS. Warn if it does fail.
305 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
306 pos
>> PAGE_CACHE_SHIFT
,
307 (pos
+ size
- 1) >> PAGE_CACHE_SHIFT
);
311 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
314 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
316 ret
= generic_file_read_iter(iocb
, to
);
318 XFS_STATS_ADD(xs_read_bytes
, ret
);
320 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
325 xfs_file_splice_read(
328 struct pipe_inode_info
*pipe
,
332 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
336 XFS_STATS_INC(xs_read_calls
);
338 if (infilp
->f_mode
& FMODE_NOCMTIME
)
339 ioflags
|= XFS_IO_INVIS
;
341 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
344 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
346 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
348 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
350 XFS_STATS_ADD(xs_read_bytes
, ret
);
352 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
357 * This routine is called to handle zeroing any space in the last block of the
358 * file that is beyond the EOF. We do this since the size is being increased
359 * without writing anything to that block and we don't want to read the
360 * garbage on the disk.
362 STATIC
int /* error (positive) */
364 struct xfs_inode
*ip
,
368 struct xfs_mount
*mp
= ip
->i_mount
;
369 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
370 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
374 struct xfs_bmbt_irec imap
;
376 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
377 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
378 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
385 * If the block underlying isize is just a hole, then there
386 * is nothing to zero.
388 if (imap
.br_startblock
== HOLESTARTBLOCK
)
391 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
392 if (isize
+ zero_len
> offset
)
393 zero_len
= offset
- isize
;
394 return xfs_iozero(ip
, isize
, zero_len
);
398 * Zero any on disk space between the current EOF and the new, larger EOF.
400 * This handles the normal case of zeroing the remainder of the last block in
401 * the file and the unusual case of zeroing blocks out beyond the size of the
402 * file. This second case only happens with fixed size extents and when the
403 * system crashes before the inode size was updated but after blocks were
406 * Expects the iolock to be held exclusive, and will take the ilock internally.
408 int /* error (positive) */
410 struct xfs_inode
*ip
,
411 xfs_off_t offset
, /* starting I/O offset */
412 xfs_fsize_t isize
) /* current inode size */
414 struct xfs_mount
*mp
= ip
->i_mount
;
415 xfs_fileoff_t start_zero_fsb
;
416 xfs_fileoff_t end_zero_fsb
;
417 xfs_fileoff_t zero_count_fsb
;
418 xfs_fileoff_t last_fsb
;
419 xfs_fileoff_t zero_off
;
420 xfs_fsize_t zero_len
;
423 struct xfs_bmbt_irec imap
;
425 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
426 ASSERT(offset
> isize
);
429 * First handle zeroing the block on which isize resides.
431 * We only zero a part of that block so it is handled specially.
433 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
434 error
= xfs_zero_last_block(ip
, offset
, isize
);
440 * Calculate the range between the new size and the old where blocks
441 * needing to be zeroed may exist.
443 * To get the block where the last byte in the file currently resides,
444 * we need to subtract one from the size and truncate back to a block
445 * boundary. We subtract 1 in case the size is exactly on a block
448 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
449 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
450 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
451 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
452 if (last_fsb
== end_zero_fsb
) {
454 * The size was only incremented on its last block.
455 * We took care of that above, so just return.
460 ASSERT(start_zero_fsb
<= end_zero_fsb
);
461 while (start_zero_fsb
<= end_zero_fsb
) {
463 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
465 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
466 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
468 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
474 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
475 imap
.br_startblock
== HOLESTARTBLOCK
) {
476 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
477 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
482 * There are blocks we need to zero.
484 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
485 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
487 if ((zero_off
+ zero_len
) > offset
)
488 zero_len
= offset
- zero_off
;
490 error
= xfs_iozero(ip
, zero_off
, zero_len
);
494 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
495 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
502 * Common pre-write limit and setup checks.
504 * Called with the iolocked held either shared and exclusive according to
505 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
506 * if called for a direct write beyond i_size.
