4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
96 ktime_t soft
, hard
, now
;
99 if (hrtimer_active(period_timer
))
102 now
= hrtimer_cb_get_time(period_timer
);
103 hrtimer_forward(period_timer
, now
, period
);
105 soft
= hrtimer_get_softexpires(period_timer
);
106 hard
= hrtimer_get_expires(period_timer
);
107 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
108 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
109 HRTIMER_MODE_ABS_PINNED
, 0);
113 DEFINE_MUTEX(sched_domains_mutex
);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
116 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
118 void update_rq_clock(struct rq
*rq
)
122 if (rq
->skip_clock_update
> 0)
125 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
129 update_rq_clock_task(rq
, delta
);
133 * Debugging: various feature bits
136 #define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
139 const_debug
unsigned int sysctl_sched_features
=
140 #include "features.h"
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled) \
149 static const char * const sched_feat_names
[] = {
150 #include "features.h"
155 static int sched_feat_show(struct seq_file
*m
, void *v
)
159 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
160 if (!(sysctl_sched_features
& (1UL << i
)))
162 seq_printf(m
, "%s ", sched_feat_names
[i
]);
169 #ifdef HAVE_JUMP_LABEL
171 #define jump_label_key__true STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
174 #define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
177 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
178 #include "features.h"
183 static void sched_feat_disable(int i
)
185 if (static_key_enabled(&sched_feat_keys
[i
]))
186 static_key_slow_dec(&sched_feat_keys
[i
]);
189 static void sched_feat_enable(int i
)
191 if (!static_key_enabled(&sched_feat_keys
[i
]))
192 static_key_slow_inc(&sched_feat_keys
[i
]);
195 static void sched_feat_disable(int i
) { };
196 static void sched_feat_enable(int i
) { };
197 #endif /* HAVE_JUMP_LABEL */
199 static int sched_feat_set(char *cmp
)
204 if (strncmp(cmp
, "NO_", 3) == 0) {
209 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
210 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
212 sysctl_sched_features
&= ~(1UL << i
);
213 sched_feat_disable(i
);
215 sysctl_sched_features
|= (1UL << i
);
216 sched_feat_enable(i
);
226 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
227 size_t cnt
, loff_t
*ppos
)
237 if (copy_from_user(&buf
, ubuf
, cnt
))
243 /* Ensure the static_key remains in a consistent state */
244 inode
= file_inode(filp
);
245 mutex_lock(&inode
->i_mutex
);
246 i
= sched_feat_set(cmp
);
247 mutex_unlock(&inode
->i_mutex
);
248 if (i
== __SCHED_FEAT_NR
)
256 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
258 return single_open(filp
, sched_feat_show
, NULL
);
261 static const struct file_operations sched_feat_fops
= {
262 .open
= sched_feat_open
,
263 .write
= sched_feat_write
,
266 .release
= single_release
,
269 static __init
int sched_init_debug(void)
271 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
276 late_initcall(sched_init_debug
);
277 #endif /* CONFIG_SCHED_DEBUG */
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
283 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
286 * period over which we average the RT time consumption, measured
291 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
294 * period over which we measure -rt task cpu usage in us.
297 unsigned int sysctl_sched_rt_period
= 1000000;
299 __read_mostly
int scheduler_running
;
302 * part of the period that we allow rt tasks to run in us.
305 int sysctl_sched_rt_runtime
= 950000;
308 * __task_rq_lock - lock the rq @p resides on.
310 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
315 lockdep_assert_held(&p
->pi_lock
);
319 raw_spin_lock(&rq
->lock
);
320 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
)))
322 raw_spin_unlock(&rq
->lock
);
324 while (unlikely(task_on_rq_migrating(p
)))
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
332 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
333 __acquires(p
->pi_lock
)
339 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
341 raw_spin_lock(&rq
->lock
);
342 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
)))
344 raw_spin_unlock(&rq
->lock
);
345 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
347 while (unlikely(task_on_rq_migrating(p
)))
352 static void __task_rq_unlock(struct rq
*rq
)
355 raw_spin_unlock(&rq
->lock
);
359 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
361 __releases(p
->pi_lock
)
363 raw_spin_unlock(&rq
->lock
);
364 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
368 * this_rq_lock - lock this runqueue and disable interrupts.
370 static struct rq
*this_rq_lock(void)
377 raw_spin_lock(&rq
->lock
);
382 #ifdef CONFIG_SCHED_HRTICK
384 * Use HR-timers to deliver accurate preemption points.
387 static void hrtick_clear(struct rq
*rq
)
389 if (hrtimer_active(&rq
->hrtick_timer
))
390 hrtimer_cancel(&rq
->hrtick_timer
);
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
397 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
399 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
401 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
403 raw_spin_lock(&rq
->lock
);
405 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
406 raw_spin_unlock(&rq
->lock
);
408 return HRTIMER_NORESTART
;
413 static int __hrtick_restart(struct rq
*rq
)
415 struct hrtimer
*timer
= &rq
->hrtick_timer
;
416 ktime_t time
= hrtimer_get_softexpires(timer
);
418 return __hrtimer_start_range_ns(timer
, time
, 0, HRTIMER_MODE_ABS_PINNED
, 0);
422 * called from hardirq (IPI) context
424 static void __hrtick_start(void *arg
)
428 raw_spin_lock(&rq
->lock
);
429 __hrtick_restart(rq
);
430 rq
->hrtick_csd_pending
= 0;
431 raw_spin_unlock(&rq
->lock
);
435 * Called to set the hrtick timer state.
437 * called with rq->lock held and irqs disabled
439 void hrtick_start(struct rq
*rq
, u64 delay
)
441 struct hrtimer
*timer
= &rq
->hrtick_timer
;
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
449 delta
= max_t(s64
, delay
, 10000LL);
450 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
452 hrtimer_set_expires(timer
, time
);
454 if (rq
== this_rq()) {
455 __hrtick_restart(rq
);
456 } else if (!rq
->hrtick_csd_pending
) {
457 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
458 rq
->hrtick_csd_pending
= 1;
463 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
465 int cpu
= (int)(long)hcpu
;
468 case CPU_UP_CANCELED
:
469 case CPU_UP_CANCELED_FROZEN
:
470 case CPU_DOWN_PREPARE
:
471 case CPU_DOWN_PREPARE_FROZEN
:
473 case CPU_DEAD_FROZEN
:
474 hrtick_clear(cpu_rq(cpu
));
481 static __init
void init_hrtick(void)
483 hotcpu_notifier(hotplug_hrtick
, 0);
487 * Called to set the hrtick timer state.
489 * called with rq->lock held and irqs disabled
491 void hrtick_start(struct rq
*rq
, u64 delay
)
493 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
494 HRTIMER_MODE_REL_PINNED
, 0);
497 static inline void init_hrtick(void)
500 #endif /* CONFIG_SMP */
502 static void init_rq_hrtick(struct rq
*rq
)
505 rq
->hrtick_csd_pending
= 0;
507 rq
->hrtick_csd
.flags
= 0;
508 rq
->hrtick_csd
.func
= __hrtick_start
;
509 rq
->hrtick_csd
.info
= rq
;
512 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
513 rq
->hrtick_timer
.function
= hrtick
;
515 #else /* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq
*rq
)
520 static inline void init_rq_hrtick(struct rq
*rq
)
524 static inline void init_hrtick(void)
527 #endif /* CONFIG_SCHED_HRTICK */
530 * cmpxchg based fetch_or, macro so it works for different integer types
532 #define fetch_or(ptr, val) \
533 ({ typeof(*(ptr)) __old, __val = *(ptr); \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
549 static bool set_nr_and_not_polling(struct task_struct
*p
)
551 struct thread_info
*ti
= task_thread_info(p
);
552 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
561 static bool set_nr_if_polling(struct task_struct
*p
)
563 struct thread_info
*ti
= task_thread_info(p
);
564 typeof(ti
->flags
) old
, val
= ACCESS_ONCE(ti
->flags
);
567 if (!(val
& _TIF_POLLING_NRFLAG
))
569 if (val
& _TIF_NEED_RESCHED
)
571 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
580 static bool set_nr_and_not_polling(struct task_struct
*p
)
582 set_tsk_need_resched(p
);
587 static bool set_nr_if_polling(struct task_struct
*p
)
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
601 void resched_curr(struct rq
*rq
)
603 struct task_struct
*curr
= rq
->curr
;
606 lockdep_assert_held(&rq
->lock
);
608 if (test_tsk_need_resched(curr
))
613 if (cpu
== smp_processor_id()) {
614 set_tsk_need_resched(curr
);
615 set_preempt_need_resched();
619 if (set_nr_and_not_polling(curr
))
620 smp_send_reschedule(cpu
);
622 trace_sched_wake_idle_without_ipi(cpu
);
625 void resched_cpu(int cpu
)
627 struct rq
*rq
= cpu_rq(cpu
);
630 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
633 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
637 #ifdef CONFIG_NO_HZ_COMMON
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
646 int get_nohz_timer_target(int pinned
)
648 int cpu
= smp_processor_id();
650 struct sched_domain
*sd
;
652 if (pinned
|| !get_sysctl_timer_migration() || !idle_cpu(cpu
))
656 for_each_domain(cpu
, sd
) {
657 for_each_cpu(i
, sched_domain_span(sd
)) {
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
678 static void wake_up_idle_cpu(int cpu
)
680 struct rq
*rq
= cpu_rq(cpu
);
682 if (cpu
== smp_processor_id())
685 if (set_nr_and_not_polling(rq
->idle
))
686 smp_send_reschedule(cpu
);
688 trace_sched_wake_idle_without_ipi(cpu
);
691 static bool wake_up_full_nohz_cpu(int cpu
)
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
699 if (tick_nohz_full_cpu(cpu
)) {
700 if (cpu
!= smp_processor_id() ||
701 tick_nohz_tick_stopped())
702 tick_nohz_full_kick_cpu(cpu
);
709 void wake_up_nohz_cpu(int cpu
)
711 if (!wake_up_full_nohz_cpu(cpu
))
712 wake_up_idle_cpu(cpu
);
715 static inline bool got_nohz_idle_kick(void)
717 int cpu
= smp_processor_id();
719 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
722 if (idle_cpu(cpu
) && !need_resched())
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
729 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
733 #else /* CONFIG_NO_HZ_COMMON */
735 static inline bool got_nohz_idle_kick(void)
740 #endif /* CONFIG_NO_HZ_COMMON */
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
750 if (this_rq()->nr_running
> 1)
755 #endif /* CONFIG_NO_HZ_FULL */
757 void sched_avg_update(struct rq
*rq
)
759 s64 period
= sched_avg_period();
761 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
767 asm("" : "+rm" (rq
->age_stamp
));
768 rq
->age_stamp
+= period
;
773 #endif /* CONFIG_SMP */
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
781 * Caller must hold rcu_lock or sufficient equivalent.
783 int walk_tg_tree_from(struct task_group
*from
,
784 tg_visitor down
, tg_visitor up
, void *data
)
786 struct task_group
*parent
, *child
;
792 ret
= (*down
)(parent
, data
);
795 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
802 ret
= (*up
)(parent
, data
);
803 if (ret
|| parent
== from
)
807 parent
= parent
->parent
;
814 int tg_nop(struct task_group
*tg
, void *data
)
820 static void set_load_weight(struct task_struct
*p
)
822 int prio
= p
->static_prio
- MAX_RT_PRIO
;
823 struct load_weight
*load
= &p
->se
.load
;
826 * SCHED_IDLE tasks get minimal weight:
828 if (p
->policy
== SCHED_IDLE
) {
829 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
830 load
->inv_weight
= WMULT_IDLEPRIO
;
834 load
->weight
= scale_load(prio_to_weight
[prio
]);
835 load
->inv_weight
= prio_to_wmult
[prio
];
838 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
841 sched_info_queued(rq
, p
);
842 p
->sched_class
->enqueue_task(rq
, p
, flags
);
845 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
848 sched_info_dequeued(rq
, p
);
849 p
->sched_class
->dequeue_task(rq
, p
, flags
);
852 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
854 if (task_contributes_to_load(p
))
855 rq
->nr_uninterruptible
--;
857 enqueue_task(rq
, p
, flags
);
860 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
862 if (task_contributes_to_load(p
))
863 rq
->nr_uninterruptible
++;
865 dequeue_task(rq
, p
, flags
);
868 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal
= 0, irq_delta
= 0;
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
895 if (irq_delta
> delta
)
898 rq
->prev_irq_time
+= irq_delta
;
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_key_false((¶virt_steal_rq_enabled
))) {
903 steal
= paravirt_steal_clock(cpu_of(rq
));
904 steal
-= rq
->prev_steal_time_rq
;
906 if (unlikely(steal
> delta
))
909 rq
->prev_steal_time_rq
+= steal
;
914 rq
->clock_task
+= delta
;
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
918 sched_rt_avg_update(rq
, irq_delta
+ steal
);
922 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
924 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
925 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
936 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
938 stop
->sched_class
= &stop_sched_class
;
941 cpu_rq(cpu
)->stop
= stop
;
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
948 old_stop
->sched_class
= &rt_sched_class
;
953 * __normal_prio - return the priority that is based on the static prio
955 static inline int __normal_prio(struct task_struct
*p
)
957 return p
->static_prio
;
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
967 static inline int normal_prio(struct task_struct
*p
)
971 if (task_has_dl_policy(p
))
972 prio
= MAX_DL_PRIO
-1;
973 else if (task_has_rt_policy(p
))
974 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
976 prio
= __normal_prio(p
);
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
987 static int effective_prio(struct task_struct
*p
)
989 p
->normal_prio
= normal_prio(p
);
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
995 if (!rt_prio(p
->prio
))
996 return p
->normal_prio
;
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1006 inline int task_curr(const struct task_struct
*p
)
1008 return cpu_curr(task_cpu(p
)) == p
;
1011 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1012 const struct sched_class
*prev_class
,
1015 if (prev_class
!= p
->sched_class
) {
1016 if (prev_class
->switched_from
)
1017 prev_class
->switched_from(rq
, p
);
1018 p
->sched_class
->switched_to(rq
, p
);
1019 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1020 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1023 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1025 const struct sched_class
*class;
1027 if (p
->sched_class
== rq
->curr
->sched_class
) {
1028 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1030 for_each_class(class) {
1031 if (class == rq
->curr
->sched_class
)
1033 if (class == p
->sched_class
) {
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1044 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1045 rq
->skip_clock_update
= 1;
1049 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1051 #ifdef CONFIG_SCHED_DEBUG
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1056 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1057 !(task_preempt_count(p
) & PREEMPT_ACTIVE
));
1059 #ifdef CONFIG_LOCKDEP
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 * Furthermore, all task_rq users should acquire both locks, see
1070 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1071 lockdep_is_held(&task_rq(p
)->lock
)));
1075 trace_sched_migrate_task(p
, new_cpu
);
1077 if (task_cpu(p
) != new_cpu
) {
1078 if (p
->sched_class
->migrate_task_rq
)
1079 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1080 p
->se
.nr_migrations
++;
1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1084 __set_task_cpu(p
, new_cpu
);
1087 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1089 if (task_on_rq_queued(p
)) {
1090 struct rq
*src_rq
, *dst_rq
;
1092 src_rq
= task_rq(p
);
1093 dst_rq
= cpu_rq(cpu
);
1095 deactivate_task(src_rq
, p
, 0);
1096 set_task_cpu(p
, cpu
);
1097 activate_task(dst_rq
, p
, 0);
1098 check_preempt_curr(dst_rq
, p
, 0);
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1109 struct migration_swap_arg
{
1110 struct task_struct
*src_task
, *dst_task
;
1111 int src_cpu
, dst_cpu
;
1114 static int migrate_swap_stop(void *data
)
1116 struct migration_swap_arg
*arg
= data
;
1117 struct rq
*src_rq
, *dst_rq
;
1120 src_rq
= cpu_rq(arg
->src_cpu
);
1121 dst_rq
= cpu_rq(arg
->dst_cpu
);
1123 double_raw_lock(&arg
->src_task
->pi_lock
,
1124 &arg
->dst_task
->pi_lock
);
1125 double_rq_lock(src_rq
, dst_rq
);
1126 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1129 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1132 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1135 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1138 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1139 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1144 double_rq_unlock(src_rq
, dst_rq
);
1145 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1146 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1152 * Cross migrate two tasks
1154 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1156 struct migration_swap_arg arg
;
1159 arg
= (struct migration_swap_arg
){
1161 .src_cpu
= task_cpu(cur
),
1163 .dst_cpu
= task_cpu(p
),
1166 if (arg
.src_cpu
== arg
.dst_cpu
)
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1173 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1176 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1179 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1182 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1183 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1189 struct migration_arg
{
1190 struct task_struct
*task
;
1194 static int migration_cpu_stop(void *data
);
1197 * wait_task_inactive - wait for a thread to unschedule.
