hyperv: Add processing of MTU reduced by the host
[linux/fpc-iii.git] / ipc / sem.c
blob454f6c6020a8d98dccb167e46d3a5225d5f4ce2d
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
89 #include <linux/uaccess.h>
90 #include "util.h"
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 int semval; /* current value */
95 int sempid; /* pid of last operation */
96 spinlock_t lock; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
112 struct sembuf *blocking; /* the operation that blocked */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace *ns)
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
189 #endif
191 void __init sem_init(void)
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array *sma)
208 struct sem_queue *q, *tq;
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
222 list_add_tail(&q->list, &curr->pending_alter);
224 INIT_LIST_HEAD(&sma->pending_alter);
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array *sma)
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
246 static void sem_rcu_free(struct rcu_head *head)
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
251 security_sem_free(sma);
252 ipc_rcu_free(head);
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 * that a) sem_perm.lock is free and b) complex_count is 0.
262 static void sem_wait_array(struct sem_array *sma)
264 int i;
265 struct sem *sem;
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
271 return;
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
290 struct sem *sem;
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
299 sem_wait_array(sma);
300 return -1;
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
318 sem = sma->sem_base + sops->sem_num;
320 if (sma->complex_count == 0) {
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
325 spin_lock(&sem->lock);
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
341 spin_unlock(&sem->lock);
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
355 } else {
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
359 sem_wait_array(sma);
360 return -1;
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
366 if (locknum == -1) {
367 unmerge_queues(sma);
368 ipc_unlock_object(&sma->sem_perm);
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
376 * sem_lock_(check_) routines are called in the paths where the rwsem
377 * is not held.
379 * The caller holds the RCU read lock.
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
397 if (ipc_valid_object(ipcp))
398 return container_of(ipcp, struct sem_array, sem_perm);
400 sem_unlock(sma, *locknum);
401 return ERR_PTR(-EINVAL);
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
411 return container_of(ipcp, struct sem_array, sem_perm);
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
422 return container_of(ipcp, struct sem_array, sem_perm);
425 static inline void sem_lock_and_putref(struct sem_array *sma)
427 sem_lock(sma, NULL, -1);
428 ipc_rcu_putref(sma, ipc_rcu_free);
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
441 * * unlinking the queue entry from the pending list
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
468 #define IN_WAKEUP 1
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
475 * Called with sem_ids.rwsem held (as a writer)
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
486 int i;
488 if (!nsems)
489 return -EINVAL;
490 if (ns->used_sems + nsems > ns->sc_semmns)
491 return -ENOSPC;
493 size = sizeof(*sma) + nsems * sizeof(struct sem);
494 sma = ipc_rcu_alloc(size);
495 if (!sma)
496 return -ENOMEM;
498 memset(sma, 0, size);
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
506 ipc_rcu_putref(sma, ipc_rcu_free);
507 return retval;
510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
511 if (id < 0) {
512 ipc_rcu_putref(sma, sem_rcu_free);
513 return id;
515 ns->used_sems += nsems;
517 sma->sem_base = (struct sem *) &sma[1];
519 for (i = 0; i < nsems; i++) {
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
522 spin_lock_init(&sma->sem_base[i].lock);
525 sma->complex_count = 0;
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
528 INIT_LIST_HEAD(&sma->list_id);
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
531 sem_unlock(sma, -1);
532 rcu_read_unlock();
534 return sma->sem_perm.id;
539 * Called with sem_ids.rwsem and ipcp locked.
541 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
543 struct sem_array *sma;
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
550 * Called with sem_ids.rwsem and ipcp locked.
552 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
555 struct sem_array *sma;
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
559 return -EINVAL;
561 return 0;
564 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
566 struct ipc_namespace *ns;
567 static const struct ipc_ops sem_ops = {
568 .getnew = newary,
569 .associate = sem_security,
570 .more_checks = sem_more_checks,
572 struct ipc_params sem_params;
574 ns = current->nsproxy->ipc_ns;
576 if (nsems < 0 || nsems > ns->sc_semmsl)
577 return -EINVAL;
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
588 * @sma: semaphore array
589 * @q: struct sem_queue that describes the operation
591 * Returns 0 if the operation was possible.
592 * Returns 1 if the operation is impossible, the caller must sleep.
593 * Negative values are error codes.
595 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
597 int result, sem_op, nsops, pid;
598 struct sembuf *sop;
599 struct sem *curr;
600 struct sembuf *sops;
601 struct sem_undo *un;
603 sops = q->sops;
604 nsops = q->nsops;
605 un = q->undo;
607 for (sop = sops; sop < sops + nsops; sop++) {
608 curr = sma->sem_base + sop->sem_num;
609 sem_op = sop->sem_op;
610 result = curr->semval;
612 if (!sem_op && result)
613 goto would_block;
615 result += sem_op;
616 if (result < 0)
617 goto would_block;
618 if (result > SEMVMX)
619 goto out_of_range;
621 if (sop->sem_flg & SEM_UNDO) {
622 int undo = un->semadj[sop->sem_num] - sem_op;
623 /* Exceeding the undo range is an error. */
624 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 goto out_of_range;
626 un->semadj[sop->sem_num] = undo;
629 curr->semval = result;
632 sop--;
633 pid = q->pid;
634 while (sop >= sops) {
635 sma->sem_base[sop->sem_num].sempid = pid;
636 sop--;
639 return 0;
641 out_of_range:
642 result = -ERANGE;
643 goto undo;
645 would_block:
646 q->blocking = sop;
648 if (sop->sem_flg & IPC_NOWAIT)
649 result = -EAGAIN;
650 else
651 result = 1;
653 undo:
654 sop--;
655 while (sop >= sops) {
656 sem_op = sop->sem_op;
657 sma->sem_base[sop->sem_num].semval -= sem_op;
658 if (sop->sem_flg & SEM_UNDO)
659 un->semadj[sop->sem_num] += sem_op;
660 sop--;
663 return result;
666 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
667 * @q: queue entry that must be signaled
668 * @error: Error value for the signal
670 * Prepare the wake-up of the queue entry q.
