2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_dinode.h"
46 #include "xfs_error.h"
49 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
56 xlog_clear_stale_blocks(
61 xlog_recover_check_summary(
64 #define xlog_recover_check_summary(log)
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
71 struct xfs_buf_cancel
{
75 struct list_head bc_list
;
79 * Sector aligned buffer routines for buffer create/read/write/access
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
89 xlog_buf_bbcount_valid(
93 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
108 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
109 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
111 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
118 * requested size to accommodate the basic blocks required
119 * for complete log sectors.
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
129 * there's space to accommodate this possibility.
131 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
132 nbblks
+= log
->l_sectBBsize
;
133 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
135 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
159 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
161 ASSERT(offset
+ nbblks
<= bp
->b_length
);
162 return bp
->b_addr
+ BBTOB(offset
);
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
178 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
179 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
181 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
182 return -EFSCORRUPTED
;
185 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
186 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
189 ASSERT(nbblks
<= bp
->b_length
);
191 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
193 bp
->b_io_length
= nbblks
;
196 error
= xfs_buf_submit_wait(bp
);
197 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
198 xfs_buf_ioerror_alert(bp
, __func__
);
212 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
216 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
221 * Read at an offset into the buffer. Returns with the buffer in it's original
222 * state regardless of the result of the read.
227 xfs_daddr_t blk_no
, /* block to read from */
228 int nbblks
, /* blocks to read */
232 xfs_caddr_t orig_offset
= bp
->b_addr
;
233 int orig_len
= BBTOB(bp
->b_length
);
236 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
240 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
242 /* must reset buffer pointer even on error */
243 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
250 * Write out the buffer at the given block for the given number of blocks.
251 * The buffer is kept locked across the write and is returned locked.
252 * This can only be used for synchronous log writes.
263 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
264 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
266 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
267 return -EFSCORRUPTED
;
270 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
271 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
274 ASSERT(nbblks
<= bp
->b_length
);
276 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
277 XFS_BUF_ZEROFLAGS(bp
);
280 bp
->b_io_length
= nbblks
;
283 error
= xfs_bwrite(bp
);
285 xfs_buf_ioerror_alert(bp
, __func__
);
292 * dump debug superblock and log record information
295 xlog_header_check_dump(
297 xlog_rec_header_t
*head
)
299 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
300 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
301 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
302 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
305 #define xlog_header_check_dump(mp, head)
309 * check log record header for recovery
312 xlog_header_check_recover(
314 xlog_rec_header_t
*head
)
316 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
319 * IRIX doesn't write the h_fmt field and leaves it zeroed
320 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
321 * a dirty log created in IRIX.
323 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
325 "dirty log written in incompatible format - can't recover");
326 xlog_header_check_dump(mp
, head
);
327 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
328 XFS_ERRLEVEL_HIGH
, mp
);
329 return -EFSCORRUPTED
;
330 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
332 "dirty log entry has mismatched uuid - can't recover");
333 xlog_header_check_dump(mp
, head
);
334 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
335 XFS_ERRLEVEL_HIGH
, mp
);
336 return -EFSCORRUPTED
;
342 * read the head block of the log and check the header
345 xlog_header_check_mount(
347 xlog_rec_header_t
*head
)
349 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
351 if (uuid_is_nil(&head
->h_fs_uuid
)) {
353 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
354 * h_fs_uuid is nil, we assume this log was last mounted
355 * by IRIX and continue.
357 xfs_warn(mp
, "nil uuid in log - IRIX style log");
358 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
359 xfs_warn(mp
, "log has mismatched uuid - can't recover");
360 xlog_header_check_dump(mp
, head
);
361 XFS_ERROR_REPORT("xlog_header_check_mount",
362 XFS_ERRLEVEL_HIGH
, mp
);
363 return -EFSCORRUPTED
;
374 * We're not going to bother about retrying
375 * this during recovery. One strike!
377 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
378 xfs_buf_ioerror_alert(bp
, __func__
);
379 xfs_force_shutdown(bp
->b_target
->bt_mount
,
380 SHUTDOWN_META_IO_ERROR
);
388 * This routine finds (to an approximation) the first block in the physical
389 * log which contains the given cycle. It uses a binary search algorithm.
390 * Note that the algorithm can not be perfect because the disk will not
391 * necessarily be perfect.
394 xlog_find_cycle_start(
397 xfs_daddr_t first_blk
,
398 xfs_daddr_t
*last_blk
,
408 mid_blk
= BLK_AVG(first_blk
, end_blk
);
409 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
410 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
413 mid_cycle
= xlog_get_cycle(offset
);
414 if (mid_cycle
== cycle
)
415 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
417 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
418 mid_blk
= BLK_AVG(first_blk
, end_blk
);
420 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
421 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
429 * Check that a range of blocks does not contain stop_on_cycle_no.
430 * Fill in *new_blk with the block offset where such a block is
431 * found, or with -1 (an invalid block number) if there is no such
432 * block in the range. The scan needs to occur from front to back
433 * and the pointer into the region must be updated since a later
434 * routine will need to perform another test.
437 xlog_find_verify_cycle(
439 xfs_daddr_t start_blk
,
441 uint stop_on_cycle_no
,
442 xfs_daddr_t
*new_blk
)
448 xfs_caddr_t buf
= NULL
;
452 * Greedily allocate a buffer big enough to handle the full
453 * range of basic blocks we'll be examining. If that fails,
454 * try a smaller size. We need to be able to read at least
455 * a log sector, or we're out of luck.
457 bufblks
= 1 << ffs(nbblks
);
458 while (bufblks
> log
->l_logBBsize
)
460 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
462 if (bufblks
< log
->l_sectBBsize
)
466 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
469 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
471 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
475 for (j
= 0; j
< bcount
; j
++) {
476 cycle
= xlog_get_cycle(buf
);
477 if (cycle
== stop_on_cycle_no
) {
494 * Potentially backup over partial log record write.
496 * In the typical case, last_blk is the number of the block directly after
497 * a good log record. Therefore, we subtract one to get the block number
498 * of the last block in the given buffer. extra_bblks contains the number
499 * of blocks we would have read on a previous read. This happens when the
500 * last log record is split over the end of the physical log.
502 * extra_bblks is the number of blocks potentially verified on a previous
503 * call to this routine.
506 xlog_find_verify_log_record(
508 xfs_daddr_t start_blk
,
509 xfs_daddr_t
*last_blk
,
514 xfs_caddr_t offset
= NULL
;
515 xlog_rec_header_t
*head
= NULL
;
518 int num_blks
= *last_blk
- start_blk
;
521 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
523 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
524 if (!(bp
= xlog_get_bp(log
, 1)))
528 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
531 offset
+= ((num_blks
- 1) << BBSHIFT
);
534 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
536 /* valid log record not found */
538 "Log inconsistent (didn't find previous header)");
545 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
550 head
= (xlog_rec_header_t
*)offset
;
552 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
560 * We hit the beginning of the physical log & still no header. Return
561 * to caller. If caller can handle a return of -1, then this routine
562 * will be called again for the end of the physical log.
570 * We have the final block of the good log (the first block
571 * of the log record _before_ the head. So we check the uuid.
573 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
577 * We may have found a log record header before we expected one.
578 * last_blk will be the 1st block # with a given cycle #. We may end
579 * up reading an entire log record. In this case, we don't want to
580 * reset last_blk. Only when last_blk points in the middle of a log
581 * record do we update last_blk.
583 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
584 uint h_size
= be32_to_cpu(head
->h_size
);
586 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
587 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
593 if (*last_blk
- i
+ extra_bblks
!=
594 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
603 * Head is defined to be the point of the log where the next log write
604 * could go. This means that incomplete LR writes at the end are
605 * eliminated when calculating the head. We aren't guaranteed that previous
606 * LR have complete transactions. We only know that a cycle number of
607 * current cycle number -1 won't be present in the log if we start writing
608 * from our current block number.
610 * last_blk contains the block number of the first block with a given
613 * Return: zero if normal, non-zero if error.
618 xfs_daddr_t
*return_head_blk
)
622 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
624 uint first_half_cycle
, last_half_cycle
;
626 int error
, log_bbnum
= log
->l_logBBsize
;
628 /* Is the end of the log device zeroed? */
629 error
= xlog_find_zeroed(log
, &first_blk
);
631 xfs_warn(log
->l_mp
, "empty log check failed");
635 *return_head_blk
= first_blk
;
637 /* Is the whole lot zeroed? */
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
643 xfs_warn(log
->l_mp
, "totally zeroed log");
649 first_blk
= 0; /* get cycle # of 1st block */
650 bp
= xlog_get_bp(log
, 1);
654 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
658 first_half_cycle
= xlog_get_cycle(offset
);
660 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
661 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
665 last_half_cycle
= xlog_get_cycle(offset
);
666 ASSERT(last_half_cycle
!= 0);
669 * If the 1st half cycle number is equal to the last half cycle number,
670 * then the entire log is stamped with the same cycle number. In this
671 * case, head_blk can't be set to zero (which makes sense). The below
672 * math doesn't work out properly with head_blk equal to zero. Instead,
673 * we set it to log_bbnum which is an invalid block number, but this
674 * value makes the math correct. If head_blk doesn't changed through
675 * all the tests below, *head_blk is set to zero at the very end rather
676 * than log_bbnum. In a sense, log_bbnum and zero are the same block
677 * in a circular file.
679 if (first_half_cycle
== last_half_cycle
) {
681 * In this case we believe that the entire log should have
682 * cycle number last_half_cycle. We need to scan backwards
683 * from the end verifying that there are no holes still
684 * containing last_half_cycle - 1. If we find such a hole,
685 * then the start of that hole will be the new head. The
686 * simple case looks like
687 * x | x ... | x - 1 | x
688 * Another case that fits this picture would be
689 * x | x + 1 | x ... | x
690 * In this case the head really is somewhere at the end of the
691 * log, as one of the latest writes at the beginning was
694 * x | x + 1 | x ... | x - 1 | x
695 * This is really the combination of the above two cases, and
696 * the head has to end up at the start of the x-1 hole at the
699 * In the 256k log case, we will read from the beginning to the
700 * end of the log and search for cycle numbers equal to x-1.
701 * We don't worry about the x+1 blocks that we encounter,
702 * because we know that they cannot be the head since the log
705 head_blk
= log_bbnum
;
706 stop_on_cycle
= last_half_cycle
- 1;
709 * In this case we want to find the first block with cycle
710 * number matching last_half_cycle. We expect the log to be
712 * x + 1 ... | x ... | x
713 * The first block with cycle number x (last_half_cycle) will
714 * be where the new head belongs. First we do a binary search
715 * for the first occurrence of last_half_cycle. The binary
716 * search may not be totally accurate, so then we scan back
717 * from there looking for occurrences of last_half_cycle before
718 * us. If that backwards scan wraps around the beginning of
719 * the log, then we look for occurrences of last_half_cycle - 1
720 * at the end of the log. The cases we're looking for look
722 * v binary search stopped here
723 * x + 1 ... | x | x + 1 | x ... | x
724 * ^ but we want to locate this spot
726 * <---------> less than scan distance
727 * x + 1 ... | x ... | x - 1 | x
728 * ^ we want to locate this spot
730 stop_on_cycle
= last_half_cycle
;
731 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
732 &head_blk
, last_half_cycle
)))
737 * Now validate the answer. Scan back some number of maximum possible
738 * blocks and make sure each one has the expected cycle number. The
739 * maximum is determined by the total possible amount of buffering
740 * in the in-core log. The following number can be made tighter if
741 * we actually look at the block size of the filesystem.
743 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
744 if (head_blk
>= num_scan_bblks
) {
746 * We are guaranteed that the entire check can be performed
749 start_blk
= head_blk
- num_scan_bblks
;
750 if ((error
= xlog_find_verify_cycle(log
,
751 start_blk
, num_scan_bblks
,
752 stop_on_cycle
, &new_blk
)))
756 } else { /* need to read 2 parts of log */
758 * We are going to scan backwards in the log in two parts.
759 * First we scan the physical end of the log. In this part
760 * of the log, we are looking for blocks with cycle number
761 * last_half_cycle - 1.