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1212 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1214 unsigned long flags
;
1215 int running
, queued
;
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1239 while (task_running(rq
, p
)) {
1240 if (match_state
&& unlikely(p
->state
!= match_state
))
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1250 rq
= task_rq_lock(p
, &flags
);
1251 trace_sched_wait_task(p
);
1252 running
= task_running(rq
, p
);
1253 queued
= task_on_rq_queued(p
);
1255 if (!match_state
|| p
->state
== match_state
)
1256 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1257 task_rq_unlock(rq
, p
, &flags
);
1260 * If it changed from the expected state, bail out now.
1262 if (unlikely(!ncsw
))
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1269 * Oops. Go back and try again..
1271 if (unlikely(running
)) {
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1281 * So if it was still runnable (but just not actively
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1285 if (unlikely(queued
)) {
1286 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1288 set_current_state(TASK_UNINTERRUPTIBLE
);
1289 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1317 void kick_process(struct task_struct
*p
)
1323 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1324 smp_send_reschedule(cpu
);
1327 EXPORT_SYMBOL_GPL(kick_process
);
1328 #endif /* CONFIG_SMP */
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1334 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1336 int nid
= cpu_to_node(cpu
);
1337 const struct cpumask
*nodemask
= NULL
;
1338 enum { cpuset
, possible
, fail
} state
= cpuset
;
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1347 nodemask
= cpumask_of_node(nid
);
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu
, nodemask
) {
1351 if (!cpu_online(dest_cpu
))
1353 if (!cpu_active(dest_cpu
))
1355 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1361 /* Any allowed, online CPU? */
1362 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1363 if (!cpu_online(dest_cpu
))
1365 if (!cpu_active(dest_cpu
))
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p
);
1378 do_set_cpus_allowed(p
, cpu_possible_mask
);
1389 if (state
!= cpuset
) {
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1395 if (p
->mm
&& printk_ratelimit()) {
1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 task_pid_nr(p
), p
->comm
, cpu
);
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1410 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * Since this is common to all placement strategies, this lives here.
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1422 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1424 cpu
= select_fallback_rq(task_cpu(p
), p
);
1429 static void update_avg(u64
*avg
, u64 sample
)
1431 s64 diff
= sample
- *avg
;
1437 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1439 #ifdef CONFIG_SCHEDSTATS
1440 struct rq
*rq
= this_rq();
1443 int this_cpu
= smp_processor_id();
1445 if (cpu
== this_cpu
) {
1446 schedstat_inc(rq
, ttwu_local
);
1447 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1449 struct sched_domain
*sd
;
1451 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1453 for_each_domain(this_cpu
, sd
) {
1454 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1455 schedstat_inc(sd
, ttwu_wake_remote
);
1462 if (wake_flags
& WF_MIGRATED
)
1463 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1465 #endif /* CONFIG_SMP */
1467 schedstat_inc(rq
, ttwu_count
);
1468 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1470 if (wake_flags
& WF_SYNC
)
1471 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1473 #endif /* CONFIG_SCHEDSTATS */
1476 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1478 activate_task(rq
, p
, en_flags
);
1479 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1481 /* if a worker is waking up, notify workqueue */
1482 if (p
->flags
& PF_WQ_WORKER
)
1483 wq_worker_waking_up(p
, cpu_of(rq
));
1487 * Mark the task runnable and perform wakeup-preemption.
1490 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1492 check_preempt_curr(rq
, p
, wake_flags
);
1493 trace_sched_wakeup(p
, true);
1495 p
->state
= TASK_RUNNING
;
1497 if (p
->sched_class
->task_woken
)
1498 p
->sched_class
->task_woken(rq
, p
);
1500 if (rq
->idle_stamp
) {
1501 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1502 u64 max
= 2*rq
->max_idle_balance_cost
;
1504 update_avg(&rq
->avg_idle
, delta
);
1506 if (rq
->avg_idle
> max
)
1515 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1518 if (p
->sched_contributes_to_load
)
1519 rq
->nr_uninterruptible
--;
1522 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1523 ttwu_do_wakeup(rq
, p
, wake_flags
);
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1532 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1537 rq
= __task_rq_lock(p
);
1538 if (task_on_rq_queued(p
)) {
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq
);
1541 ttwu_do_wakeup(rq
, p
, wake_flags
);
1544 __task_rq_unlock(rq
);
1550 void sched_ttwu_pending(void)
1552 struct rq
*rq
= this_rq();
1553 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1554 struct task_struct
*p
;
1555 unsigned long flags
;
1560 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1563 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1564 llist
= llist_next(llist
);
1565 ttwu_do_activate(rq
, p
, 0);
1568 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1571 void scheduler_ipi(void)
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 preempt_fold_need_resched();
1580 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1589 * Some archs already do call them, luckily irq_enter/exit nest
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1597 sched_ttwu_pending();
1600 * Check if someone kicked us for doing the nohz idle load balance.
1602 if (unlikely(got_nohz_idle_kick())) {
1603 this_rq()->idle_balance
= 1;
1604 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1609 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1611 struct rq
*rq
= cpu_rq(cpu
);
1613 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1614 if (!set_nr_if_polling(rq
->idle
))
1615 smp_send_reschedule(cpu
);
1617 trace_sched_wake_idle_without_ipi(cpu
);
1621 void wake_up_if_idle(int cpu
)
1623 struct rq
*rq
= cpu_rq(cpu
);
1624 unsigned long flags
;
1626 if (!is_idle_task(rq
->curr
))
1629 if (set_nr_if_polling(rq
->idle
)) {
1630 trace_sched_wake_idle_without_ipi(cpu
);
1632 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1633 if (is_idle_task(rq
->curr
))
1634 smp_send_reschedule(cpu
);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1640 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1642 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1644 #endif /* CONFIG_SMP */
1646 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1648 struct rq
*rq
= cpu_rq(cpu
);
1650 #if defined(CONFIG_SMP)
1651 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1652 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1653 ttwu_queue_remote(p
, cpu
);
1658 raw_spin_lock(&rq
->lock
);
1659 ttwu_do_activate(rq
, p
, 0);
1660 raw_spin_unlock(&rq
->lock
);
1664 * try_to_wake_up - wake up a thread
1665 * @p: the thread to be awakened
1666 * @state: the mask of task states that can be woken
1667 * @wake_flags: wake modifier flags (WF_*)
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1675 * Return: %true if @p was woken up, %false if it was already running.
1676 * or @state didn't match @p's state.
1679 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1681 unsigned long flags
;
1682 int cpu
, success
= 0;
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1690 smp_mb__before_spinlock();
1691 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1692 if (!(p
->state
& state
))
1695 success
= 1; /* we're going to change ->state */
1698 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
1709 * Pairs with the smp_wmb() in finish_lock_switch().
1713 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1714 p
->state
= TASK_WAKING
;
1716 if (p
->sched_class
->task_waking
)
1717 p
->sched_class
->task_waking(p
);
1719 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1720 if (task_cpu(p
) != cpu
) {
1721 wake_flags
|= WF_MIGRATED
;
1722 set_task_cpu(p
, cpu
);
1724 #endif /* CONFIG_SMP */
1728 ttwu_stat(p
, cpu
, wake_flags
);
1730 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1739 * Put @p on the run-queue if it's not already there. The caller must
1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1743 static void try_to_wake_up_local(struct task_struct
*p
)
1745 struct rq
*rq
= task_rq(p
);
1747 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1748 WARN_ON_ONCE(p
== current
))
1751 lockdep_assert_held(&rq
->lock
);
1753 if (!raw_spin_trylock(&p
->pi_lock
)) {
1754 raw_spin_unlock(&rq
->lock
);
1755 raw_spin_lock(&p
->pi_lock
);
1756 raw_spin_lock(&rq
->lock
);
1759 if (!(p
->state
& TASK_NORMAL
))
1762 if (!task_on_rq_queued(p
))
1763 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1765 ttwu_do_wakeup(rq
, p
, 0);
1766 ttwu_stat(p
, smp_processor_id(), 0);
1768 raw_spin_unlock(&p
->pi_lock
);
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1775 * Attempt to wake up the nominated process and move it to the set of runnable
1778 * Return: 1 if the process was woken up, 0 if it was already running.
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1783 int wake_up_process(struct task_struct
*p
)
1785 WARN_ON(task_is_stopped_or_traced(p
));
1786 return try_to_wake_up(p
, TASK_NORMAL
, 0);
1788 EXPORT_SYMBOL(wake_up_process
);
1790 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1792 return try_to_wake_up(p
, state
, 0);
1796 * This function clears the sched_dl_entity static params.
1798 void __dl_clear_params(struct task_struct
*p
)
1800 struct sched_dl_entity
*dl_se
= &p
->dl
;
1802 dl_se
->dl_runtime
= 0;
1803 dl_se
->dl_deadline
= 0;
1804 dl_se
->dl_period
= 0;
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
1813 * __sched_fork() is basic setup used by init_idle() too:
1815 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1820 p
->se
.exec_start
= 0;
1821 p
->se
.sum_exec_runtime
= 0;
1822 p
->se
.prev_sum_exec_runtime
= 0;
1823 p
->se
.nr_migrations
= 0;
1825 INIT_LIST_HEAD(&p
->se
.group_node
);
1827 #ifdef CONFIG_SCHEDSTATS
1828 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1831 RB_CLEAR_NODE(&p
->dl
.rb_node
);
1832 hrtimer_init(&p
->dl
.dl_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1833 __dl_clear_params(p
);
1835 INIT_LIST_HEAD(&p
->rt
.run_list
);
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1841 #ifdef CONFIG_NUMA_BALANCING
1842 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
1843 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1844 p
->mm
->numa_scan_seq
= 0;
1847 if (clone_flags
& CLONE_VM
)
1848 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
1850 p
->numa_preferred_nid
= -1;
1852 p
->node_stamp
= 0ULL;
1853 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
1854 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1855 p
->numa_work
.next
= &p
->numa_work
;
1856 p
->numa_faults_memory
= NULL
;
1857 p
->numa_faults_buffer_memory
= NULL
;
1858 p
->last_task_numa_placement
= 0;
1859 p
->last_sum_exec_runtime
= 0;
1861 INIT_LIST_HEAD(&p
->numa_entry
);
1862 p
->numa_group
= NULL
;
1863 #endif /* CONFIG_NUMA_BALANCING */
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled
)
1871 sched_feat_set("NUMA");
1873 sched_feat_set("NO_NUMA");
1876 __read_mostly
bool numabalancing_enabled
;
1878 void set_numabalancing_state(bool enabled
)
1880 numabalancing_enabled
= enabled
;
1882 #endif /* CONFIG_SCHED_DEBUG */
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
1886 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1890 int state
= numabalancing_enabled
;
1892 if (write
&& !capable(CAP_SYS_ADMIN
))
1897 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
1901 set_numabalancing_state(state
);
1908 * fork()/clone()-time setup:
1910 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1912 unsigned long flags
;
1913 int cpu
= get_cpu();
1915 __sched_fork(clone_flags
, p
);
1917 * We mark the process as running here. This guarantees that
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1921 p
->state
= TASK_RUNNING
;
1924 * Make sure we do not leak PI boosting priority to the child.
1926 p
->prio
= current
->normal_prio
;
1929 * Revert to default priority/policy on fork if requested.
1931 if (unlikely(p
->sched_reset_on_fork
)) {
1932 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
1933 p
->policy
= SCHED_NORMAL
;
1934 p
->static_prio
= NICE_TO_PRIO(0);
1936 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1937 p
->static_prio
= NICE_TO_PRIO(0);
1939 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1946 p
->sched_reset_on_fork
= 0;
1949 if (dl_prio(p
->prio
)) {
1952 } else if (rt_prio(p
->prio
)) {
1953 p
->sched_class
= &rt_sched_class
;
1955 p
->sched_class
= &fair_sched_class
;
1958 if (p
->sched_class
->task_fork
)
1959 p
->sched_class
->task_fork(p
);
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1966 * Silence PROVE_RCU.
1968 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1969 set_task_cpu(p
, cpu
);
1970 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 if (likely(sched_info_on()))
1974 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1976 #if defined(CONFIG_SMP)
1979 init_task_preempt_count(p
);
1981 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1982 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
1989 unsigned long to_ratio(u64 period
, u64 runtime
)
1991 if (runtime
== RUNTIME_INF
)
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
2002 return div64_u64(runtime
<< 20, period
);
2006 inline struct dl_bw
*dl_bw_of(int i
)
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
2010 return &cpu_rq(i
)->rd
->dl_bw
;
2013 static inline int dl_bw_cpus(int i
)
2015 struct root_domain
*rd
= cpu_rq(i
)->rd
;
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
2020 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
2026 inline struct dl_bw
*dl_bw_of(int i
)
2028 return &cpu_rq(i
)->dl
.dl_bw
;
2031 static inline int dl_bw_cpus(int i
)
2038 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
2040 dl_b
->total_bw
-= tsk_bw
;
2044 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
2046 dl_b
->total_bw
+= tsk_bw
;
2050 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
2052 return dl_b
->bw
!= -1 &&
2053 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2062 * This function is called while holding p's rq->lock.
2064 static int dl_overflow(struct task_struct
*p
, int policy
,
2065 const struct sched_attr
*attr
)
2068 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2069 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2070 u64 runtime
= attr
->sched_runtime
;
2071 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2074 if (new_bw
== p
->dl
.dl_bw
)
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2082 raw_spin_lock(&dl_b
->lock
);
2083 cpus
= dl_bw_cpus(task_cpu(p
));
2084 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2085 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2086 __dl_add(dl_b
, new_bw
);
2088 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2089 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2090 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2091 __dl_add(dl_b
, new_bw
);
2093 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2094 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2097 raw_spin_unlock(&dl_b
->lock
);
2102 extern void init_dl_bw(struct dl_bw
*dl_b
);
2105 * wake_up_new_task - wake up a newly created task for the first time.
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2111 void wake_up_new_task(struct task_struct
*p
)
2113 unsigned long flags
;
2116 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
2123 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p
);
2128 rq
= __task_rq_lock(p
);
2129 activate_task(rq
, p
, 0);
2130 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2131 trace_sched_wakeup_new(p
, true);
2132 check_preempt_curr(rq
, p
, WF_FORK
);
2134 if (p
->sched_class
->task_woken
)
2135 p
->sched_class
->task_woken(rq
, p
);
2137 task_rq_unlock(rq
, p
, &flags
);
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144 * @notifier: notifier struct to register
2146 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2148 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2156 * This is safe to call from within a preemption notifier.
2158 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2160 hlist_del(¬ifier
->link
);
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2164 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2166 struct preempt_notifier
*notifier
;
2168 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2169 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2173 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2174 struct task_struct
*next
)
2176 struct preempt_notifier
*notifier
;
2178 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2179 notifier
->ops
->sched_out(notifier
, next
);
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2184 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2189 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2190 struct task_struct
*next
)
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
2199 * @prev: the current task that is being switched out
2200 * @next: the task we are going to switch to.
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2206 * prepare_task_switch sets up locking and calls architecture specific
2210 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2211 struct task_struct
*next
)
2213 trace_sched_switch(prev
, next
);
2214 sched_info_switch(rq
, prev
, next
);
2215 perf_event_task_sched_out(prev
, next
);
2216 fire_sched_out_preempt_notifiers(prev
, next
);
2217 prepare_lock_switch(rq
, next
);
2218 prepare_arch_switch(next
);
2222 * finish_task_switch - clean up after a task-switch
2223 * @rq: runqueue associated with task-switch
2224 * @prev: the thread we just switched away from.
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
2231 * Note that we may have delayed dropping an mm in context_switch(). If
2232 * so, we finish that here outside of the runqueue lock. (Doing it
2233 * with the lock held can cause deadlocks; see schedule() for
2236 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2237 __releases(rq
->lock
)
2239 struct mm_struct
*mm
= rq
->prev_mm
;
2245 * A task struct has one reference for the use as "current".