672 static void wake_up_sem_queue_prepare(struct list_head *pt,
673 struct sem_queue *q, int error)
675 if (list_empty(pt)) {
677 * Hold preempt off so that we don't get preempted and have the
678 * wakee busy-wait until we're scheduled back on.
680 preempt_disable();
682 q->status = IN_WAKEUP;
683 q->pid = error;
685 list_add_tail(&q->list, pt);
689 * wake_up_sem_queue_do - do the actual wake-up
690 * @pt: list of tasks to be woken up
692 * Do the actual wake-up.
693 * The function is called without any locks held, thus the semaphore array
694 * could be destroyed already and the tasks can disappear as soon as the
695 * status is set to the actual return code.
697 static void wake_up_sem_queue_do(struct list_head *pt)
699 struct sem_queue *q, *t;
700 int did_something;
702 did_something = !list_empty(pt);
703 list_for_each_entry_safe(q, t, pt, list) {
704 wake_up_process(q->sleeper);
705 /* q can disappear immediately after writing q->status. */
706 smp_wmb();
707 q->status = q->pid;
709 if (did_something)
710 preempt_enable();
713 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
715 list_del(&q->list);
716 if (q->nsops > 1)
717 sma->complex_count--;
720 /** check_restart(sma, q)
721 * @sma: semaphore array
722 * @q: the operation that just completed
724 * update_queue is O(N^2) when it restarts scanning the whole queue of
725 * waiting operations. Therefore this function checks if the restart is
726 * really necessary. It is called after a previously waiting operation
727 * modified the array.
728 * Note that wait-for-zero operations are handled without restart.
730 static int check_restart(struct sem_array *sma, struct sem_queue *q)
732 /* pending complex alter operations are too difficult to analyse */
733 if (!list_empty(&sma->pending_alter))
734 return 1;
736 /* we were a sleeping complex operation. Too difficult */
737 if (q->nsops > 1)
738 return 1;
740 /* It is impossible that someone waits for the new value:
741 * - complex operations always restart.
742 * - wait-for-zero are handled seperately.
743 * - q is a previously sleeping simple operation that
744 * altered the array. It must be a decrement, because
745 * simple increments never sleep.
746 * - If there are older (higher priority) decrements
747 * in the queue, then they have observed the original
748 * semval value and couldn't proceed. The operation
749 * decremented to value - thus they won't proceed either.
751 return 0;
755 * wake_const_ops - wake up non-alter tasks
756 * @sma: semaphore array.
757 * @semnum: semaphore that was modified.
758 * @pt: list head for the tasks that must be woken up.
760 * wake_const_ops must be called after a semaphore in a semaphore array
761 * was set to 0. If complex const operations are pending, wake_const_ops must
762 * be called with semnum = -1, as well as with the number of each modified
763 * semaphore.
764 * The tasks that must be woken up are added to @pt. The return code
765 * is stored in q->pid.
766 * The function returns 1 if at least one operation was completed successfully.
768 static int wake_const_ops(struct sem_array *sma, int semnum,
769 struct list_head *pt)
771 struct sem_queue *q;
772 struct list_head *walk;
773 struct list_head *pending_list;
774 int semop_completed = 0;
776 if (semnum == -1)
777 pending_list = &sma->pending_const;
778 else
779 pending_list = &sma->sem_base[semnum].pending_const;
781 walk = pending_list->next;
782 while (walk != pending_list) {
783 int error;
785 q = container_of(walk, struct sem_queue, list);
786 walk = walk->next;
788 error = perform_atomic_semop(sma, q);
790 if (error <= 0) {
791 /* operation completed, remove from queue & wakeup */
793 unlink_queue(sma, q);
795 wake_up_sem_queue_prepare(pt, q, error);
796 if (error == 0)
797 semop_completed = 1;
800 return semop_completed;
804 * do_smart_wakeup_zero - wakeup all wait for zero tasks
805 * @sma: semaphore array
806 * @sops: operations that were performed
807 * @nsops: number of operations
808 * @pt: list head of the tasks that must be woken up.
810 * Checks all required queue for wait-for-zero operations, based
811 * on the actual changes that were performed on the semaphore array.
812 * The function returns 1 if at least one operation was completed successfully.
814 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
815 int nsops, struct list_head *pt)
817 int i;
818 int semop_completed = 0;
819 int got_zero = 0;
821 /* first: the per-semaphore queues, if known */
822 if (sops) {
823 for (i = 0; i < nsops; i++) {
824 int num = sops[i].sem_num;
826 if (sma->sem_base[num].semval == 0) {
827 got_zero = 1;
828 semop_completed |= wake_const_ops(sma, num, pt);
831 } else {
833 * No sops means modified semaphores not known.
834 * Assume all were changed.
836 for (i = 0; i < sma->sem_nsems; i++) {
837 if (sma->sem_base[i].semval == 0) {
838 got_zero = 1;
839 semop_completed |= wake_const_ops(sma, i, pt);
844 * If one of the modified semaphores got 0,
845 * then check the global queue, too.
847 if (got_zero)
848 semop_completed |= wake_const_ops(sma, -1, pt);
850 return semop_completed;
855 * update_queue - look for tasks that can be completed.
856 * @sma: semaphore array.
857 * @semnum: semaphore that was modified.
858 * @pt: list head for the tasks that must be woken up.
860 * update_queue must be called after a semaphore in a semaphore array
861 * was modified. If multiple semaphores were modified, update_queue must
862 * be called with semnum = -1, as well as with the number of each modified
863 * semaphore.
864 * The tasks that must be woken up are added to @pt. The return code
865 * is stored in q->pid.
866 * The function internally checks if const operations can now succeed.
868 * The function return 1 if at least one semop was completed successfully.
870 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
872 struct sem_queue *q;
873 struct list_head *walk;
874 struct list_head *pending_list;
875 int semop_completed = 0;
877 if (semnum == -1)
878 pending_list = &sma->pending_alter;
879 else
880 pending_list = &sma->sem_base[semnum].pending_alter;
882 again:
883 walk = pending_list->next;
884 while (walk != pending_list) {
885 int error, restart;
887 q = container_of(walk, struct sem_queue, list);
888 walk = walk->next;
890 /* If we are scanning the single sop, per-semaphore list of
891 * one semaphore and that semaphore is 0, then it is not
892 * necessary to scan further: simple increments
893 * that affect only one entry succeed immediately and cannot
894 * be in the per semaphore pending queue, and decrements
895 * cannot be successful if the value is already 0.