762 * If we find one, then we know that the log starts there, as
763 * we've found a hole that didn't get written in going around
764 * the end of the physical log. The simple case for this is
765 * x + 1 ... | x ... | x - 1 | x
766 * <---------> less than scan distance
767 * If all of the blocks at the end of the log have cycle number
768 * last_half_cycle, then we check the blocks at the start of
769 * the log looking for occurrences of last_half_cycle. If we
770 * find one, then our current estimate for the location of the
771 * first occurrence of last_half_cycle is wrong and we move
772 * back to the hole we've found. This case looks like
773 * x + 1 ... | x | x + 1 | x ...
774 * ^ binary search stopped here
775 * Another case we need to handle that only occurs in 256k
777 * x + 1 ... | x ... | x+1 | x ...
778 * ^ binary search stops here
779 * In a 256k log, the scan at the end of the log will see the
780 * x + 1 blocks. We need to skip past those since that is
781 * certainly not the head of the log. By searching for
782 * last_half_cycle-1 we accomplish that.
784 ASSERT(head_blk
<= INT_MAX
&&
785 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
786 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
787 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
788 num_scan_bblks
- (int)head_blk
,
789 (stop_on_cycle
- 1), &new_blk
)))
797 * Scan beginning of log now. The last part of the physical
798 * log is good. This scan needs to verify that it doesn't find
799 * the last_half_cycle.
802 ASSERT(head_blk
<= INT_MAX
);
803 if ((error
= xlog_find_verify_cycle(log
,
804 start_blk
, (int)head_blk
,
805 stop_on_cycle
, &new_blk
)))
813 * Now we need to make sure head_blk is not pointing to a block in
814 * the middle of a log record.
816 num_scan_bblks
= XLOG_REC_SHIFT(log
);
817 if (head_blk
>= num_scan_bblks
) {
818 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
820 /* start ptr at last block ptr before head_blk */
821 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
828 ASSERT(head_blk
<= INT_MAX
);
829 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
833 /* We hit the beginning of the log during our search */
834 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
836 ASSERT(start_blk
<= INT_MAX
&&
837 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
838 ASSERT(head_blk
<= INT_MAX
);
839 error
= xlog_find_verify_log_record(log
, start_blk
,
840 &new_blk
, (int)head_blk
);
845 if (new_blk
!= log_bbnum
)
852 if (head_blk
== log_bbnum
)
853 *return_head_blk
= 0;
855 *return_head_blk
= head_blk
;
857 * When returning here, we have a good block number. Bad block
858 * means that during a previous crash, we didn't have a clean break
859 * from cycle number N to cycle number N-1. In this case, we need
860 * to find the first block with cycle number N-1.
868 xfs_warn(log
->l_mp
, "failed to find log head");
873 * Find the sync block number or the tail of the log.
875 * This will be the block number of the last record to have its
876 * associated buffers synced to disk. Every log record header has
877 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
878 * to get a sync block number. The only concern is to figure out which
879 * log record header to believe.
881 * The following algorithm uses the log record header with the largest
882 * lsn. The entire log record does not need to be valid. We only care
883 * that the header is valid.
885 * We could speed up search by using current head_blk buffer, but it is not
891 xfs_daddr_t
*head_blk
,
892 xfs_daddr_t
*tail_blk
)
894 xlog_rec_header_t
*rhead
;
895 xlog_op_header_t
*op_head
;
896 xfs_caddr_t offset
= NULL
;
899 xfs_daddr_t umount_data_blk
;
900 xfs_daddr_t after_umount_blk
;
907 * Find previous log record
909 if ((error
= xlog_find_head(log
, head_blk
)))
912 bp
= xlog_get_bp(log
, 1);
915 if (*head_blk
== 0) { /* special case */
916 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
920 if (xlog_get_cycle(offset
) == 0) {
922 /* leave all other log inited values alone */
928 * Search backwards looking for log record header block
930 ASSERT(*head_blk
< INT_MAX
);
931 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
932 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
936 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
942 * If we haven't found the log record header block, start looking
943 * again from the end of the physical log. XXXmiken: There should be
944 * a check here to make sure we didn't search more than N blocks in
948 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
949 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
953 if (*(__be32
*)offset
==
954 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
961 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
967 /* find blk_no of tail of log */
968 rhead
= (xlog_rec_header_t
*)offset
;
969 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
972 * Reset log values according to the state of the log when we
973 * crashed. In the case where head_blk == 0, we bump curr_cycle
974 * one because the next write starts a new cycle rather than
975 * continuing the cycle of the last good log record. At this
976 * point we have guaranteed that all partial log records have been
977 * accounted for. Therefore, we know that the last good log record
978 * written was complete and ended exactly on the end boundary
979 * of the physical log.
981 log
->l_prev_block
= i
;
982 log
->l_curr_block
= (int)*head_blk
;
983 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
986 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
987 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
988 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
989 BBTOB(log
->l_curr_block
));
990 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
991 BBTOB(log
->l_curr_block
));
994 * Look for unmount record. If we find it, then we know there
995 * was a clean unmount. Since 'i' could be the last block in
996 * the physical log, we convert to a log block before comparing
999 * Save the current tail lsn to use to pass to
1000 * xlog_clear_stale_blocks() below. We won't want to clear the
1001 * unmount record if there is one, so we pass the lsn of the
1002 * unmount record rather than the block after it.
1004 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1005 int h_size
= be32_to_cpu(rhead
->h_size
);
1006 int h_version
= be32_to_cpu(rhead
->h_version
);
1008 if ((h_version
& XLOG_VERSION_2
) &&
1009 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1010 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1011 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1019 after_umount_blk
= (i
+ hblks
+ (int)
1020 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1021 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1022 if (*head_blk
== after_umount_blk
&&
1023 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1024 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1025 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1029 op_head
= (xlog_op_header_t
*)offset
;
1030 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1032 * Set tail and last sync so that newly written
1033 * log records will point recovery to after the
1034 * current unmount record.
1036 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1037 log
->l_curr_cycle
, after_umount_blk
);
1038 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1039 log
->l_curr_cycle
, after_umount_blk
);
1040 *tail_blk
= after_umount_blk
;
1043 * Note that the unmount was clean. If the unmount
1044 * was not clean, we need to know this to rebuild the
1045 * superblock counters from the perag headers if we
1046 * have a filesystem using non-persistent counters.
1048 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1053 * Make sure that there are no blocks in front of the head
1054 * with the same cycle number as the head. This can happen
1055 * because we allow multiple outstanding log writes concurrently,
1056 * and the later writes might make it out before earlier ones.
1058 * We use the lsn from before modifying it so that we'll never
1059 * overwrite the unmount record after a clean unmount.
1061 * Do this only if we are going to recover the filesystem
1063 * NOTE: This used to say "if (!readonly)"
1064 * However on Linux, we can & do recover a read-only filesystem.
1065 * We only skip recovery if NORECOVERY is specified on mount,
1066 * in which case we would not be here.
1068 * But... if the -device- itself is readonly, just skip this.
1069 * We can't recover this device anyway, so it won't matter.
1071 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1072 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1078 xfs_warn(log
->l_mp
, "failed to locate log tail");
1083 * Is the log zeroed at all?
1085 * The last binary search should be changed to perform an X block read
1086 * once X becomes small enough. You can then search linearly through
1087 * the X blocks. This will cut down on the number of reads we need to do.
1089 * If the log is partially zeroed, this routine will pass back the blkno
1090 * of the first block with cycle number 0. It won't have a complete LR
1094 * 0 => the log is completely written to
1095 * 1 => use *blk_no as the first block of the log
1096 * <0 => error has occurred
1101 xfs_daddr_t
*blk_no
)
1105 uint first_cycle
, last_cycle
;
1106 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1107 xfs_daddr_t num_scan_bblks
;
1108 int error
, log_bbnum
= log
->l_logBBsize
;
1112 /* check totally zeroed log */
1113 bp
= xlog_get_bp(log
, 1);
1116 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1120 first_cycle
= xlog_get_cycle(offset
);
1121 if (first_cycle
== 0) { /* completely zeroed log */
1127 /* check partially zeroed log */
1128 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1132 last_cycle
= xlog_get_cycle(offset
);
1133 if (last_cycle
!= 0) { /* log completely written to */
1136 } else if (first_cycle
!= 1) {
1138 * If the cycle of the last block is zero, the cycle of
1139 * the first block must be 1. If it's not, maybe we're
1140 * not looking at a log... Bail out.
1143 "Log inconsistent or not a log (last==0, first!=1)");
1148 /* we have a partially zeroed log */
1149 last_blk
= log_bbnum
-1;
1150 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1154 * Validate the answer. Because there is no way to guarantee that
1155 * the entire log is made up of log records which are the same size,
1156 * we scan over the defined maximum blocks. At this point, the maximum
1157 * is not chosen to mean anything special. XXXmiken
1159 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1160 ASSERT(num_scan_bblks
<= INT_MAX
);
1162 if (last_blk
< num_scan_bblks
)
1163 num_scan_bblks
= last_blk
;
1164 start_blk
= last_blk
- num_scan_bblks
;
1167 * We search for any instances of cycle number 0 that occur before
1168 * our current estimate of the head. What we're trying to detect is
1169 * 1 ... | 0 | 1 | 0...
1170 * ^ binary search ends here
1172 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1173 (int)num_scan_bblks
, 0, &new_blk
)))
1179 * Potentially backup over partial log record write. We don't need
1180 * to search the end of the log because we know it is zero.
1182 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1197 * These are simple subroutines used by xlog_clear_stale_blocks() below
1198 * to initialize a buffer full of empty log record headers and write
1199 * them into the log.
1210 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1212 memset(buf
, 0, BBSIZE
);
1213 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1214 recp
->h_cycle
= cpu_to_be32(cycle
);
1215 recp
->h_version
= cpu_to_be32(
1216 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1217 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1218 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1219 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1220 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1224 xlog_write_log_records(
1235 int sectbb
= log
->l_sectBBsize
;
1236 int end_block
= start_block
+ blocks
;
1242 * Greedily allocate a buffer big enough to handle the full
1243 * range of basic blocks to be written. If that fails, try
1244 * a smaller size. We need to be able to write at least a
1245 * log sector, or we're out of luck.
1247 bufblks
= 1 << ffs(blocks
);
1248 while (bufblks
> log
->l_logBBsize
)
1250 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1252 if (bufblks
< sectbb
)
1256 /* We may need to do a read at the start to fill in part of
1257 * the buffer in the starting sector not covered by the first
1260 balign
= round_down(start_block
, sectbb
);
1261 if (balign
!= start_block
) {
1262 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1266 j
= start_block
- balign
;
1269 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1270 int bcount
, endcount
;
1272 bcount
= min(bufblks
, end_block
- start_block
);
1273 endcount
= bcount
- j
;
1275 /* We may need to do a read at the end to fill in part of
1276 * the buffer in the final sector not covered by the write.
1277 * If this is the same sector as the above read, skip it.
1279 ealign
= round_down(end_block
, sectbb
);
1280 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1281 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1282 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1289 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1290 for (; j
< endcount
; j
++) {
1291 xlog_add_record(log
, offset
, cycle
, i
+j
,
1292 tail_cycle
, tail_block
);
1295 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1298 start_block
+= endcount
;
1308 * This routine is called to blow away any incomplete log writes out
1309 * in front of the log head. We do this so that we won't become confused
1310 * if we come up, write only a little bit more, and then crash again.
1311 * If we leave the partial log records out there, this situation could
1312 * cause us to think those partial writes are valid blocks since they
1313 * have the current cycle number. We get rid of them by overwriting them
1314 * with empty log records with the old cycle number rather than the
1317 * The tail lsn is passed in rather than taken from
1318 * the log so that we will not write over the unmount record after a
1319 * clean unmount in a 512 block log. Doing so would leave the log without
1320 * any valid log records in it until a new one was written. If we crashed
1321 * during that time we would not be able to recover.
1324 xlog_clear_stale_blocks(
1328 int tail_cycle
, head_cycle
;
1329 int tail_block
, head_block
;
1330 int tail_distance
, max_distance
;
1334 tail_cycle
= CYCLE_LSN(tail_lsn
);
1335 tail_block
= BLOCK_LSN(tail_lsn
);
1336 head_cycle
= log
->l_curr_cycle
;
1337 head_block
= log
->l_curr_block
;
1340 * Figure out the distance between the new head of the log
1341 * and the tail. We want to write over any blocks beyond the
1342 * head that we may have written just before the crash, but
1343 * we don't want to overwrite the tail of the log.
