hyperv: Add processing of MTU reduced by the host
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blob8ed049d1e3327fd61b1a6f1c7d1e0fea0bba77cd
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_cksum.h"
47 #include "xfs_trace.h"
48 #include "xfs_icache.h"
49 #include "xfs_symlink.h"
50 #include "xfs_trans_priv.h"
51 #include "xfs_log.h"
52 #include "xfs_bmap_btree.h"
54 kmem_zone_t *xfs_inode_zone;
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
60 #define XFS_ITRUNC_MAX_EXTENTS 2
62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
67 * helper function to extract extent size hint from inode
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 struct xfs_inode *ip)
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
92 * The functions return a value which should be given to the corresponding
93 * xfs_iunlock() call.
95 uint
96 xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
99 uint lock_mode = XFS_ILOCK_SHARED;
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
103 lock_mode = XFS_ILOCK_EXCL;
104 xfs_ilock(ip, lock_mode);
105 return lock_mode;
108 uint
109 xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
112 uint lock_mode = XFS_ILOCK_SHARED;
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
141 void
142 xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
214 return 1;
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
237 void
238 xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
271 void
272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287 #if defined(DEBUG) || defined(XFS_WARN)
289 xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 ASSERT(0);
306 return 0;
308 #endif
310 #ifdef DEBUG
311 int xfs_locked_n;
312 int xfs_small_retries;
313 int xfs_middle_retries;
314 int xfs_lots_retries;
315 int xfs_lock_delays;
316 #endif
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
322 static inline int
323 xfs_lock_inumorder(int lock_mode, int subclass)
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
330 return lock_mode;
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
344 void
345 xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
355 try_lock = 0;
356 i = 0;
358 again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
390 * try_lock means we have an inode locked
391 * that is in the AIL.
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
403 for(j = i - 1; j >= 0; j--) {
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
415 xfs_iunlock(ips[j], lock_mode);
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420 #ifdef DEBUG
421 xfs_lock_delays++;
422 #endif
424 i = 0;
425 try_lock = 0;
426 goto again;
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
433 #ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
441 #endif
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
450 void
451 xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
492 void
493 __xfs_iflock(
494 struct xfs_inode *ip)
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
505 finish_wait(wq, &wait.wait);
508 STATIC uint
509 _xfs_dic2xflags(
510 __uint16_t di_flags)
512 uint flags = 0;
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
545 return flags;
548 uint
549 xfs_ip2xflags(
550 xfs_inode_t *ip)
552 xfs_icdinode_t *dic = &ip->i_d;
554 return _xfs_dic2xflags(dic->di_flags) |
555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
558 uint
559 xfs_dic2xflags(
560 xfs_dinode_t *dip)
562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
573 xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
583 trace_xfs_lookup(dp, name);
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return -EIO;
588 lock_mode = xfs_ilock_data_map_shared(dp);
589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
590 xfs_iunlock(dp, lock_mode);
592 if (error)
593 goto out;
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
599 return 0;
601 out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604 out:
605 *ipp = NULL;
606 return error;
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
641 xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
644 umode_t mode,
645 xfs_nlink_t nlink,
646 xfs_dev_t rdev,
647 prid_t prid,
648 int okalloc,
649 xfs_buf_t **ialloc_context,
650 xfs_inode_t **ipp)
652 struct xfs_mount *mp = tp->t_mountp;
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
655 uint flags;
656 int error;
657 struct timespec tv;
660 * Call the space management code to pick
661 * the on-disk inode to be allocated.
663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
664 ialloc_context, &ino);
665 if (error)
666 return error;
667 if (*ialloc_context || ino == NULLFSINO) {
668 *ipp = NULL;
669 return 0;
671 ASSERT(*ialloc_context == NULL);
674 * Get the in-core inode with the lock held exclusively.
675 * This is because we're setting fields here we need
676 * to prevent others from looking at until we're done.
678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
679 XFS_ILOCK_EXCL, &ip);
680 if (error)
681 return error;
682 ASSERT(ip != NULL);
685 * We always convert v1 inodes to v2 now - we only support filesystems
686 * with >= v2 inode capability, so there is no reason for ever leaving
687 * an inode in v1 format.
689 if (ip->i_d.di_version == 1)
690 ip->i_d.di_version = 2;
692 ip->i_d.di_mode = mode;
693 ip->i_d.di_onlink = 0;
694 ip->i_d.di_nlink = nlink;
695 ASSERT(ip->i_d.di_nlink == nlink);
696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
698 xfs_set_projid(ip, prid);
699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
701 if (pip && XFS_INHERIT_GID(pip)) {
702 ip->i_d.di_gid = pip->i_d.di_gid;
703 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
704 ip->i_d.di_mode |= S_ISGID;
709 * If the group ID of the new file does not match the effective group
710 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
711 * (and only if the irix_sgid_inherit compatibility variable is set).
713 if ((irix_sgid_inherit) &&
714 (ip->i_d.di_mode & S_ISGID) &&
715 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
716 ip->i_d.di_mode &= ~S_ISGID;
719 ip->i_d.di_size = 0;
720 ip->i_d.di_nextents = 0;
721 ASSERT(ip->i_d.di_nblocks == 0);
723 tv = current_fs_time(mp->m_super);
724 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
725 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
726 ip->i_d.di_atime = ip->i_d.di_mtime;
727 ip->i_d.di_ctime = ip->i_d.di_mtime;
730 * di_gen will have been taken care of in xfs_iread.
732 ip->i_d.di_extsize = 0;
733 ip->i_d.di_dmevmask = 0;
734 ip->i_d.di_dmstate = 0;
735 ip->i_d.di_flags = 0;
737 if (ip->i_d.di_version == 3) {
738 ASSERT(ip->i_d.di_ino == ino);
739 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
740 ip->i_d.di_crc = 0;
741 ip->i_d.di_changecount = 1;
742 ip->i_d.di_lsn = 0;
743 ip->i_d.di_flags2 = 0;
744 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
745 ip->i_d.di_crtime = ip->i_d.di_mtime;
749 flags = XFS_ILOG_CORE;
750 switch (mode & S_IFMT) {
751 case S_IFIFO:
752 case S_IFCHR:
753 case S_IFBLK:
754 case S_IFSOCK:
755 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
756 ip->i_df.if_u2.if_rdev = rdev;
757 ip->i_df.if_flags = 0;
758 flags |= XFS_ILOG_DEV;
759 break;
760 case S_IFREG:
761 case S_IFDIR:
762 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
763 uint di_flags = 0;
765 if (S_ISDIR(mode)) {
766 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
767 di_flags |= XFS_DIFLAG_RTINHERIT;
768 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
769 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
770 ip->i_d.di_extsize = pip->i_d.di_extsize;
772 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
773 di_flags |= XFS_DIFLAG_PROJINHERIT;
774 } else if (S_ISREG(mode)) {
775 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
776 di_flags |= XFS_DIFLAG_REALTIME;
777 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
778 di_flags |= XFS_DIFLAG_EXTSIZE;
779 ip->i_d.di_extsize = pip->i_d.di_extsize;
782 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
783 xfs_inherit_noatime)
784 di_flags |= XFS_DIFLAG_NOATIME;
785 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
786 xfs_inherit_nodump)
787 di_flags |= XFS_DIFLAG_NODUMP;
788 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
789 xfs_inherit_sync)
790 di_flags |= XFS_DIFLAG_SYNC;
791 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
792 xfs_inherit_nosymlinks)
793 di_flags |= XFS_DIFLAG_NOSYMLINKS;
794 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
795 xfs_inherit_nodefrag)
796 di_flags |= XFS_DIFLAG_NODEFRAG;
797 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
798 di_flags |= XFS_DIFLAG_FILESTREAM;
799 ip->i_d.di_flags |= di_flags;
801 /* FALLTHROUGH */
802 case S_IFLNK:
803 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
804 ip->i_df.if_flags = XFS_IFEXTENTS;
805 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
806 ip->i_df.if_u1.if_extents = NULL;
807 break;
808 default:
809 ASSERT(0);
812 * Attribute fork settings for new inode.
814 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
815 ip->i_d.di_anextents = 0;
818 * Log the new values stuffed into the inode.
820 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
821 xfs_trans_log_inode(tp, ip, flags);
823 /* now that we have an i_mode we can setup inode ops and unlock */
824 xfs_setup_inode(ip);
826 *ipp = ip;
827 return 0;
831 * Allocates a new inode from disk and return a pointer to the
832 * incore copy. This routine will internally commit the current
833 * transaction and allocate a new one if the Space Manager needed
834 * to do an allocation to replenish the inode free-list.
836 * This routine is designed to be called from xfs_create and
837 * xfs_create_dir.
841 xfs_dir_ialloc(
842 xfs_trans_t **tpp, /* input: current transaction;
843 output: may be a new transaction. */
844 xfs_inode_t *dp, /* directory within whose allocate
845 the inode. */
846 umode_t mode,
847 xfs_nlink_t nlink,
848 xfs_dev_t rdev,
849 prid_t prid, /* project id */
850 int okalloc, /* ok to allocate new space */
851 xfs_inode_t **ipp, /* pointer to inode; it will be
852 locked. */
853 int *committed)
856 xfs_trans_t *tp;
857 xfs_trans_t *ntp;
858 xfs_inode_t *ip;
859 xfs_buf_t *ialloc_context = NULL;
860 int code;
861 void *dqinfo;
862 uint tflags;
864 tp = *tpp;
865 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
868 * xfs_ialloc will return a pointer to an incore inode if
869 * the Space Manager has an available inode on the free
870 * list. Otherwise, it will do an allocation and replenish
871 * the freelist. Since we can only do one allocation per
872 * transaction without deadlocks, we will need to commit the
873 * current transaction and start a new one. We will then
874 * need to call xfs_ialloc again to get the inode.