897 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
898 break;
900 error = perform_atomic_semop(sma, q);
902 /* Does q->sleeper still need to sleep? */
903 if (error > 0)
904 continue;
906 unlink_queue(sma, q);
908 if (error) {
909 restart = 0;
910 } else {
911 semop_completed = 1;
912 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
913 restart = check_restart(sma, q);
916 wake_up_sem_queue_prepare(pt, q, error);
917 if (restart)
918 goto again;
920 return semop_completed;
924 * set_semotime - set sem_otime
925 * @sma: semaphore array
926 * @sops: operations that modified the array, may be NULL
928 * sem_otime is replicated to avoid cache line trashing.
929 * This function sets one instance to the current time.
931 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
933 if (sops == NULL) {
934 sma->sem_base[0].sem_otime = get_seconds();
935 } else {
936 sma->sem_base[sops[0].sem_num].sem_otime =
937 get_seconds();
942 * do_smart_update - optimized update_queue
943 * @sma: semaphore array
944 * @sops: operations that were performed
945 * @nsops: number of operations
946 * @otime: force setting otime
947 * @pt: list head of the tasks that must be woken up.
949 * do_smart_update() does the required calls to update_queue and wakeup_zero,
950 * based on the actual changes that were performed on the semaphore array.
951 * Note that the function does not do the actual wake-up: the caller is
952 * responsible for calling wake_up_sem_queue_do(@pt).
953 * It is safe to perform this call after dropping all locks.
955 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
956 int otime, struct list_head *pt)
958 int i;
960 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
962 if (!list_empty(&sma->pending_alter)) {
963 /* semaphore array uses the global queue - just process it. */
964 otime |= update_queue(sma, -1, pt);
965 } else {
966 if (!sops) {
968 * No sops, thus the modified semaphores are not
969 * known. Check all.
971 for (i = 0; i < sma->sem_nsems; i++)
972 otime |= update_queue(sma, i, pt);
973 } else {
975 * Check the semaphores that were increased:
976 * - No complex ops, thus all sleeping ops are
977 * decrease.
978 * - if we decreased the value, then any sleeping
979 * semaphore ops wont be able to run: If the
980 * previous value was too small, then the new
981 * value will be too small, too.
983 for (i = 0; i < nsops; i++) {
984 if (sops[i].sem_op > 0) {
985 otime |= update_queue(sma,
986 sops[i].sem_num, pt);
991 if (otime)
992 set_semotime(sma, sops);
996 * check_qop: Test if a queued operation sleeps on the semaphore semnum
998 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
999 bool count_zero)
1001 struct sembuf *sop = q->blocking;
1004 * Linux always (since 0.99.10) reported a task as sleeping on all
1005 * semaphores. This violates SUS, therefore it was changed to the
1006 * standard compliant behavior.
1007 * Give the administrators a chance to notice that an application
1008 * might misbehave because it relies on the Linux behavior.
1010 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1011 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1012 current->comm, task_pid_nr(current));
1014 if (sop->sem_num != semnum)
1015 return 0;
1017 if (count_zero && sop->sem_op == 0)
1018 return 1;
1019 if (!count_zero && sop->sem_op < 0)
1020 return 1;
1022 return 0;
1025 /* The following counts are associated to each semaphore:
1026 * semncnt number of tasks waiting on semval being nonzero
1027 * semzcnt number of tasks waiting on semval being zero
1029 * Per definition, a task waits only on the semaphore of the first semop
1030 * that cannot proceed, even if additional operation would block, too.
1032 static int count_semcnt(struct sem_array *sma, ushort semnum,
1033 bool count_zero)
1035 struct list_head *l;
1036 struct sem_queue *q;
1037 int semcnt;
1039 semcnt = 0;
1040 /* First: check the simple operations. They are easy to evaluate */
1041 if (count_zero)
1042 l = &sma->sem_base[semnum].pending_const;
1043 else
1044 l = &sma->sem_base[semnum].pending_alter;
1046 list_for_each_entry(q, l, list) {
1047 /* all task on a per-semaphore list sleep on exactly
1048 * that semaphore
1050 semcnt++;
1053 /* Then: check the complex operations. */
1054 list_for_each_entry(q, &sma->pending_alter, list) {
1055 semcnt += check_qop(sma, semnum, q, count_zero);
1057 if (count_zero) {
1058 list_for_each_entry(q, &sma->pending_const, list) {
1059 semcnt += check_qop(sma, semnum, q, count_zero);
1062 return semcnt;
1065 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1066 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1067 * remains locked on exit.