1345 if (head_cycle
== tail_cycle
) {
1347 * The tail is behind the head in the physical log,
1348 * so the distance from the head to the tail is the
1349 * distance from the head to the end of the log plus
1350 * the distance from the beginning of the log to the
1353 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1354 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1355 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1356 return -EFSCORRUPTED
;
1358 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1361 * The head is behind the tail in the physical log,
1362 * so the distance from the head to the tail is just
1363 * the tail block minus the head block.
1365 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1366 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1367 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1368 return -EFSCORRUPTED
;
1370 tail_distance
= tail_block
- head_block
;
1374 * If the head is right up against the tail, we can't clear
1377 if (tail_distance
<= 0) {
1378 ASSERT(tail_distance
== 0);
1382 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1384 * Take the smaller of the maximum amount of outstanding I/O
1385 * we could have and the distance to the tail to clear out.
1386 * We take the smaller so that we don't overwrite the tail and
1387 * we don't waste all day writing from the head to the tail
1390 max_distance
= MIN(max_distance
, tail_distance
);
1392 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1394 * We can stomp all the blocks we need to without
1395 * wrapping around the end of the log. Just do it
1396 * in a single write. Use the cycle number of the
1397 * current cycle minus one so that the log will look like:
1400 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1401 head_block
, max_distance
, tail_cycle
,
1407 * We need to wrap around the end of the physical log in
1408 * order to clear all the blocks. Do it in two separate
1409 * I/Os. The first write should be from the head to the
1410 * end of the physical log, and it should use the current
1411 * cycle number minus one just like above.
1413 distance
= log
->l_logBBsize
- head_block
;
1414 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1415 head_block
, distance
, tail_cycle
,
1422 * Now write the blocks at the start of the physical log.
1423 * This writes the remainder of the blocks we want to clear.
1424 * It uses the current cycle number since we're now on the
1425 * same cycle as the head so that we get:
1426 * n ... n ... | n - 1 ...
1427 * ^^^^^ blocks we're writing
1429 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1430 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1431 tail_cycle
, tail_block
);
1439 /******************************************************************************
1441 * Log recover routines
1443 ******************************************************************************
1447 * Sort the log items in the transaction.
1449 * The ordering constraints are defined by the inode allocation and unlink
1450 * behaviour. The rules are:
1452 * 1. Every item is only logged once in a given transaction. Hence it
1453 * represents the last logged state of the item. Hence ordering is
1454 * dependent on the order in which operations need to be performed so
1455 * required initial conditions are always met.
1457 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1458 * there's nothing to replay from them so we can simply cull them
1459 * from the transaction. However, we can't do that until after we've
1460 * replayed all the other items because they may be dependent on the
1461 * cancelled buffer and replaying the cancelled buffer can remove it
1462 * form the cancelled buffer table. Hence they have tobe done last.
1464 * 3. Inode allocation buffers must be replayed before inode items that
1465 * read the buffer and replay changes into it. For filesystems using the
1466 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1467 * treated the same as inode allocation buffers as they create and
1468 * initialise the buffers directly.
1470 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1471 * This ensures that inodes are completely flushed to the inode buffer
1472 * in a "free" state before we remove the unlinked inode list pointer.
1474 * Hence the ordering needs to be inode allocation buffers first, inode items
1475 * second, inode unlink buffers third and cancelled buffers last.
1477 * But there's a problem with that - we can't tell an inode allocation buffer
1478 * apart from a regular buffer, so we can't separate them. We can, however,
1479 * tell an inode unlink buffer from the others, and so we can separate them out
1480 * from all the other buffers and move them to last.
1482 * Hence, 4 lists, in order from head to tail:
1483 * - buffer_list for all buffers except cancelled/inode unlink buffers
1484 * - item_list for all non-buffer items
1485 * - inode_buffer_list for inode unlink buffers
1486 * - cancel_list for the cancelled buffers
1488 * Note that we add objects to the tail of the lists so that first-to-last
1489 * ordering is preserved within the lists. Adding objects to the head of the
1490 * list means when we traverse from the head we walk them in last-to-first
1491 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1492 * but for all other items there may be specific ordering that we need to
1496 xlog_recover_reorder_trans(
1498 struct xlog_recover
*trans
,
1501 xlog_recover_item_t
*item
, *n
;
1503 LIST_HEAD(sort_list
);
1504 LIST_HEAD(cancel_list
);
1505 LIST_HEAD(buffer_list
);
1506 LIST_HEAD(inode_buffer_list
);
1507 LIST_HEAD(inode_list
);
1509 list_splice_init(&trans
->r_itemq
, &sort_list
);
1510 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1511 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1513 switch (ITEM_TYPE(item
)) {
1514 case XFS_LI_ICREATE
:
1515 list_move_tail(&item
->ri_list
, &buffer_list
);
1518 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1519 trace_xfs_log_recover_item_reorder_head(log
,
1521 list_move(&item
->ri_list
, &cancel_list
);
1524 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1525 list_move(&item
->ri_list
, &inode_buffer_list
);
1528 list_move_tail(&item
->ri_list
, &buffer_list
);
1532 case XFS_LI_QUOTAOFF
:
1535 trace_xfs_log_recover_item_reorder_tail(log
,
1537 list_move_tail(&item
->ri_list
, &inode_list
);
1541 "%s: unrecognized type of log operation",
1545 * return the remaining items back to the transaction
1546 * item list so they can be freed in caller.
1548 if (!list_empty(&sort_list
))
1549 list_splice_init(&sort_list
, &trans
->r_itemq
);
1555 ASSERT(list_empty(&sort_list
));
1556 if (!list_empty(&buffer_list
))
1557 list_splice(&buffer_list
, &trans
->r_itemq
);
1558 if (!list_empty(&inode_list
))
1559 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1560 if (!list_empty(&inode_buffer_list
))
1561 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1562 if (!list_empty(&cancel_list
))
1563 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1568 * Build up the table of buf cancel records so that we don't replay
1569 * cancelled data in the second pass. For buffer records that are
1570 * not cancel records, there is nothing to do here so we just return.
1572 * If we get a cancel record which is already in the table, this indicates
1573 * that the buffer was cancelled multiple times. In order to ensure
1574 * that during pass 2 we keep the record in the table until we reach its
1575 * last occurrence in the log, we keep a reference count in the cancel
1576 * record in the table to tell us how many times we expect to see this
1577 * record during the second pass.
1580 xlog_recover_buffer_pass1(
1582 struct xlog_recover_item
*item
)
1584 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1585 struct list_head
*bucket
;
1586 struct xfs_buf_cancel
*bcp
;
1589 * If this isn't a cancel buffer item, then just return.
1591 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1592 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1597 * Insert an xfs_buf_cancel record into the hash table of them.
1598 * If there is already an identical record, bump its reference count.
1600 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1601 list_for_each_entry(bcp
, bucket
, bc_list
) {
1602 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1603 bcp
->bc_len
== buf_f
->blf_len
) {
1605 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1610 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1611 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1612 bcp
->bc_len
= buf_f
->blf_len
;
1613 bcp
->bc_refcount
= 1;
1614 list_add_tail(&bcp
->bc_list
, bucket
);
1616 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1621 * Check to see whether the buffer being recovered has a corresponding
1622 * entry in the buffer cancel record table. If it is, return the cancel
1623 * buffer structure to the caller.
1625 STATIC
struct xfs_buf_cancel
*
1626 xlog_peek_buffer_cancelled(
1632 struct list_head
*bucket
;
1633 struct xfs_buf_cancel
*bcp
;
1635 if (!log
->l_buf_cancel_table
) {
1636 /* empty table means no cancelled buffers in the log */
1637 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1641 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1642 list_for_each_entry(bcp
, bucket
, bc_list
) {
1643 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1648 * We didn't find a corresponding entry in the table, so return 0 so
1649 * that the buffer is NOT cancelled.
1651 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1656 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1657 * otherwise return 0. If the buffer is actually a buffer cancel item
1658 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1659 * table and remove it from the table if this is the last reference.
1661 * We remove the cancel record from the table when we encounter its last
1662 * occurrence in the log so that if the same buffer is re-used again after its
1663 * last cancellation we actually replay the changes made at that point.
1666 xlog_check_buffer_cancelled(
1672 struct xfs_buf_cancel
*bcp
;
1674 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
1679 * We've go a match, so return 1 so that the recovery of this buffer
1680 * is cancelled. If this buffer is actually a buffer cancel log
1681 * item, then decrement the refcount on the one in the table and
1682 * remove it if this is the last reference.
1684 if (flags
& XFS_BLF_CANCEL
) {
1685 if (--bcp
->bc_refcount
== 0) {
1686 list_del(&bcp
->bc_list
);
1694 * Perform recovery for a buffer full of inodes. In these buffers, the only
1695 * data which should be recovered is that which corresponds to the
1696 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1697 * data for the inodes is always logged through the inodes themselves rather
1698 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1700 * The only time when buffers full of inodes are fully recovered is when the
1701 * buffer is full of newly allocated inodes. In this case the buffer will
1702 * not be marked as an inode buffer and so will be sent to
1703 * xlog_recover_do_reg_buffer() below during recovery.
1706 xlog_recover_do_inode_buffer(
1707 struct xfs_mount
*mp
,
1708 xlog_recover_item_t
*item
,
1710 xfs_buf_log_format_t
*buf_f
)
1716 int reg_buf_offset
= 0;
1717 int reg_buf_bytes
= 0;
1718 int next_unlinked_offset
;
1720 xfs_agino_t
*logged_nextp
;
1721 xfs_agino_t
*buffer_nextp
;
1723 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1726 * Post recovery validation only works properly on CRC enabled
1729 if (xfs_sb_version_hascrc(&mp
->m_sb
))
1730 bp
->b_ops
= &xfs_inode_buf_ops
;
1732 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
1733 for (i
= 0; i
< inodes_per_buf
; i
++) {
1734 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1735 offsetof(xfs_dinode_t
, di_next_unlinked
);
1737 while (next_unlinked_offset
>=
1738 (reg_buf_offset
+ reg_buf_bytes
)) {
1740 * The next di_next_unlinked field is beyond
1741 * the current logged region. Find the next
1742 * logged region that contains or is beyond
1743 * the current di_next_unlinked field.
1746 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1747 buf_f
->blf_map_size
, bit
);
1750 * If there are no more logged regions in the
1751 * buffer, then we're done.
1756 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1757 buf_f
->blf_map_size
, bit
);
1759 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1760 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1765 * If the current logged region starts after the current
1766 * di_next_unlinked field, then move on to the next
1767 * di_next_unlinked field.
1769 if (next_unlinked_offset
< reg_buf_offset
)
1772 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1773 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1774 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
1775 BBTOB(bp
->b_io_length
));
1778 * The current logged region contains a copy of the
1779 * current di_next_unlinked field. Extract its value
1780 * and copy it to the buffer copy.
1782 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1783 next_unlinked_offset
- reg_buf_offset
;
1784 if (unlikely(*logged_nextp
== 0)) {
1786 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1787 "Trying to replay bad (0) inode di_next_unlinked field.",
1789 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1790 XFS_ERRLEVEL_LOW
, mp
);
1791 return -EFSCORRUPTED
;
1794 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1795 next_unlinked_offset
);
1796 *buffer_nextp
= *logged_nextp
;
1799 * If necessary, recalculate the CRC in the on-disk inode. We
1800 * have to leave the inode in a consistent state for whoever
1803 xfs_dinode_calc_crc(mp
, (struct xfs_dinode
*)
1804 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
1812 * V5 filesystems know the age of the buffer on disk being recovered. We can
1813 * have newer objects on disk than we are replaying, and so for these cases we
1814 * don't want to replay the current change as that will make the buffer contents
1815 * temporarily invalid on disk.
1817 * The magic number might not match the buffer type we are going to recover
1818 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1819 * extract the LSN of the existing object in the buffer based on it's current
1820 * magic number. If we don't recognise the magic number in the buffer, then
1821 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1822 * so can recover the buffer.