876 * If xfs_ialloc did an allocation to replenish the freelist,
877 * it returns the bp containing the head of the freelist as
878 * ialloc_context. We will hold a lock on it across the
879 * transaction commit so that no other process can steal
880 * the inode(s) that we've just allocated.
882 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
883 &ialloc_context, &ip);
886 * Return an error if we were unable to allocate a new inode.
887 * This should only happen if we run out of space on disk or
888 * encounter a disk error.
890 if (code) {
891 *ipp = NULL;
892 return code;
894 if (!ialloc_context && !ip) {
895 *ipp = NULL;
896 return -ENOSPC;
900 * If the AGI buffer is non-NULL, then we were unable to get an
901 * inode in one operation. We need to commit the current
902 * transaction and call xfs_ialloc() again. It is guaranteed
903 * to succeed the second time.
905 if (ialloc_context) {
906 struct xfs_trans_res tres;
909 * Normally, xfs_trans_commit releases all the locks.
910 * We call bhold to hang on to the ialloc_context across
911 * the commit. Holding this buffer prevents any other
912 * processes from doing any allocations in this
913 * allocation group.
915 xfs_trans_bhold(tp, ialloc_context);
917 * Save the log reservation so we can use
918 * them in the next transaction.
920 tres.tr_logres = xfs_trans_get_log_res(tp);
921 tres.tr_logcount = xfs_trans_get_log_count(tp);
924 * We want the quota changes to be associated with the next
925 * transaction, NOT this one. So, detach the dqinfo from this
926 * and attach it to the next transaction.
928 dqinfo = NULL;
929 tflags = 0;
930 if (tp->t_dqinfo) {
931 dqinfo = (void *)tp->t_dqinfo;
932 tp->t_dqinfo = NULL;
933 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
934 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
937 ntp = xfs_trans_dup(tp);
938 code = xfs_trans_commit(tp, 0);
939 tp = ntp;
940 if (committed != NULL) {
941 *committed = 1;
944 * If we get an error during the commit processing,
945 * release the buffer that is still held and return
946 * to the caller.
948 if (code) {
949 xfs_buf_relse(ialloc_context);
950 if (dqinfo) {
951 tp->t_dqinfo = dqinfo;
952 xfs_trans_free_dqinfo(tp);
954 *tpp = ntp;
955 *ipp = NULL;
956 return code;
960 * transaction commit worked ok so we can drop the extra ticket
961 * reference that we gained in xfs_trans_dup()
963 xfs_log_ticket_put(tp->t_ticket);
964 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
965 code = xfs_trans_reserve(tp, &tres, 0, 0);
968 * Re-attach the quota info that we detached from prev trx.
970 if (dqinfo) {
971 tp->t_dqinfo = dqinfo;
972 tp->t_flags |= tflags;
975 if (code) {
976 xfs_buf_relse(ialloc_context);
977 *tpp = ntp;
978 *ipp = NULL;
979 return code;
981 xfs_trans_bjoin(tp, ialloc_context);
984 * Call ialloc again. Since we've locked out all
985 * other allocations in this allocation group,
986 * this call should always succeed.
988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
989 okalloc, &ialloc_context, &ip);
992 * If we get an error at this point, return to the caller
993 * so that the current transaction can be aborted.
995 if (code) {
996 *tpp = tp;
997 *ipp = NULL;
998 return code;
1000 ASSERT(!ialloc_context && ip);
1002 } else {
1003 if (committed != NULL)
1004 *committed = 0;
1007 *ipp = ip;
1008 *tpp = tp;
1010 return 0;
1014 * Decrement the link count on an inode & log the change.
1015 * If this causes the link count to go to zero, initiate the
1016 * logging activity required to truncate a file.
1018 int /* error */
1019 xfs_droplink(
1020 xfs_trans_t *tp,
1021 xfs_inode_t *ip)
1023 int error;
1025 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1027 ASSERT (ip->i_d.di_nlink > 0);
1028 ip->i_d.di_nlink--;
1029 drop_nlink(VFS_I(ip));
1030 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1032 error = 0;
1033 if (ip->i_d.di_nlink == 0) {
1035 * We're dropping the last link to this file.
1036 * Move the on-disk inode to the AGI unlinked list.
1037 * From xfs_inactive() we will pull the inode from
1038 * the list and free it.
1040 error = xfs_iunlink(tp, ip);
1042 return error;
1046 * Increment the link count on an inode & log the change.
1049 xfs_bumplink(
1050 xfs_trans_t *tp,
1051 xfs_inode_t *ip)
1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1055 ASSERT(ip->i_d.di_version > 1);
1056 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1057 ip->i_d.di_nlink++;
1058 inc_nlink(VFS_I(ip));
1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1060 return 0;
1064 xfs_create(
1065 xfs_inode_t *dp,
1066 struct xfs_name *name,
1067 umode_t mode,
1068 xfs_dev_t rdev,
1069 xfs_inode_t **ipp)
1071 int is_dir = S_ISDIR(mode);
1072 struct xfs_mount *mp = dp->i_mount;
1073 struct xfs_inode *ip = NULL;
1074 struct xfs_trans *tp = NULL;
1075 int error;
1076 xfs_bmap_free_t free_list;
1077 xfs_fsblock_t first_block;
1078 bool unlock_dp_on_error = false;
1079 uint cancel_flags;
1080 int committed;
1081 prid_t prid;
1082 struct xfs_dquot *udqp = NULL;
1083 struct xfs_dquot *gdqp = NULL;
1084 struct xfs_dquot *pdqp = NULL;
1085 struct xfs_trans_res tres;
1086 uint resblks;
1088 trace_xfs_create(dp, name);
1090 if (XFS_FORCED_SHUTDOWN(mp))
1091 return -EIO;
1093 prid = xfs_get_initial_prid(dp);
1096 * Make sure that we have allocated dquot(s) on disk.
1098 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1099 xfs_kgid_to_gid(current_fsgid()), prid,
1100 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1101 &udqp, &gdqp, &pdqp);
1102 if (error)
1103 return error;
1105 if (is_dir) {
1106 rdev = 0;
1107 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1108 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1109 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1110 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1111 } else {
1112 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1113 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1114 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1115 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1118 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1121 * Initially assume that the file does not exist and
1122 * reserve the resources for that case. If that is not
1123 * the case we'll drop the one we have and get a more
1124 * appropriate transaction later.
1126 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1127 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1128 if (error == -ENOSPC) {
1129 /* flush outstanding delalloc blocks and retry */
1130 xfs_flush_inodes(mp);
1131 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1133 if (error == -ENOSPC) {
1134 /* No space at all so try a "no-allocation" reservation */
1135 resblks = 0;
1136 error = xfs_trans_reserve(tp, &tres, 0, 0);
1138 if (error) {
1139 cancel_flags = 0;
1140 goto out_trans_cancel;
1143 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1144 unlock_dp_on_error = true;
1146 xfs_bmap_init(&free_list, &first_block);
1149 * Reserve disk quota and the inode.
1151 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1152 pdqp, resblks, 1, 0);
1153 if (error)
1154 goto out_trans_cancel;
1156 if (!resblks) {
1157 error = xfs_dir_canenter(tp, dp, name);
1158 if (error)
1159 goto out_trans_cancel;
1163 * A newly created regular or special file just has one directory
1164 * entry pointing to them, but a directory also the "." entry
1165 * pointing to itself.
1167 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1168 prid, resblks > 0, &ip, &committed);
1169 if (error) {
1170 if (error == -ENOSPC)
1171 goto out_trans_cancel;
1172 goto out_trans_abort;
1176 * Now we join the directory inode to the transaction. We do not do it
1177 * earlier because xfs_dir_ialloc might commit the previous transaction
1178 * (and release all the locks). An error from here on will result in
1179 * the transaction cancel unlocking dp so don't do it explicitly in the
1180 * error path.
1182 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1183 unlock_dp_on_error = false;
1185 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1186 &first_block, &free_list, resblks ?
1187 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1188 if (error) {
1189 ASSERT(error != -ENOSPC);
1190 goto out_trans_abort;
1192 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1193 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1195 if (is_dir) {
1196 error = xfs_dir_init(tp, ip, dp);
1197 if (error)
1198 goto out_bmap_cancel;
1200 error = xfs_bumplink(tp, dp);
1201 if (error)
1202 goto out_bmap_cancel;
1206 * If this is a synchronous mount, make sure that the
1207 * create transaction goes to disk before returning to
1208 * the user.
1210 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1211 xfs_trans_set_sync(tp);
1214 * Attach the dquot(s) to the inodes and modify them incore.
1215 * These ids of the inode couldn't have changed since the new
1216 * inode has been locked ever since it was created.
1218 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1220 error = xfs_bmap_finish(&tp, &free_list, &committed);
1221 if (error)
1222 goto out_bmap_cancel;
1224 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1225 if (error)
1226 goto out_release_inode;
1228 xfs_qm_dqrele(udqp);
1229 xfs_qm_dqrele(gdqp);
1230 xfs_qm_dqrele(pdqp);
1232 *ipp = ip;
1233 return 0;
1235 out_bmap_cancel:
1236 xfs_bmap_cancel(&free_list);
1237 out_trans_abort:
1238 cancel_flags |= XFS_TRANS_ABORT;
1239 out_trans_cancel:
1240 xfs_trans_cancel(tp, cancel_flags);
1241 out_release_inode:
1243 * Wait until after the current transaction is aborted to
1244 * release the inode. This prevents recursive transactions
1245 * and deadlocks from xfs_inactive.