2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
2249 * The test for TASK_DEAD must occur while the runqueue locks are
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2253 * Manfred Spraul <manfred@colorfullife.com>
2255 prev_state
= prev
->state
;
2256 vtime_task_switch(prev
);
2257 finish_arch_switch(prev
);
2258 perf_event_task_sched_in(prev
, current
);
2259 finish_lock_switch(rq
, prev
);
2260 finish_arch_post_lock_switch();
2262 fire_sched_in_preempt_notifiers(current
);
2265 if (unlikely(prev_state
== TASK_DEAD
)) {
2266 if (prev
->sched_class
->task_dead
)
2267 prev
->sched_class
->task_dead(prev
);
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
2273 kprobe_flush_task(prev
);
2274 put_task_struct(prev
);
2277 tick_nohz_task_switch(current
);
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq
*rq
)
2285 if (rq
->post_schedule
) {
2286 unsigned long flags
;
2288 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2289 if (rq
->curr
->sched_class
->post_schedule
)
2290 rq
->curr
->sched_class
->post_schedule(rq
);
2291 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2293 rq
->post_schedule
= 0;
2299 static inline void post_schedule(struct rq
*rq
)
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2309 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2310 __releases(rq
->lock
)
2312 struct rq
*rq
= this_rq();
2314 finish_task_switch(rq
, prev
);
2317 * FIXME: do we need to worry about rq being invalidated by the
2322 if (current
->set_child_tid
)
2323 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2331 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2332 struct task_struct
*next
)
2334 struct mm_struct
*mm
, *oldmm
;
2336 prepare_task_switch(rq
, prev
, next
);
2339 oldmm
= prev
->active_mm
;
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2345 arch_start_context_switch(prev
);
2348 next
->active_mm
= oldmm
;
2349 atomic_inc(&oldmm
->mm_count
);
2350 enter_lazy_tlb(oldmm
, next
);
2352 switch_mm(oldmm
, mm
, next
);
2355 prev
->active_mm
= NULL
;
2356 rq
->prev_mm
= oldmm
;
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2364 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2366 context_tracking_task_switch(prev
, next
);
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev
, next
, prev
);
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2376 finish_task_switch(this_rq(), prev
);
2380 * nr_running and nr_context_switches:
2382 * externally visible scheduler statistics: current number of runnable
2383 * threads, total number of context switches performed since bootup.
2385 unsigned long nr_running(void)
2387 unsigned long i
, sum
= 0;
2389 for_each_online_cpu(i
)
2390 sum
+= cpu_rq(i
)->nr_running
;
2396 * Check if only the current task is running on the cpu.
2398 bool single_task_running(void)
2400 if (cpu_rq(smp_processor_id())->nr_running
== 1)
2405 EXPORT_SYMBOL(single_task_running
);
2407 unsigned long long nr_context_switches(void)
2410 unsigned long long sum
= 0;
2412 for_each_possible_cpu(i
)
2413 sum
+= cpu_rq(i
)->nr_switches
;
2418 unsigned long nr_iowait(void)
2420 unsigned long i
, sum
= 0;
2422 for_each_possible_cpu(i
)
2423 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2428 unsigned long nr_iowait_cpu(int cpu
)
2430 struct rq
*this = cpu_rq(cpu
);
2431 return atomic_read(&this->nr_iowait
);
2434 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2436 struct rq
*this = this_rq();
2437 *nr_waiters
= atomic_read(&this->nr_iowait
);
2438 *load
= this->cpu_load
[0];
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
2447 void sched_exec(void)
2449 struct task_struct
*p
= current
;
2450 unsigned long flags
;
2453 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2454 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2455 if (dest_cpu
== smp_processor_id())
2458 if (likely(cpu_active(dest_cpu
))) {
2459 struct migration_arg arg
= { p
, dest_cpu
};
2461 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2462 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2466 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2471 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2472 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2474 EXPORT_PER_CPU_SYMBOL(kstat
);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2478 * Return any ns on the sched_clock that have not yet been accounted in
2479 * @p in case that task is currently running.
2481 * Called with task_rq_lock() held on @rq.
2483 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2492 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2493 update_rq_clock(rq
);
2494 ns
= rq_clock_task(rq
) - p
->se
.exec_start
;
2502 unsigned long long task_delta_exec(struct task_struct
*p
)
2504 unsigned long flags
;
2508 rq
= task_rq_lock(p
, &flags
);
2509 ns
= do_task_delta_exec(p
, rq
);
2510 task_rq_unlock(rq
, p
, &flags
);
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2520 unsigned long long task_sched_runtime(struct task_struct
*p
)
2522 unsigned long flags
;
2526 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2528 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 * So we have a optimization chance when the task's delta_exec is 0.
2530 * Reading ->on_cpu is racy, but this is ok.
2532 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 * If we race with it entering cpu, unaccounted time is 0. This is
2534 * indistinguishable from the read occurring a few cycles earlier.
2535 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 * been accounted, so we're correct here as well.
2538 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2539 return p
->se
.sum_exec_runtime
;
2542 rq
= task_rq_lock(p
, &flags
);
2543 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2544 task_rq_unlock(rq
, p
, &flags
);
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
2553 void scheduler_tick(void)
2555 int cpu
= smp_processor_id();
2556 struct rq
*rq
= cpu_rq(cpu
);
2557 struct task_struct
*curr
= rq
->curr
;
2561 raw_spin_lock(&rq
->lock
);
2562 update_rq_clock(rq
);
2563 curr
->sched_class
->task_tick(rq
, curr
, 0);
2564 update_cpu_load_active(rq
);
2565 raw_spin_unlock(&rq
->lock
);
2567 perf_event_task_tick();
2570 rq
->idle_balance
= idle_cpu(cpu
);
2571 trigger_load_balance(rq
);
2573 rq_last_tick_reset(rq
);
2576 #ifdef CONFIG_NO_HZ_FULL
2578 * scheduler_tick_max_deferment
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
2588 * Return: Maximum deferment in nanoseconds.
2590 u64
scheduler_tick_max_deferment(void)
2592 struct rq
*rq
= this_rq();
2593 unsigned long next
, now
= ACCESS_ONCE(jiffies
);
2595 next
= rq
->last_sched_tick
+ HZ
;
2597 if (time_before_eq(next
, now
))
2600 return jiffies_to_nsecs(next
- now
);
2604 notrace
unsigned long get_parent_ip(unsigned long addr
)
2606 if (in_lock_functions(addr
)) {
2607 addr
= CALLER_ADDR2
;
2608 if (in_lock_functions(addr
))
2609 addr
= CALLER_ADDR3
;
2614 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 defined(CONFIG_PREEMPT_TRACER))
2617 void preempt_count_add(int val
)
2619 #ifdef CONFIG_DEBUG_PREEMPT
2623 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2626 __preempt_count_add(val
);
2627 #ifdef CONFIG_DEBUG_PREEMPT
2629 * Spinlock count overflowing soon?
2631 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2634 if (preempt_count() == val
) {
2635 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2636 #ifdef CONFIG_DEBUG_PREEMPT
2637 current
->preempt_disable_ip
= ip
;
2639 trace_preempt_off(CALLER_ADDR0
, ip
);
2642 EXPORT_SYMBOL(preempt_count_add
);
2643 NOKPROBE_SYMBOL(preempt_count_add
);
2645 void preempt_count_sub(int val
)
2647 #ifdef CONFIG_DEBUG_PREEMPT
2651 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2654 * Is the spinlock portion underflowing?
2656 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2657 !(preempt_count() & PREEMPT_MASK
)))
2661 if (preempt_count() == val
)
2662 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2663 __preempt_count_sub(val
);
2665 EXPORT_SYMBOL(preempt_count_sub
);
2666 NOKPROBE_SYMBOL(preempt_count_sub
);
2671 * Print scheduling while atomic bug:
2673 static noinline
void __schedule_bug(struct task_struct
*prev
)
2675 if (oops_in_progress
)
2678 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 prev
->comm
, prev
->pid
, preempt_count());
2681 debug_show_held_locks(prev
);
2683 if (irqs_disabled())
2684 print_irqtrace_events(prev
);
2685 #ifdef CONFIG_DEBUG_PREEMPT
2686 if (in_atomic_preempt_off()) {
2687 pr_err("Preemption disabled at:");
2688 print_ip_sym(current
->preempt_disable_ip
);
2693 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2697 * Various schedule()-time debugging checks and statistics:
2699 static inline void schedule_debug(struct task_struct
*prev
)
2701 #ifdef CONFIG_SCHED_STACK_END_CHECK
2702 BUG_ON(unlikely(task_stack_end_corrupted(prev
)));
2705 * Test if we are atomic. Since do_exit() needs to call into
2706 * schedule() atomically, we ignore that path. Otherwise whine
2707 * if we are scheduling when we should not.
2709 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2710 __schedule_bug(prev
);
2713 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2715 schedstat_inc(this_rq(), sched_count
);
2719 * Pick up the highest-prio task:
2721 static inline struct task_struct
*
2722 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
2724 const struct sched_class
*class = &fair_sched_class
;
2725 struct task_struct
*p
;
2728 * Optimization: we know that if all tasks are in
2729 * the fair class we can call that function directly:
2731 if (likely(prev
->sched_class
== class &&
2732 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2733 p
= fair_sched_class
.pick_next_task(rq
, prev
);
2734 if (unlikely(p
== RETRY_TASK
))
2737 /* assumes fair_sched_class->next == idle_sched_class */
2739 p
= idle_sched_class
.pick_next_task(rq
, prev
);
2745 for_each_class(class) {
2746 p
= class->pick_next_task(rq
, prev
);
2748 if (unlikely(p
== RETRY_TASK
))
2754 BUG(); /* the idle class will always have a runnable task */
2758 * __schedule() is the main scheduler function.
2760 * The main means of driving the scheduler and thus entering this function are:
2762 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2764 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 * paths. For example, see arch/x86/entry_64.S.
2767 * To drive preemption between tasks, the scheduler sets the flag in timer
2768 * interrupt handler scheduler_tick().
2770 * 3. Wakeups don't really cause entry into schedule(). They add a
2771 * task to the run-queue and that's it.
2773 * Now, if the new task added to the run-queue preempts the current
2774 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 * called on the nearest possible occasion:
2777 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2779 * - in syscall or exception context, at the next outmost
2780 * preempt_enable(). (this might be as soon as the wake_up()'s
2783 * - in IRQ context, return from interrupt-handler to
2784 * preemptible context
2786 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2789 * - cond_resched() call
2790 * - explicit schedule() call
2791 * - return from syscall or exception to user-space
2792 * - return from interrupt-handler to user-space
2794 static void __sched
__schedule(void)
2796 struct task_struct
*prev
, *next
;
2797 unsigned long *switch_count
;
2803 cpu
= smp_processor_id();
2805 rcu_note_context_switch(cpu
);
2808 schedule_debug(prev
);
2810 if (sched_feat(HRTICK
))
2814 * Make sure that signal_pending_state()->signal_pending() below
2815 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 * done by the caller to avoid the race with signal_wake_up().
2818 smp_mb__before_spinlock();
2819 raw_spin_lock_irq(&rq
->lock
);
2821 switch_count
= &prev
->nivcsw
;
2822 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2823 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
2824 prev
->state
= TASK_RUNNING
;
2826 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
2830 * If a worker went to sleep, notify and ask workqueue
2831 * whether it wants to wake up a task to maintain
2834 if (prev
->flags
& PF_WQ_WORKER
) {
2835 struct task_struct
*to_wakeup
;
2837 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
2839 try_to_wake_up_local(to_wakeup
);
2842 switch_count
= &prev
->nvcsw
;
2845 if (task_on_rq_queued(prev
) || rq
->skip_clock_update
< 0)
2846 update_rq_clock(rq
);
2848 next
= pick_next_task(rq
, prev
);
2849 clear_tsk_need_resched(prev
);
2850 clear_preempt_need_resched();
2851 rq
->skip_clock_update
= 0;
2853 if (likely(prev
!= next
)) {
2858 context_switch(rq
, prev
, next
); /* unlocks the rq */
2860 * The context switch have flipped the stack from under us
2861 * and restored the local variables which were saved when
2862 * this task called schedule() in the past. prev == current
2863 * is still correct, but it can be moved to another cpu/rq.
2865 cpu
= smp_processor_id();
2868 raw_spin_unlock_irq(&rq
->lock
);
2872 sched_preempt_enable_no_resched();
2877 static inline void sched_submit_work(struct task_struct
*tsk
)
2879 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
2882 * If we are going to sleep and we have plugged IO queued,
2883 * make sure to submit it to avoid deadlocks.
2885 if (blk_needs_flush_plug(tsk
))
2886 blk_schedule_flush_plug(tsk
);
2889 asmlinkage __visible
void __sched
schedule(void)
2891 struct task_struct
*tsk
= current
;
2893 sched_submit_work(tsk
);
2896 EXPORT_SYMBOL(schedule
);
2898 #ifdef CONFIG_CONTEXT_TRACKING
2899 asmlinkage __visible
void __sched
schedule_user(void)
2902 * If we come here after a random call to set_need_resched(),
2903 * or we have been woken up remotely but the IPI has not yet arrived,
2904 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 * we find a better solution.
2914 * schedule_preempt_disabled - called with preemption disabled
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2918 void __sched
schedule_preempt_disabled(void)
2920 sched_preempt_enable_no_resched();
2925 #ifdef CONFIG_PREEMPT
2927 * this is the entry point to schedule() from in-kernel preemption
2928 * off of preempt_enable. Kernel preemptions off return from interrupt
2929 * occur there and call schedule directly.
2931 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
2934 * If there is a non-zero preempt_count or interrupts are disabled,
2935 * we do not want to preempt the current task. Just return..
2937 if (likely(!preemptible()))
2941 __preempt_count_add(PREEMPT_ACTIVE
);
2943 __preempt_count_sub(PREEMPT_ACTIVE
);
2946 * Check again in case we missed a preemption opportunity
2947 * between schedule and now.
2950 } while (need_resched());
2952 NOKPROBE_SYMBOL(preempt_schedule
);
2953 EXPORT_SYMBOL(preempt_schedule
);
2955 #ifdef CONFIG_CONTEXT_TRACKING
2957 * preempt_schedule_context - preempt_schedule called by tracing
2959 * The tracing infrastructure uses preempt_enable_notrace to prevent
2960 * recursion and tracing preempt enabling caused by the tracing
2961 * infrastructure itself. But as tracing can happen in areas coming
2962 * from userspace or just about to enter userspace, a preempt enable
2963 * can occur before user_exit() is called. This will cause the scheduler
2964 * to be called when the system is still in usermode.
2966 * To prevent this, the preempt_enable_notrace will use this function
2967 * instead of preempt_schedule() to exit user context if needed before
2968 * calling the scheduler.
2970 asmlinkage __visible
void __sched notrace
preempt_schedule_context(void)
2972 enum ctx_state prev_ctx
;
2974 if (likely(!preemptible()))
2978 __preempt_count_add(PREEMPT_ACTIVE
);
2980 * Needs preempt disabled in case user_exit() is traced
2981 * and the tracer calls preempt_enable_notrace() causing
2982 * an infinite recursion.
2984 prev_ctx
= exception_enter();
2986 exception_exit(prev_ctx
);
2988 __preempt_count_sub(PREEMPT_ACTIVE
);
2990 } while (need_resched());
2992 EXPORT_SYMBOL_GPL(preempt_schedule_context
);
2993 #endif /* CONFIG_CONTEXT_TRACKING */
2995 #endif /* CONFIG_PREEMPT */
2998 * this is the entry point to schedule() from kernel preemption
2999 * off of irq context.
3000 * Note, that this is called and return with irqs disabled. This will
3001 * protect us against recursive calling from irq.
3003 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3005 enum ctx_state prev_state
;
3007 /* Catch callers which need to be fixed */
3008 BUG_ON(preempt_count() || !irqs_disabled());
3010 prev_state
= exception_enter();
3013 __preempt_count_add(PREEMPT_ACTIVE
);
3016 local_irq_disable();
3017 __preempt_count_sub(PREEMPT_ACTIVE
);
3020 * Check again in case we missed a preemption opportunity
3021 * between schedule and now.
3024 } while (need_resched());
3026 exception_exit(prev_state
);
3029 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3032 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3034 EXPORT_SYMBOL(default_wake_function
);
3036 #ifdef CONFIG_RT_MUTEXES
3039 * rt_mutex_setprio - set the current priority of a task
3041 * @prio: prio value (kernel-internal form)
3043 * This function changes the 'effective' priority of a task. It does
3044 * not touch ->normal_prio like __setscheduler().
3046 * Used by the rt_mutex code to implement priority inheritance
3047 * logic. Call site only calls if the priority of the task changed.