1824 * Note: we cannot rely solely on magic number matches to determine that the
1825 * buffer has a valid LSN - we also need to verify that it belongs to this
1826 * filesystem, so we need to extract the object's LSN and compare it to that
1827 * which we read from the superblock. If the UUIDs don't match, then we've got a
1828 * stale metadata block from an old filesystem instance that we need to recover
1832 xlog_recover_get_buf_lsn(
1833 struct xfs_mount
*mp
,
1839 void *blk
= bp
->b_addr
;
1843 /* v4 filesystems always recover immediately */
1844 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
1845 goto recover_immediately
;
1847 magic32
= be32_to_cpu(*(__be32
*)blk
);
1849 case XFS_ABTB_CRC_MAGIC
:
1850 case XFS_ABTC_CRC_MAGIC
:
1851 case XFS_ABTB_MAGIC
:
1852 case XFS_ABTC_MAGIC
:
1853 case XFS_IBT_CRC_MAGIC
:
1854 case XFS_IBT_MAGIC
: {
1855 struct xfs_btree_block
*btb
= blk
;
1857 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
1858 uuid
= &btb
->bb_u
.s
.bb_uuid
;
1861 case XFS_BMAP_CRC_MAGIC
:
1862 case XFS_BMAP_MAGIC
: {
1863 struct xfs_btree_block
*btb
= blk
;
1865 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
1866 uuid
= &btb
->bb_u
.l
.bb_uuid
;
1870 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
1871 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
1873 case XFS_AGFL_MAGIC
:
1874 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
1875 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
1878 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
1879 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
1881 case XFS_SYMLINK_MAGIC
:
1882 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
1883 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
1885 case XFS_DIR3_BLOCK_MAGIC
:
1886 case XFS_DIR3_DATA_MAGIC
:
1887 case XFS_DIR3_FREE_MAGIC
:
1888 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
1889 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
1891 case XFS_ATTR3_RMT_MAGIC
:
1892 lsn
= be64_to_cpu(((struct xfs_attr3_rmt_hdr
*)blk
)->rm_lsn
);
1893 uuid
= &((struct xfs_attr3_rmt_hdr
*)blk
)->rm_uuid
;
1896 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
1897 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
1903 if (lsn
!= (xfs_lsn_t
)-1) {
1904 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
1905 goto recover_immediately
;
1909 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
1911 case XFS_DIR3_LEAF1_MAGIC
:
1912 case XFS_DIR3_LEAFN_MAGIC
:
1913 case XFS_DA3_NODE_MAGIC
:
1914 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
1915 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
1921 if (lsn
!= (xfs_lsn_t
)-1) {
1922 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
1923 goto recover_immediately
;
1928 * We do individual object checks on dquot and inode buffers as they
1929 * have their own individual LSN records. Also, we could have a stale
1930 * buffer here, so we have to at least recognise these buffer types.
1932 * A notd complexity here is inode unlinked list processing - it logs
1933 * the inode directly in the buffer, but we don't know which inodes have
1934 * been modified, and there is no global buffer LSN. Hence we need to
1935 * recover all inode buffer types immediately. This problem will be
1936 * fixed by logical logging of the unlinked list modifications.
1938 magic16
= be16_to_cpu(*(__be16
*)blk
);
1940 case XFS_DQUOT_MAGIC
:
1941 case XFS_DINODE_MAGIC
:
1942 goto recover_immediately
;
1947 /* unknown buffer contents, recover immediately */
1949 recover_immediately
:
1950 return (xfs_lsn_t
)-1;
1955 * Validate the recovered buffer is of the correct type and attach the
1956 * appropriate buffer operations to them for writeback. Magic numbers are in a
1958 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1959 * the first 32 bits of the buffer (most blocks),
1960 * inside a struct xfs_da_blkinfo at the start of the buffer.
1963 xlog_recover_validate_buf_type(
1964 struct xfs_mount
*mp
,
1966 xfs_buf_log_format_t
*buf_f
)
1968 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
1974 * We can only do post recovery validation on items on CRC enabled
1975 * fielsystems as we need to know when the buffer was written to be able
1976 * to determine if we should have replayed the item. If we replay old
1977 * metadata over a newer buffer, then it will enter a temporarily
1978 * inconsistent state resulting in verification failures. Hence for now
1979 * just avoid the verification stage for non-crc filesystems
1981 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
1984 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
1985 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
1986 magicda
= be16_to_cpu(info
->magic
);
1987 switch (xfs_blft_from_flags(buf_f
)) {
1988 case XFS_BLFT_BTREE_BUF
:
1990 case XFS_ABTB_CRC_MAGIC
:
1991 case XFS_ABTC_CRC_MAGIC
:
1992 case XFS_ABTB_MAGIC
:
1993 case XFS_ABTC_MAGIC
:
1994 bp
->b_ops
= &xfs_allocbt_buf_ops
;
1996 case XFS_IBT_CRC_MAGIC
:
1997 case XFS_FIBT_CRC_MAGIC
:
1999 case XFS_FIBT_MAGIC
:
2000 bp
->b_ops
= &xfs_inobt_buf_ops
;
2002 case XFS_BMAP_CRC_MAGIC
:
2003 case XFS_BMAP_MAGIC
:
2004 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2007 xfs_warn(mp
, "Bad btree block magic!");
2012 case XFS_BLFT_AGF_BUF
:
2013 if (magic32
!= XFS_AGF_MAGIC
) {
2014 xfs_warn(mp
, "Bad AGF block magic!");
2018 bp
->b_ops
= &xfs_agf_buf_ops
;
2020 case XFS_BLFT_AGFL_BUF
:
2021 if (magic32
!= XFS_AGFL_MAGIC
) {
2022 xfs_warn(mp
, "Bad AGFL block magic!");
2026 bp
->b_ops
= &xfs_agfl_buf_ops
;
2028 case XFS_BLFT_AGI_BUF
:
2029 if (magic32
!= XFS_AGI_MAGIC
) {
2030 xfs_warn(mp
, "Bad AGI block magic!");
2034 bp
->b_ops
= &xfs_agi_buf_ops
;
2036 case XFS_BLFT_UDQUOT_BUF
:
2037 case XFS_BLFT_PDQUOT_BUF
:
2038 case XFS_BLFT_GDQUOT_BUF
:
2039 #ifdef CONFIG_XFS_QUOTA
2040 if (magic16
!= XFS_DQUOT_MAGIC
) {
2041 xfs_warn(mp
, "Bad DQUOT block magic!");
2045 bp
->b_ops
= &xfs_dquot_buf_ops
;
2048 "Trying to recover dquots without QUOTA support built in!");
2052 case XFS_BLFT_DINO_BUF
:
2053 if (magic16
!= XFS_DINODE_MAGIC
) {
2054 xfs_warn(mp
, "Bad INODE block magic!");
2058 bp
->b_ops
= &xfs_inode_buf_ops
;
2060 case XFS_BLFT_SYMLINK_BUF
:
2061 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2062 xfs_warn(mp
, "Bad symlink block magic!");
2066 bp
->b_ops
= &xfs_symlink_buf_ops
;
2068 case XFS_BLFT_DIR_BLOCK_BUF
:
2069 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2070 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2071 xfs_warn(mp
, "Bad dir block magic!");
2075 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2077 case XFS_BLFT_DIR_DATA_BUF
:
2078 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2079 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2080 xfs_warn(mp
, "Bad dir data magic!");
2084 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2086 case XFS_BLFT_DIR_FREE_BUF
:
2087 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2088 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2089 xfs_warn(mp
, "Bad dir3 free magic!");
2093 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2095 case XFS_BLFT_DIR_LEAF1_BUF
:
2096 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2097 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2098 xfs_warn(mp
, "Bad dir leaf1 magic!");
2102 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2104 case XFS_BLFT_DIR_LEAFN_BUF
:
2105 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2106 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2107 xfs_warn(mp
, "Bad dir leafn magic!");
2111 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2113 case XFS_BLFT_DA_NODE_BUF
:
2114 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2115 magicda
!= XFS_DA3_NODE_MAGIC
) {
2116 xfs_warn(mp
, "Bad da node magic!");
2120 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2122 case XFS_BLFT_ATTR_LEAF_BUF
:
2123 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2124 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2125 xfs_warn(mp
, "Bad attr leaf magic!");
2129 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2131 case XFS_BLFT_ATTR_RMT_BUF
:
2132 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2133 xfs_warn(mp
, "Bad attr remote magic!");
2137 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2139 case XFS_BLFT_SB_BUF
:
2140 if (magic32
!= XFS_SB_MAGIC
) {
2141 xfs_warn(mp
, "Bad SB block magic!");
2145 bp
->b_ops
= &xfs_sb_buf_ops
;
2148 xfs_warn(mp
, "Unknown buffer type %d!",
2149 xfs_blft_from_flags(buf_f
));
2155 * Perform a 'normal' buffer recovery. Each logged region of the
2156 * buffer should be copied over the corresponding region in the
2157 * given buffer. The bitmap in the buf log format structure indicates
2158 * where to place the logged data.
2161 xlog_recover_do_reg_buffer(
2162 struct xfs_mount
*mp
,
2163 xlog_recover_item_t
*item
,
2165 xfs_buf_log_format_t
*buf_f
)
2172 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2175 i
= 1; /* 0 is the buf format structure */
2177 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2178 buf_f
->blf_map_size
, bit
);
2181 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2182 buf_f
->blf_map_size
, bit
);
2184 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2185 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2186 ASSERT(BBTOB(bp
->b_io_length
) >=
2187 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2190 * The dirty regions logged in the buffer, even though
2191 * contiguous, may span multiple chunks. This is because the
2192 * dirty region may span a physical page boundary in a buffer
2193 * and hence be split into two separate vectors for writing into
2194 * the log. Hence we need to trim nbits back to the length of
2195 * the current region being copied out of the log.
2197 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2198 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2201 * Do a sanity check if this is a dquot buffer. Just checking
2202 * the first dquot in the buffer should do. XXXThis is
2203 * probably a good thing to do for other buf types also.
2206 if (buf_f
->blf_flags
&
2207 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2208 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2210 "XFS: NULL dquot in %s.", __func__
);
2213 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2215 "XFS: dquot too small (%d) in %s.",
2216 item
->ri_buf
[i
].i_len
, __func__
);
2219 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2220 -1, 0, XFS_QMOPT_DOWARN
,
2221 "dquot_buf_recover");
2226 memcpy(xfs_buf_offset(bp
,
2227 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2228 item
->ri_buf
[i
].i_addr
, /* source */
2229 nbits
<<XFS_BLF_SHIFT
); /* length */
2235 /* Shouldn't be any more regions */
2236 ASSERT(i
== item
->ri_total
);
2238 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2242 * Perform a dquot buffer recovery.
2243 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2244 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2245 * Else, treat it as a regular buffer and do recovery.
2247 * Return false if the buffer was tossed and true if we recovered the buffer to
2248 * indicate to the caller if the buffer needs writing.
2251 xlog_recover_do_dquot_buffer(
2252 struct xfs_mount
*mp
,
2254 struct xlog_recover_item
*item
,
2256 struct xfs_buf_log_format
*buf_f
)
2260 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2263 * Filesystems are required to send in quota flags at mount time.
2269 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2270 type
|= XFS_DQ_USER
;
2271 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2272 type
|= XFS_DQ_PROJ
;
2273 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2274 type
|= XFS_DQ_GROUP
;
2276 * This type of quotas was turned off, so ignore this buffer
2278 if (log
->l_quotaoffs_flag
& type
)
2281 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2286 * This routine replays a modification made to a buffer at runtime.
2287 * There are actually two types of buffer, regular and inode, which
2288 * are handled differently. Inode buffers are handled differently
2289 * in that we only recover a specific set of data from them, namely
2290 * the inode di_next_unlinked fields. This is because all other inode
2291 * data is actually logged via inode records and any data we replay
2292 * here which overlaps that may be stale.
2294 * When meta-data buffers are freed at run time we log a buffer item
2295 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2296 * of the buffer in the log should not be replayed at recovery time.
2297 * This is so that if the blocks covered by the buffer are reused for
2298 * file data before we crash we don't end up replaying old, freed
2299 * meta-data into a user's file.
2301 * To handle the cancellation of buffer log items, we make two passes
2302 * over the log during recovery. During the first we build a table of
2303 * those buffers which have been cancelled, and during the second we
2304 * only replay those buffers which do not have corresponding cancel
2305 * records in the table. See xlog_recover_buffer_pass[1,2] above
2306 * for more details on the implementation of the table of cancel records.