1247 if (ip)
1248 IRELE(ip);
1250 xfs_qm_dqrele(udqp);
1251 xfs_qm_dqrele(gdqp);
1252 xfs_qm_dqrele(pdqp);
1254 if (unlock_dp_on_error)
1255 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1256 return error;
1260 xfs_create_tmpfile(
1261 struct xfs_inode *dp,
1262 struct dentry *dentry,
1263 umode_t mode,
1264 struct xfs_inode **ipp)
1266 struct xfs_mount *mp = dp->i_mount;
1267 struct xfs_inode *ip = NULL;
1268 struct xfs_trans *tp = NULL;
1269 int error;
1270 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1271 prid_t prid;
1272 struct xfs_dquot *udqp = NULL;
1273 struct xfs_dquot *gdqp = NULL;
1274 struct xfs_dquot *pdqp = NULL;
1275 struct xfs_trans_res *tres;
1276 uint resblks;
1278 if (XFS_FORCED_SHUTDOWN(mp))
1279 return -EIO;
1281 prid = xfs_get_initial_prid(dp);
1284 * Make sure that we have allocated dquot(s) on disk.
1286 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1287 xfs_kgid_to_gid(current_fsgid()), prid,
1288 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1289 &udqp, &gdqp, &pdqp);
1290 if (error)
1291 return error;
1293 resblks = XFS_IALLOC_SPACE_RES(mp);
1294 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1296 tres = &M_RES(mp)->tr_create_tmpfile;
1297 error = xfs_trans_reserve(tp, tres, resblks, 0);
1298 if (error == -ENOSPC) {
1299 /* No space at all so try a "no-allocation" reservation */
1300 resblks = 0;
1301 error = xfs_trans_reserve(tp, tres, 0, 0);
1303 if (error) {
1304 cancel_flags = 0;
1305 goto out_trans_cancel;
1308 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1309 pdqp, resblks, 1, 0);
1310 if (error)
1311 goto out_trans_cancel;
1313 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1314 prid, resblks > 0, &ip, NULL);
1315 if (error) {
1316 if (error == -ENOSPC)
1317 goto out_trans_cancel;
1318 goto out_trans_abort;
1321 if (mp->m_flags & XFS_MOUNT_WSYNC)
1322 xfs_trans_set_sync(tp);
1325 * Attach the dquot(s) to the inodes and modify them incore.
1326 * These ids of the inode couldn't have changed since the new
1327 * inode has been locked ever since it was created.
1329 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1331 ip->i_d.di_nlink--;
1332 error = xfs_iunlink(tp, ip);
1333 if (error)
1334 goto out_trans_abort;
1336 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1337 if (error)
1338 goto out_release_inode;
1340 xfs_qm_dqrele(udqp);
1341 xfs_qm_dqrele(gdqp);
1342 xfs_qm_dqrele(pdqp);
1344 *ipp = ip;
1345 return 0;
1347 out_trans_abort:
1348 cancel_flags |= XFS_TRANS_ABORT;
1349 out_trans_cancel:
1350 xfs_trans_cancel(tp, cancel_flags);
1351 out_release_inode:
1353 * Wait until after the current transaction is aborted to
1354 * release the inode. This prevents recursive transactions
1355 * and deadlocks from xfs_inactive.
1357 if (ip)
1358 IRELE(ip);
1360 xfs_qm_dqrele(udqp);
1361 xfs_qm_dqrele(gdqp);
1362 xfs_qm_dqrele(pdqp);
1364 return error;
1368 xfs_link(
1369 xfs_inode_t *tdp,
1370 xfs_inode_t *sip,
1371 struct xfs_name *target_name)
1373 xfs_mount_t *mp = tdp->i_mount;
1374 xfs_trans_t *tp;
1375 int error;
1376 xfs_bmap_free_t free_list;
1377 xfs_fsblock_t first_block;
1378 int cancel_flags;
1379 int committed;
1380 int resblks;
1382 trace_xfs_link(tdp, target_name);
1384 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1386 if (XFS_FORCED_SHUTDOWN(mp))
1387 return -EIO;
1389 error = xfs_qm_dqattach(sip, 0);
1390 if (error)
1391 goto std_return;
1393 error = xfs_qm_dqattach(tdp, 0);
1394 if (error)
1395 goto std_return;
1397 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1398 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1399 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1400 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1401 if (error == -ENOSPC) {
1402 resblks = 0;
1403 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1405 if (error) {
1406 cancel_flags = 0;
1407 goto error_return;
1410 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1416 * If we are using project inheritance, we only allow hard link
1417 * creation in our tree when the project IDs are the same; else
1418 * the tree quota mechanism could be circumvented.
1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422 error = -EXDEV;
1423 goto error_return;
1426 if (!resblks) {
1427 error = xfs_dir_canenter(tp, tdp, target_name);
1428 if (error)
1429 goto error_return;
1432 xfs_bmap_init(&free_list, &first_block);
1434 if (sip->i_d.di_nlink == 0) {
1435 error = xfs_iunlink_remove(tp, sip);
1436 if (error)
1437 goto abort_return;
1440 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1441 &first_block, &free_list, resblks);
1442 if (error)
1443 goto abort_return;
1444 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1445 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447 error = xfs_bumplink(tp, sip);
1448 if (error)
1449 goto abort_return;
1452 * If this is a synchronous mount, make sure that the
1453 * link transaction goes to disk before returning to
1454 * the user.
1456 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1457 xfs_trans_set_sync(tp);
1460 error = xfs_bmap_finish (&tp, &free_list, &committed);
1461 if (error) {
1462 xfs_bmap_cancel(&free_list);
1463 goto abort_return;
1466 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1468 abort_return:
1469 cancel_flags |= XFS_TRANS_ABORT;
1470 error_return:
1471 xfs_trans_cancel(tp, cancel_flags);
1472 std_return:
1473 return error;
1477 * Free up the underlying blocks past new_size. The new size must be smaller
1478 * than the current size. This routine can be used both for the attribute and
1479 * data fork, and does not modify the inode size, which is left to the caller.
1481 * The transaction passed to this routine must have made a permanent log
1482 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1483 * given transaction and start new ones, so make sure everything involved in
1484 * the transaction is tidy before calling here. Some transaction will be
1485 * returned to the caller to be committed. The incoming transaction must
1486 * already include the inode, and both inode locks must be held exclusively.
1487 * The inode must also be "held" within the transaction. On return the inode
1488 * will be "held" within the returned transaction. This routine does NOT
1489 * require any disk space to be reserved for it within the transaction.
1491 * If we get an error, we must return with the inode locked and linked into the
1492 * current transaction. This keeps things simple for the higher level code,
1493 * because it always knows that the inode is locked and held in the transaction
1494 * that returns to it whether errors occur or not. We don't mark the inode
1495 * dirty on error so that transactions can be easily aborted if possible.
1498 xfs_itruncate_extents(
1499 struct xfs_trans **tpp,
1500 struct xfs_inode *ip,
1501 int whichfork,
1502 xfs_fsize_t new_size)
1504 struct xfs_mount *mp = ip->i_mount;
1505 struct xfs_trans *tp = *tpp;
1506 struct xfs_trans *ntp;
1507 xfs_bmap_free_t free_list;
1508 xfs_fsblock_t first_block;
1509 xfs_fileoff_t first_unmap_block;
1510 xfs_fileoff_t last_block;
1511 xfs_filblks_t unmap_len;
1512 int committed;
1513 int error = 0;
1514 int done = 0;
1516 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1517 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1518 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1519 ASSERT(new_size <= XFS_ISIZE(ip));
1520 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1521 ASSERT(ip->i_itemp != NULL);
1522 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1523 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1525 trace_xfs_itruncate_extents_start(ip, new_size);
1528 * Since it is possible for space to become allocated beyond
1529 * the end of the file (in a crash where the space is allocated
1530 * but the inode size is not yet updated), simply remove any
1531 * blocks which show up between the new EOF and the maximum
1532 * possible file size. If the first block to be removed is
1533 * beyond the maximum file size (ie it is the same as last_block),
1534 * then there is nothing to do.
1536 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1537 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1538 if (first_unmap_block == last_block)
1539 return 0;
1541 ASSERT(first_unmap_block < last_block);
1542 unmap_len = last_block - first_unmap_block + 1;
1543 while (!done) {
1544 xfs_bmap_init(&free_list, &first_block);
1545 error = xfs_bunmapi(tp, ip,
1546 first_unmap_block, unmap_len,
1547 xfs_bmapi_aflag(whichfork),
1548 XFS_ITRUNC_MAX_EXTENTS,
1549 &first_block, &free_list,
1550 &done);
1551 if (error)
1552 goto out_bmap_cancel;
1555 * Duplicate the transaction that has the permanent
1556 * reservation and commit the old transaction.
1558 error = xfs_bmap_finish(&tp, &free_list, &committed);
1559 if (committed)
1560 xfs_trans_ijoin(tp, ip, 0);
1561 if (error)
1562 goto out_bmap_cancel;
1564 if (committed) {
1566 * Mark the inode dirty so it will be logged and
1567 * moved forward in the log as part of every commit.
1569 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1572 ntp = xfs_trans_dup(tp);
1573 error = xfs_trans_commit(tp, 0);
1574 tp = ntp;
1576 xfs_trans_ijoin(tp, ip, 0);
1578 if (error)
1579 goto out;
1582 * Transaction commit worked ok so we can drop the extra ticket
1583 * reference that we gained in xfs_trans_dup()
1585 xfs_log_ticket_put(tp->t_ticket);
1586 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1587 if (error)
1588 goto out;
1592 * Always re-log the inode so that our permanent transaction can keep
1593 * on rolling it forward in the log.