1069 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1071 struct sem_undo *un, *tu;
1072 struct sem_queue *q, *tq;
1073 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1074 struct list_head tasks;
1075 int i;
1077 /* Free the existing undo structures for this semaphore set. */
1078 ipc_assert_locked_object(&sma->sem_perm);
1079 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1080 list_del(&un->list_id);
1081 spin_lock(&un->ulp->lock);
1082 un->semid = -1;
1083 list_del_rcu(&un->list_proc);
1084 spin_unlock(&un->ulp->lock);
1085 kfree_rcu(un, rcu);
1088 /* Wake up all pending processes and let them fail with EIDRM. */
1089 INIT_LIST_HEAD(&tasks);
1090 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1091 unlink_queue(sma, q);
1092 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1095 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1096 unlink_queue(sma, q);
1097 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1099 for (i = 0; i < sma->sem_nsems; i++) {
1100 struct sem *sem = sma->sem_base + i;
1101 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1102 unlink_queue(sma, q);
1103 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1105 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1106 unlink_queue(sma, q);
1107 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1111 /* Remove the semaphore set from the IDR */
1112 sem_rmid(ns, sma);
1113 sem_unlock(sma, -1);
1114 rcu_read_unlock();
1116 wake_up_sem_queue_do(&tasks);
1117 ns->used_sems -= sma->sem_nsems;
1118 ipc_rcu_putref(sma, sem_rcu_free);
1121 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1123 switch (version) {
1124 case IPC_64:
1125 return copy_to_user(buf, in, sizeof(*in));
1126 case IPC_OLD:
1128 struct semid_ds out;
1130 memset(&out, 0, sizeof(out));
1132 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1134 out.sem_otime = in->sem_otime;
1135 out.sem_ctime = in->sem_ctime;
1136 out.sem_nsems = in->sem_nsems;
1138 return copy_to_user(buf, &out, sizeof(out));
1140 default:
1141 return -EINVAL;
1145 static time_t get_semotime(struct sem_array *sma)
1147 int i;
1148 time_t res;
1150 res = sma->sem_base[0].sem_otime;
1151 for (i = 1; i < sma->sem_nsems; i++) {
1152 time_t to = sma->sem_base[i].sem_otime;
1154 if (to > res)
1155 res = to;
1157 return res;
1160 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1161 int cmd, int version, void __user *p)
1163 int err;
1164 struct sem_array *sma;
1166 switch (cmd) {
1167 case IPC_INFO:
1168 case SEM_INFO:
1170 struct seminfo seminfo;
1171 int max_id;
1173 err = security_sem_semctl(NULL, cmd);
1174 if (err)
1175 return err;
1177 memset(&seminfo, 0, sizeof(seminfo));
1178 seminfo.semmni = ns->sc_semmni;
1179 seminfo.semmns = ns->sc_semmns;
1180 seminfo.semmsl = ns->sc_semmsl;
1181 seminfo.semopm = ns->sc_semopm;
1182 seminfo.semvmx = SEMVMX;
1183 seminfo.semmnu = SEMMNU;
1184 seminfo.semmap = SEMMAP;
1185 seminfo.semume = SEMUME;
1186 down_read(&sem_ids(ns).rwsem);
1187 if (cmd == SEM_INFO) {
1188 seminfo.semusz = sem_ids(ns).in_use;
1189 seminfo.semaem = ns->used_sems;
1190 } else {
1191 seminfo.semusz = SEMUSZ;
1192 seminfo.semaem = SEMAEM;
1194 max_id = ipc_get_maxid(&sem_ids(ns));
1195 up_read(&sem_ids(ns).rwsem);
1196 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1197 return -EFAULT;
1198 return (max_id < 0) ? 0 : max_id;
1200 case IPC_STAT:
1201 case SEM_STAT:
1203 struct semid64_ds tbuf;
1204 int id = 0;
1206 memset(&tbuf, 0, sizeof(tbuf));
1208 rcu_read_lock();
1209 if (cmd == SEM_STAT) {
1210 sma = sem_obtain_object(ns, semid);
1211 if (IS_ERR(sma)) {
1212 err = PTR_ERR(sma);
1213 goto out_unlock;
1215 id = sma->sem_perm.id;
1216 } else {
1217 sma = sem_obtain_object_check(ns, semid);
1218 if (IS_ERR(sma)) {
1219 err = PTR_ERR(sma);
1220 goto out_unlock;
1224 err = -EACCES;
1225 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1226 goto out_unlock;
1228 err = security_sem_semctl(sma, cmd);
1229 if (err)
1230 goto out_unlock;
1232 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1233 tbuf.sem_otime = get_semotime(sma);
1234 tbuf.sem_ctime = sma->sem_ctime;
1235 tbuf.sem_nsems = sma->sem_nsems;
1236 rcu_read_unlock();
1237 if (copy_semid_to_user(p, &tbuf, version))
1238 return -EFAULT;
1239 return id;
1241 default:
1242 return -EINVAL;
1244 out_unlock:
1245 rcu_read_unlock();
1246 return err;
1249 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1250 unsigned long arg)
1252 struct sem_undo *un;
1253 struct sem_array *sma;
1254 struct sem *curr;
1255 int err;
1256 struct list_head tasks;
1257 int val;
1258 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1259 /* big-endian 64bit */
1260 val = arg >> 32;
1261 #else
1262 /* 32bit or little-endian 64bit */
1263 val = arg;
1264 #endif
1266 if (val > SEMVMX || val < 0)
1267 return -ERANGE;
1269 INIT_LIST_HEAD(&tasks);
1271 rcu_read_lock();
1272 sma = sem_obtain_object_check(ns, semid);
1273 if (IS_ERR(sma)) {
1274 rcu_read_unlock();
1275 return PTR_ERR(sma);
1278 if (semnum < 0 || semnum >= sma->sem_nsems) {
1279 rcu_read_unlock();
1280 return -EINVAL;
1284 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1285 rcu_read_unlock();