2309 xlog_recover_buffer_pass2(
2311 struct list_head
*buffer_list
,
2312 struct xlog_recover_item
*item
,
2313 xfs_lsn_t current_lsn
)
2315 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2316 xfs_mount_t
*mp
= log
->l_mp
;
2323 * In this pass we only want to recover all the buffers which have
2324 * not been cancelled and are not cancellation buffers themselves.
2326 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2327 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2328 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2332 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2335 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2336 buf_flags
|= XBF_UNMAPPED
;
2338 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2342 error
= bp
->b_error
;
2344 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2349 * Recover the buffer only if we get an LSN from it and it's less than
2350 * the lsn of the transaction we are replaying.
2352 * Note that we have to be extremely careful of readahead here.
2353 * Readahead does not attach verfiers to the buffers so if we don't
2354 * actually do any replay after readahead because of the LSN we found
2355 * in the buffer if more recent than that current transaction then we
2356 * need to attach the verifier directly. Failure to do so can lead to
2357 * future recovery actions (e.g. EFI and unlinked list recovery) can
2358 * operate on the buffers and they won't get the verifier attached. This
2359 * can lead to blocks on disk having the correct content but a stale
2362 * It is safe to assume these clean buffers are currently up to date.
2363 * If the buffer is dirtied by a later transaction being replayed, then
2364 * the verifier will be reset to match whatever recover turns that
2367 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2368 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2369 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2373 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2374 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2377 } else if (buf_f
->blf_flags
&
2378 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2381 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2385 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2389 * Perform delayed write on the buffer. Asynchronous writes will be
2390 * slower when taking into account all the buffers to be flushed.
2392 * Also make sure that only inode buffers with good sizes stay in
2393 * the buffer cache. The kernel moves inodes in buffers of 1 block
2394 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2395 * buffers in the log can be a different size if the log was generated
2396 * by an older kernel using unclustered inode buffers or a newer kernel
2397 * running with a different inode cluster size. Regardless, if the
2398 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2399 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2400 * the buffer out of the buffer cache so that the buffer won't
2401 * overlap with future reads of those inodes.
2403 if (XFS_DINODE_MAGIC
==
2404 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2405 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2406 (__uint32_t
)log
->l_mp
->m_inode_cluster_size
))) {
2408 error
= xfs_bwrite(bp
);
2410 ASSERT(bp
->b_target
->bt_mount
== mp
);
2411 bp
->b_iodone
= xlog_recover_iodone
;
2412 xfs_buf_delwri_queue(bp
, buffer_list
);
2421 * Inode fork owner changes
2423 * If we have been told that we have to reparent the inode fork, it's because an
2424 * extent swap operation on a CRC enabled filesystem has been done and we are
2425 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2428 * The complexity here is that we don't have an inode context to work with, so
2429 * after we've replayed the inode we need to instantiate one. This is where the
2432 * We are in the middle of log recovery, so we can't run transactions. That
2433 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2434 * that will result in the corresponding iput() running the inode through
2435 * xfs_inactive(). If we've just replayed an inode core that changes the link
2436 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2437 * transactions (bad!).
2439 * So, to avoid this, we instantiate an inode directly from the inode core we've
2440 * just recovered. We have the buffer still locked, and all we really need to
2441 * instantiate is the inode core and the forks being modified. We can do this
2442 * manually, then run the inode btree owner change, and then tear down the
2443 * xfs_inode without having to run any transactions at all.
2445 * Also, because we don't have a transaction context available here but need to
2446 * gather all the buffers we modify for writeback so we pass the buffer_list
2447 * instead for the operation to use.
2451 xfs_recover_inode_owner_change(
2452 struct xfs_mount
*mp
,
2453 struct xfs_dinode
*dip
,
2454 struct xfs_inode_log_format
*in_f
,
2455 struct list_head
*buffer_list
)
2457 struct xfs_inode
*ip
;
2460 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2462 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2466 /* instantiate the inode */
2467 xfs_dinode_from_disk(&ip
->i_d
, dip
);
2468 ASSERT(ip
->i_d
.di_version
>= 3);
2470 error
= xfs_iformat_fork(ip
, dip
);
2475 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2476 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2477 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2478 ip
->i_ino
, buffer_list
);
2483 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2484 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2485 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2486 ip
->i_ino
, buffer_list
);
2497 xlog_recover_inode_pass2(
2499 struct list_head
*buffer_list
,
2500 struct xlog_recover_item
*item
,
2501 xfs_lsn_t current_lsn
)
2503 xfs_inode_log_format_t
*in_f
;
2504 xfs_mount_t
*mp
= log
->l_mp
;
2513 xfs_icdinode_t
*dicp
;
2517 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2518 in_f
= item
->ri_buf
[0].i_addr
;
2520 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2522 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2528 * Inode buffers can be freed, look out for it,
2529 * and do not replay the inode.
2531 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2532 in_f
->ilf_len
, 0)) {
2534 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2537 trace_xfs_log_recover_inode_recover(log
, in_f
);
2539 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2540 &xfs_inode_buf_ops
);
2545 error
= bp
->b_error
;
2547 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2550 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2551 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2554 * Make sure the place we're flushing out to really looks
2557 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2559 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2560 __func__
, dip
, bp
, in_f
->ilf_ino
);
2561 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2562 XFS_ERRLEVEL_LOW
, mp
);
2563 error
= -EFSCORRUPTED
;
2566 dicp
= item
->ri_buf
[1].i_addr
;
2567 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2569 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2570 __func__
, item
, in_f
->ilf_ino
);
2571 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2572 XFS_ERRLEVEL_LOW
, mp
);
2573 error
= -EFSCORRUPTED
;
2578 * If the inode has an LSN in it, recover the inode only if it's less
2579 * than the lsn of the transaction we are replaying. Note: we still
2580 * need to replay an owner change even though the inode is more recent
2581 * than the transaction as there is no guarantee that all the btree
2582 * blocks are more recent than this transaction, too.
2584 if (dip
->di_version
>= 3) {
2585 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
2587 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2588 trace_xfs_log_recover_inode_skip(log
, in_f
);
2590 goto out_owner_change
;
2595 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2596 * are transactional and if ordering is necessary we can determine that
2597 * more accurately by the LSN field in the V3 inode core. Don't trust
2598 * the inode versions we might be changing them here - use the
2599 * superblock flag to determine whether we need to look at di_flushiter
2600 * to skip replay when the on disk inode is newer than the log one
2602 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
2603 dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2605 * Deal with the wrap case, DI_MAX_FLUSH is less
2606 * than smaller numbers
2608 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2609 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2612 trace_xfs_log_recover_inode_skip(log
, in_f
);
2618 /* Take the opportunity to reset the flush iteration count */
2619 dicp
->di_flushiter
= 0;
2621 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2622 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2623 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2624 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2625 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2627 "%s: Bad regular inode log record, rec ptr 0x%p, "
2628 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2629 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2630 error
= -EFSCORRUPTED
;
2633 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2634 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2635 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2636 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2637 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2638 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2640 "%s: Bad dir inode log record, rec ptr 0x%p, "
2641 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2642 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2643 error
= -EFSCORRUPTED
;
2647 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2648 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2649 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2651 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2652 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2653 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2654 dicp
->di_nextents
+ dicp
->di_anextents
,
2656 error
= -EFSCORRUPTED
;
2659 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2660 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2661 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2663 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2664 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2665 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2666 error
= -EFSCORRUPTED
;
2669 isize
= xfs_icdinode_size(dicp
->di_version
);
2670 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
2671 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2672 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2674 "%s: Bad inode log record length %d, rec ptr 0x%p",
2675 __func__
, item
->ri_buf
[1].i_len
, item
);
2676 error
= -EFSCORRUPTED
;
2680 /* The core is in in-core format */
2681 xfs_dinode_to_disk(dip
, dicp
);
2683 /* the rest is in on-disk format */
2684 if (item
->ri_buf
[1].i_len
> isize
) {
2685 memcpy((char *)dip
+ isize
,
2686 item
->ri_buf
[1].i_addr
+ isize
,
2687 item
->ri_buf
[1].i_len
- isize
);
2690 fields
= in_f
->ilf_fields
;
2691 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2693 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2696 memcpy(XFS_DFORK_DPTR(dip
),
2697 &in_f
->ilf_u
.ilfu_uuid
,
2702 if (in_f
->ilf_size
== 2)
2703 goto out_owner_change
;
2704 len
= item
->ri_buf
[2].i_len
;
2705 src
= item
->ri_buf
[2].i_addr
;
2706 ASSERT(in_f
->ilf_size
<= 4);
2707 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2708 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2709 (len
== in_f
->ilf_dsize
));
2711 switch (fields
& XFS_ILOG_DFORK
) {
2712 case XFS_ILOG_DDATA
:
2714 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2717 case XFS_ILOG_DBROOT
:
2718 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2719 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2720 XFS_DFORK_DSIZE(dip
, mp
));
2725 * There are no data fork flags set.
2727 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2732 * If we logged any attribute data, recover it. There may or
2733 * may not have been any other non-core data logged in this
2736 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2737 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2742 len
= item
->ri_buf
[attr_index
].i_len
;
2743 src
= item
->ri_buf
[attr_index
].i_addr
;
2744 ASSERT(len
== in_f
->ilf_asize
);
2746 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2747 case XFS_ILOG_ADATA
:
2749 dest
= XFS_DFORK_APTR(dip
);
2750 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2751 memcpy(dest
, src
, len
);
2754 case XFS_ILOG_ABROOT
:
2755 dest
= XFS_DFORK_APTR(dip
);
2756 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2757 len
, (xfs_bmdr_block_t
*)dest
,
2758 XFS_DFORK_ASIZE(dip
, mp
));
2762 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2770 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
2771 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
2773 /* re-generate the checksum. */
2774 xfs_dinode_calc_crc(log
->l_mp
, dip
);
2776 ASSERT(bp
->b_target
->bt_mount
== mp
);
2777 bp
->b_iodone
= xlog_recover_iodone
;
2778 xfs_buf_delwri_queue(bp
, buffer_list
);
2789 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2790 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2794 xlog_recover_quotaoff_pass1(
2796 struct xlog_recover_item
*item
)
2798 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2802 * The logitem format's flag tells us if this was user quotaoff,
2803 * group/project quotaoff or both.
2805 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2806 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2807 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2808 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2809 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2810 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2816 * Recover a dquot record
2819 xlog_recover_dquot_pass2(
2821 struct list_head
*buffer_list
,
2822 struct xlog_recover_item
*item
,
2823 xfs_lsn_t current_lsn
)
2825 xfs_mount_t
*mp
= log
->l_mp
;
2827 struct xfs_disk_dquot
*ddq
, *recddq
;
2829 xfs_dq_logformat_t
*dq_f
;
2834 * Filesystems are required to send in quota flags at mount time.
2836 if (mp
->m_qflags
== 0)
2839 recddq
= item
->ri_buf
[1].i_addr
;
2840 if (recddq
== NULL
) {
2841 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2844 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2845 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2846 item
->ri_buf
[1].i_len
, __func__
);
2851 * This type of quotas was turned off, so ignore this record.
2853 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2855 if (log
->l_quotaoffs_flag
& type
)
2859 * At this point we know that quota was _not_ turned off.
2860 * Since the mount flags are not indicating to us otherwise, this
2861 * must mean that quota is on, and the dquot needs to be replayed.
2862 * Remember that we may not have fully recovered the superblock yet,
2863 * so we can't do the usual trick of looking at the SB quota bits.
2865 * The other possibility, of course, is that the quota subsystem was
2866 * removed since the last mount - ENOSYS.
2868 dq_f
= item
->ri_buf
[0].i_addr
;
2870 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2871 "xlog_recover_dquot_pass2 (log copy)");
2874 ASSERT(dq_f
->qlf_len
== 1);
2877 * At this point we are assuming that the dquots have been allocated
2878 * and hence the buffer has valid dquots stamped in it. It should,
2879 * therefore, pass verifier validation. If the dquot is bad, then the
2880 * we'll return an error here, so we don't need to specifically check
2881 * the dquot in the buffer after the verifier has run.
2883 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
2884 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
2885 &xfs_dquot_buf_ops
);
2890 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2893 * If the dquot has an LSN in it, recover the dquot only if it's less
2894 * than the lsn of the transaction we are replaying.