3049 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3051 int oldprio
, queued
, running
, enqueue_flag
= 0;
3053 const struct sched_class
*prev_class
;
3055 BUG_ON(prio
> MAX_PRIO
);
3057 rq
= __task_rq_lock(p
);
3060 * Idle task boosting is a nono in general. There is one
3061 * exception, when PREEMPT_RT and NOHZ is active:
3063 * The idle task calls get_next_timer_interrupt() and holds
3064 * the timer wheel base->lock on the CPU and another CPU wants
3065 * to access the timer (probably to cancel it). We can safely
3066 * ignore the boosting request, as the idle CPU runs this code
3067 * with interrupts disabled and will complete the lock
3068 * protected section without being interrupted. So there is no
3069 * real need to boost.
3071 if (unlikely(p
== rq
->idle
)) {
3072 WARN_ON(p
!= rq
->curr
);
3073 WARN_ON(p
->pi_blocked_on
);
3077 trace_sched_pi_setprio(p
, prio
);
3079 prev_class
= p
->sched_class
;
3080 queued
= task_on_rq_queued(p
);
3081 running
= task_current(rq
, p
);
3083 dequeue_task(rq
, p
, 0);
3085 put_prev_task(rq
, p
);
3088 * Boosting condition are:
3089 * 1. -rt task is running and holds mutex A
3090 * --> -dl task blocks on mutex A
3092 * 2. -dl task is running and holds mutex A
3093 * --> -dl task blocks on mutex A and could preempt the
3096 if (dl_prio(prio
)) {
3097 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3098 if (!dl_prio(p
->normal_prio
) ||
3099 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3100 p
->dl
.dl_boosted
= 1;
3101 p
->dl
.dl_throttled
= 0;
3102 enqueue_flag
= ENQUEUE_REPLENISH
;
3104 p
->dl
.dl_boosted
= 0;
3105 p
->sched_class
= &dl_sched_class
;
3106 } else if (rt_prio(prio
)) {
3107 if (dl_prio(oldprio
))
3108 p
->dl
.dl_boosted
= 0;
3110 enqueue_flag
= ENQUEUE_HEAD
;
3111 p
->sched_class
= &rt_sched_class
;
3113 if (dl_prio(oldprio
))
3114 p
->dl
.dl_boosted
= 0;
3115 p
->sched_class
= &fair_sched_class
;
3121 p
->sched_class
->set_curr_task(rq
);
3123 enqueue_task(rq
, p
, enqueue_flag
);
3125 check_class_changed(rq
, p
, prev_class
, oldprio
);
3127 __task_rq_unlock(rq
);
3131 void set_user_nice(struct task_struct
*p
, long nice
)
3133 int old_prio
, delta
, queued
;
3134 unsigned long flags
;
3137 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3140 * We have to be careful, if called from sys_setpriority(),
3141 * the task might be in the middle of scheduling on another CPU.
3143 rq
= task_rq_lock(p
, &flags
);
3145 * The RT priorities are set via sched_setscheduler(), but we still
3146 * allow the 'normal' nice value to be set - but as expected
3147 * it wont have any effect on scheduling until the task is
3148 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3150 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3151 p
->static_prio
= NICE_TO_PRIO(nice
);
3154 queued
= task_on_rq_queued(p
);
3156 dequeue_task(rq
, p
, 0);
3158 p
->static_prio
= NICE_TO_PRIO(nice
);
3161 p
->prio
= effective_prio(p
);
3162 delta
= p
->prio
- old_prio
;
3165 enqueue_task(rq
, p
, 0);
3167 * If the task increased its priority or is running and
3168 * lowered its priority, then reschedule its CPU:
3170 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3174 task_rq_unlock(rq
, p
, &flags
);
3176 EXPORT_SYMBOL(set_user_nice
);
3179 * can_nice - check if a task can reduce its nice value
3183 int can_nice(const struct task_struct
*p
, const int nice
)
3185 /* convert nice value [19,-20] to rlimit style value [1,40] */
3186 int nice_rlim
= nice_to_rlimit(nice
);
3188 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3189 capable(CAP_SYS_NICE
));
3192 #ifdef __ARCH_WANT_SYS_NICE
3195 * sys_nice - change the priority of the current process.
3196 * @increment: priority increment
3198 * sys_setpriority is a more generic, but much slower function that
3199 * does similar things.
3201 SYSCALL_DEFINE1(nice
, int, increment
)
3206 * Setpriority might change our priority at the same moment.
3207 * We don't have to worry. Conceptually one call occurs first
3208 * and we have a single winner.
3210 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3211 nice
= task_nice(current
) + increment
;
3213 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3214 if (increment
< 0 && !can_nice(current
, nice
))
3217 retval
= security_task_setnice(current
, nice
);
3221 set_user_nice(current
, nice
);
3228 * task_prio - return the priority value of a given task.
3229 * @p: the task in question.
3231 * Return: The priority value as seen by users in /proc.
3232 * RT tasks are offset by -200. Normal tasks are centered
3233 * around 0, value goes from -16 to +15.
3235 int task_prio(const struct task_struct
*p
)
3237 return p
->prio
- MAX_RT_PRIO
;
3241 * idle_cpu - is a given cpu idle currently?
3242 * @cpu: the processor in question.
3244 * Return: 1 if the CPU is currently idle. 0 otherwise.
3246 int idle_cpu(int cpu
)
3248 struct rq
*rq
= cpu_rq(cpu
);
3250 if (rq
->curr
!= rq
->idle
)
3257 if (!llist_empty(&rq
->wake_list
))
3265 * idle_task - return the idle task for a given cpu.
3266 * @cpu: the processor in question.
3268 * Return: The idle task for the cpu @cpu.
3270 struct task_struct
*idle_task(int cpu
)
3272 return cpu_rq(cpu
)->idle
;
3276 * find_process_by_pid - find a process with a matching PID value.
3277 * @pid: the pid in question.
3279 * The task of @pid, if found. %NULL otherwise.
3281 static struct task_struct
*find_process_by_pid(pid_t pid
)
3283 return pid
? find_task_by_vpid(pid
) : current
;
3287 * This function initializes the sched_dl_entity of a newly becoming
3288 * SCHED_DEADLINE task.
3290 * Only the static values are considered here, the actual runtime and the
3291 * absolute deadline will be properly calculated when the task is enqueued
3292 * for the first time with its new policy.
3295 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3297 struct sched_dl_entity
*dl_se
= &p
->dl
;
3299 init_dl_task_timer(dl_se
);
3300 dl_se
->dl_runtime
= attr
->sched_runtime
;
3301 dl_se
->dl_deadline
= attr
->sched_deadline
;
3302 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3303 dl_se
->flags
= attr
->sched_flags
;
3304 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3305 dl_se
->dl_throttled
= 0;
3307 dl_se
->dl_yielded
= 0;
3311 * sched_setparam() passes in -1 for its policy, to let the functions
3312 * it calls know not to change it.
3314 #define SETPARAM_POLICY -1
3316 static void __setscheduler_params(struct task_struct
*p
,
3317 const struct sched_attr
*attr
)
3319 int policy
= attr
->sched_policy
;
3321 if (policy
== SETPARAM_POLICY
)
3326 if (dl_policy(policy
))
3327 __setparam_dl(p
, attr
);
3328 else if (fair_policy(policy
))
3329 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3332 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3333 * !rt_policy. Always setting this ensures that things like
3334 * getparam()/getattr() don't report silly values for !rt tasks.
3336 p
->rt_priority
= attr
->sched_priority
;
3337 p
->normal_prio
= normal_prio(p
);
3341 /* Actually do priority change: must hold pi & rq lock. */
3342 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3343 const struct sched_attr
*attr
)
3345 __setscheduler_params(p
, attr
);
3348 * If we get here, there was no pi waiters boosting the
3349 * task. It is safe to use the normal prio.
3351 p
->prio
= normal_prio(p
);
3353 if (dl_prio(p
->prio
))
3354 p
->sched_class
= &dl_sched_class
;
3355 else if (rt_prio(p
->prio
))
3356 p
->sched_class
= &rt_sched_class
;
3358 p
->sched_class
= &fair_sched_class
;
3362 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3364 struct sched_dl_entity
*dl_se
= &p
->dl
;
3366 attr
->sched_priority
= p
->rt_priority
;
3367 attr
->sched_runtime
= dl_se
->dl_runtime
;
3368 attr
->sched_deadline
= dl_se
->dl_deadline
;
3369 attr
->sched_period
= dl_se
->dl_period
;
3370 attr
->sched_flags
= dl_se
->flags
;
3374 * This function validates the new parameters of a -deadline task.
3375 * We ask for the deadline not being zero, and greater or equal
3376 * than the runtime, as well as the period of being zero or
3377 * greater than deadline. Furthermore, we have to be sure that
3378 * user parameters are above the internal resolution of 1us (we
3379 * check sched_runtime only since it is always the smaller one) and
3380 * below 2^63 ns (we have to check both sched_deadline and
3381 * sched_period, as the latter can be zero).
3384 __checkparam_dl(const struct sched_attr
*attr
)
3387 if (attr
->sched_deadline
== 0)
3391 * Since we truncate DL_SCALE bits, make sure we're at least
3394 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3398 * Since we use the MSB for wrap-around and sign issues, make
3399 * sure it's not set (mind that period can be equal to zero).
3401 if (attr
->sched_deadline
& (1ULL << 63) ||
3402 attr
->sched_period
& (1ULL << 63))
3405 /* runtime <= deadline <= period (if period != 0) */
3406 if ((attr
->sched_period
!= 0 &&
3407 attr
->sched_period
< attr
->sched_deadline
) ||
3408 attr
->sched_deadline
< attr
->sched_runtime
)
3415 * check the target process has a UID that matches the current process's
3417 static bool check_same_owner(struct task_struct
*p
)
3419 const struct cred
*cred
= current_cred(), *pcred
;
3423 pcred
= __task_cred(p
);
3424 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3425 uid_eq(cred
->euid
, pcred
->uid
));
3430 static int __sched_setscheduler(struct task_struct
*p
,
3431 const struct sched_attr
*attr
,
3434 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3435 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3436 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3437 int policy
= attr
->sched_policy
;
3438 unsigned long flags
;
3439 const struct sched_class
*prev_class
;
3443 /* may grab non-irq protected spin_locks */
3444 BUG_ON(in_interrupt());
3446 /* double check policy once rq lock held */
3448 reset_on_fork
= p
->sched_reset_on_fork
;
3449 policy
= oldpolicy
= p
->policy
;
3451 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3453 if (policy
!= SCHED_DEADLINE
&&
3454 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3455 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3456 policy
!= SCHED_IDLE
)
3460 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3464 * Valid priorities for SCHED_FIFO and SCHED_RR are
3465 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3466 * SCHED_BATCH and SCHED_IDLE is 0.
3468 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3469 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3471 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3472 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3476 * Allow unprivileged RT tasks to decrease priority:
3478 if (user
&& !capable(CAP_SYS_NICE
)) {
3479 if (fair_policy(policy
)) {
3480 if (attr
->sched_nice
< task_nice(p
) &&
3481 !can_nice(p
, attr
->sched_nice
))
3485 if (rt_policy(policy
)) {
3486 unsigned long rlim_rtprio
=
3487 task_rlimit(p
, RLIMIT_RTPRIO
);
3489 /* can't set/change the rt policy */
3490 if (policy
!= p
->policy
&& !rlim_rtprio
)
3493 /* can't increase priority */
3494 if (attr
->sched_priority
> p
->rt_priority
&&
3495 attr
->sched_priority
> rlim_rtprio
)
3500 * Can't set/change SCHED_DEADLINE policy at all for now
3501 * (safest behavior); in the future we would like to allow
3502 * unprivileged DL tasks to increase their relative deadline
3503 * or reduce their runtime (both ways reducing utilization)
3505 if (dl_policy(policy
))
3509 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3510 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3512 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3513 if (!can_nice(p
, task_nice(p
)))
3517 /* can't change other user's priorities */
3518 if (!check_same_owner(p
))
3521 /* Normal users shall not reset the sched_reset_on_fork flag */
3522 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3527 retval
= security_task_setscheduler(p
);
3533 * make sure no PI-waiters arrive (or leave) while we are
3534 * changing the priority of the task:
3536 * To be able to change p->policy safely, the appropriate
3537 * runqueue lock must be held.
3539 rq
= task_rq_lock(p
, &flags
);
3542 * Changing the policy of the stop threads its a very bad idea
3544 if (p
== rq
->stop
) {
3545 task_rq_unlock(rq
, p
, &flags
);
3550 * If not changing anything there's no need to proceed further,
3551 * but store a possible modification of reset_on_fork.
3553 if (unlikely(policy
== p
->policy
)) {
3554 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3556 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3558 if (dl_policy(policy
))
3561 p
->sched_reset_on_fork
= reset_on_fork
;
3562 task_rq_unlock(rq
, p
, &flags
);
3568 #ifdef CONFIG_RT_GROUP_SCHED
3570 * Do not allow realtime tasks into groups that have no runtime
3573 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3574 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3575 !task_group_is_autogroup(task_group(p
))) {
3576 task_rq_unlock(rq
, p
, &flags
);
3581 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3582 cpumask_t
*span
= rq
->rd
->span
;
3585 * Don't allow tasks with an affinity mask smaller than
3586 * the entire root_domain to become SCHED_DEADLINE. We
3587 * will also fail if there's no bandwidth available.
3589 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3590 rq
->rd
->dl_bw
.bw
== 0) {
3591 task_rq_unlock(rq
, p
, &flags
);
3598 /* recheck policy now with rq lock held */
3599 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3600 policy
= oldpolicy
= -1;
3601 task_rq_unlock(rq
, p
, &flags
);
3606 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3607 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3610 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3611 task_rq_unlock(rq
, p
, &flags
);
3615 p
->sched_reset_on_fork
= reset_on_fork
;
3619 * Special case for priority boosted tasks.
3621 * If the new priority is lower or equal (user space view)
3622 * than the current (boosted) priority, we just store the new
3623 * normal parameters and do not touch the scheduler class and
3624 * the runqueue. This will be done when the task deboost
3627 if (rt_mutex_check_prio(p
, newprio
)) {
3628 __setscheduler_params(p
, attr
);
3629 task_rq_unlock(rq
, p
, &flags
);
3633 queued
= task_on_rq_queued(p
);
3634 running
= task_current(rq
, p
);
3636 dequeue_task(rq
, p
, 0);
3638 put_prev_task(rq
, p
);
3640 prev_class
= p
->sched_class
;
3641 __setscheduler(rq
, p
, attr
);
3644 p
->sched_class
->set_curr_task(rq
);
3647 * We enqueue to tail when the priority of a task is
3648 * increased (user space view).
3650 enqueue_task(rq
, p
, oldprio
<= p
->prio
? ENQUEUE_HEAD
: 0);
3653 check_class_changed(rq
, p
, prev_class
, oldprio
);
3654 task_rq_unlock(rq
, p
, &flags
);
3656 rt_mutex_adjust_pi(p
);
3661 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3662 const struct sched_param
*param
, bool check
)
3664 struct sched_attr attr
= {
3665 .sched_policy
= policy
,
3666 .sched_priority
= param
->sched_priority
,
3667 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3670 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3671 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
3672 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3673 policy
&= ~SCHED_RESET_ON_FORK
;
3674 attr
.sched_policy
= policy
;
3677 return __sched_setscheduler(p
, &attr
, check
);
3680 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3681 * @p: the task in question.
3682 * @policy: new policy.
3683 * @param: structure containing the new RT priority.
3685 * Return: 0 on success. An error code otherwise.
3687 * NOTE that the task may be already dead.
3689 int sched_setscheduler(struct task_struct
*p
, int policy
,
3690 const struct sched_param
*param
)
3692 return _sched_setscheduler(p
, policy
, param
, true);
3694 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3696 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3698 return __sched_setscheduler(p
, attr
, true);
3700 EXPORT_SYMBOL_GPL(sched_setattr
);
3703 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3704 * @p: the task in question.
3705 * @policy: new policy.
3706 * @param: structure containing the new RT priority.
3708 * Just like sched_setscheduler, only don't bother checking if the
3709 * current context has permission. For example, this is needed in
3710 * stop_machine(): we create temporary high priority worker threads,
3711 * but our caller might not have that capability.
3713 * Return: 0 on success. An error code otherwise.