509 xfs_file_aio_write_checks(
515 struct inode
*inode
= file
->f_mapping
->host
;
516 struct xfs_inode
*ip
= XFS_I(inode
);
520 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
525 * If the offset is beyond the size of the file, we need to zero any
526 * blocks that fall between the existing EOF and the start of this
527 * write. If zeroing is needed and we are currently holding the
528 * iolock shared, we need to update it to exclusive which implies
529 * having to redo all checks before.
531 if (*pos
> i_size_read(inode
)) {
532 if (*iolock
== XFS_IOLOCK_SHARED
) {
533 xfs_rw_iunlock(ip
, *iolock
);
534 *iolock
= XFS_IOLOCK_EXCL
;
535 xfs_rw_ilock(ip
, *iolock
);
538 error
= xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
544 * Updating the timestamps will grab the ilock again from
545 * xfs_fs_dirty_inode, so we have to call it after dropping the
546 * lock above. Eventually we should look into a way to avoid
547 * the pointless lock roundtrip.
549 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
550 error
= file_update_time(file
);
556 * If we're writing the file then make sure to clear the setuid and
557 * setgid bits if the process is not being run by root. This keeps
558 * people from modifying setuid and setgid binaries.
560 return file_remove_suid(file
);
564 * xfs_file_dio_aio_write - handle direct IO writes
566 * Lock the inode appropriately to prepare for and issue a direct IO write.
567 * By separating it from the buffered write path we remove all the tricky to
568 * follow locking changes and looping.
570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572 * pages are flushed out.
574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575 * allowing them to be done in parallel with reads and other direct IO writes.
576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577 * needs to do sub-block zeroing and that requires serialisation against other
578 * direct IOs to the same block. In this case we need to serialise the
579 * submission of the unaligned IOs so that we don't get racing block zeroing in
580 * the dio layer. To avoid the problem with aio, we also need to wait for
581 * outstanding IOs to complete so that unwritten extent conversion is completed
582 * before we try to map the overlapping block. This is currently implemented by
583 * hitting it with a big hammer (i.e. inode_dio_wait()).
585 * Returns with locks held indicated by @iolock and errors indicated by
586 * negative return values.
589 xfs_file_dio_aio_write(
591 struct iov_iter
*from
)
593 struct file
*file
= iocb
->ki_filp
;
594 struct address_space
*mapping
= file
->f_mapping
;
595 struct inode
*inode
= mapping
->host
;
596 struct xfs_inode
*ip
= XFS_I(inode
);
597 struct xfs_mount
*mp
= ip
->i_mount
;
599 int unaligned_io
= 0;
601 size_t count
= iov_iter_count(from
);
602 loff_t pos
= iocb
->ki_pos
;
603 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
604 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
606 /* DIO must be aligned to device logical sector size */
607 if ((pos
| count
) & target
->bt_logical_sectormask
)
610 /* "unaligned" here means not aligned to a filesystem block */
611 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
615 * We don't need to take an exclusive lock unless there page cache needs
616 * to be invalidated or unaligned IO is being executed. We don't need to
617 * consider the EOF extension case here because
618 * xfs_file_aio_write_checks() will relock the inode as necessary for
619 * EOF zeroing cases and fill out the new inode size as appropriate.
621 if (unaligned_io
|| mapping
->nrpages
)
622 iolock
= XFS_IOLOCK_EXCL
;
624 iolock
= XFS_IOLOCK_SHARED
;
625 xfs_rw_ilock(ip
, iolock
);
628 * Recheck if there are cached pages that need invalidate after we got
629 * the iolock to protect against other threads adding new pages while
630 * we were waiting for the iolock.
632 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
633 xfs_rw_iunlock(ip
, iolock
);
634 iolock
= XFS_IOLOCK_EXCL
;
635 xfs_rw_ilock(ip
, iolock
);
638 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
641 iov_iter_truncate(from
, count
);
643 if (mapping
->nrpages
) {
644 ret
= filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
645 pos
, pos
+ count
- 1);
649 * Invalidate whole pages. This can return an error if
650 * we fail to invalidate a page, but this should never
651 * happen on XFS. Warn if it does fail.