1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1597 trace_xfs_itruncate_extents_end(ip, new_size);
1599 out:
1600 *tpp = tp;
1601 return error;
1602 out_bmap_cancel:
1604 * If the bunmapi call encounters an error, return to the caller where
1605 * the transaction can be properly aborted. We just need to make sure
1606 * we're not holding any resources that we were not when we came in.
1608 xfs_bmap_cancel(&free_list);
1609 goto out;
1613 xfs_release(
1614 xfs_inode_t *ip)
1616 xfs_mount_t *mp = ip->i_mount;
1617 int error;
1619 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1620 return 0;
1622 /* If this is a read-only mount, don't do this (would generate I/O) */
1623 if (mp->m_flags & XFS_MOUNT_RDONLY)
1624 return 0;
1626 if (!XFS_FORCED_SHUTDOWN(mp)) {
1627 int truncated;
1630 * If we previously truncated this file and removed old data
1631 * in the process, we want to initiate "early" writeout on
1632 * the last close. This is an attempt to combat the notorious
1633 * NULL files problem which is particularly noticeable from a
1634 * truncate down, buffered (re-)write (delalloc), followed by
1635 * a crash. What we are effectively doing here is
1636 * significantly reducing the time window where we'd otherwise
1637 * be exposed to that problem.
1639 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1640 if (truncated) {
1641 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1642 if (ip->i_delayed_blks > 0) {
1643 error = filemap_flush(VFS_I(ip)->i_mapping);
1644 if (error)
1645 return error;
1650 if (ip->i_d.di_nlink == 0)
1651 return 0;
1653 if (xfs_can_free_eofblocks(ip, false)) {
1656 * If we can't get the iolock just skip truncating the blocks
1657 * past EOF because we could deadlock with the mmap_sem
1658 * otherwise. We'll get another chance to drop them once the
1659 * last reference to the inode is dropped, so we'll never leak
1660 * blocks permanently.
1662 * Further, check if the inode is being opened, written and
1663 * closed frequently and we have delayed allocation blocks
1664 * outstanding (e.g. streaming writes from the NFS server),
1665 * truncating the blocks past EOF will cause fragmentation to
1666 * occur.
1668 * In this case don't do the truncation, either, but we have to
1669 * be careful how we detect this case. Blocks beyond EOF show
1670 * up as i_delayed_blks even when the inode is clean, so we
1671 * need to truncate them away first before checking for a dirty
1672 * release. Hence on the first dirty close we will still remove
1673 * the speculative allocation, but after that we will leave it
1674 * in place.
1676 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1677 return 0;
1679 error = xfs_free_eofblocks(mp, ip, true);
1680 if (error && error != -EAGAIN)
1681 return error;
1683 /* delalloc blocks after truncation means it really is dirty */
1684 if (ip->i_delayed_blks)
1685 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1687 return 0;
1691 * xfs_inactive_truncate
1693 * Called to perform a truncate when an inode becomes unlinked.
1695 STATIC int
1696 xfs_inactive_truncate(
1697 struct xfs_inode *ip)
1699 struct xfs_mount *mp = ip->i_mount;
1700 struct xfs_trans *tp;
1701 int error;
1703 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1704 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1705 if (error) {
1706 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1707 xfs_trans_cancel(tp, 0);
1708 return error;
1711 xfs_ilock(ip, XFS_ILOCK_EXCL);
1712 xfs_trans_ijoin(tp, ip, 0);
1715 * Log the inode size first to prevent stale data exposure in the event
1716 * of a system crash before the truncate completes. See the related
1717 * comment in xfs_setattr_size() for details.
1719 ip->i_d.di_size = 0;
1720 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1722 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1723 if (error)
1724 goto error_trans_cancel;
1726 ASSERT(ip->i_d.di_nextents == 0);
1728 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1729 if (error)
1730 goto error_unlock;
1732 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1733 return 0;
1735 error_trans_cancel:
1736 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1737 error_unlock:
1738 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1739 return error;
1743 * xfs_inactive_ifree()
1745 * Perform the inode free when an inode is unlinked.
1747 STATIC int
1748 xfs_inactive_ifree(
1749 struct xfs_inode *ip)
1751 xfs_bmap_free_t free_list;
1752 xfs_fsblock_t first_block;
1753 int committed;
1754 struct xfs_mount *mp = ip->i_mount;
1755 struct xfs_trans *tp;
1756 int error;
1758 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1761 * The ifree transaction might need to allocate blocks for record
1762 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1763 * allow ifree to dip into the reserved block pool if necessary.
1765 * Freeing large sets of inodes generally means freeing inode chunks,
1766 * directory and file data blocks, so this should be relatively safe.
1767 * Only under severe circumstances should it be possible to free enough
1768 * inodes to exhaust the reserve block pool via finobt expansion while
1769 * at the same time not creating free space in the filesystem.
1771 * Send a warning if the reservation does happen to fail, as the inode
1772 * now remains allocated and sits on the unlinked list until the fs is
1773 * repaired.
1775 tp->t_flags |= XFS_TRANS_RESERVE;
1776 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1777 XFS_IFREE_SPACE_RES(mp), 0);
1778 if (error) {
1779 if (error == -ENOSPC) {
1780 xfs_warn_ratelimited(mp,
1781 "Failed to remove inode(s) from unlinked list. "
1782 "Please free space, unmount and run xfs_repair.");
1783 } else {
1784 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1786 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1787 return error;
1790 xfs_ilock(ip, XFS_ILOCK_EXCL);
1791 xfs_trans_ijoin(tp, ip, 0);
1793 xfs_bmap_init(&free_list, &first_block);
1794 error = xfs_ifree(tp, ip, &free_list);
1795 if (error) {
1797 * If we fail to free the inode, shut down. The cancel
1798 * might do that, we need to make sure. Otherwise the
1799 * inode might be lost for a long time or forever.
1801 if (!XFS_FORCED_SHUTDOWN(mp)) {
1802 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1803 __func__, error);
1804 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1806 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1807 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1808 return error;
1812 * Credit the quota account(s). The inode is gone.
1814 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1817 * Just ignore errors at this point. There is nothing we can
1818 * do except to try to keep going. Make sure it's not a silent
1819 * error.
1821 error = xfs_bmap_finish(&tp, &free_list, &committed);
1822 if (error)
1823 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1824 __func__, error);
1825 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1826 if (error)
1827 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1828 __func__, error);
1830 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1831 return 0;
1835 * xfs_inactive
1837 * This is called when the vnode reference count for the vnode
1838 * goes to zero. If the file has been unlinked, then it must
1839 * now be truncated. Also, we clear all of the read-ahead state
1840 * kept for the inode here since the file is now closed.
1842 void
1843 xfs_inactive(
1844 xfs_inode_t *ip)
1846 struct xfs_mount *mp;
1847 int error;
1848 int truncate = 0;
1851 * If the inode is already free, then there can be nothing
1852 * to clean up here.
1854 if (ip->i_d.di_mode == 0) {
1855 ASSERT(ip->i_df.if_real_bytes == 0);
1856 ASSERT(ip->i_df.if_broot_bytes == 0);
1857 return;
1860 mp = ip->i_mount;
1862 /* If this is a read-only mount, don't do this (would generate I/O) */
1863 if (mp->m_flags & XFS_MOUNT_RDONLY)
1864 return;
1866 if (ip->i_d.di_nlink != 0) {
1868 * force is true because we are evicting an inode from the
1869 * cache. Post-eof blocks must be freed, lest we end up with
1870 * broken free space accounting.
1872 if (xfs_can_free_eofblocks(ip, true))
1873 xfs_free_eofblocks(mp, ip, false);
1875 return;
1878 if (S_ISREG(ip->i_d.di_mode) &&
1879 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1880 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1881 truncate = 1;
1883 error = xfs_qm_dqattach(ip, 0);
1884 if (error)
1885 return;
1887 if (S_ISLNK(ip->i_d.di_mode))
1888 error = xfs_inactive_symlink(ip);
1889 else if (truncate)
1890 error = xfs_inactive_truncate(ip);
1891 if (error)
1892 return;
1895 * If there are attributes associated with the file then blow them away
1896 * now. The code calls a routine that recursively deconstructs the
1897 * attribute fork. We need to just commit the current transaction
1898 * because we can't use it for xfs_attr_inactive().
1900 if (ip->i_d.di_anextents > 0) {
1901 ASSERT(ip->i_d.di_forkoff != 0);
1903 error = xfs_attr_inactive(ip);
1904 if (error)
1905 return;
1908 if (ip->i_afp)
1909 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1911 ASSERT(ip->i_d.di_anextents == 0);
1914 * Free the inode.
1916 error = xfs_inactive_ifree(ip);
1917 if (error)
1918 return;
1921 * Release the dquots held by inode, if any.
1923 xfs_qm_dqdetach(ip);
1927 * This is called when the inode's link count goes to 0.
1928 * We place the on-disk inode on a list in the AGI. It
1929 * will be pulled from this list when the inode is freed.
1932 xfs_iunlink(
1933 xfs_trans_t *tp,
1934 xfs_inode_t *ip)
1936 xfs_mount_t *mp;
1937 xfs_agi_t *agi;
1938 xfs_dinode_t *dip;
1939 xfs_buf_t *agibp;
1940 xfs_buf_t *ibp;
1941 xfs_agino_t agino;
1942 short bucket_index;
1943 int offset;
1944 int error;
1946 ASSERT(ip->i_d.di_nlink == 0);
1947 ASSERT(ip->i_d.di_mode != 0);
1949 mp = tp->t_mountp;
1952 * Get the agi buffer first. It ensures lock ordering
1953 * on the list.