3715 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
3716 const struct sched_param
*param
)
3718 return _sched_setscheduler(p
, policy
, param
, false);
3722 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3724 struct sched_param lparam
;
3725 struct task_struct
*p
;
3728 if (!param
|| pid
< 0)
3730 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3735 p
= find_process_by_pid(pid
);
3737 retval
= sched_setscheduler(p
, policy
, &lparam
);
3744 * Mimics kernel/events/core.c perf_copy_attr().
3746 static int sched_copy_attr(struct sched_attr __user
*uattr
,
3747 struct sched_attr
*attr
)
3752 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
3756 * zero the full structure, so that a short copy will be nice.
3758 memset(attr
, 0, sizeof(*attr
));
3760 ret
= get_user(size
, &uattr
->size
);
3764 if (size
> PAGE_SIZE
) /* silly large */
3767 if (!size
) /* abi compat */
3768 size
= SCHED_ATTR_SIZE_VER0
;
3770 if (size
< SCHED_ATTR_SIZE_VER0
)
3774 * If we're handed a bigger struct than we know of,
3775 * ensure all the unknown bits are 0 - i.e. new
3776 * user-space does not rely on any kernel feature
3777 * extensions we dont know about yet.
3779 if (size
> sizeof(*attr
)) {
3780 unsigned char __user
*addr
;
3781 unsigned char __user
*end
;
3784 addr
= (void __user
*)uattr
+ sizeof(*attr
);
3785 end
= (void __user
*)uattr
+ size
;
3787 for (; addr
< end
; addr
++) {
3788 ret
= get_user(val
, addr
);
3794 size
= sizeof(*attr
);
3797 ret
= copy_from_user(attr
, uattr
, size
);
3802 * XXX: do we want to be lenient like existing syscalls; or do we want
3803 * to be strict and return an error on out-of-bounds values?
3805 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
3810 put_user(sizeof(*attr
), &uattr
->size
);
3815 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3816 * @pid: the pid in question.
3817 * @policy: new policy.
3818 * @param: structure containing the new RT priority.
3820 * Return: 0 on success. An error code otherwise.
3822 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
3823 struct sched_param __user
*, param
)
3825 /* negative values for policy are not valid */
3829 return do_sched_setscheduler(pid
, policy
, param
);
3833 * sys_sched_setparam - set/change the RT priority of a thread
3834 * @pid: the pid in question.
3835 * @param: structure containing the new RT priority.
3837 * Return: 0 on success. An error code otherwise.
3839 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3841 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
3845 * sys_sched_setattr - same as above, but with extended sched_attr
3846 * @pid: the pid in question.
3847 * @uattr: structure containing the extended parameters.
3848 * @flags: for future extension.
3850 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3851 unsigned int, flags
)
3853 struct sched_attr attr
;
3854 struct task_struct
*p
;
3857 if (!uattr
|| pid
< 0 || flags
)
3860 retval
= sched_copy_attr(uattr
, &attr
);
3864 if ((int)attr
.sched_policy
< 0)
3869 p
= find_process_by_pid(pid
);
3871 retval
= sched_setattr(p
, &attr
);
3878 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3879 * @pid: the pid in question.
3881 * Return: On success, the policy of the thread. Otherwise, a negative error
3884 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
3886 struct task_struct
*p
;
3894 p
= find_process_by_pid(pid
);
3896 retval
= security_task_getscheduler(p
);
3899 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
3906 * sys_sched_getparam - get the RT priority of a thread
3907 * @pid: the pid in question.
3908 * @param: structure containing the RT priority.
3910 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3913 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3915 struct sched_param lp
= { .sched_priority
= 0 };
3916 struct task_struct
*p
;
3919 if (!param
|| pid
< 0)
3923 p
= find_process_by_pid(pid
);
3928 retval
= security_task_getscheduler(p
);
3932 if (task_has_rt_policy(p
))
3933 lp
.sched_priority
= p
->rt_priority
;
3937 * This one might sleep, we cannot do it with a spinlock held ...
3939 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3948 static int sched_read_attr(struct sched_attr __user
*uattr
,
3949 struct sched_attr
*attr
,
3954 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
3958 * If we're handed a smaller struct than we know of,
3959 * ensure all the unknown bits are 0 - i.e. old
3960 * user-space does not get uncomplete information.
3962 if (usize
< sizeof(*attr
)) {
3963 unsigned char *addr
;
3966 addr
= (void *)attr
+ usize
;
3967 end
= (void *)attr
+ sizeof(*attr
);
3969 for (; addr
< end
; addr
++) {
3977 ret
= copy_to_user(uattr
, attr
, attr
->size
);
3985 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3986 * @pid: the pid in question.
3987 * @uattr: structure containing the extended parameters.
3988 * @size: sizeof(attr) for fwd/bwd comp.
3989 * @flags: for future extension.
3991 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3992 unsigned int, size
, unsigned int, flags
)
3994 struct sched_attr attr
= {
3995 .size
= sizeof(struct sched_attr
),
3997 struct task_struct
*p
;
4000 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4001 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4005 p
= find_process_by_pid(pid
);
4010 retval
= security_task_getscheduler(p
);
4014 attr
.sched_policy
= p
->policy
;
4015 if (p
->sched_reset_on_fork
)
4016 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4017 if (task_has_dl_policy(p
))
4018 __getparam_dl(p
, &attr
);
4019 else if (task_has_rt_policy(p
))
4020 attr
.sched_priority
= p
->rt_priority
;
4022 attr
.sched_nice
= task_nice(p
);
4026 retval
= sched_read_attr(uattr
, &attr
, size
);
4034 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4036 cpumask_var_t cpus_allowed
, new_mask
;
4037 struct task_struct
*p
;
4042 p
= find_process_by_pid(pid
);
4048 /* Prevent p going away */
4052 if (p
->flags
& PF_NO_SETAFFINITY
) {
4056 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4060 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4062 goto out_free_cpus_allowed
;
4065 if (!check_same_owner(p
)) {
4067 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4069 goto out_free_new_mask
;
4074 retval
= security_task_setscheduler(p
);
4076 goto out_free_new_mask
;
4079 cpuset_cpus_allowed(p
, cpus_allowed
);
4080 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4083 * Since bandwidth control happens on root_domain basis,
4084 * if admission test is enabled, we only admit -deadline
4085 * tasks allowed to run on all the CPUs in the task's
4089 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4091 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4094 goto out_free_new_mask
;
4100 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4103 cpuset_cpus_allowed(p
, cpus_allowed
);
4104 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4106 * We must have raced with a concurrent cpuset
4107 * update. Just reset the cpus_allowed to the
4108 * cpuset's cpus_allowed
4110 cpumask_copy(new_mask
, cpus_allowed
);
4115 free_cpumask_var(new_mask
);
4116 out_free_cpus_allowed
:
4117 free_cpumask_var(cpus_allowed
);
4123 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4124 struct cpumask
*new_mask
)
4126 if (len
< cpumask_size())
4127 cpumask_clear(new_mask
);
4128 else if (len
> cpumask_size())
4129 len
= cpumask_size();
4131 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4135 * sys_sched_setaffinity - set the cpu affinity of a process
4136 * @pid: pid of the process
4137 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138 * @user_mask_ptr: user-space pointer to the new cpu mask
4140 * Return: 0 on success. An error code otherwise.
4142 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4143 unsigned long __user
*, user_mask_ptr
)
4145 cpumask_var_t new_mask
;
4148 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4151 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4153 retval
= sched_setaffinity(pid
, new_mask
);
4154 free_cpumask_var(new_mask
);
4158 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4160 struct task_struct
*p
;
4161 unsigned long flags
;
4167 p
= find_process_by_pid(pid
);
4171 retval
= security_task_getscheduler(p
);
4175 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4176 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4177 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4186 * sys_sched_getaffinity - get the cpu affinity of a process
4187 * @pid: pid of the process
4188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4191 * Return: 0 on success. An error code otherwise.
4193 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4194 unsigned long __user
*, user_mask_ptr
)
4199 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4201 if (len
& (sizeof(unsigned long)-1))
4204 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4207 ret
= sched_getaffinity(pid
, mask
);
4209 size_t retlen
= min_t(size_t, len
, cpumask_size());
4211 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4216 free_cpumask_var(mask
);
4222 * sys_sched_yield - yield the current processor to other threads.
4224 * This function yields the current CPU to other tasks. If there are no
4225 * other threads running on this CPU then this function will return.
4229 SYSCALL_DEFINE0(sched_yield
)
4231 struct rq
*rq
= this_rq_lock();
4233 schedstat_inc(rq
, yld_count
);
4234 current
->sched_class
->yield_task(rq
);
4237 * Since we are going to call schedule() anyway, there's
4238 * no need to preempt or enable interrupts:
4240 __release(rq
->lock
);
4241 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4242 do_raw_spin_unlock(&rq
->lock
);
4243 sched_preempt_enable_no_resched();
4250 static void __cond_resched(void)
4252 __preempt_count_add(PREEMPT_ACTIVE
);
4254 __preempt_count_sub(PREEMPT_ACTIVE
);
4257 int __sched
_cond_resched(void)
4259 if (should_resched()) {
4265 EXPORT_SYMBOL(_cond_resched
);
4268 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4269 * call schedule, and on return reacquire the lock.
4271 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4272 * operations here to prevent schedule() from being called twice (once via
4273 * spin_unlock(), once by hand).
4275 int __cond_resched_lock(spinlock_t
*lock
)
4277 int resched
= should_resched();
4280 lockdep_assert_held(lock
);
4282 if (spin_needbreak(lock
) || resched
) {
4293 EXPORT_SYMBOL(__cond_resched_lock
);
4295 int __sched
__cond_resched_softirq(void)
4297 BUG_ON(!in_softirq());
4299 if (should_resched()) {
4307 EXPORT_SYMBOL(__cond_resched_softirq
);
4310 * yield - yield the current processor to other threads.
4312 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4314 * The scheduler is at all times free to pick the calling task as the most
4315 * eligible task to run, if removing the yield() call from your code breaks
4316 * it, its already broken.
4318 * Typical broken usage is:
4323 * where one assumes that yield() will let 'the other' process run that will
4324 * make event true. If the current task is a SCHED_FIFO task that will never
4325 * happen. Never use yield() as a progress guarantee!!
4327 * If you want to use yield() to wait for something, use wait_event().
4328 * If you want to use yield() to be 'nice' for others, use cond_resched().
4329 * If you still want to use yield(), do not!
4331 void __sched
yield(void)
4333 set_current_state(TASK_RUNNING
);
4336 EXPORT_SYMBOL(yield
);
4339 * yield_to - yield the current processor to another thread in
4340 * your thread group, or accelerate that thread toward the
4341 * processor it's on.
4343 * @preempt: whether task preemption is allowed or not
4345 * It's the caller's job to ensure that the target task struct
4346 * can't go away on us before we can do any checks.
4349 * true (>0) if we indeed boosted the target task.
4350 * false (0) if we failed to boost the target.
4351 * -ESRCH if there's no task to yield to.
4353 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4355 struct task_struct
*curr
= current
;
4356 struct rq
*rq
, *p_rq
;
4357 unsigned long flags
;
4360 local_irq_save(flags
);
4366 * If we're the only runnable task on the rq and target rq also
4367 * has only one task, there's absolutely no point in yielding.
4369 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4374 double_rq_lock(rq
, p_rq
);
4375 if (task_rq(p
) != p_rq
) {
4376 double_rq_unlock(rq
, p_rq
);
4380 if (!curr
->sched_class
->yield_to_task
)
4383 if (curr
->sched_class
!= p
->sched_class
)
4386 if (task_running(p_rq
, p
) || p
->state
)
4389 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4391 schedstat_inc(rq
, yld_count
);
4393 * Make p's CPU reschedule; pick_next_entity takes care of
4396 if (preempt
&& rq
!= p_rq
)
4401 double_rq_unlock(rq
, p_rq
);
4403 local_irq_restore(flags
);
4410 EXPORT_SYMBOL_GPL(yield_to
);
4413 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4414 * that process accounting knows that this is a task in IO wait state.
4416 void __sched
io_schedule(void)
4418 struct rq
*rq
= raw_rq();
4420 delayacct_blkio_start();
4421 atomic_inc(&rq
->nr_iowait
);
4422 blk_flush_plug(current
);
4423 current
->in_iowait
= 1;
4425 current
->in_iowait
= 0;
4426 atomic_dec(&rq
->nr_iowait
);
4427 delayacct_blkio_end();
4429 EXPORT_SYMBOL(io_schedule
);
4431 long __sched
io_schedule_timeout(long timeout
)
4433 struct rq
*rq
= raw_rq();
4436 delayacct_blkio_start();
4437 atomic_inc(&rq
->nr_iowait
);
4438 blk_flush_plug(current
);
4439 current
->in_iowait
= 1;
4440 ret
= schedule_timeout(timeout
);
4441 current
->in_iowait
= 0;
4442 atomic_dec(&rq
->nr_iowait
);
4443 delayacct_blkio_end();
4448 * sys_sched_get_priority_max - return maximum RT priority.
4449 * @policy: scheduling class.
4451 * Return: On success, this syscall returns the maximum
4452 * rt_priority that can be used by a given scheduling class.
4453 * On failure, a negative error code is returned.
4455 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4462 ret
= MAX_USER_RT_PRIO
-1;
4464 case SCHED_DEADLINE
:
4475 * sys_sched_get_priority_min - return minimum RT priority.
4476 * @policy: scheduling class.
4478 * Return: On success, this syscall returns the minimum
4479 * rt_priority that can be used by a given scheduling class.
4480 * On failure, a negative error code is returned.
4482 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4491 case SCHED_DEADLINE
:
4501 * sys_sched_rr_get_interval - return the default timeslice of a process.
4502 * @pid: pid of the process.
4503 * @interval: userspace pointer to the timeslice value.
4505 * this syscall writes the default timeslice value of a given process
4506 * into the user-space timespec buffer. A value of '0' means infinity.
4508 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4511 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4512 struct timespec __user
*, interval
)
4514 struct task_struct
*p
;
4515 unsigned int time_slice
;
4516 unsigned long flags
;
4526 p
= find_process_by_pid(pid
);
4530 retval
= security_task_getscheduler(p
);
4534 rq
= task_rq_lock(p
, &flags
);
4536 if (p
->sched_class
->get_rr_interval
)
4537 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4538 task_rq_unlock(rq
, p
, &flags
);
4541 jiffies_to_timespec(time_slice
, &t
);
4542 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4550 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4552 void sched_show_task(struct task_struct
*p
)
4554 unsigned long free
= 0;
4558 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4559 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4560 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4561 #if BITS_PER_LONG == 32
4562 if (state
== TASK_RUNNING
)
4563 printk(KERN_CONT
" running ");
4565 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4567 if (state
== TASK_RUNNING
)
4568 printk(KERN_CONT
" running task ");
4570 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4572 #ifdef CONFIG_DEBUG_STACK_USAGE
4573 free
= stack_not_used(p
);
4576 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4578 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4579 task_pid_nr(p
), ppid
,
4580 (unsigned long)task_thread_info(p
)->flags
);
4582 print_worker_info(KERN_INFO
, p
);
4583 show_stack(p
, NULL
);
4586 void show_state_filter(unsigned long state_filter
)
4588 struct task_struct
*g
, *p
;
4590 #if BITS_PER_LONG == 32
4592 " task PC stack pid father\n");
4595 " task PC stack pid father\n");
4598 for_each_process_thread(g
, p
) {
4600 * reset the NMI-timeout, listing all files on a slow
4601 * console might take a lot of time:
4603 touch_nmi_watchdog();
4604 if (!state_filter
|| (p
->state
& state_filter
))
4608 touch_all_softlockup_watchdogs();
4610 #ifdef CONFIG_SCHED_DEBUG
4611 sysrq_sched_debug_show();
4615 * Only show locks if all tasks are dumped:
4618 debug_show_all_locks();
4621 void init_idle_bootup_task(struct task_struct
*idle
)
4623 idle
->sched_class
= &idle_sched_class
;
4627 * init_idle - set up an idle thread for a given CPU
4628 * @idle: task in question
4629 * @cpu: cpu the idle task belongs to
4631 * NOTE: this function does not set the idle thread's NEED_RESCHED
4632 * flag, to make booting more robust.
4634 void init_idle(struct task_struct
*idle
, int cpu
)
4636 struct rq
*rq
= cpu_rq(cpu
);
4637 unsigned long flags
;
4639 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4641 __sched_fork(0, idle
);
4642 idle
->state
= TASK_RUNNING
;
4643 idle
->se
.exec_start
= sched_clock();
4645 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4647 * We're having a chicken and egg problem, even though we are
4648 * holding rq->lock, the cpu isn't yet set to this cpu so the
4649 * lockdep check in task_group() will fail.