653 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
654 pos
>> PAGE_CACHE_SHIFT
,
655 (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
);
661 * If we are doing unaligned IO, wait for all other IO to drain,
662 * otherwise demote the lock if we had to flush cached pages
665 inode_dio_wait(inode
);
666 else if (iolock
== XFS_IOLOCK_EXCL
) {
667 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
668 iolock
= XFS_IOLOCK_SHARED
;
671 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
672 ret
= generic_file_direct_write(iocb
, from
, pos
);
675 xfs_rw_iunlock(ip
, iolock
);
677 /* No fallback to buffered IO on errors for XFS. */
678 ASSERT(ret
< 0 || ret
== count
);
683 xfs_file_buffered_aio_write(
685 struct iov_iter
*from
)
687 struct file
*file
= iocb
->ki_filp
;
688 struct address_space
*mapping
= file
->f_mapping
;
689 struct inode
*inode
= mapping
->host
;
690 struct xfs_inode
*ip
= XFS_I(inode
);
693 int iolock
= XFS_IOLOCK_EXCL
;
694 loff_t pos
= iocb
->ki_pos
;
695 size_t count
= iov_iter_count(from
);
697 xfs_rw_ilock(ip
, iolock
);
699 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
703 iov_iter_truncate(from
, count
);
704 /* We can write back this queue in page reclaim */
705 current
->backing_dev_info
= mapping
->backing_dev_info
;
708 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
709 ret
= generic_perform_write(file
, from
, pos
);
710 if (likely(ret
>= 0))
711 iocb
->ki_pos
= pos
+ ret
;
714 * If we hit a space limit, try to free up some lingering preallocated
715 * space before returning an error. In the case of ENOSPC, first try to
716 * write back all dirty inodes to free up some of the excess reserved
717 * metadata space. This reduces the chances that the eofblocks scan
718 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
719 * also behaves as a filter to prevent too many eofblocks scans from
720 * running at the same time.
722 if (ret
== -EDQUOT
&& !enospc
) {
723 enospc
= xfs_inode_free_quota_eofblocks(ip
);
726 } else if (ret
== -ENOSPC
&& !enospc
) {
727 struct xfs_eofblocks eofb
= {0};
730 xfs_flush_inodes(ip
->i_mount
);
731 eofb
.eof_scan_owner
= ip
->i_ino
; /* for locking */
732 eofb
.eof_flags
= XFS_EOF_FLAGS_SYNC
;
733 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
737 current
->backing_dev_info
= NULL
;
739 xfs_rw_iunlock(ip
, iolock
);
746 struct iov_iter
*from
)
748 struct file
*file
= iocb
->ki_filp
;
749 struct address_space
*mapping
= file
->f_mapping
;
750 struct inode
*inode
= mapping
->host
;
751 struct xfs_inode
*ip
= XFS_I(inode
);
753 size_t ocount
= iov_iter_count(from
);
755 XFS_STATS_INC(xs_write_calls
);
760 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
763 if (unlikely(file
->f_flags
& O_DIRECT
))
764 ret
= xfs_file_dio_aio_write(iocb
, from
);
766 ret
= xfs_file_buffered_aio_write(iocb
, from
);
771 XFS_STATS_ADD(xs_write_bytes
, ret
);
773 /* Handle various SYNC-type writes */
774 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
788 struct inode
*inode
= file_inode(file
);
789 struct xfs_inode
*ip
= XFS_I(inode
);
790 struct xfs_trans
*tp
;
794 if (!S_ISREG(inode
->i_mode
))
796 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
797 FALLOC_FL_COLLAPSE_RANGE
| FALLOC_FL_ZERO_RANGE
))
800 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
801 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
802 error
= xfs_free_file_space(ip
, offset
, len
);
805 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
806 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
808 if (offset
& blksize_mask
|| len
& blksize_mask
) {
814 * There is no need to overlap collapse range with EOF,
815 * in which case it is effectively a truncate operation
817 if (offset
+ len
>= i_size_read(inode
)) {
822 new_size
= i_size_read(inode
) - len
;
824 error
= xfs_collapse_file_space(ip
, offset
, len
);
828 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
829 offset
+ len
> i_size_read(inode
)) {
830 new_size
= offset
+ len
;
831 error
= inode_newsize_ok(inode
, new_size
);
836 if (mode