1955 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1956 if (error)
1957 return error;
1958 agi = XFS_BUF_TO_AGI(agibp);
1961 * Get the index into the agi hash table for the
1962 * list this inode will go on.
1964 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1965 ASSERT(agino != 0);
1966 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1967 ASSERT(agi->agi_unlinked[bucket_index]);
1968 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1970 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1972 * There is already another inode in the bucket we need
1973 * to add ourselves to. Add us at the front of the list.
1974 * Here we put the head pointer into our next pointer,
1975 * and then we fall through to point the head at us.
1977 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1978 0, 0);
1979 if (error)
1980 return error;
1982 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1983 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1984 offset = ip->i_imap.im_boffset +
1985 offsetof(xfs_dinode_t, di_next_unlinked);
1987 /* need to recalc the inode CRC if appropriate */
1988 xfs_dinode_calc_crc(mp, dip);
1990 xfs_trans_inode_buf(tp, ibp);
1991 xfs_trans_log_buf(tp, ibp, offset,
1992 (offset + sizeof(xfs_agino_t) - 1));
1993 xfs_inobp_check(mp, ibp);
1997 * Point the bucket head pointer at the inode being inserted.
1999 ASSERT(agino != 0);
2000 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2001 offset = offsetof(xfs_agi_t, agi_unlinked) +
2002 (sizeof(xfs_agino_t) * bucket_index);
2003 xfs_trans_log_buf(tp, agibp, offset,
2004 (offset + sizeof(xfs_agino_t) - 1));
2005 return 0;
2009 * Pull the on-disk inode from the AGI unlinked list.
2011 STATIC int
2012 xfs_iunlink_remove(
2013 xfs_trans_t *tp,
2014 xfs_inode_t *ip)
2016 xfs_ino_t next_ino;
2017 xfs_mount_t *mp;
2018 xfs_agi_t *agi;
2019 xfs_dinode_t *dip;
2020 xfs_buf_t *agibp;
2021 xfs_buf_t *ibp;
2022 xfs_agnumber_t agno;
2023 xfs_agino_t agino;
2024 xfs_agino_t next_agino;
2025 xfs_buf_t *last_ibp;
2026 xfs_dinode_t *last_dip = NULL;
2027 short bucket_index;
2028 int offset, last_offset = 0;
2029 int error;
2031 mp = tp->t_mountp;
2032 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2035 * Get the agi buffer first. It ensures lock ordering
2036 * on the list.
2038 error = xfs_read_agi(mp, tp, agno, &agibp);
2039 if (error)
2040 return error;
2042 agi = XFS_BUF_TO_AGI(agibp);
2045 * Get the index into the agi hash table for the
2046 * list this inode will go on.
2048 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2049 ASSERT(agino != 0);
2050 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2051 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2052 ASSERT(agi->agi_unlinked[bucket_index]);
2054 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2056 * We're at the head of the list. Get the inode's on-disk
2057 * buffer to see if there is anyone after us on the list.
2058 * Only modify our next pointer if it is not already NULLAGINO.
2059 * This saves us the overhead of dealing with the buffer when
2060 * there is no need to change it.
2062 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2063 0, 0);
2064 if (error) {
2065 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2066 __func__, error);
2067 return error;
2069 next_agino = be32_to_cpu(dip->di_next_unlinked);
2070 ASSERT(next_agino != 0);
2071 if (next_agino != NULLAGINO) {
2072 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2073 offset = ip->i_imap.im_boffset +
2074 offsetof(xfs_dinode_t, di_next_unlinked);
2076 /* need to recalc the inode CRC if appropriate */
2077 xfs_dinode_calc_crc(mp, dip);
2079 xfs_trans_inode_buf(tp, ibp);
2080 xfs_trans_log_buf(tp, ibp, offset,
2081 (offset + sizeof(xfs_agino_t) - 1));
2082 xfs_inobp_check(mp, ibp);
2083 } else {
2084 xfs_trans_brelse(tp, ibp);
2087 * Point the bucket head pointer at the next inode.
2089 ASSERT(next_agino != 0);
2090 ASSERT(next_agino != agino);
2091 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2092 offset = offsetof(xfs_agi_t, agi_unlinked) +
2093 (sizeof(xfs_agino_t) * bucket_index);
2094 xfs_trans_log_buf(tp, agibp, offset,
2095 (offset + sizeof(xfs_agino_t) - 1));
2096 } else {
2098 * We need to search the list for the inode being freed.
2100 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2101 last_ibp = NULL;
2102 while (next_agino != agino) {
2103 struct xfs_imap imap;
2105 if (last_ibp)
2106 xfs_trans_brelse(tp, last_ibp);
2108 imap.im_blkno = 0;
2109 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2111 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2112 if (error) {
2113 xfs_warn(mp,
2114 "%s: xfs_imap returned error %d.",
2115 __func__, error);
2116 return error;
2119 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2120 &last_ibp, 0, 0);
2121 if (error) {
2122 xfs_warn(mp,
2123 "%s: xfs_imap_to_bp returned error %d.",
2124 __func__, error);
2125 return error;
2128 last_offset = imap.im_boffset;
2129 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2130 ASSERT(next_agino != NULLAGINO);
2131 ASSERT(next_agino != 0);
2135 * Now last_ibp points to the buffer previous to us on the
2136 * unlinked list. Pull us from the list.
2138 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2139 0, 0);
2140 if (error) {
2141 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2142 __func__, error);
2143 return error;
2145 next_agino = be32_to_cpu(dip->di_next_unlinked);
2146 ASSERT(next_agino != 0);
2147 ASSERT(next_agino != agino);
2148 if (next_agino != NULLAGINO) {
2149 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2150 offset = ip->i_imap.im_boffset +
2151 offsetof(xfs_dinode_t, di_next_unlinked);
2153 /* need to recalc the inode CRC if appropriate */
2154 xfs_dinode_calc_crc(mp, dip);
2156 xfs_trans_inode_buf(tp, ibp);
2157 xfs_trans_log_buf(tp, ibp, offset,
2158 (offset + sizeof(xfs_agino_t) - 1));
2159 xfs_inobp_check(mp, ibp);
2160 } else {
2161 xfs_trans_brelse(tp, ibp);
2164 * Point the previous inode on the list to the next inode.
2166 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2167 ASSERT(next_agino != 0);
2168 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2170 /* need to recalc the inode CRC if appropriate */
2171 xfs_dinode_calc_crc(mp, last_dip);
2173 xfs_trans_inode_buf(tp, last_ibp);
2174 xfs_trans_log_buf(tp, last_ibp, offset,
2175 (offset + sizeof(xfs_agino_t) - 1));
2176 xfs_inobp_check(mp, last_ibp);
2178 return 0;
2182 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2183 * inodes that are in memory - they all must be marked stale and attached to
2184 * the cluster buffer.
2186 STATIC int
2187 xfs_ifree_cluster(
2188 xfs_inode_t *free_ip,
2189 xfs_trans_t *tp,
2190 xfs_ino_t inum)
2192 xfs_mount_t *mp = free_ip->i_mount;
2193 int blks_per_cluster;
2194 int inodes_per_cluster;
2195 int nbufs;
2196 int i, j;
2197 xfs_daddr_t blkno;
2198 xfs_buf_t *bp;
2199 xfs_inode_t *ip;
2200 xfs_inode_log_item_t *iip;
2201 xfs_log_item_t *lip;
2202 struct xfs_perag *pag;
2204 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2205 blks_per_cluster = xfs_icluster_size_fsb(mp);
2206 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2207 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2209 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2214 * We obtain and lock the backing buffer first in the process
2215 * here, as we have to ensure that any dirty inode that we
2216 * can't get the flush lock on is attached to the buffer.
2217 * If we scan the in-memory inodes first, then buffer IO can
2218 * complete before we get a lock on it, and hence we may fail
2219 * to mark all the active inodes on the buffer stale.
2221 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2222 mp->m_bsize * blks_per_cluster,
2223 XBF_UNMAPPED);
2225 if (!bp)
2226 return -ENOMEM;
2229 * This buffer may not have been correctly initialised as we
2230 * didn't read it from disk. That's not important because we are
2231 * only using to mark the buffer as stale in the log, and to
2232 * attach stale cached inodes on it. That means it will never be
2233 * dispatched for IO. If it is, we want to know about it, and we
2234 * want it to fail. We can acheive this by adding a write
2235 * verifier to the buffer.
2237 bp->b_ops = &xfs_inode_buf_ops;
2240 * Walk the inodes already attached to the buffer and mark them
2241 * stale. These will all have the flush locks held, so an
2242 * in-memory inode walk can't lock them. By marking them all
2243 * stale first, we will not attempt to lock them in the loop
2244 * below as the XFS_ISTALE flag will be set.
2246 lip = bp->b_fspriv;
2247 while (lip) {
2248 if (lip->li_type == XFS_LI_INODE) {
2249 iip = (xfs_inode_log_item_t *)lip;
2250 ASSERT(iip->ili_logged == 1);
2251 lip->li_cb = xfs_istale_done;
2252 xfs_trans_ail_copy_lsn(mp->m_ail,
2253 &iip->ili_flush_lsn,
2254 &iip->ili_item.li_lsn);
2255 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2257 lip = lip->li_bio_list;
2262 * For each inode in memory attempt to add it to the inode
2263 * buffer and set it up for being staled on buffer IO
2264 * completion. This is safe as we've locked out tail pushing
2265 * and flushing by locking the buffer.
2267 * We have already marked every inode that was part of a
2268 * transaction stale above, which means there is no point in
2269 * even trying to lock them.