4651 * Similar case to sched_fork(). / Alternatively we could
4652 * use task_rq_lock() here and obtain the other rq->lock.
4657 __set_task_cpu(idle
, cpu
);
4660 rq
->curr
= rq
->idle
= idle
;
4661 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
4662 #if defined(CONFIG_SMP)
4665 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4667 /* Set the preempt count _outside_ the spinlocks! */
4668 init_idle_preempt_count(idle
, cpu
);
4671 * The idle tasks have their own, simple scheduling class:
4673 idle
->sched_class
= &idle_sched_class
;
4674 ftrace_graph_init_idle_task(idle
, cpu
);
4675 vtime_init_idle(idle
, cpu
);
4676 #if defined(CONFIG_SMP)
4677 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4683 * move_queued_task - move a queued task to new rq.
4685 * Returns (locked) new rq. Old rq's lock is released.
4687 static struct rq
*move_queued_task(struct task_struct
*p
, int new_cpu
)
4689 struct rq
*rq
= task_rq(p
);
4691 lockdep_assert_held(&rq
->lock
);
4693 dequeue_task(rq
, p
, 0);
4694 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
4695 set_task_cpu(p
, new_cpu
);
4696 raw_spin_unlock(&rq
->lock
);
4698 rq
= cpu_rq(new_cpu
);
4700 raw_spin_lock(&rq
->lock
);
4701 BUG_ON(task_cpu(p
) != new_cpu
);
4702 p
->on_rq
= TASK_ON_RQ_QUEUED
;
4703 enqueue_task(rq
, p
, 0);
4704 check_preempt_curr(rq
, p
, 0);
4709 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4711 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
4712 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4714 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4715 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
4719 * This is how migration works:
4721 * 1) we invoke migration_cpu_stop() on the target CPU using
4723 * 2) stopper starts to run (implicitly forcing the migrated thread
4725 * 3) it checks whether the migrated task is still in the wrong runqueue.
4726 * 4) if it's in the wrong runqueue then the migration thread removes
4727 * it and puts it into the right queue.
4728 * 5) stopper completes and stop_one_cpu() returns and the migration
4733 * Change a given task's CPU affinity. Migrate the thread to a
4734 * proper CPU and schedule it away if the CPU it's executing on
4735 * is removed from the allowed bitmask.
4737 * NOTE: the caller must have a valid reference to the task, the
4738 * task must not exit() & deallocate itself prematurely. The
4739 * call is not atomic; no spinlocks may be held.
4741 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4743 unsigned long flags
;
4745 unsigned int dest_cpu
;
4748 rq
= task_rq_lock(p
, &flags
);
4750 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4753 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4758 do_set_cpus_allowed(p
, new_mask
);
4760 /* Can the task run on the task's current CPU? If so, we're done */
4761 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4764 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4765 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
4766 struct migration_arg arg
= { p
, dest_cpu
};
4767 /* Need help from migration thread: drop lock and wait. */
4768 task_rq_unlock(rq
, p
, &flags
);
4769 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4770 tlb_migrate_finish(p
->mm
);
4772 } else if (task_on_rq_queued(p
))
4773 rq
= move_queued_task(p
, dest_cpu
);
4775 task_rq_unlock(rq
, p
, &flags
);
4779 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4782 * Move (not current) task off this cpu, onto dest cpu. We're doing
4783 * this because either it can't run here any more (set_cpus_allowed()
4784 * away from this CPU, or CPU going down), or because we're
4785 * attempting to rebalance this task on exec (sched_exec).
4787 * So we race with normal scheduler movements, but that's OK, as long
4788 * as the task is no longer on this CPU.
4790 * Returns non-zero if task was successfully migrated.
4792 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4797 if (unlikely(!cpu_active(dest_cpu
)))
4800 rq
= cpu_rq(src_cpu
);
4802 raw_spin_lock(&p
->pi_lock
);
4803 raw_spin_lock(&rq
->lock
);
4804 /* Already moved. */
4805 if (task_cpu(p
) != src_cpu
)
4808 /* Affinity changed (again). */
4809 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4813 * If we're not on a rq, the next wake-up will ensure we're
4816 if (task_on_rq_queued(p
))
4817 rq
= move_queued_task(p
, dest_cpu
);
4821 raw_spin_unlock(&rq
->lock
);
4822 raw_spin_unlock(&p
->pi_lock
);
4826 #ifdef CONFIG_NUMA_BALANCING
4827 /* Migrate current task p to target_cpu */
4828 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
4830 struct migration_arg arg
= { p
, target_cpu
};
4831 int curr_cpu
= task_cpu(p
);
4833 if (curr_cpu
== target_cpu
)
4836 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
4839 /* TODO: This is not properly updating schedstats */
4841 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
4842 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
4846 * Requeue a task on a given node and accurately track the number of NUMA
4847 * tasks on the runqueues
4849 void sched_setnuma(struct task_struct
*p
, int nid
)
4852 unsigned long flags
;
4853 bool queued
, running
;
4855 rq
= task_rq_lock(p
, &flags
);
4856 queued
= task_on_rq_queued(p
);
4857 running
= task_current(rq
, p
);
4860 dequeue_task(rq
, p
, 0);
4862 put_prev_task(rq
, p
);
4864 p
->numa_preferred_nid
= nid
;
4867 p
->sched_class
->set_curr_task(rq
);
4869 enqueue_task(rq
, p
, 0);
4870 task_rq_unlock(rq
, p
, &flags
);
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
4879 static int migration_cpu_stop(void *data
)
4881 struct migration_arg
*arg
= data
;
4884 * The original target cpu might have gone down and we might
4885 * be on another cpu but it doesn't matter.
4887 local_irq_disable();
4889 * We need to explicitly wake pending tasks before running
4890 * __migrate_task() such that we will not miss enforcing cpus_allowed
4891 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4893 sched_ttwu_pending();
4894 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
4899 #ifdef CONFIG_HOTPLUG_CPU
4902 * Ensures that the idle task is using init_mm right before its cpu goes
4905 void idle_task_exit(void)
4907 struct mm_struct
*mm
= current
->active_mm
;
4909 BUG_ON(cpu_online(smp_processor_id()));
4911 if (mm
!= &init_mm
) {
4912 switch_mm(mm
, &init_mm
, current
);
4913 finish_arch_post_lock_switch();
4919 * Since this CPU is going 'away' for a while, fold any nr_active delta
4920 * we might have. Assumes we're called after migrate_tasks() so that the
4921 * nr_active count is stable.
4923 * Also see the comment "Global load-average calculations".
4925 static void calc_load_migrate(struct rq
*rq
)
4927 long delta
= calc_load_fold_active(rq
);
4929 atomic_long_add(delta
, &calc_load_tasks
);
4932 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
4936 static const struct sched_class fake_sched_class
= {
4937 .put_prev_task
= put_prev_task_fake
,
4940 static struct task_struct fake_task
= {
4942 * Avoid pull_{rt,dl}_task()
4944 .prio
= MAX_PRIO
+ 1,
4945 .sched_class
= &fake_sched_class
,
4949 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4950 * try_to_wake_up()->select_task_rq().
4952 * Called with rq->lock held even though we'er in stop_machine() and
4953 * there's no concurrency possible, we hold the required locks anyway
4954 * because of lock validation efforts.
4956 static void migrate_tasks(unsigned int dead_cpu
)
4958 struct rq
*rq
= cpu_rq(dead_cpu
);
4959 struct task_struct
*next
, *stop
= rq
->stop
;
4963 * Fudge the rq selection such that the below task selection loop
4964 * doesn't get stuck on the currently eligible stop task.
4966 * We're currently inside stop_machine() and the rq is either stuck
4967 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4968 * either way we should never end up calling schedule() until we're
4974 * put_prev_task() and pick_next_task() sched
4975 * class method both need to have an up-to-date
4976 * value of rq->clock[_task]
4978 update_rq_clock(rq
);
4982 * There's this thread running, bail when that's the only
4985 if (rq
->nr_running
== 1)
4988 next
= pick_next_task(rq
, &fake_task
);
4990 next
->sched_class
->put_prev_task(rq
, next
);
4992 /* Find suitable destination for @next, with force if needed. */
4993 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
4994 raw_spin_unlock(&rq
->lock
);
4996 __migrate_task(next
, dead_cpu
, dest_cpu
);
4998 raw_spin_lock(&rq
->lock
);
5004 #endif /* CONFIG_HOTPLUG_CPU */
5006 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5008 static struct ctl_table sd_ctl_dir
[] = {
5010 .procname
= "sched_domain",
5016 static struct ctl_table sd_ctl_root
[] = {
5018 .procname
= "kernel",
5020 .child
= sd_ctl_dir
,
5025 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5027 struct ctl_table
*entry
=
5028 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5033 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5035 struct ctl_table
*entry
;
5038 * In the intermediate directories, both the child directory and
5039 * procname are dynamically allocated and could fail but the mode
5040 * will always be set. In the lowest directory the names are
5041 * static strings and all have proc handlers.
5043 for (entry
= *tablep
; entry
->mode
; entry
++) {
5045 sd_free_ctl_entry(&entry
->child
);
5046 if (entry
->proc_handler
== NULL
)
5047 kfree(entry
->procname
);
5054 static int min_load_idx
= 0;
5055 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
5058 set_table_entry(struct ctl_table
*entry
,
5059 const char *procname
, void *data
, int maxlen
,
5060 umode_t mode
, proc_handler
*proc_handler
,
5063 entry
->procname
= procname
;
5065 entry
->maxlen
= maxlen
;
5067 entry
->proc_handler
= proc_handler
;
5070 entry
->extra1
= &min_load_idx
;
5071 entry
->extra2
= &max_load_idx
;
5075 static struct ctl_table
*
5076 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5078 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5083 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5084 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5085 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5086 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5087 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5088 sizeof(int), 0644, proc_dointvec_minmax
, true);
5089 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5090 sizeof(int), 0644, proc_dointvec_minmax
, true);
5091 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5092 sizeof(int), 0644, proc_dointvec_minmax
, true);
5093 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5094 sizeof(int), 0644, proc_dointvec_minmax
, true);
5095 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5096 sizeof(int), 0644, proc_dointvec_minmax
, true);
5097 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5098 sizeof(int), 0644, proc_dointvec_minmax
, false);
5099 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5100 sizeof(int), 0644, proc_dointvec_minmax
, false);
5101 set_table_entry(&table
[9], "cache_nice_tries",
5102 &sd
->cache_nice_tries
,
5103 sizeof(int), 0644, proc_dointvec_minmax
, false);
5104 set_table_entry(&table
[10], "flags", &sd
->flags
,
5105 sizeof(int), 0644, proc_dointvec_minmax
, false);
5106 set_table_entry(&table
[11], "max_newidle_lb_cost",
5107 &sd
->max_newidle_lb_cost
,
5108 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5109 set_table_entry(&table
[12], "name", sd
->name
,
5110 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
5111 /* &table[13] is terminator */
5116 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5118 struct ctl_table
*entry
, *table
;
5119 struct sched_domain
*sd
;
5120 int domain_num
= 0, i
;
5123 for_each_domain(cpu
, sd
)
5125 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5130 for_each_domain(cpu
, sd
) {
5131 snprintf(buf
, 32, "domain%d", i
);
5132 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5134 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5141 static struct ctl_table_header
*sd_sysctl_header
;
5142 static void register_sched_domain_sysctl(void)
5144 int i
, cpu_num
= num_possible_cpus();
5145 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5148 WARN_ON(sd_ctl_dir
[0].child
);
5149 sd_ctl_dir
[0].child
= entry
;
5154 for_each_possible_cpu(i
) {
5155 snprintf(buf
, 32, "cpu%d", i
);
5156 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5158 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5162 WARN_ON(sd_sysctl_header
);
5163 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5166 /* may be called multiple times per register */
5167 static void unregister_sched_domain_sysctl(void)
5169 if (sd_sysctl_header
)
5170 unregister_sysctl_table(sd_sysctl_header
);
5171 sd_sysctl_header
= NULL
;
5172 if (sd_ctl_dir
[0].child
)
5173 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5176 static void register_sched_domain_sysctl(void)
5179 static void unregister_sched_domain_sysctl(void)
5184 static void set_rq_online(struct rq
*rq
)
5187 const struct sched_class
*class;
5189 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5192 for_each_class(class) {
5193 if (class->rq_online
)
5194 class->rq_online(rq
);
5199 static void set_rq_offline(struct rq
*rq
)
5202 const struct sched_class
*class;
5204 for_each_class(class) {
5205 if (class->rq_offline
)
5206 class->rq_offline(rq
);
5209 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5215 * migration_call - callback that gets triggered when a CPU is added.
5216 * Here we can start up the necessary migration thread for the new CPU.
5219 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5221 int cpu
= (long)hcpu
;
5222 unsigned long flags
;
5223 struct rq
*rq
= cpu_rq(cpu
);
5225 switch (action
& ~CPU_TASKS_FROZEN
) {
5227 case CPU_UP_PREPARE
:
5228 rq
->calc_load_update
= calc_load_update
;
5232 /* Update our root-domain */
5233 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5235 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5239 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5242 #ifdef CONFIG_HOTPLUG_CPU
5244 sched_ttwu_pending();
5245 /* Update our root-domain */
5246 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5248 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5252 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5253 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5257 calc_load_migrate(rq
);
5262 update_max_interval();
5268 * Register at high priority so that task migration (migrate_all_tasks)
5269 * happens before everything else. This has to be lower priority than
5270 * the notifier in the perf_event subsystem, though.
5272 static struct notifier_block migration_notifier
= {
5273 .notifier_call
= migration_call
,
5274 .priority
= CPU_PRI_MIGRATION
,
5277 static void __cpuinit
set_cpu_rq_start_time(void)
5279 int cpu
= smp_processor_id();
5280 struct rq
*rq
= cpu_rq(cpu
);
5281 rq
->age_stamp
= sched_clock_cpu(cpu
);
5284 static int sched_cpu_active(struct notifier_block
*nfb
,
5285 unsigned long action
, void *hcpu
)
5287 switch (action
& ~CPU_TASKS_FROZEN
) {
5289 set_cpu_rq_start_time();
5291 case CPU_DOWN_FAILED
:
5292 set_cpu_active((long)hcpu
, true);
5299 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5300 unsigned long action
, void *hcpu
)
5302 unsigned long flags
;
5303 long cpu
= (long)hcpu
;
5306 switch (action
& ~CPU_TASKS_FROZEN
) {
5307 case CPU_DOWN_PREPARE
:
5308 set_cpu_active(cpu
, false);
5310 /* explicitly allow suspend */
5311 if (!(action
& CPU_TASKS_FROZEN
)) {
5315 rcu_read_lock_sched();
5316 dl_b
= dl_bw_of(cpu
);
5318 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5319 cpus
= dl_bw_cpus(cpu
);
5320 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
5321 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5323 rcu_read_unlock_sched();
5326 return notifier_from_errno(-EBUSY
);
5334 static int __init
migration_init(void)
5336 void *cpu
= (void *)(long)smp_processor_id();
5339 /* Initialize migration for the boot CPU */
5340 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5341 BUG_ON(err
== NOTIFY_BAD
);
5342 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5343 register_cpu_notifier(&migration_notifier
);
5345 /* Register cpu active notifiers */
5346 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5347 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5351 early_initcall(migration_init
);
5356 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5358 #ifdef CONFIG_SCHED_DEBUG
5360 static __read_mostly
int sched_debug_enabled
;
5362 static int __init
sched_debug_setup(char *str
)
5364 sched_debug_enabled
= 1;
5368 early_param("sched_debug", sched_debug_setup
);
5370 static inline bool sched_debug(void)
5372 return sched_debug_enabled
;
5375 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5376 struct cpumask
*groupmask
)
5378 struct sched_group
*group
= sd
->groups
;
5381 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5382 cpumask_clear(groupmask
);
5384 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5386 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5387 printk("does not load-balance\n");
5389 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5394 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5396 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5397 printk(KERN_ERR
"ERROR: domain->span does not contain "
5400 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5401 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5405 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5409 printk(KERN_ERR
"ERROR: group is NULL\n");
5414 * Even though we initialize ->capacity to something semi-sane,
5415 * we leave capacity_orig unset. This allows us to detect if
5416 * domain iteration is still funny without causing /0 traps.