2896 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2897 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
2898 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
2900 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2905 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2906 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2907 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
2911 ASSERT(dq_f
->qlf_size
== 2);
2912 ASSERT(bp
->b_target
->bt_mount
== mp
);
2913 bp
->b_iodone
= xlog_recover_iodone
;
2914 xfs_buf_delwri_queue(bp
, buffer_list
);
2922 * This routine is called to create an in-core extent free intent
2923 * item from the efi format structure which was logged on disk.
2924 * It allocates an in-core efi, copies the extents from the format
2925 * structure into it, and adds the efi to the AIL with the given
2929 xlog_recover_efi_pass2(
2931 struct xlog_recover_item
*item
,
2935 xfs_mount_t
*mp
= log
->l_mp
;
2936 xfs_efi_log_item_t
*efip
;
2937 xfs_efi_log_format_t
*efi_formatp
;
2939 efi_formatp
= item
->ri_buf
[0].i_addr
;
2941 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2942 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2943 &(efip
->efi_format
)))) {
2944 xfs_efi_item_free(efip
);
2947 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2949 spin_lock(&log
->l_ailp
->xa_lock
);
2951 * xfs_trans_ail_update() drops the AIL lock.
2953 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2959 * This routine is called when an efd format structure is found in
2960 * a committed transaction in the log. It's purpose is to cancel
2961 * the corresponding efi if it was still in the log. To do this
2962 * it searches the AIL for the efi with an id equal to that in the
2963 * efd format structure. If we find it, we remove the efi from the
2967 xlog_recover_efd_pass2(
2969 struct xlog_recover_item
*item
)
2971 xfs_efd_log_format_t
*efd_formatp
;
2972 xfs_efi_log_item_t
*efip
= NULL
;
2973 xfs_log_item_t
*lip
;
2975 struct xfs_ail_cursor cur
;
2976 struct xfs_ail
*ailp
= log
->l_ailp
;
2978 efd_formatp
= item
->ri_buf
[0].i_addr
;
2979 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2980 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2981 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2982 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2983 efi_id
= efd_formatp
->efd_efi_id
;
2986 * Search for the efi with the id in the efd format structure
2989 spin_lock(&ailp
->xa_lock
);
2990 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2991 while (lip
!= NULL
) {
2992 if (lip
->li_type
== XFS_LI_EFI
) {
2993 efip
= (xfs_efi_log_item_t
*)lip
;
2994 if (efip
->efi_format
.efi_id
== efi_id
) {
2996 * xfs_trans_ail_delete() drops the
2999 xfs_trans_ail_delete(ailp
, lip
,
3000 SHUTDOWN_CORRUPT_INCORE
);
3001 xfs_efi_item_free(efip
);
3002 spin_lock(&ailp
->xa_lock
);
3006 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3008 xfs_trans_ail_cursor_done(&cur
);
3009 spin_unlock(&ailp
->xa_lock
);
3015 * This routine is called when an inode create format structure is found in a
3016 * committed transaction in the log. It's purpose is to initialise the inodes
3017 * being allocated on disk. This requires us to get inode cluster buffers that
3018 * match the range to be intialised, stamped with inode templates and written
3019 * by delayed write so that subsequent modifications will hit the cached buffer
3020 * and only need writing out at the end of recovery.
3023 xlog_recover_do_icreate_pass2(
3025 struct list_head
*buffer_list
,
3026 xlog_recover_item_t
*item
)
3028 struct xfs_mount
*mp
= log
->l_mp
;
3029 struct xfs_icreate_log
*icl
;
3030 xfs_agnumber_t agno
;
3031 xfs_agblock_t agbno
;
3034 xfs_agblock_t length
;
3036 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3037 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3038 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3042 if (icl
->icl_size
!= 1) {
3043 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3047 agno
= be32_to_cpu(icl
->icl_ag
);
3048 if (agno
>= mp
->m_sb
.sb_agcount
) {
3049 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3052 agbno
= be32_to_cpu(icl
->icl_agbno
);
3053 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3054 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3057 isize
= be32_to_cpu(icl
->icl_isize
);
3058 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3059 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3062 count
= be32_to_cpu(icl
->icl_count
);
3064 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3067 length
= be32_to_cpu(icl
->icl_length
);
3068 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3069 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3073 /* existing allocation is fixed value */
3074 ASSERT(count
== mp
->m_ialloc_inos
);
3075 ASSERT(length
== mp
->m_ialloc_blks
);
3076 if (count
!= mp
->m_ialloc_inos
||
3077 length
!= mp
->m_ialloc_blks
) {
3078 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count 2");
3083 * Inode buffers can be freed. Do not replay the inode initialisation as
3084 * we could be overwriting something written after this inode buffer was
3087 * XXX: we need to iterate all buffers and only init those that are not
3088 * cancelled. I think that a more fine grained factoring of
3089 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3092 if (xlog_check_buffer_cancelled(log
,
3093 XFS_AGB_TO_DADDR(mp
, agno
, agbno
), length
, 0))
3096 xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, agno
, agbno
, length
,
3097 be32_to_cpu(icl
->icl_gen
));
3102 xlog_recover_buffer_ra_pass2(
3104 struct xlog_recover_item
*item
)
3106 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3107 struct xfs_mount
*mp
= log
->l_mp
;
3109 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3110 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3114 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3115 buf_f
->blf_len
, NULL
);
3119 xlog_recover_inode_ra_pass2(
3121 struct xlog_recover_item
*item
)
3123 struct xfs_inode_log_format ilf_buf
;
3124 struct xfs_inode_log_format
*ilfp
;
3125 struct xfs_mount
*mp
= log
->l_mp
;
3128 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3129 ilfp
= item
->ri_buf
[0].i_addr
;
3132 memset(ilfp
, 0, sizeof(*ilfp
));
3133 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3138 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3141 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3142 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3146 xlog_recover_dquot_ra_pass2(
3148 struct xlog_recover_item
*item
)
3150 struct xfs_mount
*mp
= log
->l_mp
;
3151 struct xfs_disk_dquot
*recddq
;
3152 struct xfs_dq_logformat
*dq_f
;
3156 if (mp
->m_qflags
== 0)
3159 recddq
= item
->ri_buf
[1].i_addr
;
3162 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
3165 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3167 if (log
->l_quotaoffs_flag
& type
)
3170 dq_f
= item
->ri_buf
[0].i_addr
;
3172 ASSERT(dq_f
->qlf_len
== 1);
3174 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3175 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), NULL
);
3179 xlog_recover_ra_pass2(
3181 struct xlog_recover_item
*item
)
3183 switch (ITEM_TYPE(item
)) {
3185 xlog_recover_buffer_ra_pass2(log
, item
);
3188 xlog_recover_inode_ra_pass2(log
, item
);
3191 xlog_recover_dquot_ra_pass2(log
, item
);
3195 case XFS_LI_QUOTAOFF
:
3202 xlog_recover_commit_pass1(
3204 struct xlog_recover
*trans
,
3205 struct xlog_recover_item
*item
)
3207 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
3209 switch (ITEM_TYPE(item
)) {
3211 return xlog_recover_buffer_pass1(log
, item
);
3212 case XFS_LI_QUOTAOFF
:
3213 return xlog_recover_quotaoff_pass1(log
, item
);
3218 case XFS_LI_ICREATE
:
3219 /* nothing to do in pass 1 */
3222 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3223 __func__
, ITEM_TYPE(item
));
3230 xlog_recover_commit_pass2(
3232 struct xlog_recover
*trans
,
3233 struct list_head
*buffer_list
,
3234 struct xlog_recover_item
*item
)
3236 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
3238 switch (ITEM_TYPE(item
)) {
3240 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
3243 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
3246 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
3248 return xlog_recover_efd_pass2(log
, item
);
3250 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
3252 case XFS_LI_ICREATE
:
3253 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
3254 case XFS_LI_QUOTAOFF
:
3255 /* nothing to do in pass2 */
3258 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3259 __func__
, ITEM_TYPE(item
));
3266 xlog_recover_items_pass2(
3268 struct xlog_recover
*trans
,
3269 struct list_head
*buffer_list
,
3270 struct list_head
*item_list
)
3272 struct xlog_recover_item
*item
;
3275 list_for_each_entry(item
, item_list
, ri_list
) {
3276 error
= xlog_recover_commit_pass2(log
, trans
,
3286 * Perform the transaction.
3288 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3289 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3292 xlog_recover_commit_trans(
3294 struct xlog_recover
*trans
,
3299 int items_queued
= 0;
3300 struct xlog_recover_item
*item
;
3301 struct xlog_recover_item
*next
;
3302 LIST_HEAD (buffer_list
);
3303 LIST_HEAD (ra_list
);
3304 LIST_HEAD (done_list
);
3306 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3308 hlist_del(&trans
->r_list
);
3310 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
3314 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
3316 case XLOG_RECOVER_PASS1
:
3317 error
= xlog_recover_commit_pass1(log
, trans
, item
);
3319 case XLOG_RECOVER_PASS2
:
3320 xlog_recover_ra_pass2(log
, item
);
3321 list_move_tail(&item
->ri_list
, &ra_list
);
3323 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
3324 error
= xlog_recover_items_pass2(log
, trans
,
3325 &buffer_list
, &ra_list
);
3326 list_splice_tail_init(&ra_list
, &done_list
);
3340 if (!list_empty(&ra_list
)) {
3342 error
= xlog_recover_items_pass2(log
, trans
,
3343 &buffer_list
, &ra_list
);
3344 list_splice_tail_init(&ra_list
, &done_list
);
3347 if (!list_empty(&done_list
))
3348 list_splice_init(&done_list
, &trans
->r_itemq
);
3350 error2
= xfs_buf_delwri_submit(&buffer_list
);
3351 return error
? error
: error2
;
3355 xlog_recover_add_item(
3356 struct list_head
*head
)
3358 xlog_recover_item_t
*item
;
3360 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
3361 INIT_LIST_HEAD(&item
->ri_list
);
3362 list_add_tail(&item
->ri_list
, head
);
3366 xlog_recover_add_to_cont_trans(
3368 struct xlog_recover
*trans
,
3372 xlog_recover_item_t
*item
;
3373 xfs_caddr_t ptr
, old_ptr
;
3376 if (list_empty(&trans
->r_itemq
)) {
3377 /* finish copying rest of trans header */
3378 xlog_recover_add_item(&trans
->r_itemq
);
3379 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
3380 sizeof(xfs_trans_header_t
) - len
;
3381 memcpy(ptr
, dp
, len
);
3384 /* take the tail entry */
3385 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3387 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
3388 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
3390 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, KM_SLEEP
);
3391 memcpy(&ptr
[old_len
], dp
, len
);
3392 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
3393 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
3394 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
3399 * The next region to add is the start of a new region. It could be
3400 * a whole region or it could be the first part of a new region. Because
3401 * of this, the assumption here is that the type and size fields of all
3402 * format structures fit into the first 32 bits of the structure.
3404 * This works because all regions must be 32 bit aligned. Therefore, we
3405 * either have both fields or we have neither field. In the case we have
3406 * neither field, the data part of the region is zero length. We only have
3407 * a log_op_header and can throw away the header since a new one will appear
3408 * later. If we have at least 4 bytes, then we can determine how many regions
3409 * will appear in the current log item.