2271 for (i = 0; i < inodes_per_cluster; i++) {
2272 retry:
2273 rcu_read_lock();
2274 ip = radix_tree_lookup(&pag->pag_ici_root,
2275 XFS_INO_TO_AGINO(mp, (inum + i)));
2277 /* Inode not in memory, nothing to do */
2278 if (!ip) {
2279 rcu_read_unlock();
2280 continue;
2284 * because this is an RCU protected lookup, we could
2285 * find a recently freed or even reallocated inode
2286 * during the lookup. We need to check under the
2287 * i_flags_lock for a valid inode here. Skip it if it
2288 * is not valid, the wrong inode or stale.
2290 spin_lock(&ip->i_flags_lock);
2291 if (ip->i_ino != inum + i ||
2292 __xfs_iflags_test(ip, XFS_ISTALE)) {
2293 spin_unlock(&ip->i_flags_lock);
2294 rcu_read_unlock();
2295 continue;
2297 spin_unlock(&ip->i_flags_lock);
2300 * Don't try to lock/unlock the current inode, but we
2301 * _cannot_ skip the other inodes that we did not find
2302 * in the list attached to the buffer and are not
2303 * already marked stale. If we can't lock it, back off
2304 * and retry.
2306 if (ip != free_ip &&
2307 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2308 rcu_read_unlock();
2309 delay(1);
2310 goto retry;
2312 rcu_read_unlock();
2314 xfs_iflock(ip);
2315 xfs_iflags_set(ip, XFS_ISTALE);
2318 * we don't need to attach clean inodes or those only
2319 * with unlogged changes (which we throw away, anyway).
2321 iip = ip->i_itemp;
2322 if (!iip || xfs_inode_clean(ip)) {
2323 ASSERT(ip != free_ip);
2324 xfs_ifunlock(ip);
2325 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2326 continue;
2329 iip->ili_last_fields = iip->ili_fields;
2330 iip->ili_fields = 0;
2331 iip->ili_logged = 1;
2332 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2333 &iip->ili_item.li_lsn);
2335 xfs_buf_attach_iodone(bp, xfs_istale_done,
2336 &iip->ili_item);
2338 if (ip != free_ip)
2339 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2342 xfs_trans_stale_inode_buf(tp, bp);
2343 xfs_trans_binval(tp, bp);
2346 xfs_perag_put(pag);
2347 return 0;
2351 * This is called to return an inode to the inode free list.
2352 * The inode should already be truncated to 0 length and have
2353 * no pages associated with it. This routine also assumes that
2354 * the inode is already a part of the transaction.
2356 * The on-disk copy of the inode will have been added to the list
2357 * of unlinked inodes in the AGI. We need to remove the inode from
2358 * that list atomically with respect to freeing it here.
2361 xfs_ifree(
2362 xfs_trans_t *tp,
2363 xfs_inode_t *ip,
2364 xfs_bmap_free_t *flist)
2366 int error;
2367 int delete;
2368 xfs_ino_t first_ino;
2370 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2371 ASSERT(ip->i_d.di_nlink == 0);
2372 ASSERT(ip->i_d.di_nextents == 0);
2373 ASSERT(ip->i_d.di_anextents == 0);
2374 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2375 ASSERT(ip->i_d.di_nblocks == 0);
2378 * Pull the on-disk inode from the AGI unlinked list.
2380 error = xfs_iunlink_remove(tp, ip);
2381 if (error)
2382 return error;
2384 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2385 if (error)
2386 return error;
2388 ip->i_d.di_mode = 0; /* mark incore inode as free */
2389 ip->i_d.di_flags = 0;
2390 ip->i_d.di_dmevmask = 0;
2391 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2392 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2393 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2395 * Bump the generation count so no one will be confused
2396 * by reincarnations of this inode.
2398 ip->i_d.di_gen++;
2399 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2401 if (delete)
2402 error = xfs_ifree_cluster(ip, tp, first_ino);
2404 return error;
2408 * This is called to unpin an inode. The caller must have the inode locked
2409 * in at least shared mode so that the buffer cannot be subsequently pinned
2410 * once someone is waiting for it to be unpinned.
2412 static void
2413 xfs_iunpin(
2414 struct xfs_inode *ip)
2416 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2418 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2420 /* Give the log a push to start the unpinning I/O */
2421 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2425 static void
2426 __xfs_iunpin_wait(
2427 struct xfs_inode *ip)
2429 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2430 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2432 xfs_iunpin(ip);
2434 do {
2435 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2436 if (xfs_ipincount(ip))
2437 io_schedule();
2438 } while (xfs_ipincount(ip));
2439 finish_wait(wq, &wait.wait);
2442 void
2443 xfs_iunpin_wait(
2444 struct xfs_inode *ip)
2446 if (xfs_ipincount(ip))
2447 __xfs_iunpin_wait(ip);
2451 * Removing an inode from the namespace involves removing the directory entry
2452 * and dropping the link count on the inode. Removing the directory entry can
2453 * result in locking an AGF (directory blocks were freed) and removing a link
2454 * count can result in placing the inode on an unlinked list which results in
2455 * locking an AGI.
2457 * The big problem here is that we have an ordering constraint on AGF and AGI
2458 * locking - inode allocation locks the AGI, then can allocate a new extent for
2459 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2460 * removes the inode from the unlinked list, requiring that we lock the AGI
2461 * first, and then freeing the inode can result in an inode chunk being freed
2462 * and hence freeing disk space requiring that we lock an AGF.
2464 * Hence the ordering that is imposed by other parts of the code is AGI before
2465 * AGF. This means we cannot remove the directory entry before we drop the inode
2466 * reference count and put it on the unlinked list as this results in a lock
2467 * order of AGF then AGI, and this can deadlock against inode allocation and
2468 * freeing. Therefore we must drop the link counts before we remove the
2469 * directory entry.
2471 * This is still safe from a transactional point of view - it is not until we
2472 * get to xfs_bmap_finish() that we have the possibility of multiple
2473 * transactions in this operation. Hence as long as we remove the directory
2474 * entry and drop the link count in the first transaction of the remove
2475 * operation, there are no transactional constraints on the ordering here.
2478 xfs_remove(
2479 xfs_inode_t *dp,
2480 struct xfs_name *name,
2481 xfs_inode_t *ip)
2483 xfs_mount_t *mp = dp->i_mount;
2484 xfs_trans_t *tp = NULL;
2485 int is_dir = S_ISDIR(ip->i_d.di_mode);
2486 int error = 0;
2487 xfs_bmap_free_t free_list;
2488 xfs_fsblock_t first_block;
2489 int cancel_flags;
2490 int committed;
2491 int link_zero;
2492 uint resblks;
2493 uint log_count;
2495 trace_xfs_remove(dp, name);
2497 if (XFS_FORCED_SHUTDOWN(mp))
2498 return -EIO;
2500 error = xfs_qm_dqattach(dp, 0);
2501 if (error)
2502 goto std_return;
2504 error = xfs_qm_dqattach(ip, 0);
2505 if (error)
2506 goto std_return;
2508 if (is_dir) {
2509 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2510 log_count = XFS_DEFAULT_LOG_COUNT;
2511 } else {
2512 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2513 log_count = XFS_REMOVE_LOG_COUNT;
2515 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2518 * We try to get the real space reservation first,
2519 * allowing for directory btree deletion(s) implying
2520 * possible bmap insert(s). If we can't get the space
2521 * reservation then we use 0 instead, and avoid the bmap
2522 * btree insert(s) in the directory code by, if the bmap
2523 * insert tries to happen, instead trimming the LAST
2524 * block from the directory.
2526 resblks = XFS_REMOVE_SPACE_RES(mp);
2527 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2528 if (error == -ENOSPC) {
2529 resblks = 0;
2530 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2532 if (error) {
2533 ASSERT(error != -ENOSPC);
2534 cancel_flags = 0;
2535 goto out_trans_cancel;
2538 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2540 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2541 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2544 * If we're removing a directory perform some additional validation.
2546 cancel_flags |= XFS_TRANS_ABORT;
2547 if (is_dir) {
2548 ASSERT(ip->i_d.di_nlink >= 2);
2549 if (ip->i_d.di_nlink != 2) {
2550 error = -ENOTEMPTY;
2551 goto out_trans_cancel;
2553 if (!xfs_dir_isempty(ip)) {
2554 error = -ENOTEMPTY;
2555 goto out_trans_cancel;
2558 /* Drop the link from ip's "..". */
2559 error = xfs_droplink(tp, dp);
2560 if (error)
2561 goto out_trans_cancel;
2563 /* Drop the "." link from ip to self. */
2564 error = xfs_droplink(tp, ip);
2565 if (error)
2566 goto out_trans_cancel;
2567 } else {
2569 * When removing a non-directory we need to log the parent
2570 * inode here. For a directory this is done implicitly
2571 * by the xfs_droplink call for the ".." entry.
2573 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2575 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2577 /* Drop the link from dp to ip. */
2578 error = xfs_droplink(tp, ip);
2579 if (error)
2580 goto out_trans_cancel;
2582 /* Determine if this is the last link while the inode is locked */
2583 link_zero = (ip->i_d.di_nlink == 0);
2585 xfs_bmap_init(&free_list, &first_block);
2586 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2587 &first_block, &free_list, resblks);
2588 if (error) {
2589 ASSERT(error != -ENOENT);
2590 goto out_bmap_cancel;
2594 * If this is a synchronous mount, make sure that the
2595 * remove transaction goes to disk before returning to
2596 * the user.