1286 return -EACCES;
1289 err = security_sem_semctl(sma, SETVAL);
1290 if (err) {
1291 rcu_read_unlock();
1292 return -EACCES;
1295 sem_lock(sma, NULL, -1);
1297 if (!ipc_valid_object(&sma->sem_perm)) {
1298 sem_unlock(sma, -1);
1299 rcu_read_unlock();
1300 return -EIDRM;
1303 curr = &sma->sem_base[semnum];
1305 ipc_assert_locked_object(&sma->sem_perm);
1306 list_for_each_entry(un, &sma->list_id, list_id)
1307 un->semadj[semnum] = 0;
1309 curr->semval = val;
1310 curr->sempid = task_tgid_vnr(current);
1311 sma->sem_ctime = get_seconds();
1312 /* maybe some queued-up processes were waiting for this */
1313 do_smart_update(sma, NULL, 0, 0, &tasks);
1314 sem_unlock(sma, -1);
1315 rcu_read_unlock();
1316 wake_up_sem_queue_do(&tasks);
1317 return 0;
1320 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1321 int cmd, void __user *p)
1323 struct sem_array *sma;
1324 struct sem *curr;
1325 int err, nsems;
1326 ushort fast_sem_io[SEMMSL_FAST];
1327 ushort *sem_io = fast_sem_io;
1328 struct list_head tasks;
1330 INIT_LIST_HEAD(&tasks);
1332 rcu_read_lock();
1333 sma = sem_obtain_object_check(ns, semid);
1334 if (IS_ERR(sma)) {
1335 rcu_read_unlock();
1336 return PTR_ERR(sma);
1339 nsems = sma->sem_nsems;
1341 err = -EACCES;
1342 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1343 goto out_rcu_wakeup;
1345 err = security_sem_semctl(sma, cmd);
1346 if (err)
1347 goto out_rcu_wakeup;
1349 err = -EACCES;
1350 switch (cmd) {
1351 case GETALL:
1353 ushort __user *array = p;
1354 int i;
1356 sem_lock(sma, NULL, -1);
1357 if (!ipc_valid_object(&sma->sem_perm)) {
1358 err = -EIDRM;
1359 goto out_unlock;
1361 if (nsems > SEMMSL_FAST) {
1362 if (!ipc_rcu_getref(sma)) {
1363 err = -EIDRM;
1364 goto out_unlock;
1366 sem_unlock(sma, -1);
1367 rcu_read_unlock();
1368 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1369 if (sem_io == NULL) {
1370 ipc_rcu_putref(sma, ipc_rcu_free);
1371 return -ENOMEM;
1374 rcu_read_lock();
1375 sem_lock_and_putref(sma);
1376 if (!ipc_valid_object(&sma->sem_perm)) {
1377 err = -EIDRM;
1378 goto out_unlock;
1381 for (i = 0; i < sma->sem_nsems; i++)
1382 sem_io[i] = sma->sem_base[i].semval;
1383 sem_unlock(sma, -1);
1384 rcu_read_unlock();
1385 err = 0;
1386 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1387 err = -EFAULT;
1388 goto out_free;
1390 case SETALL:
1392 int i;
1393 struct sem_undo *un;
1395 if (!ipc_rcu_getref(sma)) {
1396 err = -EIDRM;
1397 goto out_rcu_wakeup;
1399 rcu_read_unlock();
1401 if (nsems > SEMMSL_FAST) {
1402 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1403 if (sem_io == NULL) {
1404 ipc_rcu_putref(sma, ipc_rcu_free);
1405 return -ENOMEM;
1409 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1410 ipc_rcu_putref(sma, ipc_rcu_free);
1411 err = -EFAULT;
1412 goto out_free;
1415 for (i = 0; i < nsems; i++) {
1416 if (sem_io[i] > SEMVMX) {
1417 ipc_rcu_putref(sma, ipc_rcu_free);
1418 err = -ERANGE;
1419 goto out_free;
1422 rcu_read_lock();
1423 sem_lock_and_putref(sma);
1424 if (!ipc_valid_object(&sma->sem_perm)) {
1425 err = -EIDRM;
1426 goto out_unlock;
1429 for (i = 0; i < nsems; i++)
1430 sma->sem_base[i].semval = sem_io[i];
1432 ipc_assert_locked_object(&sma->sem_perm);
1433 list_for_each_entry(un, &sma->list_id, list_id) {
1434 for (i = 0; i < nsems; i++)
1435 un->semadj[i] = 0;
1437 sma->sem_ctime = get_seconds();
1438 /* maybe some queued-up processes were waiting for this */
1439 do_smart_update(sma, NULL, 0, 0, &tasks);
1440 err = 0;
1441 goto out_unlock;
1443 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1445 err = -EINVAL;
1446 if (semnum < 0 || semnum >= nsems)
1447 goto out_rcu_wakeup;
1449 sem_lock(sma, NULL, -1);
1450 if (!ipc_valid_object(&sma->sem_perm)) {
1451 err = -EIDRM;
1452 goto out_unlock;
1454 curr = &sma->sem_base[semnum];
1456 switch (cmd) {
1457 case GETVAL:
1458 err = curr->semval;
1459 goto out_unlock;
1460 case GETPID:
1461 err = curr->sempid;
1462 goto out_unlock;
1463 case GETNCNT:
1464 err = count_semcnt(sma, semnum, 0);
1465 goto out_unlock;
1466 case GETZCNT:
1467 err = count_semcnt(sma, semnum, 1);
1468 goto out_unlock;
1471 out_unlock:
1472 sem_unlock(sma, -1);
1473 out_rcu_wakeup:
1474 rcu_read_unlock();
1475 wake_up_sem_queue_do(&tasks);
1476 out_free:
1477 if (sem_io != fast_sem_io)
1478 ipc_free(sem_io, sizeof(ushort)*nsems);
1479 return err;
1482 static inline unsigned long
1483 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1485 switch (version) {
1486 case IPC_64:
1487 if (copy_from_user(out, buf, sizeof(*out)))
1488 return -EFAULT;
1489 return 0;
1490 case IPC_OLD:
1492 struct semid_ds tbuf_old;
1494 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1495 return -EFAULT;
1497 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1498 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1499 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1501 return 0;
1503 default:
1504 return -EINVAL;
1509 * This function handles some semctl commands which require the rwsem
1510 * to be held in write mode.
1511 * NOTE: no locks must be held, the rwsem is taken inside this function.