& FALLOC_FL_ZERO_RANGE
)
837 error
= xfs_zero_file_space(ip
, offset
, len
);
839 error
= xfs_alloc_file_space(ip
, offset
, len
,
845 tp
= xfs_trans_alloc(ip
->i_mount
, XFS_TRANS_WRITEID
);
846 error
= xfs_trans_reserve(tp
, &M_RES(ip
->i_mount
)->tr_writeid
, 0, 0);
848 xfs_trans_cancel(tp
, 0);
852 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
853 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
854 ip
->i_d
.di_mode
&= ~S_ISUID
;
855 if (ip
->i_d
.di_mode
& S_IXGRP
)
856 ip
->i_d
.di_mode
&= ~S_ISGID
;
858 if (!(mode
& (FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_COLLAPSE_RANGE
)))
859 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
861 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
862 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
864 if (file
->f_flags
& O_DSYNC
)
865 xfs_trans_set_sync(tp
);
866 error
= xfs_trans_commit(tp
, 0);
870 /* Change file size if needed */
874 iattr
.ia_valid
= ATTR_SIZE
;
875 iattr
.ia_size
= new_size
;
876 error
= xfs_setattr_size(ip
, &iattr
);
880 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
890 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
892 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
902 struct xfs_inode
*ip
= XFS_I(inode
);
906 error
= xfs_file_open(inode
, file
);
911 * If there are any blocks, read-ahead block 0 as we're almost
912 * certain to have the next operation be a read there.
914 mode
= xfs_ilock_data_map_shared(ip
);
915 if (ip
->i_d
.di_nextents
> 0)
916 xfs_dir3_data_readahead(ip
, 0, -1);
917 xfs_iunlock(ip
, mode
);
926 return xfs_release(XFS_I(inode
));
932 struct dir_context
*ctx
)
934 struct inode
*inode
= file_inode(file
);
935 xfs_inode_t
*ip
= XFS_I(inode
);
940 * The Linux API doesn't pass down the total size of the buffer
941 * we read into down to the filesystem. With the filldir concept
942 * it's not needed for correct information, but the XFS dir2 leaf
943 * code wants an estimate of the buffer size to calculate it's
944 * readahead window and size the buffers used for mapping to
947 * Try to give it an estimate that's good enough, maybe at some
948 * point we can change the ->readdir prototype to include the
949 * buffer size. For now we use the current glibc buffer size.
951 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
953 error
= xfs_readdir(ip
, ctx
, bufsize
);
962 struct vm_area_struct
*vma
)
964 vma
->vm_ops
= &xfs_file_vm_ops
;
971 * mmap()d file has taken write protection fault and is being made
972 * writable. We can set the page state up correctly for a writable
973 * page, which means we can do correct delalloc accounting (ENOSPC
974 * checking!) and unwritten extent mapping.
978 struct vm_area_struct
*vma
,
979 struct vm_fault
*vmf
)
981 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
985 * This type is designed to indicate the type of offset we would like
986 * to search from page cache for xfs_seek_hole_data().
994 * Lookup the desired type of offset from the given page.
996 * On success, return true and the offset argument will point to the
997 * start of the region that was found. Otherwise this function will
998 * return false and keep the offset argument unchanged.
1001 xfs_lookup_buffer_offset(
1006 loff_t lastoff
= page_offset(page
);
1008 struct buffer_head
*bh
, *head
;
1010 bh
= head
= page_buffers(page
);
1013 * Unwritten extents that have data in the page
1014 * cache covering them can be identified by the
1015 * BH_Unwritten state flag. Pages with multiple
1016 * buffers might have a mix of holes, data and
1017 * unwritten extents - any buffer with valid
1018 * data in it should have BH_Uptodate flag set
1021 if (buffer_unwritten(bh
) ||
1022 buffer_uptodate(bh
)) {
1023 if (type
== DATA_OFF
)
1026 if (type
== HOLE_OFF
)
1034 lastoff
+= bh
->b_size
;
1035 } while ((bh
= bh
->b_this_page
) != head
);
1041 * This routine is called to find out and return a data or hole offset
1042 * from the page cache for unwritten extents according to the desired
1043 * type for xfs_seek_hole_data().