2598 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2599 xfs_trans_set_sync(tp);
2601 error = xfs_bmap_finish(&tp, &free_list, &committed);
2602 if (error)
2603 goto out_bmap_cancel;
2605 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2606 if (error)
2607 goto std_return;
2609 if (is_dir && xfs_inode_is_filestream(ip))
2610 xfs_filestream_deassociate(ip);
2612 return 0;
2614 out_bmap_cancel:
2615 xfs_bmap_cancel(&free_list);
2616 out_trans_cancel:
2617 xfs_trans_cancel(tp, cancel_flags);
2618 std_return:
2619 return error;
2623 * Enter all inodes for a rename transaction into a sorted array.
2625 STATIC void
2626 xfs_sort_for_rename(
2627 xfs_inode_t *dp1, /* in: old (source) directory inode */
2628 xfs_inode_t *dp2, /* in: new (target) directory inode */
2629 xfs_inode_t *ip1, /* in: inode of old entry */
2630 xfs_inode_t *ip2, /* in: inode of new entry, if it
2631 already exists, NULL otherwise. */
2632 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2633 int *num_inodes) /* out: number of inodes in array */
2635 xfs_inode_t *temp;
2636 int i, j;
2639 * i_tab contains a list of pointers to inodes. We initialize
2640 * the table here & we'll sort it. We will then use it to
2641 * order the acquisition of the inode locks.
2643 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2645 i_tab[0] = dp1;
2646 i_tab[1] = dp2;
2647 i_tab[2] = ip1;
2648 if (ip2) {
2649 *num_inodes = 4;
2650 i_tab[3] = ip2;
2651 } else {
2652 *num_inodes = 3;
2653 i_tab[3] = NULL;
2657 * Sort the elements via bubble sort. (Remember, there are at
2658 * most 4 elements to sort, so this is adequate.)
2660 for (i = 0; i < *num_inodes; i++) {
2661 for (j = 1; j < *num_inodes; j++) {
2662 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2663 temp = i_tab[j];
2664 i_tab[j] = i_tab[j-1];
2665 i_tab[j-1] = temp;
2672 * xfs_rename
2675 xfs_rename(
2676 xfs_inode_t *src_dp,
2677 struct xfs_name *src_name,
2678 xfs_inode_t *src_ip,
2679 xfs_inode_t *target_dp,
2680 struct xfs_name *target_name,
2681 xfs_inode_t *target_ip)
2683 xfs_trans_t *tp = NULL;
2684 xfs_mount_t *mp = src_dp->i_mount;
2685 int new_parent; /* moving to a new dir */
2686 int src_is_directory; /* src_name is a directory */
2687 int error;
2688 xfs_bmap_free_t free_list;
2689 xfs_fsblock_t first_block;
2690 int cancel_flags;
2691 int committed;
2692 xfs_inode_t *inodes[4];
2693 int spaceres;
2694 int num_inodes;
2696 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2698 new_parent = (src_dp != target_dp);
2699 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2701 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2702 inodes, &num_inodes);
2704 xfs_bmap_init(&free_list, &first_block);
2705 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2706 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2707 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2708 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2709 if (error == -ENOSPC) {
2710 spaceres = 0;
2711 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2713 if (error) {
2714 xfs_trans_cancel(tp, 0);
2715 goto std_return;
2719 * Attach the dquots to the inodes
2721 error = xfs_qm_vop_rename_dqattach(inodes);
2722 if (error) {
2723 xfs_trans_cancel(tp, cancel_flags);
2724 goto std_return;
2728 * Lock all the participating inodes. Depending upon whether
2729 * the target_name exists in the target directory, and
2730 * whether the target directory is the same as the source
2731 * directory, we can lock from 2 to 4 inodes.
2733 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2736 * Join all the inodes to the transaction. From this point on,
2737 * we can rely on either trans_commit or trans_cancel to unlock
2738 * them.
2740 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2741 if (new_parent)
2742 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2743 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2744 if (target_ip)
2745 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2748 * If we are using project inheritance, we only allow renames
2749 * into our tree when the project IDs are the same; else the
2750 * tree quota mechanism would be circumvented.
2752 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2753 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2754 error = -EXDEV;
2755 goto error_return;
2759 * Set up the target.
2761 if (target_ip == NULL) {
2763 * If there's no space reservation, check the entry will
2764 * fit before actually inserting it.
2766 if (!spaceres) {
2767 error = xfs_dir_canenter(tp, target_dp, target_name);
2768 if (error)
2769 goto error_return;
2772 * If target does not exist and the rename crosses
2773 * directories, adjust the target directory link count
2774 * to account for the ".." reference from the new entry.
2776 error = xfs_dir_createname(tp, target_dp, target_name,
2777 src_ip->i_ino, &first_block,
2778 &free_list, spaceres);
2779 if (error == -ENOSPC)
2780 goto error_return;
2781 if (error)
2782 goto abort_return;
2784 xfs_trans_ichgtime(tp, target_dp,
2785 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787 if (new_parent && src_is_directory) {
2788 error = xfs_bumplink(tp, target_dp);
2789 if (error)
2790 goto abort_return;
2792 } else { /* target_ip != NULL */
2794 * If target exists and it's a directory, check that both
2795 * target and source are directories and that target can be
2796 * destroyed, or that neither is a directory.
2798 if (S_ISDIR(target_ip->i_d.di_mode)) {
2800 * Make sure target dir is empty.
2802 if (!(xfs_dir_isempty(target_ip)) ||
2803 (target_ip->i_d.di_nlink > 2)) {
2804 error = -EEXIST;
2805 goto error_return;
2810 * Link the source inode under the target name.
2811 * If the source inode is a directory and we are moving
2812 * it across directories, its ".." entry will be
2813 * inconsistent until we replace that down below.
2815 * In case there is already an entry with the same
2816 * name at the destination directory, remove it first.
2818 error = xfs_dir_replace(tp, target_dp, target_name,
2819 src_ip->i_ino,
2820 &first_block, &free_list, spaceres);
2821 if (error)
2822 goto abort_return;
2824 xfs_trans_ichgtime(tp, target_dp,
2825 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2828 * Decrement the link count on the target since the target
2829 * dir no longer points to it.
2831 error = xfs_droplink(tp, target_ip);
2832 if (error)
2833 goto abort_return;
2835 if (src_is_directory) {
2837 * Drop the link from the old "." entry.
2839 error = xfs_droplink(tp, target_ip);
2840 if (error)
2841 goto abort_return;
2843 } /* target_ip != NULL */
2846 * Remove the source.
2848 if (new_parent && src_is_directory) {
2850 * Rewrite the ".." entry to point to the new
2851 * directory.
2853 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2854 target_dp->i_ino,
2855 &first_block, &free_list, spaceres);
2856 ASSERT(error != -EEXIST);
2857 if (error)
2858 goto abort_return;
2862 * We always want to hit the ctime on the source inode.
2864 * This isn't strictly required by the standards since the source
2865 * inode isn't really being changed, but old unix file systems did
2866 * it and some incremental backup programs won't work without it.
2868 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2869 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2872 * Adjust the link count on src_dp. This is necessary when
2873 * renaming a directory, either within one parent when
2874 * the target existed, or across two parent directories.
2876 if (src_is_directory && (new_parent || target_ip != NULL)) {
2879 * Decrement link count on src_directory since the
2880 * entry that's moved no longer points to it.
2882 error = xfs_droplink(tp, src_dp);
2883 if (error)
2884 goto abort_return;
2887 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2888 &first_block, &free_list, spaceres);
2889 if (error)
2890 goto abort_return;
2892 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2893 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2894 if (new_parent)
2895 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2898 * If this is a synchronous mount, make sure that the
2899 * rename transaction goes to disk before returning to
2900 * the user.
2902 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2903 xfs_trans_set_sync(tp);
2906 error = xfs_bmap_finish(&tp, &free_list, &committed);
2907 if (error) {
2908 xfs_bmap_cancel(&free_list);
2909 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2910 XFS_TRANS_ABORT));
2911 goto std_return;
2915 * trans_commit will unlock src_ip, target_ip & decrement
2916 * the vnode references.
2918 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2920 abort_return:
2921 cancel_flags |= XFS_TRANS_ABORT;
2922 error_return:
2923 xfs_bmap_cancel(&free_list);
2924 xfs_trans_cancel(tp, cancel_flags);
2925 std_return:
2926 return error;
2929 STATIC int
2930 xfs_iflush_cluster(
2931 xfs_inode_t *ip,
2932 xfs_buf_t *bp)
2934 xfs_mount_t *mp = ip->i_mount;
2935 struct xfs_perag *pag;
2936 unsigned long first_index, mask;
2937 unsigned long inodes_per_cluster;
2938 int ilist_size;
2939 xfs_inode_t **ilist;
2940 xfs_inode_t *iq;
2941 int nr_found;
2942 int clcount = 0;
2943 int bufwasdelwri;
2944 int i;
2946 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2948 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
2949 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2950 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2951 if (!ilist)
2952 goto out_put;
2954 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
2955 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2956 rcu_read_lock();
2957 /* really need a gang lookup range call here */
2958 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2959 first_index, inodes_per_cluster);
2960 if (nr_found == 0)
2961 goto out_free;
2963 for (i = 0; i < nr_found; i++) {
2964 iq = ilist[i];
2965 if (iq == ip)
2966 continue;
2969 * because this is an RCU protected lookup, we could find a
2970 * recently freed or even reallocated inode during the lookup.
2971 * We need to check under the i_flags_lock for a valid inode
2972 * here. Skip it if it is not valid or the wrong inode.
2974 spin_lock(&ip->i_flags_lock);
2975 if (!ip->i_ino ||
2976 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2977 spin_unlock(&ip->i_flags_lock);
2978 continue;
2980 spin_unlock(&ip->i_flags_lock);
2983 * Do an un-protected check to see if the inode is dirty and
2984 * is a candidate for flushing. These checks will be repeated
2985 * later after the appropriate locks are acquired.