5418 if (!group
->sgc
->capacity_orig
) {
5419 printk(KERN_CONT
"\n");
5420 printk(KERN_ERR
"ERROR: domain->cpu_capacity not set\n");
5424 if (!cpumask_weight(sched_group_cpus(group
))) {
5425 printk(KERN_CONT
"\n");
5426 printk(KERN_ERR
"ERROR: empty group\n");
5430 if (!(sd
->flags
& SD_OVERLAP
) &&
5431 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5432 printk(KERN_CONT
"\n");
5433 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5437 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5439 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5441 printk(KERN_CONT
" %s", str
);
5442 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5443 printk(KERN_CONT
" (cpu_capacity = %d)",
5444 group
->sgc
->capacity
);
5447 group
= group
->next
;
5448 } while (group
!= sd
->groups
);
5449 printk(KERN_CONT
"\n");
5451 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5452 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5455 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5456 printk(KERN_ERR
"ERROR: parent span is not a superset "
5457 "of domain->span\n");
5461 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5465 if (!sched_debug_enabled
)
5469 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5473 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5476 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5484 #else /* !CONFIG_SCHED_DEBUG */
5485 # define sched_domain_debug(sd, cpu) do { } while (0)
5486 static inline bool sched_debug(void)
5490 #endif /* CONFIG_SCHED_DEBUG */
5492 static int sd_degenerate(struct sched_domain
*sd
)
5494 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5497 /* Following flags need at least 2 groups */
5498 if (sd
->flags
& (SD_LOAD_BALANCE
|
5499 SD_BALANCE_NEWIDLE
|
5502 SD_SHARE_CPUCAPACITY
|
5503 SD_SHARE_PKG_RESOURCES
|
5504 SD_SHARE_POWERDOMAIN
)) {
5505 if (sd
->groups
!= sd
->groups
->next
)
5509 /* Following flags don't use groups */
5510 if (sd
->flags
& (SD_WAKE_AFFINE
))
5517 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5519 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5521 if (sd_degenerate(parent
))
5524 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5527 /* Flags needing groups don't count if only 1 group in parent */
5528 if (parent
->groups
== parent
->groups
->next
) {
5529 pflags
&= ~(SD_LOAD_BALANCE
|
5530 SD_BALANCE_NEWIDLE
|
5533 SD_SHARE_CPUCAPACITY
|
5534 SD_SHARE_PKG_RESOURCES
|
5536 SD_SHARE_POWERDOMAIN
);
5537 if (nr_node_ids
== 1)
5538 pflags
&= ~SD_SERIALIZE
;
5540 if (~cflags
& pflags
)
5546 static void free_rootdomain(struct rcu_head
*rcu
)
5548 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5550 cpupri_cleanup(&rd
->cpupri
);
5551 cpudl_cleanup(&rd
->cpudl
);
5552 free_cpumask_var(rd
->dlo_mask
);
5553 free_cpumask_var(rd
->rto_mask
);
5554 free_cpumask_var(rd
->online
);
5555 free_cpumask_var(rd
->span
);
5559 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5561 struct root_domain
*old_rd
= NULL
;
5562 unsigned long flags
;
5564 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5569 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5572 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5575 * If we dont want to free the old_rd yet then
5576 * set old_rd to NULL to skip the freeing later
5579 if (!atomic_dec_and_test(&old_rd
->refcount
))
5583 atomic_inc(&rd
->refcount
);
5586 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5587 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5590 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5593 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5596 static int init_rootdomain(struct root_domain
*rd
)
5598 memset(rd
, 0, sizeof(*rd
));
5600 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5602 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5604 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5606 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5609 init_dl_bw(&rd
->dl_bw
);
5610 if (cpudl_init(&rd
->cpudl
) != 0)
5613 if (cpupri_init(&rd
->cpupri
) != 0)
5618 free_cpumask_var(rd
->rto_mask
);
5620 free_cpumask_var(rd
->dlo_mask
);
5622 free_cpumask_var(rd
->online
);
5624 free_cpumask_var(rd
->span
);
5630 * By default the system creates a single root-domain with all cpus as
5631 * members (mimicking the global state we have today).
5633 struct root_domain def_root_domain
;
5635 static void init_defrootdomain(void)
5637 init_rootdomain(&def_root_domain
);
5639 atomic_set(&def_root_domain
.refcount
, 1);
5642 static struct root_domain
*alloc_rootdomain(void)
5644 struct root_domain
*rd
;
5646 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5650 if (init_rootdomain(rd
) != 0) {
5658 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5660 struct sched_group
*tmp
, *first
;
5669 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5674 } while (sg
!= first
);
5677 static void free_sched_domain(struct rcu_head
*rcu
)
5679 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5682 * If its an overlapping domain it has private groups, iterate and
5685 if (sd
->flags
& SD_OVERLAP
) {
5686 free_sched_groups(sd
->groups
, 1);
5687 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5688 kfree(sd
->groups
->sgc
);
5694 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5696 call_rcu(&sd
->rcu
, free_sched_domain
);
5699 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5701 for (; sd
; sd
= sd
->parent
)
5702 destroy_sched_domain(sd
, cpu
);
5706 * Keep a special pointer to the highest sched_domain that has
5707 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5708 * allows us to avoid some pointer chasing select_idle_sibling().
5710 * Also keep a unique ID per domain (we use the first cpu number in
5711 * the cpumask of the domain), this allows us to quickly tell if
5712 * two cpus are in the same cache domain, see cpus_share_cache().
5714 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5715 DEFINE_PER_CPU(int, sd_llc_size
);
5716 DEFINE_PER_CPU(int, sd_llc_id
);
5717 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5718 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5719 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5721 static void update_top_cache_domain(int cpu
)
5723 struct sched_domain
*sd
;
5724 struct sched_domain
*busy_sd
= NULL
;
5728 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5730 id
= cpumask_first(sched_domain_span(sd
));
5731 size
= cpumask_weight(sched_domain_span(sd
));
5732 busy_sd
= sd
->parent
; /* sd_busy */
5734 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5736 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5737 per_cpu(sd_llc_size
, cpu
) = size
;
5738 per_cpu(sd_llc_id
, cpu
) = id
;
5740 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5741 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5743 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5744 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5748 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5749 * hold the hotplug lock.
5752 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5754 struct rq
*rq
= cpu_rq(cpu
);
5755 struct sched_domain
*tmp
;
5757 /* Remove the sched domains which do not contribute to scheduling. */
5758 for (tmp
= sd
; tmp
; ) {
5759 struct sched_domain
*parent
= tmp
->parent
;
5763 if (sd_parent_degenerate(tmp
, parent
)) {
5764 tmp
->parent
= parent
->parent
;
5766 parent
->parent
->child
= tmp
;
5768 * Transfer SD_PREFER_SIBLING down in case of a
5769 * degenerate parent; the spans match for this
5770 * so the property transfers.
5772 if (parent
->flags
& SD_PREFER_SIBLING
)
5773 tmp
->flags
|= SD_PREFER_SIBLING
;
5774 destroy_sched_domain(parent
, cpu
);
5779 if (sd
&& sd_degenerate(sd
)) {
5782 destroy_sched_domain(tmp
, cpu
);
5787 sched_domain_debug(sd
, cpu
);
5789 rq_attach_root(rq
, rd
);
5791 rcu_assign_pointer(rq
->sd
, sd
);
5792 destroy_sched_domains(tmp
, cpu
);
5794 update_top_cache_domain(cpu
);
5797 /* cpus with isolated domains */
5798 static cpumask_var_t cpu_isolated_map
;
5800 /* Setup the mask of cpus configured for isolated domains */
5801 static int __init
isolated_cpu_setup(char *str
)
5803 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5804 cpulist_parse(str
, cpu_isolated_map
);
5808 __setup("isolcpus=", isolated_cpu_setup
);
5811 struct sched_domain
** __percpu sd
;
5812 struct root_domain
*rd
;
5823 * Build an iteration mask that can exclude certain CPUs from the upwards
5826 * Asymmetric node setups can result in situations where the domain tree is of
5827 * unequal depth, make sure to skip domains that already cover the entire
5830 * In that case build_sched_domains() will have terminated the iteration early
5831 * and our sibling sd spans will be empty. Domains should always include the
5832 * cpu they're built on, so check that.
5835 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
5837 const struct cpumask
*span
= sched_domain_span(sd
);
5838 struct sd_data
*sdd
= sd
->private;
5839 struct sched_domain
*sibling
;
5842 for_each_cpu(i
, span
) {
5843 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5844 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5847 cpumask_set_cpu(i
, sched_group_mask(sg
));
5852 * Return the canonical balance cpu for this group, this is the first cpu
5853 * of this group that's also in the iteration mask.
5855 int group_balance_cpu(struct sched_group
*sg
)
5857 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
5861 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5863 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5864 const struct cpumask
*span
= sched_domain_span(sd
);
5865 struct cpumask
*covered
= sched_domains_tmpmask
;
5866 struct sd_data
*sdd
= sd
->private;
5867 struct sched_domain
*sibling
;
5870 cpumask_clear(covered
);
5872 for_each_cpu(i
, span
) {
5873 struct cpumask
*sg_span
;
5875 if (cpumask_test_cpu(i
, covered
))
5878 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5880 /* See the comment near build_group_mask(). */
5881 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5884 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5885 GFP_KERNEL
, cpu_to_node(cpu
));
5890 sg_span
= sched_group_cpus(sg
);
5892 cpumask_copy(sg_span
, sched_domain_span(sibling
->child
));
5894 cpumask_set_cpu(i
, sg_span
);
5896 cpumask_or(covered
, covered
, sg_span
);
5898 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
5899 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
5900 build_group_mask(sd
, sg
);
5903 * Initialize sgc->capacity such that even if we mess up the
5904 * domains and no possible iteration will get us here, we won't
5907 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
5908 sg
->sgc
->capacity_orig
= sg
->sgc
->capacity
;
5911 * Make sure the first group of this domain contains the
5912 * canonical balance cpu. Otherwise the sched_domain iteration
5913 * breaks. See update_sg_lb_stats().
5915 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
5916 group_balance_cpu(sg
) == cpu
)
5926 sd
->groups
= groups
;
5931 free_sched_groups(first
, 0);
5936 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
5938 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
5939 struct sched_domain
*child
= sd
->child
;
5942 cpu
= cpumask_first(sched_domain_span(child
));
5945 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
5946 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
5947 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
5954 * build_sched_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
5956 * and ->cpu_capacity to 0.
5958 * Assumes the sched_domain tree is fully constructed
5961 build_sched_groups(struct sched_domain
*sd
, int cpu
)
5963 struct sched_group
*first
= NULL
, *last
= NULL
;
5964 struct sd_data
*sdd
= sd
->private;
5965 const struct cpumask
*span
= sched_domain_span(sd
);
5966 struct cpumask
*covered
;
5969 get_group(cpu
, sdd
, &sd
->groups
);
5970 atomic_inc(&sd
->groups
->ref
);
5972 if (cpu
!= cpumask_first(span
))
5975 lockdep_assert_held(&sched_domains_mutex
);
5976 covered
= sched_domains_tmpmask
;
5978 cpumask_clear(covered
);
5980 for_each_cpu(i
, span
) {
5981 struct sched_group
*sg
;
5984 if (cpumask_test_cpu(i
, covered
))
5987 group
= get_group(i
, sdd
, &sg
);
5988 cpumask_setall(sched_group_mask(sg
));
5990 for_each_cpu(j
, span
) {
5991 if (get_group(j
, sdd
, NULL
) != group
)
5994 cpumask_set_cpu(j
, covered
);
5995 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6010 * Initialize sched groups cpu_capacity.
6012 * cpu_capacity indicates the capacity of sched group, which is used while
6013 * distributing the load between different sched groups in a sched domain.
6014 * Typically cpu_capacity for all the groups in a sched domain will be same
6015 * unless there are asymmetries in the topology. If there are asymmetries,
6016 * group having more cpu_capacity will pickup more load compared to the
6017 * group having less cpu_capacity.
6019 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
6021 struct sched_group
*sg
= sd
->groups
;
6026 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6028 } while (sg
!= sd
->groups
);
6030 if (cpu
!= group_balance_cpu(sg
))
6033 update_group_capacity(sd
, cpu
);
6034 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
6038 * Initializers for schedule domains
6039 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6042 static int default_relax_domain_level
= -1;
6043 int sched_domain_level_max
;
6045 static int __init
setup_relax_domain_level(char *str
)
6047 if (kstrtoint(str
, 0, &default_relax_domain_level
))
6048 pr_warn("Unable to set relax_domain_level\n");
6052 __setup("relax_domain_level=", setup_relax_domain_level
);
6054 static void set_domain_attribute(struct sched_domain
*sd
,
6055 struct sched_domain_attr
*attr
)
6059 if (!attr
|| attr
->relax_domain_level
< 0) {
6060 if (default_relax_domain_level
< 0)
6063 request
= default_relax_domain_level
;
6065 request
= attr
->relax_domain_level
;
6066 if (request
< sd
->level
) {
6067 /* turn off idle balance on this domain */
6068 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6070 /* turn on idle balance on this domain */
6071 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6075 static void __sdt_free(const struct cpumask
*cpu_map
);
6076 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6078 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6079 const struct cpumask
*cpu_map
)
6083 if (!atomic_read(&d
->rd
->refcount
))
6084 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6086 free_percpu(d
->sd
); /* fall through */
6088 __sdt_free(cpu_map
); /* fall through */
6094 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6095 const struct cpumask
*cpu_map
)
6097 memset(d
, 0, sizeof(*d
));
6099 if (__sdt_alloc(cpu_map
))
6100 return sa_sd_storage
;
6101 d
->sd
= alloc_percpu(struct sched_domain
*);
6103 return sa_sd_storage
;
6104 d
->rd
= alloc_rootdomain();
6107 return sa_rootdomain
;
6111 * NULL the sd_data elements we've used to build the sched_domain and
6112 * sched_group structure so that the subsequent __free_domain_allocs()
6113 * will not free the data we're using.
6115 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6117 struct sd_data
*sdd
= sd
->private;
6119 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6120 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6122 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6123 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6125 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
6126 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
6130 static int sched_domains_numa_levels
;
6131 static int *sched_domains_numa_distance
;
6132 static struct cpumask
***sched_domains_numa_masks
;
6133 static int sched_domains_curr_level
;
6137 * SD_flags allowed in topology descriptions.
6139 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6140 * SD_SHARE_PKG_RESOURCES - describes shared caches
6141 * SD_NUMA - describes NUMA topologies
6142 * SD_SHARE_POWERDOMAIN - describes shared power domain
6145 * SD_ASYM_PACKING - describes SMT quirks
6147 #define TOPOLOGY_SD_FLAGS \
6148 (SD_SHARE_CPUCAPACITY | \
6149 SD_SHARE_PKG_RESOURCES | \
6152 SD_SHARE_POWERDOMAIN)
6154 static struct sched_domain
*
6155 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6157 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6158 int sd_weight
, sd_flags
= 0;
6162 * Ugly hack to pass state to sd_numa_mask()...
6164 sched_domains_curr_level
= tl
->numa_level
;
6167 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6170 sd_flags
= (*tl
->sd_flags
)();
6171 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6172 "wrong sd_flags in topology description\n"))
6173 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6175 *sd
= (struct sched_domain
){
6176 .min_interval
= sd_weight
,
6177 .max_interval
= 2*sd_weight
,
6179 .imbalance_pct
= 125,
6181 .cache_nice_tries
= 0,
6188 .flags
= 1*SD_LOAD_BALANCE
6189 | 1*SD_BALANCE_NEWIDLE
6194 | 0*SD_SHARE_CPUCAPACITY
6195 | 0*SD_SHARE_PKG_RESOURCES
6197 | 0*SD_PREFER_SIBLING
6202 .last_balance
= jiffies
,
6203 .balance_interval
= sd_weight
,
6205 .max_newidle_lb_cost
= 0,
6206 .next_decay_max_lb_cost
= jiffies
,
6207 #ifdef CONFIG_SCHED_DEBUG
6213 * Convert topological properties into behaviour.
6216 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6217 sd
->imbalance_pct
= 110;
6218 sd
->smt_gain
= 1178; /* ~15% */
6220 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6221 sd
->imbalance_pct
= 117;
6222 sd
->cache_nice_tries
= 1;
6226 } else if (sd
->flags
& SD_NUMA
) {
6227 sd
->cache_nice_tries
= 2;
6231 sd
->flags
|= SD_SERIALIZE
;
6232 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6233 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6240 sd
->flags
|= SD_PREFER_SIBLING
;
6241 sd
->cache_nice_tries
= 1;
6246 sd
->private = &tl
->data
;
6252 * Topology list, bottom-up.