1045 * The argument offset is used to tell where we start to search from the
1046 * page cache. Map is used to figure out the end points of the range to
1049 * Return true if the desired type of offset was found, and the argument
1050 * offset is filled with that address. Otherwise, return false and keep
1054 xfs_find_get_desired_pgoff(
1055 struct inode
*inode
,
1056 struct xfs_bmbt_irec
*map
,
1060 struct xfs_inode
*ip
= XFS_I(inode
);
1061 struct xfs_mount
*mp
= ip
->i_mount
;
1062 struct pagevec pvec
;
1066 loff_t startoff
= *offset
;
1067 loff_t lastoff
= startoff
;
1070 pagevec_init(&pvec
, 0);
1072 index
= startoff
>> PAGE_CACHE_SHIFT
;
1073 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1074 end
= endoff
>> PAGE_CACHE_SHIFT
;
1080 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1081 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1084 * No page mapped into given range. If we are searching holes
1085 * and if this is the first time we got into the loop, it means
1086 * that the given offset is landed in a hole, return it.
1088 * If we have already stepped through some block buffers to find
1089 * holes but they all contains data. In this case, the last
1090 * offset is already updated and pointed to the end of the last
1091 * mapped page, if it does not reach the endpoint to search,
1092 * that means there should be a hole between them.
1094 if (nr_pages
== 0) {
1095 /* Data search found nothing */
1096 if (type
== DATA_OFF
)
1099 ASSERT(type
== HOLE_OFF
);
1100 if (lastoff
== startoff
|| lastoff
< endoff
) {
1108 * At lease we found one page. If this is the first time we
1109 * step into the loop, and if the first page index offset is
1110 * greater than the given search offset, a hole was found.
1112 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1113 lastoff
< page_offset(pvec
.pages
[0])) {
1118 for (i
= 0; i
< nr_pages
; i
++) {
1119 struct page
*page
= pvec
.pages
[i
];
1123 * At this point, the page may be truncated or
1124 * invalidated (changing page->mapping to NULL),
1125 * or even swizzled back from swapper_space to tmpfs
1126 * file mapping. However, page->index will not change
1127 * because we have a reference on the page.
1129 * Searching done if the page index is out of range.
1130 * If the current offset is not reaches the end of
1131 * the specified search range, there should be a hole
1134 if (page
->index
> end
) {
1135 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1144 * Page truncated or invalidated(page->mapping == NULL).
1145 * We can freely skip it and proceed to check the next
1148 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1153 if (!page_has_buffers(page
)) {
1158 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1161 * The found offset may be less than the start
1162 * point to search if this is the first time to
1165 *offset
= max_t(loff_t
, startoff
, b_offset
);
1171 * We either searching data but nothing was found, or
1172 * searching hole but found a data buffer. In either
1173 * case, probably the next page contains the desired
1174 * things, update the last offset to it so.
1176 lastoff
= page_offset(page
) + PAGE_SIZE
;
1181 * The number of returned pages less than our desired, search
1182 * done. In this case, nothing was found for searching data,
1183 * but we found a hole behind the last offset.
1185 if (nr_pages
< want
) {
1186 if (type
== HOLE_OFF
) {
1193 index
= pvec
.pages
[i
- 1]->index
+ 1;
1194 pagevec_release(&pvec
);
1195 } while (index
<= end
);
1198 pagevec_release(&pvec
);
1208 struct inode
*inode
= file
->f_mapping
->host
;
1209 struct xfs_inode
*ip
= XFS_I(inode
);
1210 struct xfs_mount
*mp
= ip
->i_mount
;
1211 loff_t
uninitialized_var(offset
);
1213 xfs_fileoff_t fsbno
;
1218 if (XFS_FORCED_SHUTDOWN(mp
))
1221 lock
= xfs_ilock_data_map_shared(ip
);
1223 isize
= i_size_read(inode
);
1224 if (start
>= isize
) {
1230 * Try to read extents from the first block indicated
1231 * by fsbno to the end block of the file.