3412 xlog_recover_add_to_trans(
3414 struct xlog_recover
*trans
,
3418 xfs_inode_log_format_t
*in_f
; /* any will do */
3419 xlog_recover_item_t
*item
;
3424 if (list_empty(&trans
->r_itemq
)) {
3425 /* we need to catch log corruptions here */
3426 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
3427 xfs_warn(log
->l_mp
, "%s: bad header magic number",
3432 if (len
== sizeof(xfs_trans_header_t
))
3433 xlog_recover_add_item(&trans
->r_itemq
);
3434 memcpy(&trans
->r_theader
, dp
, len
);
3438 ptr
= kmem_alloc(len
, KM_SLEEP
);
3439 memcpy(ptr
, dp
, len
);
3440 in_f
= (xfs_inode_log_format_t
*)ptr
;
3442 /* take the tail entry */
3443 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3444 if (item
->ri_total
!= 0 &&
3445 item
->ri_total
== item
->ri_cnt
) {
3446 /* tail item is in use, get a new one */
3447 xlog_recover_add_item(&trans
->r_itemq
);
3448 item
= list_entry(trans
->r_itemq
.prev
,
3449 xlog_recover_item_t
, ri_list
);
3452 if (item
->ri_total
== 0) { /* first region to be added */
3453 if (in_f
->ilf_size
== 0 ||
3454 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
3456 "bad number of regions (%d) in inode log format",
3463 item
->ri_total
= in_f
->ilf_size
;
3465 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
3468 ASSERT(item
->ri_total
> item
->ri_cnt
);
3469 /* Description region is ri_buf[0] */
3470 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
3471 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
3473 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
3478 * Free up any resources allocated by the transaction
3480 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3483 xlog_recover_free_trans(
3484 struct xlog_recover
*trans
)
3486 xlog_recover_item_t
*item
, *n
;
3489 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
3490 /* Free the regions in the item. */
3491 list_del(&item
->ri_list
);
3492 for (i
= 0; i
< item
->ri_cnt
; i
++)
3493 kmem_free(item
->ri_buf
[i
].i_addr
);
3494 /* Free the item itself */
3495 kmem_free(item
->ri_buf
);
3498 /* Free the transaction recover structure */
3503 * On error or completion, trans is freed.
3506 xlog_recovery_process_trans(
3508 struct xlog_recover
*trans
,
3515 bool freeit
= false;
3517 /* mask off ophdr transaction container flags */
3518 flags
&= ~XLOG_END_TRANS
;
3519 if (flags
& XLOG_WAS_CONT_TRANS
)
3520 flags
&= ~XLOG_CONTINUE_TRANS
;
3523 * Callees must not free the trans structure. We'll decide if we need to
3524 * free it or not based on the operation being done and it's result.
3527 /* expected flag values */
3529 case XLOG_CONTINUE_TRANS
:
3530 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
3532 case XLOG_WAS_CONT_TRANS
:
3533 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
3535 case XLOG_COMMIT_TRANS
:
3536 error
= xlog_recover_commit_trans(log
, trans
, pass
);
3537 /* success or fail, we are now done with this transaction. */
3541 /* unexpected flag values */
3542 case XLOG_UNMOUNT_TRANS
:
3543 /* just skip trans */
3544 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
3547 case XLOG_START_TRANS
:
3549 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
3554 if (error
|| freeit
)
3555 xlog_recover_free_trans(trans
);
3560 * Lookup the transaction recovery structure associated with the ID in the
3561 * current ophdr. If the transaction doesn't exist and the start flag is set in
3562 * the ophdr, then allocate a new transaction for future ID matches to find.
3563 * Either way, return what we found during the lookup - an existing transaction
3566 STATIC
struct xlog_recover
*
3567 xlog_recover_ophdr_to_trans(
3568 struct hlist_head rhash
[],
3569 struct xlog_rec_header
*rhead
,
3570 struct xlog_op_header
*ohead
)
3572 struct xlog_recover
*trans
;
3574 struct hlist_head
*rhp
;
3576 tid
= be32_to_cpu(ohead
->oh_tid
);
3577 rhp
= &rhash
[XLOG_RHASH(tid
)];
3578 hlist_for_each_entry(trans
, rhp
, r_list
) {
3579 if (trans
->r_log_tid
== tid
)
3584 * skip over non-start transaction headers - we could be
3585 * processing slack space before the next transaction starts
3587 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
3590 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
3593 * This is a new transaction so allocate a new recovery container to
3594 * hold the recovery ops that will follow.
3596 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
3597 trans
->r_log_tid
= tid
;
3598 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
3599 INIT_LIST_HEAD(&trans
->r_itemq
);
3600 INIT_HLIST_NODE(&trans
->r_list
);
3601 hlist_add_head(&trans
->r_list
, rhp
);
3604 * Nothing more to do for this ophdr. Items to be added to this new
3605 * transaction will be in subsequent ophdr containers.
3611 xlog_recover_process_ophdr(
3613 struct hlist_head rhash
[],
3614 struct xlog_rec_header
*rhead
,
3615 struct xlog_op_header
*ohead
,
3620 struct xlog_recover
*trans
;
3623 /* Do we understand who wrote this op? */
3624 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
3625 ohead
->oh_clientid
!= XFS_LOG
) {
3626 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
3627 __func__
, ohead
->oh_clientid
);
3633 * Check the ophdr contains all the data it is supposed to contain.
3635 len
= be32_to_cpu(ohead
->oh_len
);
3636 if (dp
+ len
> end
) {
3637 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
3642 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
3644 /* nothing to do, so skip over this ophdr */
3648 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
3649 ohead
->oh_flags
, pass
);
3653 * There are two valid states of the r_state field. 0 indicates that the
3654 * transaction structure is in a normal state. We have either seen the
3655 * start of the transaction or the last operation we added was not a partial
3656 * operation. If the last operation we added to the transaction was a
3657 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3659 * NOTE: skip LRs with 0 data length.
3662 xlog_recover_process_data(
3664 struct hlist_head rhash
[],
3665 struct xlog_rec_header
*rhead
,
3669 struct xlog_op_header
*ohead
;
3674 end
= dp
+ be32_to_cpu(rhead
->h_len
);
3675 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
3677 /* check the log format matches our own - else we can't recover */
3678 if (xlog_header_check_recover(log
->l_mp
, rhead
))
3681 while ((dp
< end
) && num_logops
) {
3683 ohead
= (struct xlog_op_header
*)dp
;
3684 dp
+= sizeof(*ohead
);
3687 /* errors will abort recovery */
3688 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
3693 dp
+= be32_to_cpu(ohead
->oh_len
);
3700 * Process an extent free intent item that was recovered from
3701 * the log. We need to free the extents that it describes.
3704 xlog_recover_process_efi(
3706 xfs_efi_log_item_t
*efip
)
3708 xfs_efd_log_item_t
*efdp
;
3713 xfs_fsblock_t startblock_fsb
;
3715 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
3718 * First check the validity of the extents described by the
3719 * EFI. If any are bad, then assume that all are bad and
3720 * just toss the EFI.
3722 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3723 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3724 startblock_fsb
= XFS_BB_TO_FSB(mp
,
3725 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3726 if ((startblock_fsb
== 0) ||
3727 (extp
->ext_len
== 0) ||
3728 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3729 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3731 * This will pull the EFI from the AIL and
3732 * free the memory associated with it.
3734 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3735 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3740 tp
= xfs_trans_alloc(mp
, 0);
3741 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
3744 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3746 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3747 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3748 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3751 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3755 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3756 error
= xfs_trans_commit(tp
, 0);
3760 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3765 * When this is called, all of the EFIs which did not have
3766 * corresponding EFDs should be in the AIL. What we do now
3767 * is free the extents associated with each one.
3769 * Since we process the EFIs in normal transactions, they
3770 * will be removed at some point after the commit. This prevents
3771 * us from just walking down the list processing each one.
3772 * We'll use a flag in the EFI to skip those that we've already
3773 * processed and use the AIL iteration mechanism's generation
3774 * count to try to speed this up at least a bit.
3776 * When we start, we know that the EFIs are the only things in
3777 * the AIL. As we process them, however, other items are added
3778 * to the AIL. Since everything added to the AIL must come after
3779 * everything already in the AIL, we stop processing as soon as
3780 * we see something other than an EFI in the AIL.
3783 xlog_recover_process_efis(
3786 xfs_log_item_t
*lip
;
3787 xfs_efi_log_item_t
*efip
;
3789 struct xfs_ail_cursor cur
;
3790 struct xfs_ail
*ailp
;
3793 spin_lock(&ailp
->xa_lock
);
3794 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3795 while (lip
!= NULL
) {
3797 * We're done when we see something other than an EFI.
3798 * There should be no EFIs left in the AIL now.
3800 if (lip
->li_type
!= XFS_LI_EFI
) {
3802 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3803 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3809 * Skip EFIs that we've already processed.
3811 efip
= (xfs_efi_log_item_t
*)lip
;
3812 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3813 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3817 spin_unlock(&ailp
->xa_lock
);
3818 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3819 spin_lock(&ailp
->xa_lock
);
3822 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3825 xfs_trans_ail_cursor_done(&cur
);
3826 spin_unlock(&ailp
->xa_lock
);
3831 * This routine performs a transaction to null out a bad inode pointer
3832 * in an agi unlinked inode hash bucket.
3835 xlog_recover_clear_agi_bucket(
3837 xfs_agnumber_t agno
,
3846 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3847 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_clearagi
, 0, 0);
3851 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3855 agi
= XFS_BUF_TO_AGI(agibp
);
3856 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3857 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3858 (sizeof(xfs_agino_t
) * bucket
);
3859 xfs_trans_log_buf(tp
, agibp
, offset
,
3860 (offset
+ sizeof(xfs_agino_t
) - 1));
3862 error
= xfs_trans_commit(tp
, 0);
3868 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3870 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3875 xlog_recover_process_one_iunlink(
3876 struct xfs_mount
*mp
,
3877 xfs_agnumber_t agno
,
3881 struct xfs_buf
*ibp
;
3882 struct xfs_dinode
*dip
;
3883 struct xfs_inode
*ip
;
3887 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3888 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3893 * Get the on disk inode to find the next inode in the bucket.
3895 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
3899 ASSERT(ip
->i_d
.di_nlink
== 0);
3900 ASSERT(ip
->i_d
.di_mode
!= 0);
3902 /* setup for the next pass */
3903 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3907 * Prevent any DMAPI event from being sent when the reference on
3908 * the inode is dropped.
3910 ip
->i_d
.di_dmevmask
= 0;
3919 * We can't read in the inode this bucket points to, or this inode
3920 * is messed up. Just ditch this bucket of inodes. We will lose
3921 * some inodes and space, but at least we won't hang.
3923 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3924 * clear the inode pointer in the bucket.
3926 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3931 * xlog_iunlink_recover
3933 * This is called during recovery to process any inodes which
3934 * we unlinked but not freed when the system crashed. These
3935 * inodes will be on the lists in the AGI blocks. What we do
3936 * here is scan all the AGIs and fully truncate and free any
3937 * inodes found on the lists. Each inode is removed from the
3938 * lists when it has been fully truncated and is freed. The
3939 * freeing of the inode and its removal from the list must be
3943 xlog_recover_process_iunlinks(
3947 xfs_agnumber_t agno
;
3958 * Prevent any DMAPI event from being sent while in this function.
3960 mp_dmevmask
= mp
->m_dmevmask
;
3963 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3965 * Find the agi for this ag.
3967 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3970 * AGI is b0rked. Don't process it.
3972 * We should probably mark the filesystem as corrupt
3973 * after we've recovered all the ag's we can....
3978 * Unlock the buffer so that it can be acquired in the normal
3979 * course of the transaction to truncate and free each inode.
3980 * Because we are not racing with anyone else here for the AGI
3981 * buffer, we don't even need to hold it locked to read the
3982 * initial unlinked bucket entries out of the buffer. We keep
3983 * buffer reference though, so that it stays pinned in memory
3984 * while we need the buffer.
3986 agi
= XFS_BUF_TO_AGI(agibp
);
3987 xfs_buf_unlock(agibp
);
3989 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3990 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3991 while (agino
!= NULLAGINO
) {
3992 agino
= xlog_recover_process_one_iunlink(mp
,
3993 agno
, agino
, bucket
);
3996 xfs_buf_rele(agibp
);
3999 mp
->m_dmevmask
= mp_dmevmask
;
4003 * Upack the log buffer data and crc check it. If the check fails, issue a
4004 * warning if and only if the CRC in the header is non-zero. This makes the
4005 * check an advisory warning, and the zero CRC check will prevent failure
4006 * warnings from being emitted when upgrading the kernel from one that does not
4007 * add CRCs by default.
4009 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4010 * corruption failure
4013 xlog_unpack_data_crc(
4014 struct xlog_rec_header
*rhead
,
4020 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
4021 if (crc
!= rhead
->h_crc
) {
4022 if (rhead
->h_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
4023 xfs_alert(log
->l_mp
,
4024 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4025 le32_to_cpu(rhead
->h_crc
),
4027 xfs_hex_dump(dp
, 32);
4031 * If we've detected a log record corruption, then we can't
4032 * recover past this point. Abort recovery if we are enforcing
4033 * CRC protection by punting an error back up the stack.