1513 static int semctl_down(struct ipc_namespace *ns, int semid,
1514 int cmd, int version, void __user *p)
1516 struct sem_array *sma;
1517 int err;
1518 struct semid64_ds semid64;
1519 struct kern_ipc_perm *ipcp;
1521 if (cmd == IPC_SET) {
1522 if (copy_semid_from_user(&semid64, p, version))
1523 return -EFAULT;
1526 down_write(&sem_ids(ns).rwsem);
1527 rcu_read_lock();
1529 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1530 &semid64.sem_perm, 0);
1531 if (IS_ERR(ipcp)) {
1532 err = PTR_ERR(ipcp);
1533 goto out_unlock1;
1536 sma = container_of(ipcp, struct sem_array, sem_perm);
1538 err = security_sem_semctl(sma, cmd);
1539 if (err)
1540 goto out_unlock1;
1542 switch (cmd) {
1543 case IPC_RMID:
1544 sem_lock(sma, NULL, -1);
1545 /* freeary unlocks the ipc object and rcu */
1546 freeary(ns, ipcp);
1547 goto out_up;
1548 case IPC_SET:
1549 sem_lock(sma, NULL, -1);
1550 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1551 if (err)
1552 goto out_unlock0;
1553 sma->sem_ctime = get_seconds();
1554 break;
1555 default:
1556 err = -EINVAL;
1557 goto out_unlock1;
1560 out_unlock0:
1561 sem_unlock(sma, -1);
1562 out_unlock1:
1563 rcu_read_unlock();
1564 out_up:
1565 up_write(&sem_ids(ns).rwsem);
1566 return err;
1569 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1571 int version;
1572 struct ipc_namespace *ns;
1573 void __user *p = (void __user *)arg;
1575 if (semid < 0)
1576 return -EINVAL;
1578 version = ipc_parse_version(&cmd);
1579 ns = current->nsproxy->ipc_ns;
1581 switch (cmd) {
1582 case IPC_INFO:
1583 case SEM_INFO:
1584 case IPC_STAT:
1585 case SEM_STAT:
1586 return semctl_nolock(ns, semid, cmd, version, p);
1587 case GETALL:
1588 case GETVAL:
1589 case GETPID:
1590 case GETNCNT:
1591 case GETZCNT:
1592 case SETALL:
1593 return semctl_main(ns, semid, semnum, cmd, p);
1594 case SETVAL:
1595 return semctl_setval(ns, semid, semnum, arg);
1596 case IPC_RMID:
1597 case IPC_SET:
1598 return semctl_down(ns, semid, cmd, version, p);
1599 default:
1600 return -EINVAL;
1604 /* If the task doesn't already have a undo_list, then allocate one
1605 * here. We guarantee there is only one thread using this undo list,
1606 * and current is THE ONE
1608 * If this allocation and assignment succeeds, but later
1609 * portions of this code fail, there is no need to free the sem_undo_list.
1610 * Just let it stay associated with the task, and it'll be freed later
1611 * at exit time.
1613 * This can block, so callers must hold no locks.
1615 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1617 struct sem_undo_list *undo_list;
1619 undo_list = current->sysvsem.undo_list;
1620 if (!undo_list) {
1621 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1622 if (undo_list == NULL)
1623 return -ENOMEM;
1624 spin_lock_init(&undo_list->lock);
1625 atomic_set(&undo_list->refcnt, 1);
1626 INIT_LIST_HEAD(&undo_list->list_proc);
1628 current->sysvsem.undo_list = undo_list;
1630 *undo_listp = undo_list;
1631 return 0;
1634 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1636 struct sem_undo *un;
1638 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1639 if (un->semid == semid)
1640 return un;
1642 return NULL;
1645 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1647 struct sem_undo *un;
1649 assert_spin_locked(&ulp->lock);
1651 un = __lookup_undo(ulp, semid);
1652 if (un) {
1653 list_del_rcu(&un->list_proc);
1654 list_add_rcu(&un->list_proc, &ulp->list_proc);
1656 return un;
1660 * find_alloc_undo - lookup (and if not present create) undo array
1661 * @ns: namespace
1662 * @semid: semaphore array id
1664 * The function looks up (and if not present creates) the undo structure.
1665 * The size of the undo structure depends on the size of the semaphore
1666 * array, thus the alloc path is not that straightforward.
1667 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1668 * performs a rcu_read_lock().
1670 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1672 struct sem_array *sma;
1673 struct sem_undo_list *ulp;
1674 struct sem_undo *un, *new;
1675 int nsems, error;
1677 error = get_undo_list(&ulp);
1678 if (error)
1679 return ERR_PTR(error);
1681 rcu_read_lock();
1682 spin_lock(&ulp->lock);
1683 un = lookup_undo(ulp, semid);
1684 spin_unlock(&ulp->lock);
1685 if (likely(un != NULL))
1686 goto out;
1688 /* no undo structure around - allocate one. */
1689 /* step 1: figure out the size of the semaphore array */
1690 sma = sem_obtain_object_check(ns, semid);
1691 if (IS_ERR(sma)) {
1692 rcu_read_unlock();
1693 return ERR_CAST(sma);
1696 nsems = sma->sem_nsems;
1697 if (!ipc_rcu_getref(sma)) {
1698 rcu_read_unlock();
1699 un = ERR_PTR(-EIDRM);
1700 goto out;
1702 rcu_read_unlock();
1704 /* step 2: allocate new undo structure */
1705 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1706 if (!new) {
1707 ipc_rcu_putref(sma, ipc_rcu_free);
1708 return ERR_PTR(-ENOMEM);
1711 /* step 3: Acquire the lock on semaphore array */
1712 rcu_read_lock();
1713 sem_lock_and_putref(sma);
1714 if (!ipc_valid_object(&sma->sem_perm)) {
1715 sem_unlock(sma, -1);
1716 rcu_read_unlock();
1717 kfree(new);
1718 un = ERR_PTR(-EIDRM);
1719 goto out;
1721 spin_lock(&ulp->lock);
1724 * step 4: check for races: did someone else allocate the undo struct?
1726 un = lookup_undo(ulp, semid);
1727 if (un) {
1728 kfree(new);
1729 goto success;
1731 /* step 5: initialize & link new undo structure */
1732 new->semadj = (short *) &new[1];
1733 new->ulp = ulp;
1734 new->semid = semid;
1735 assert_spin_locked(&ulp->lock);
1736 list_add_rcu(&new->list_proc, &ulp->list_proc);
1737 ipc_assert_locked_object(&sma->sem_perm);
1738 list_add(&new->list_id, &sma->list_id);
1739 un = new;
1741 success:
1742 spin_unlock(&ulp->lock);
1743 sem_unlock(sma, -1);
1744 out:
1745 return un;
1750 * get_queue_result - retrieve the result code from sem_queue
1751 * @q: Pointer to queue structure
1753 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1754 * q->status, then we must loop until the value is replaced with the final
1755 * value: This may happen if a task is woken up by an unrelated event (e.g.
1756 * signal) and in parallel the task is woken up by another task because it got
1757 * the requested semaphores.
1759 * The function can be called with or without holding the semaphore spinlock.