1233 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1234 end
= XFS_B_TO_FSB(mp
, isize
);
1237 struct xfs_bmbt_irec map
[2];
1241 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1246 /* No extents at given offset, must be beyond EOF */
1252 for (i
= 0; i
< nmap
; i
++) {
1253 offset
= max_t(loff_t
, start
,
1254 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1256 /* Landed in the hole we wanted? */
1257 if (whence
== SEEK_HOLE
&&
1258 map
[i
].br_startblock
== HOLESTARTBLOCK
)
1261 /* Landed in the data extent we wanted? */
1262 if (whence
== SEEK_DATA
&&
1263 (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1264 (map
[i
].br_state
== XFS_EXT_NORM
&&
1265 !isnullstartblock(map
[i
].br_startblock
))))
1269 * Landed in an unwritten extent, try to search
1270 * for hole or data from page cache.
1272 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1273 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1274 whence
== SEEK_HOLE
? HOLE_OFF
: DATA_OFF
,
1281 * We only received one extent out of the two requested. This
1282 * means we've hit EOF and didn't find what we are looking for.
1286 * If we were looking for a hole, set offset to
1287 * the end of the file (i.e., there is an implicit
1288 * hole at the end of any file).
1290 if (whence
== SEEK_HOLE
) {
1295 * If we were looking for data, it's nowhere to be found
1297 ASSERT(whence
== SEEK_DATA
);
1305 * Nothing was found, proceed to the next round of search
1306 * if the next reading offset is not at or beyond EOF.
1308 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1309 start
= XFS_FSB_TO_B(mp
, fsbno
);
1310 if (start
>= isize
) {
1311 if (whence
== SEEK_HOLE
) {
1315 ASSERT(whence
== SEEK_DATA
);
1323 * If at this point we have found the hole we wanted, the returned
1324 * offset may be bigger than the file size as it may be aligned to
1325 * page boundary for unwritten extents. We need to deal with this
1326 * situation in particular.
1328 if (whence
== SEEK_HOLE
)
1329 offset
= min_t(loff_t
, offset
, isize
);
1330 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1333 xfs_iunlock(ip
, lock
);
1350 return generic_file_llseek(file
, offset
, whence
);
1353 return xfs_seek_hole_data(file
, offset
, whence
);
1359 const struct file_operations xfs_file_operations
= {
1360 .llseek
= xfs_file_llseek
,
1361 .read
= new_sync_read
,
1362 .write
= new_sync_write
,
1363 .read_iter
= xfs_file_read_iter
,
1364 .write_iter
= xfs_file_write_iter
,
1365 .splice_read
= xfs_file_splice_read
,
1366 .splice_write
= iter_file_splice_write
,
1367 .unlocked_ioctl
= xfs_file_ioctl
,
1368 #ifdef CONFIG_COMPAT
1369 .compat_ioctl
= xfs_file_compat_ioctl
,
1371 .mmap
= xfs_file_mmap
,
1372 .open
= xfs_file_open
,
1373 .release
= xfs_file_release
,
1374 .fsync
= xfs_file_fsync
,
1375 .fallocate
= xfs_file_fallocate
,
1378 const struct file_operations xfs_dir_file_operations
= {
1379 .open
= xfs_dir_open
,
1380 .read
= generic_read_dir
,
1381 .iterate
= xfs_file_readdir
,
1382 .llseek
= generic_file_llseek
,
1383 .unlocked_ioctl
= xfs_file_ioctl
,
1384 #ifdef CONFIG_COMPAT
1385 .compat_ioctl
= xfs_file_compat_ioctl
,
1387 .fsync
= xfs_dir_fsync
,
1390 static const struct vm_operations_struct xfs_file_vm_ops
= {
1391 .fault
= filemap_fault
,
1392 .map_pages
= filemap_map_pages
,
1393 .page_mkwrite
= xfs_vm_page_mkwrite
,
1394 .remap_pages
= generic_file_remap_pages
,