4035 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
4036 return -EFSCORRUPTED
;
4044 struct xlog_rec_header
*rhead
,
4051 error
= xlog_unpack_data_crc(rhead
, dp
, log
);
4055 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
4056 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
4057 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
4061 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4062 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
4063 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
4064 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4065 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4066 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
4075 xlog_valid_rec_header(
4077 struct xlog_rec_header
*rhead
,
4082 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
4083 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4084 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4085 return -EFSCORRUPTED
;
4088 (!rhead
->h_version
||
4089 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
4090 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
4091 __func__
, be32_to_cpu(rhead
->h_version
));
4095 /* LR body must have data or it wouldn't have been written */
4096 hlen
= be32_to_cpu(rhead
->h_len
);
4097 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
4098 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4099 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4100 return -EFSCORRUPTED
;
4102 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
4103 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4104 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4105 return -EFSCORRUPTED
;
4111 * Read the log from tail to head and process the log records found.
4112 * Handle the two cases where the tail and head are in the same cycle
4113 * and where the active portion of the log wraps around the end of
4114 * the physical log separately. The pass parameter is passed through
4115 * to the routines called to process the data and is not looked at
4119 xlog_do_recovery_pass(
4121 xfs_daddr_t head_blk
,
4122 xfs_daddr_t tail_blk
,
4125 xlog_rec_header_t
*rhead
;
4128 xfs_buf_t
*hbp
, *dbp
;
4129 int error
= 0, h_size
;
4130 int bblks
, split_bblks
;
4131 int hblks
, split_hblks
, wrapped_hblks
;
4132 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
4134 ASSERT(head_blk
!= tail_blk
);
4137 * Read the header of the tail block and get the iclog buffer size from
4138 * h_size. Use this to tell how many sectors make up the log header.
4140 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4142 * When using variable length iclogs, read first sector of
4143 * iclog header and extract the header size from it. Get a
4144 * new hbp that is the correct size.
4146 hbp
= xlog_get_bp(log
, 1);
4150 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
4154 rhead
= (xlog_rec_header_t
*)offset
;
4155 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
4158 h_size
= be32_to_cpu(rhead
->h_size
);
4159 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
4160 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
4161 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
4162 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
4165 hbp
= xlog_get_bp(log
, hblks
);
4170 ASSERT(log
->l_sectBBsize
== 1);
4172 hbp
= xlog_get_bp(log
, 1);
4173 h_size
= XLOG_BIG_RECORD_BSIZE
;
4178 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
4184 memset(rhash
, 0, sizeof(rhash
));
4186 if (tail_blk
> head_blk
) {
4188 * Perform recovery around the end of the physical log.
4189 * When the head is not on the same cycle number as the tail,
4190 * we can't do a sequential recovery.
4192 while (blk_no
< log
->l_logBBsize
) {
4194 * Check for header wrapping around physical end-of-log
4196 offset
= hbp
->b_addr
;
4199 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
4200 /* Read header in one read */
4201 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
4206 /* This LR is split across physical log end */
4207 if (blk_no
!= log
->l_logBBsize
) {
4208 /* some data before physical log end */
4209 ASSERT(blk_no
<= INT_MAX
);
4210 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
4211 ASSERT(split_hblks
> 0);
4212 error
= xlog_bread(log
, blk_no
,
4220 * Note: this black magic still works with
4221 * large sector sizes (non-512) only because:
4222 * - we increased the buffer size originally
4223 * by 1 sector giving us enough extra space
4224 * for the second read;
4225 * - the log start is guaranteed to be sector
4227 * - we read the log end (LR header start)
4228 * _first_, then the log start (LR header end)
4229 * - order is important.
4231 wrapped_hblks
= hblks
- split_hblks
;
4232 error
= xlog_bread_offset(log
, 0,
4234 offset
+ BBTOB(split_hblks
));
4238 rhead
= (xlog_rec_header_t
*)offset
;
4239 error
= xlog_valid_rec_header(log
, rhead
,
4240 split_hblks
? blk_no
: 0);
4244 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4247 /* Read in data for log record */
4248 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
4249 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
4254 /* This log record is split across the
4255 * physical end of log */
4256 offset
= dbp
->b_addr
;
4258 if (blk_no
!= log
->l_logBBsize
) {
4259 /* some data is before the physical
4261 ASSERT(!wrapped_hblks
);
4262 ASSERT(blk_no
<= INT_MAX
);
4264 log
->l_logBBsize
- (int)blk_no
;
4265 ASSERT(split_bblks
> 0);
4266 error
= xlog_bread(log
, blk_no
,
4274 * Note: this black magic still works with
4275 * large sector sizes (non-512) only because:
4276 * - we increased the buffer size originally
4277 * by 1 sector giving us enough extra space
4278 * for the second read;
4279 * - the log start is guaranteed to be sector
4281 * - we read the log end (LR header start)
4282 * _first_, then the log start (LR header end)
4283 * - order is important.
4285 error
= xlog_bread_offset(log
, 0,
4286 bblks
- split_bblks
, dbp
,
4287 offset
+ BBTOB(split_bblks
));
4292 error
= xlog_unpack_data(rhead
, offset
, log
);
4296 error
= xlog_recover_process_data(log
, rhash
,
4297 rhead
, offset
, pass
);
4303 ASSERT(blk_no
>= log
->l_logBBsize
);
4304 blk_no
-= log
->l_logBBsize
;
4307 /* read first part of physical log */
4308 while (blk_no
< head_blk
) {
4309 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
4313 rhead
= (xlog_rec_header_t
*)offset
;
4314 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
4318 /* blocks in data section */
4319 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4320 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
4325 error
= xlog_unpack_data(rhead
, offset
, log
);
4329 error
= xlog_recover_process_data(log
, rhash
,
4330 rhead
, offset
, pass
);
4333 blk_no
+= bblks
+ hblks
;
4344 * Do the recovery of the log. We actually do this in two phases.
4345 * The two passes are necessary in order to implement the function
4346 * of cancelling a record written into the log. The first pass
4347 * determines those things which have been cancelled, and the
4348 * second pass replays log items normally except for those which
4349 * have been cancelled. The handling of the replay and cancellations
4350 * takes place in the log item type specific routines.
4352 * The table of items which have cancel records in the log is allocated
4353 * and freed at this level, since only here do we know when all of
4354 * the log recovery has been completed.
4357 xlog_do_log_recovery(
4359 xfs_daddr_t head_blk
,
4360 xfs_daddr_t tail_blk
)
4364 ASSERT(head_blk
!= tail_blk
);
4367 * First do a pass to find all of the cancelled buf log items.
4368 * Store them in the buf_cancel_table for use in the second pass.
4370 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
4371 sizeof(struct list_head
),
4373 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4374 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
4376 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4377 XLOG_RECOVER_PASS1
);
4379 kmem_free(log
->l_buf_cancel_table
);
4380 log
->l_buf_cancel_table
= NULL
;
4384 * Then do a second pass to actually recover the items in the log.
4385 * When it is complete free the table of buf cancel items.
4387 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4388 XLOG_RECOVER_PASS2
);
4393 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4394 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
4398 kmem_free(log
->l_buf_cancel_table
);
4399 log
->l_buf_cancel_table
= NULL
;
4405 * Do the actual recovery
4410 xfs_daddr_t head_blk
,
4411 xfs_daddr_t tail_blk
)
4418 * First replay the images in the log.
4420 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
4425 * If IO errors happened during recovery, bail out.
4427 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
4432 * We now update the tail_lsn since much of the recovery has completed
4433 * and there may be space available to use. If there were no extent
4434 * or iunlinks, we can free up the entire log and set the tail_lsn to
4435 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4436 * lsn of the last known good LR on disk. If there are extent frees
4437 * or iunlinks they will have some entries in the AIL; so we look at
4438 * the AIL to determine how to set the tail_lsn.
4440 xlog_assign_tail_lsn(log
->l_mp
);
4443 * Now that we've finished replaying all buffer and inode
4444 * updates, re-read in the superblock and reverify it.
4446 bp
= xfs_getsb(log
->l_mp
, 0);
4448 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
4450 XFS_BUF_UNASYNC(bp
);
4451 bp
->b_ops
= &xfs_sb_buf_ops
;
4453 error
= xfs_buf_submit_wait(bp
);
4455 if (!XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
4456 xfs_buf_ioerror_alert(bp
, __func__
);
4463 /* Convert superblock from on-disk format */
4464 sbp
= &log
->l_mp
->m_sb
;
4465 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
4466 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
4467 ASSERT(xfs_sb_good_version(sbp
));
4470 /* We've re-read the superblock so re-initialize per-cpu counters */
4471 xfs_icsb_reinit_counters(log
->l_mp
);
4473 xlog_recover_check_summary(log
);
4475 /* Normal transactions can now occur */
4476 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
4481 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4483 * Return error or zero.
4489 xfs_daddr_t head_blk
, tail_blk
;
4492 /* find the tail of the log */
4493 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
4496 if (tail_blk
!= head_blk
) {
4497 /* There used to be a comment here:
4499 * disallow recovery on read-only mounts. note -- mount
4500 * checks for ENOSPC and turns it into an intelligent
4502 * ...but this is no longer true. Now, unless you specify
4503 * NORECOVERY (in which case this function would never be
4504 * called), we just go ahead and recover. We do this all
4505 * under the vfs layer, so we can get away with it unless
4506 * the device itself is read-only, in which case we fail.
4508 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
4513 * Version 5 superblock log feature mask validation. We know the
4514 * log is dirty so check if there are any unknown log features
4515 * in what we need to recover. If there are unknown features
4516 * (e.g. unsupported transactions, then simply reject the
4517 * attempt at recovery before touching anything.
4519 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
4520 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
4521 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
4523 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4524 "The log can not be fully and/or safely recovered by this kernel.\n"
4525 "Please recover the log on a kernel that supports the unknown features.",
4526 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
4527 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
4532 * Delay log recovery if the debug hook is set. This is debug
4533 * instrumention to coordinate simulation of I/O failures with
4536 if (xfs_globals
.log_recovery_delay
) {
4537 xfs_notice(log
->l_mp
,
4538 "Delaying log recovery for %d seconds.",
4539 xfs_globals
.log_recovery_delay
);
4540 msleep(xfs_globals
.log_recovery_delay
* 1000);
4543 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
4544 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4547 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
4548 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
4554 * In the first part of recovery we replay inodes and buffers and build
4555 * up the list of extent free items which need to be processed. Here
4556 * we process the extent free items and clean up the on disk unlinked
4557 * inode lists. This is separated from the first part of recovery so
4558 * that the root and real-time bitmap inodes can be read in from disk in
4559 * between the two stages. This is necessary so that we can free space
4560 * in the real-time portion of the file system.
4563 xlog_recover_finish(
4567 * Now we're ready to do the transactions needed for the
4568 * rest of recovery. Start with completing all the extent
4569 * free intent records and then process the unlinked inode
4570 * lists. At this point, we essentially run in normal mode
4571 * except that we're still performing recovery actions
4572 * rather than accepting new requests.
4574 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
4576 error
= xlog_recover_process_efis(log
);
4578 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
4582 * Sync the log to get all the EFIs out of the AIL.
4583 * This isn't absolutely necessary, but it helps in
4584 * case the unlink transactions would have problems
4585 * pushing the EFIs out of the way.
4587 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
4589 xlog_recover_process_iunlinks(log
);
4591 xlog_recover_check_summary(log
);
4593 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
4594 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4596 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
4598 xfs_info(log
->l_mp
, "Ending clean mount");
4606 * Read all of the agf and agi counters and check that they
4607 * are consistent with the superblock counters.
4610 xlog_recover_check_summary(
4617 xfs_agnumber_t agno
;
4618 __uint64_t freeblks
;
4628 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4629 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
4631 xfs_alert(mp
, "%s agf read failed agno %d error %d",
4632 __func__
, agno
, error
);
4634 agfp
= XFS_BUF_TO_AGF(agfbp
);
4635 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4636 be32_to_cpu(agfp
->agf_flcount
);
4637 xfs_buf_relse(agfbp
);
4640 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4642 xfs_alert(mp
, "%s agi read failed agno %d error %d",
4643 __func__
, agno
, error
);
4645 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
4647 itotal
+= be32_to_cpu(agi
->agi_count
);
4648 ifree
+= be32_to_cpu(agi
->agi_freecount
);
4649 xfs_buf_relse(agibp
);