1761 static int get_queue_result(struct sem_queue *q)
1763 int error;
1765 error = q->status;
1766 while (unlikely(error == IN_WAKEUP)) {
1767 cpu_relax();
1768 error = q->status;
1771 return error;
1774 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1775 unsigned, nsops, const struct timespec __user *, timeout)
1777 int error = -EINVAL;
1778 struct sem_array *sma;
1779 struct sembuf fast_sops[SEMOPM_FAST];
1780 struct sembuf *sops = fast_sops, *sop;
1781 struct sem_undo *un;
1782 int undos = 0, alter = 0, max, locknum;
1783 struct sem_queue queue;
1784 unsigned long jiffies_left = 0;
1785 struct ipc_namespace *ns;
1786 struct list_head tasks;
1788 ns = current->nsproxy->ipc_ns;
1790 if (nsops < 1 || semid < 0)
1791 return -EINVAL;
1792 if (nsops > ns->sc_semopm)
1793 return -E2BIG;
1794 if (nsops > SEMOPM_FAST) {
1795 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1796 if (sops == NULL)
1797 return -ENOMEM;
1799 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1800 error = -EFAULT;
1801 goto out_free;
1803 if (timeout) {
1804 struct timespec _timeout;
1805 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1806 error = -EFAULT;
1807 goto out_free;
1809 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1810 _timeout.tv_nsec >= 1000000000L) {
1811 error = -EINVAL;
1812 goto out_free;
1814 jiffies_left = timespec_to_jiffies(&_timeout);
1816 max = 0;
1817 for (sop = sops; sop < sops + nsops; sop++) {
1818 if (sop->sem_num >= max)
1819 max = sop->sem_num;
1820 if (sop->sem_flg & SEM_UNDO)
1821 undos = 1;
1822 if (sop->sem_op != 0)
1823 alter = 1;
1826 INIT_LIST_HEAD(&tasks);
1828 if (undos) {
1829 /* On success, find_alloc_undo takes the rcu_read_lock */
1830 un = find_alloc_undo(ns, semid);
1831 if (IS_ERR(un)) {
1832 error = PTR_ERR(un);
1833 goto out_free;
1835 } else {
1836 un = NULL;
1837 rcu_read_lock();
1840 sma = sem_obtain_object_check(ns, semid);
1841 if (IS_ERR(sma)) {
1842 rcu_read_unlock();
1843 error = PTR_ERR(sma);
1844 goto out_free;
1847 error = -EFBIG;
1848 if (max >= sma->sem_nsems)
1849 goto out_rcu_wakeup;
1851 error = -EACCES;
1852 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1853 goto out_rcu_wakeup;
1855 error = security_sem_semop(sma, sops, nsops, alter);
1856 if (error)
1857 goto out_rcu_wakeup;
1859 error = -EIDRM;
1860 locknum = sem_lock(sma, sops, nsops);
1862 * We eventually might perform the following check in a lockless
1863 * fashion, considering ipc_valid_object() locking constraints.
1864 * If nsops == 1 and there is no contention for sem_perm.lock, then
1865 * only a per-semaphore lock is held and it's OK to proceed with the
1866 * check below. More details on the fine grained locking scheme
1867 * entangled here and why it's RMID race safe on comments at sem_lock()
1869 if (!ipc_valid_object(&sma->sem_perm))
1870 goto out_unlock_free;
1872 * semid identifiers are not unique - find_alloc_undo may have
1873 * allocated an undo structure, it was invalidated by an RMID
1874 * and now a new array with received the same id. Check and fail.
1875 * This case can be detected checking un->semid. The existence of
1876 * "un" itself is guaranteed by rcu.
1878 if (un && un->semid == -1)
1879 goto out_unlock_free;
1881 queue.sops = sops;
1882 queue.nsops = nsops;
1883 queue.undo = un;
1884 queue.pid = task_tgid_vnr(current);
1885 queue.alter = alter;
1887 error = perform_atomic_semop(sma, &queue);
1888 if (error == 0) {
1889 /* If the operation was successful, then do
1890 * the required updates.
1892 if (alter)
1893 do_smart_update(sma, sops, nsops, 1, &tasks);
1894 else
1895 set_semotime(sma, sops);
1897 if (error <= 0)
1898 goto out_unlock_free;
1900 /* We need to sleep on this operation, so we put the current
1901 * task into the pending queue and go to sleep.
1904 if (nsops == 1) {
1905 struct sem *curr;
1906 curr = &sma->sem_base[sops->sem_num];
1908 if (alter) {
1909 if (sma->complex_count) {
1910 list_add_tail(&queue.list,
1911 &sma->pending_alter);
1912 } else {
1914 list_add_tail(&queue.list,
1915 &curr->pending_alter);
1917 } else {
1918 list_add_tail(&queue.list, &curr->pending_const);
1920 } else {
1921 if (!sma->complex_count)
1922 merge_queues(sma);
1924 if (alter)
1925 list_add_tail(&queue.list, &sma->pending_alter);
1926 else
1927 list_add_tail(&queue.list, &sma->pending_const);
1929 sma->complex_count++;
1932 queue.status = -EINTR;
1933 queue.sleeper = current;
1935 sleep_again:
1936 current->state = TASK_INTERRUPTIBLE;
1937 sem_unlock(sma, locknum);
1938 rcu_read_unlock();
1940 if (timeout)
1941 jiffies_left = schedule_timeout(jiffies_left);
1942 else
1943 schedule();
1945 error = get_queue_result(&queue);
1947 if (error != -EINTR) {
1948 /* fast path: update_queue already obtained all requested
1949 * resources.
1950 * Perform a smp_mb(): User space could assume that semop()
1951 * is a memory barrier: Without the mb(), the cpu could
1952 * speculatively read in user space stale data that was
1953 * overwritten by the previous owner of the semaphore.
1955 smp_mb();
1957 goto out_free;
1960 rcu_read_lock();
1961 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1964 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1966 error = get_queue_result(&queue);
1969 * Array removed? If yes, leave without sem_unlock().
1971 if (IS_ERR(sma)) {
1972 rcu_read_unlock();
1973 goto out_free;
1978 * If queue.status != -EINTR we are woken up by another process.