2987 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2988 continue;
2991 * Try to get locks. If any are unavailable or it is pinned,
2992 * then this inode cannot be flushed and is skipped.
2995 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2996 continue;
2997 if (!xfs_iflock_nowait(iq)) {
2998 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2999 continue;
3001 if (xfs_ipincount(iq)) {
3002 xfs_ifunlock(iq);
3003 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3004 continue;
3008 * arriving here means that this inode can be flushed. First
3009 * re-check that it's dirty before flushing.
3011 if (!xfs_inode_clean(iq)) {
3012 int error;
3013 error = xfs_iflush_int(iq, bp);
3014 if (error) {
3015 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3016 goto cluster_corrupt_out;
3018 clcount++;
3019 } else {
3020 xfs_ifunlock(iq);
3022 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3025 if (clcount) {
3026 XFS_STATS_INC(xs_icluster_flushcnt);
3027 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3030 out_free:
3031 rcu_read_unlock();
3032 kmem_free(ilist);
3033 out_put:
3034 xfs_perag_put(pag);
3035 return 0;
3038 cluster_corrupt_out:
3040 * Corruption detected in the clustering loop. Invalidate the
3041 * inode buffer and shut down the filesystem.
3043 rcu_read_unlock();
3045 * Clean up the buffer. If it was delwri, just release it --
3046 * brelse can handle it with no problems. If not, shut down the
3047 * filesystem before releasing the buffer.
3049 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3050 if (bufwasdelwri)
3051 xfs_buf_relse(bp);
3053 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3055 if (!bufwasdelwri) {
3057 * Just like incore_relse: if we have b_iodone functions,
3058 * mark the buffer as an error and call them. Otherwise
3059 * mark it as stale and brelse.
3061 if (bp->b_iodone) {
3062 XFS_BUF_UNDONE(bp);
3063 xfs_buf_stale(bp);
3064 xfs_buf_ioerror(bp, -EIO);
3065 xfs_buf_ioend(bp);
3066 } else {
3067 xfs_buf_stale(bp);
3068 xfs_buf_relse(bp);
3073 * Unlocks the flush lock
3075 xfs_iflush_abort(iq, false);
3076 kmem_free(ilist);
3077 xfs_perag_put(pag);
3078 return -EFSCORRUPTED;
3082 * Flush dirty inode metadata into the backing buffer.
3084 * The caller must have the inode lock and the inode flush lock held. The
3085 * inode lock will still be held upon return to the caller, and the inode
3086 * flush lock will be released after the inode has reached the disk.
3088 * The caller must write out the buffer returned in *bpp and release it.
3091 xfs_iflush(
3092 struct xfs_inode *ip,
3093 struct xfs_buf **bpp)
3095 struct xfs_mount *mp = ip->i_mount;
3096 struct xfs_buf *bp;
3097 struct xfs_dinode *dip;
3098 int error;
3100 XFS_STATS_INC(xs_iflush_count);
3102 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3103 ASSERT(xfs_isiflocked(ip));
3104 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3105 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3107 *bpp = NULL;
3109 xfs_iunpin_wait(ip);
3112 * For stale inodes we cannot rely on the backing buffer remaining
3113 * stale in cache for the remaining life of the stale inode and so
3114 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3115 * inodes below. We have to check this after ensuring the inode is
3116 * unpinned so that it is safe to reclaim the stale inode after the
3117 * flush call.
3119 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3120 xfs_ifunlock(ip);
3121 return 0;
3125 * This may have been unpinned because the filesystem is shutting
3126 * down forcibly. If that's the case we must not write this inode
3127 * to disk, because the log record didn't make it to disk.
3129 * We also have to remove the log item from the AIL in this case,
3130 * as we wait for an empty AIL as part of the unmount process.
3132 if (XFS_FORCED_SHUTDOWN(mp)) {
3133 error = -EIO;
3134 goto abort_out;
3138 * Get the buffer containing the on-disk inode.
3140 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3142 if (error || !bp) {
3143 xfs_ifunlock(ip);
3144 return error;
3148 * First flush out the inode that xfs_iflush was called with.
3150 error = xfs_iflush_int(ip, bp);
3151 if (error)
3152 goto corrupt_out;
3155 * If the buffer is pinned then push on the log now so we won't
3156 * get stuck waiting in the write for too long.
3158 if (xfs_buf_ispinned(bp))
3159 xfs_log_force(mp, 0);
3162 * inode clustering:
3163 * see if other inodes can be gathered into this write
3165 error = xfs_iflush_cluster(ip, bp);
3166 if (error)
3167 goto cluster_corrupt_out;
3169 *bpp = bp;
3170 return 0;
3172 corrupt_out:
3173 xfs_buf_relse(bp);
3174 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3175 cluster_corrupt_out:
3176 error = -EFSCORRUPTED;
3177 abort_out:
3179 * Unlocks the flush lock
3181 xfs_iflush_abort(ip, false);
3182 return error;
3185 STATIC int
3186 xfs_iflush_int(
3187 struct xfs_inode *ip,
3188 struct xfs_buf *bp)
3190 struct xfs_inode_log_item *iip = ip->i_itemp;
3191 struct xfs_dinode *dip;
3192 struct xfs_mount *mp = ip->i_mount;
3194 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3195 ASSERT(xfs_isiflocked(ip));
3196 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3197 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3198 ASSERT(iip != NULL && iip->ili_fields != 0);
3199 ASSERT(ip->i_d.di_version > 1);
3201 /* set *dip = inode's place in the buffer */
3202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3204 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3205 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3206 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3207 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3208 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3209 goto corrupt_out;
3211 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3212 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3213 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3214 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3215 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3216 goto corrupt_out;
3218 if (S_ISREG(ip->i_d.di_mode)) {
3219 if (XFS_TEST_ERROR(
3220 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3221 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3222 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224 "%s: Bad regular inode %Lu, ptr 0x%p",
3225 __func__, ip->i_ino, ip);
3226 goto corrupt_out;
3228 } else if (S_ISDIR(ip->i_d.di_mode)) {
3229 if (XFS_TEST_ERROR(
3230 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3231 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3232 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3233 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3234 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3235 "%s: Bad directory inode %Lu, ptr 0x%p",
3236 __func__, ip->i_ino, ip);
3237 goto corrupt_out;
3240 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3241 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3242 XFS_RANDOM_IFLUSH_5)) {
3243 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3244 "%s: detected corrupt incore inode %Lu, "
3245 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3246 __func__, ip->i_ino,
3247 ip->i_d.di_nextents + ip->i_d.di_anextents,
3248 ip->i_d.di_nblocks, ip);
3249 goto corrupt_out;
3251 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3252 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3253 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3254 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3255 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3256 goto corrupt_out;
3260 * Inode item log recovery for v2 inodes are dependent on the
3261 * di_flushiter count for correct sequencing. We bump the flush
3262 * iteration count so we can detect flushes which postdate a log record
3263 * during recovery. This is redundant as we now log every change and
3264 * hence this can't happen but we need to still do it to ensure
3265 * backwards compatibility with old kernels that predate logging all
3266 * inode changes.
3268 if (ip->i_d.di_version < 3)
3269 ip->i_d.di_flushiter++;
3272 * Copy the dirty parts of the inode into the on-disk
3273 * inode. We always copy out the core of the inode,
3274 * because if the inode is dirty at all the core must
3275 * be.
3277 xfs_dinode_to_disk(dip, &ip->i_d);
3279 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3280 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3281 ip->i_d.di_flushiter = 0;
3283 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3284 if (XFS_IFORK_Q(ip))
3285 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3286 xfs_inobp_check(mp, bp);
3289 * We've recorded everything logged in the inode, so we'd like to clear
3290 * the ili_fields bits so we don't log and flush things unnecessarily.
3291 * However, we can't stop logging all this information until the data
3292 * we've copied into the disk buffer is written to disk. If we did we
3293 * might overwrite the copy of the inode in the log with all the data
3294 * after re-logging only part of it, and in the face of a crash we
3295 * wouldn't have all the data we need to recover.
3297 * What we do is move the bits to the ili_last_fields field. When
3298 * logging the inode, these bits are moved back to the ili_fields field.
3299 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3300 * know that the information those bits represent is permanently on
3301 * disk. As long as the flush completes before the inode is logged
3302 * again, then both ili_fields and ili_last_fields will be cleared.
3304 * We can play with the ili_fields bits here, because the inode lock
3305 * must be held exclusively in order to set bits there and the flush
3306 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3307 * done routine can tell whether or not to look in the AIL. Also, store
3308 * the current LSN of the inode so that we can tell whether the item has
3309 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3310 * need the AIL lock, because it is a 64 bit value that cannot be read
3311 * atomically.
3313 iip->ili_last_fields = iip->ili_fields;
3314 iip->ili_fields = 0;
3315 iip->ili_logged = 1;
3317 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3318 &iip->ili_item.li_lsn);
3321 * Attach the function xfs_iflush_done to the inode's
3322 * buffer. This will remove the inode from the AIL
3323 * and unlock the inode's flush lock when the inode is
3324 * completely written to disk.
3326 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3328 /* update the lsn in the on disk inode if required */
3329 if (ip->i_d.di_version == 3)
3330 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3332 /* generate the checksum. */
3333 xfs_dinode_calc_crc(mp, dip);
3335 ASSERT(bp->b_fspriv != NULL);
3336 ASSERT(bp->b_iodone != NULL);
3337 return 0;
3339 corrupt_out:
3340 return -EFSCORRUPTED;