1979 * Leave without unlink_queue(), but with sem_unlock().
1981 if (error != -EINTR)
1982 goto out_unlock_free;
1985 * If an interrupt occurred we have to clean up the queue
1987 if (timeout && jiffies_left == 0)
1988 error = -EAGAIN;
1991 * If the wakeup was spurious, just retry
1993 if (error == -EINTR && !signal_pending(current))
1994 goto sleep_again;
1996 unlink_queue(sma, &queue);
1998 out_unlock_free:
1999 sem_unlock(sma, locknum);
2000 out_rcu_wakeup:
2001 rcu_read_unlock();
2002 wake_up_sem_queue_do(&tasks);
2003 out_free:
2004 if (sops != fast_sops)
2005 kfree(sops);
2006 return error;
2009 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2010 unsigned, nsops)
2012 return sys_semtimedop(semid, tsops, nsops, NULL);
2015 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2016 * parent and child tasks.
2019 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2021 struct sem_undo_list *undo_list;
2022 int error;
2024 if (clone_flags & CLONE_SYSVSEM) {
2025 error = get_undo_list(&undo_list);
2026 if (error)
2027 return error;
2028 atomic_inc(&undo_list->refcnt);
2029 tsk->sysvsem.undo_list = undo_list;
2030 } else
2031 tsk->sysvsem.undo_list = NULL;
2033 return 0;
2037 * add semadj values to semaphores, free undo structures.
2038 * undo structures are not freed when semaphore arrays are destroyed
2039 * so some of them may be out of date.
2040 * IMPLEMENTATION NOTE: There is some confusion over whether the
2041 * set of adjustments that needs to be done should be done in an atomic
2042 * manner or not. That is, if we are attempting to decrement the semval
2043 * should we queue up and wait until we can do so legally?
2044 * The original implementation attempted to do this (queue and wait).
2045 * The current implementation does not do so. The POSIX standard
2046 * and SVID should be consulted to determine what behavior is mandated.
2048 void exit_sem(struct task_struct *tsk)
2050 struct sem_undo_list *ulp;
2052 ulp = tsk->sysvsem.undo_list;
2053 if (!ulp)
2054 return;
2055 tsk->sysvsem.undo_list = NULL;
2057 if (!atomic_dec_and_test(&ulp->refcnt))
2058 return;
2060 for (;;) {
2061 struct sem_array *sma;
2062 struct sem_undo *un;
2063 struct list_head tasks;
2064 int semid, i;
2066 rcu_read_lock();
2067 un = list_entry_rcu(ulp->list_proc.next,
2068 struct sem_undo, list_proc);
2069 if (&un->list_proc == &ulp->list_proc)
2070 semid = -1;
2071 else
2072 semid = un->semid;
2074 if (semid == -1) {
2075 rcu_read_unlock();
2076 break;
2079 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2080 /* exit_sem raced with IPC_RMID, nothing to do */
2081 if (IS_ERR(sma)) {
2082 rcu_read_unlock();
2083 continue;
2086 sem_lock(sma, NULL, -1);
2087 /* exit_sem raced with IPC_RMID, nothing to do */
2088 if (!ipc_valid_object(&sma->sem_perm)) {
2089 sem_unlock(sma, -1);
2090 rcu_read_unlock();
2091 continue;
2093 un = __lookup_undo(ulp, semid);
2094 if (un == NULL) {
2095 /* exit_sem raced with IPC_RMID+semget() that created
2096 * exactly the same semid. Nothing to do.
2098 sem_unlock(sma, -1);
2099 rcu_read_unlock();
2100 continue;
2103 /* remove un from the linked lists */
2104 ipc_assert_locked_object(&sma->sem_perm);
2105 list_del(&un->list_id);
2107 spin_lock(&ulp->lock);
2108 list_del_rcu(&un->list_proc);
2109 spin_unlock(&ulp->lock);
2111 /* perform adjustments registered in un */
2112 for (i = 0; i < sma->sem_nsems; i++) {
2113 struct sem *semaphore = &sma->sem_base[i];
2114 if (un->semadj[i]) {
2115 semaphore->semval += un->semadj[i];
2117 * Range checks of the new semaphore value,
2118 * not defined by sus:
2119 * - Some unices ignore the undo entirely
2120 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2121 * - some cap the value (e.g. FreeBSD caps
2122 * at 0, but doesn't enforce SEMVMX)
2124 * Linux caps the semaphore value, both at 0
2125 * and at SEMVMX.
2127 * Manfred <manfred@colorfullife.com>
2129 if (semaphore->semval < 0)
2130 semaphore->semval = 0;
2131 if (semaphore->semval > SEMVMX)
2132 semaphore->semval = SEMVMX;
2133 semaphore->sempid = task_tgid_vnr(current);
2136 /* maybe some queued-up processes were waiting for this */
2137 INIT_LIST_HEAD(&tasks);
2138 do_smart_update(sma, NULL, 0, 1, &tasks);
2139 sem_unlock(sma, -1);
2140 rcu_read_unlock();
2141 wake_up_sem_queue_do(&tasks);
2143 kfree_rcu(un, rcu);
2145 kfree(ulp);
2148 #ifdef CONFIG_PROC_FS
2149 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2151 struct user_namespace *user_ns = seq_user_ns(s);
2152 struct sem_array *sma = it;
2153 time_t sem_otime;
2156 * The proc interface isn't aware of sem_lock(), it calls
2157 * ipc_lock_object() directly (in sysvipc_find_ipc).
2158 * In order to stay compatible with sem_lock(), we must wait until
2159 * all simple semop() calls have left their critical regions.
2161 sem_wait_array(sma);
2163 sem_otime = get_semotime(sma);
2165 return seq_printf(s,
2166 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2167 sma->sem_perm.key,
2168 sma->sem_perm.id,
2169 sma->sem_perm.mode,
2170 sma->sem_nsems,
2171 from_kuid_munged(user_ns, sma->sem_perm.uid),
2172 from_kgid_munged(user_ns, sma->sem_perm.gid),
2173 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2174 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2175 sem_otime,
2176 sma->sem_ctime);
2178 #endif