6254 static struct sched_domain_topology_level default_topology
[] = {
6255 #ifdef CONFIG_SCHED_SMT
6256 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6258 #ifdef CONFIG_SCHED_MC
6259 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6261 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6265 struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6267 #define for_each_sd_topology(tl) \
6268 for (tl = sched_domain_topology; tl->mask; tl++)
6270 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6272 sched_domain_topology
= tl
;
6277 static const struct cpumask
*sd_numa_mask(int cpu
)
6279 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6282 static void sched_numa_warn(const char *str
)
6284 static int done
= false;
6292 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6294 for (i
= 0; i
< nr_node_ids
; i
++) {
6295 printk(KERN_WARNING
" ");
6296 for (j
= 0; j
< nr_node_ids
; j
++)
6297 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6298 printk(KERN_CONT
"\n");
6300 printk(KERN_WARNING
"\n");
6303 static bool find_numa_distance(int distance
)
6307 if (distance
== node_distance(0, 0))
6310 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6311 if (sched_domains_numa_distance
[i
] == distance
)
6318 static void sched_init_numa(void)
6320 int next_distance
, curr_distance
= node_distance(0, 0);
6321 struct sched_domain_topology_level
*tl
;
6325 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6326 if (!sched_domains_numa_distance
)
6330 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6331 * unique distances in the node_distance() table.
6333 * Assumes node_distance(0,j) includes all distances in
6334 * node_distance(i,j) in order to avoid cubic time.
6336 next_distance
= curr_distance
;
6337 for (i
= 0; i
< nr_node_ids
; i
++) {
6338 for (j
= 0; j
< nr_node_ids
; j
++) {
6339 for (k
= 0; k
< nr_node_ids
; k
++) {
6340 int distance
= node_distance(i
, k
);
6342 if (distance
> curr_distance
&&
6343 (distance
< next_distance
||
6344 next_distance
== curr_distance
))
6345 next_distance
= distance
;
6348 * While not a strong assumption it would be nice to know
6349 * about cases where if node A is connected to B, B is not
6350 * equally connected to A.
6352 if (sched_debug() && node_distance(k
, i
) != distance
)
6353 sched_numa_warn("Node-distance not symmetric");
6355 if (sched_debug() && i
&& !find_numa_distance(distance
))
6356 sched_numa_warn("Node-0 not representative");
6358 if (next_distance
!= curr_distance
) {
6359 sched_domains_numa_distance
[level
++] = next_distance
;
6360 sched_domains_numa_levels
= level
;
6361 curr_distance
= next_distance
;
6366 * In case of sched_debug() we verify the above assumption.
6372 * 'level' contains the number of unique distances, excluding the
6373 * identity distance node_distance(i,i).
6375 * The sched_domains_numa_distance[] array includes the actual distance
6380 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6381 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6382 * the array will contain less then 'level' members. This could be
6383 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6384 * in other functions.
6386 * We reset it to 'level' at the end of this function.
6388 sched_domains_numa_levels
= 0;
6390 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6391 if (!sched_domains_numa_masks
)
6395 * Now for each level, construct a mask per node which contains all
6396 * cpus of nodes that are that many hops away from us.
6398 for (i
= 0; i
< level
; i
++) {
6399 sched_domains_numa_masks
[i
] =
6400 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6401 if (!sched_domains_numa_masks
[i
])
6404 for (j
= 0; j
< nr_node_ids
; j
++) {
6405 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6409 sched_domains_numa_masks
[i
][j
] = mask
;
6411 for (k
= 0; k
< nr_node_ids
; k
++) {
6412 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6415 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6420 /* Compute default topology size */
6421 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6423 tl
= kzalloc((i
+ level
+ 1) *
6424 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6429 * Copy the default topology bits..
6431 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6432 tl
[i
] = sched_domain_topology
[i
];
6435 * .. and append 'j' levels of NUMA goodness.
6437 for (j
= 0; j
< level
; i
++, j
++) {
6438 tl
[i
] = (struct sched_domain_topology_level
){
6439 .mask
= sd_numa_mask
,
6440 .sd_flags
= cpu_numa_flags
,
6441 .flags
= SDTL_OVERLAP
,
6447 sched_domain_topology
= tl
;
6449 sched_domains_numa_levels
= level
;
6452 static void sched_domains_numa_masks_set(int cpu
)
6455 int node
= cpu_to_node(cpu
);
6457 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6458 for (j
= 0; j
< nr_node_ids
; j
++) {
6459 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6460 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6465 static void sched_domains_numa_masks_clear(int cpu
)
6468 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6469 for (j
= 0; j
< nr_node_ids
; j
++)
6470 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6475 * Update sched_domains_numa_masks[level][node] array when new cpus
6478 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6479 unsigned long action
,
6482 int cpu
= (long)hcpu
;
6484 switch (action
& ~CPU_TASKS_FROZEN
) {
6486 sched_domains_numa_masks_set(cpu
);
6490 sched_domains_numa_masks_clear(cpu
);
6500 static inline void sched_init_numa(void)
6504 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6505 unsigned long action
,
6510 #endif /* CONFIG_NUMA */
6512 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6514 struct sched_domain_topology_level
*tl
;
6517 for_each_sd_topology(tl
) {
6518 struct sd_data
*sdd
= &tl
->data
;
6520 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6524 sdd
->sg
= alloc_percpu(struct sched_group
*);
6528 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6532 for_each_cpu(j
, cpu_map
) {
6533 struct sched_domain
*sd
;
6534 struct sched_group
*sg
;
6535 struct sched_group_capacity
*sgc
;
6537 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6538 GFP_KERNEL
, cpu_to_node(j
));
6542 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6544 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6545 GFP_KERNEL
, cpu_to_node(j
));
6551 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6553 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6554 GFP_KERNEL
, cpu_to_node(j
));
6558 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6565 static void __sdt_free(const struct cpumask
*cpu_map
)
6567 struct sched_domain_topology_level
*tl
;
6570 for_each_sd_topology(tl
) {
6571 struct sd_data
*sdd
= &tl
->data
;
6573 for_each_cpu(j
, cpu_map
) {
6574 struct sched_domain
*sd
;
6577 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6578 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6579 free_sched_groups(sd
->groups
, 0);
6580 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6584 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6586 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6588 free_percpu(sdd
->sd
);
6590 free_percpu(sdd
->sg
);
6592 free_percpu(sdd
->sgc
);
6597 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6598 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6599 struct sched_domain
*child
, int cpu
)
6601 struct sched_domain
*sd
= sd_init(tl
, cpu
);
6605 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6607 sd
->level
= child
->level
+ 1;
6608 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6612 if (!cpumask_subset(sched_domain_span(child
),
6613 sched_domain_span(sd
))) {
6614 pr_err("BUG: arch topology borken\n");
6615 #ifdef CONFIG_SCHED_DEBUG
6616 pr_err(" the %s domain not a subset of the %s domain\n",
6617 child
->name
, sd
->name
);
6619 /* Fixup, ensure @sd has at least @child cpus. */
6620 cpumask_or(sched_domain_span(sd
),
6621 sched_domain_span(sd
),
6622 sched_domain_span(child
));
6626 set_domain_attribute(sd
, attr
);
6632 * Build sched domains for a given set of cpus and attach the sched domains
6633 * to the individual cpus
6635 static int build_sched_domains(const struct cpumask
*cpu_map
,
6636 struct sched_domain_attr
*attr
)
6638 enum s_alloc alloc_state
;
6639 struct sched_domain
*sd
;
6641 int i
, ret
= -ENOMEM
;
6643 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6644 if (alloc_state
!= sa_rootdomain
)
6647 /* Set up domains for cpus specified by the cpu_map. */
6648 for_each_cpu(i
, cpu_map
) {
6649 struct sched_domain_topology_level
*tl
;
6652 for_each_sd_topology(tl
) {
6653 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6654 if (tl
== sched_domain_topology
)
6655 *per_cpu_ptr(d
.sd
, i
) = sd
;
6656 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6657 sd
->flags
|= SD_OVERLAP
;
6658 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6663 /* Build the groups for the domains */
6664 for_each_cpu(i
, cpu_map
) {
6665 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6666 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6667 if (sd
->flags
& SD_OVERLAP
) {
6668 if (build_overlap_sched_groups(sd
, i
))
6671 if (build_sched_groups(sd
, i
))
6677 /* Calculate CPU capacity for physical packages and nodes */
6678 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6679 if (!cpumask_test_cpu(i
, cpu_map
))
6682 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6683 claim_allocations(i
, sd
);
6684 init_sched_groups_capacity(i
, sd
);
6688 /* Attach the domains */
6690 for_each_cpu(i
, cpu_map
) {
6691 sd
= *per_cpu_ptr(d
.sd
, i
);
6692 cpu_attach_domain(sd
, d
.rd
, i
);
6698 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6702 static cpumask_var_t
*doms_cur
; /* current sched domains */
6703 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6704 static struct sched_domain_attr
*dattr_cur
;
6705 /* attribues of custom domains in 'doms_cur' */
6708 * Special case: If a kmalloc of a doms_cur partition (array of
6709 * cpumask) fails, then fallback to a single sched domain,
6710 * as determined by the single cpumask fallback_doms.
6712 static cpumask_var_t fallback_doms
;
6715 * arch_update_cpu_topology lets virtualized architectures update the
6716 * cpu core maps. It is supposed to return 1 if the topology changed
6717 * or 0 if it stayed the same.
6719 int __weak
arch_update_cpu_topology(void)
6724 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6727 cpumask_var_t
*doms
;
6729 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6732 for (i
= 0; i
< ndoms
; i
++) {
6733 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6734 free_sched_domains(doms
, i
);
6741 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6744 for (i
= 0; i
< ndoms
; i
++)
6745 free_cpumask_var(doms
[i
]);
6750 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6751 * For now this just excludes isolated cpus, but could be used to
6752 * exclude other special cases in the future.
6754 static int init_sched_domains(const struct cpumask
*cpu_map
)
6758 arch_update_cpu_topology();
6760 doms_cur
= alloc_sched_domains(ndoms_cur
);
6762 doms_cur
= &fallback_doms
;
6763 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6764 err
= build_sched_domains(doms_cur
[0], NULL
);
6765 register_sched_domain_sysctl();
6771 * Detach sched domains from a group of cpus specified in cpu_map
6772 * These cpus will now be attached to the NULL domain
6774 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6779 for_each_cpu(i
, cpu_map
)
6780 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6784 /* handle null as "default" */
6785 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6786 struct sched_domain_attr
*new, int idx_new
)
6788 struct sched_domain_attr tmp
;
6795 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6796 new ? (new + idx_new
) : &tmp
,
6797 sizeof(struct sched_domain_attr
));
6801 * Partition sched domains as specified by the 'ndoms_new'
6802 * cpumasks in the array doms_new[] of cpumasks. This compares
6803 * doms_new[] to the current sched domain partitioning, doms_cur[].
6804 * It destroys each deleted domain and builds each new domain.
6806 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6807 * The masks don't intersect (don't overlap.) We should setup one
6808 * sched domain for each mask. CPUs not in any of the cpumasks will
6809 * not be load balanced. If the same cpumask appears both in the
6810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6813 * The passed in 'doms_new' should be allocated using
6814 * alloc_sched_domains. This routine takes ownership of it and will
6815 * free_sched_domains it when done with it. If the caller failed the
6816 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6817 * and partition_sched_domains() will fallback to the single partition
6818 * 'fallback_doms', it also forces the domains to be rebuilt.
6820 * If doms_new == NULL it will be replaced with cpu_online_mask.
6821 * ndoms_new == 0 is a special case for destroying existing domains,
6822 * and it will not create the default domain.
6824 * Call with hotplug lock held
6826 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6827 struct sched_domain_attr
*dattr_new
)
6832 mutex_lock(&sched_domains_mutex
);
6834 /* always unregister in case we don't destroy any domains */
6835 unregister_sched_domain_sysctl();
6837 /* Let architecture update cpu core mappings. */
6838 new_topology
= arch_update_cpu_topology();
6840 n
= doms_new
? ndoms_new
: 0;
6842 /* Destroy deleted domains */
6843 for (i
= 0; i
< ndoms_cur
; i
++) {
6844 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6845 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6846 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6849 /* no match - a current sched domain not in new doms_new[] */
6850 detach_destroy_domains(doms_cur
[i
]);
6856 if (doms_new
== NULL
) {
6858 doms_new
= &fallback_doms
;
6859 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6860 WARN_ON_ONCE(dattr_new
);
6863 /* Build new domains */
6864 for (i
= 0; i
< ndoms_new
; i
++) {
6865 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6866 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6867 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6870 /* no match - add a new doms_new */
6871 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6876 /* Remember the new sched domains */
6877 if (doms_cur
!= &fallback_doms
)
6878 free_sched_domains(doms_cur
, ndoms_cur
);
6879 kfree(dattr_cur
); /* kfree(NULL) is safe */
6880 doms_cur
= doms_new
;
6881 dattr_cur
= dattr_new
;
6882 ndoms_cur
= ndoms_new
;
6884 register_sched_domain_sysctl();
6886 mutex_unlock(&sched_domains_mutex
);
6889 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
6892 * Update cpusets according to cpu_active mask. If cpusets are
6893 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6894 * around partition_sched_domains().
6896 * If we come here as part of a suspend/resume, don't touch cpusets because we
6897 * want to restore it back to its original state upon resume anyway.
6899 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6903 case CPU_ONLINE_FROZEN
:
6904 case CPU_DOWN_FAILED_FROZEN
:
6907 * num_cpus_frozen tracks how many CPUs are involved in suspend
6908 * resume sequence. As long as this is not the last online
6909 * operation in the resume sequence, just build a single sched
6910 * domain, ignoring cpusets.
6913 if (likely(num_cpus_frozen
)) {
6914 partition_sched_domains(1, NULL
, NULL
);
6919 * This is the last CPU online operation. So fall through and
6920 * restore the original sched domains by considering the
6921 * cpuset configurations.
6925 case CPU_DOWN_FAILED
:
6926 cpuset_update_active_cpus(true);
6934 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6938 case CPU_DOWN_PREPARE
:
6939 cpuset_update_active_cpus(false);
6941 case CPU_DOWN_PREPARE_FROZEN
:
6943 partition_sched_domains(1, NULL
, NULL
);
6951 void __init
sched_init_smp(void)
6953 cpumask_var_t non_isolated_cpus
;
6955 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6956 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6961 * There's no userspace yet to cause hotplug operations; hence all the
6962 * cpu masks are stable and all blatant races in the below code cannot
6965 mutex_lock(&sched_domains_mutex
);
6966 init_sched_domains(cpu_active_mask
);
6967 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6968 if (cpumask_empty(non_isolated_cpus
))
6969 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6970 mutex_unlock(&sched_domains_mutex
);
6972 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
6973 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6974 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6978 /* Move init over to a non-isolated CPU */
6979 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6981 sched_init_granularity();
6982 free_cpumask_var(non_isolated_cpus
);
6984 init_sched_rt_class();
6985 init_sched_dl_class();
6988 void __init
sched_init_smp(void)
6990 sched_init_granularity();
6992 #endif /* CONFIG_SMP */
6994 const_debug
unsigned int sysctl_timer_migration
= 1;
6996 int in_sched_functions(unsigned long addr
)
6998 return in_lock_functions(addr
) ||
6999 (addr
>= (unsigned long)__sched_text_start
7000 && addr
< (unsigned long)__sched_text_end
);
7003 #ifdef CONFIG_CGROUP_SCHED
7005 * Default task group.
7006 * Every task in system belongs to this group at bootup.
7008 struct task_group root_task_group
;
7009 LIST_HEAD(task_groups
);
7012 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7014 void __init
sched_init(void)
7017 unsigned long alloc_size
= 0, ptr
;
7019 #ifdef CONFIG_FAIR_GROUP_SCHED
7020 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7022 #ifdef CONFIG_RT_GROUP_SCHED
7023 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7025 #ifdef CONFIG_CPUMASK_OFFSTACK
7026 alloc_size
+= num_possible_cpus() * cpumask_size();
7029 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7031 #ifdef CONFIG_FAIR_GROUP_SCHED
7032 root_task_group
.se
= (struct sched_entity
**)ptr
;
7033 ptr
+= nr_cpu_ids
* sizeof(void **);
7035 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7036 ptr
+= nr_cpu_ids
* sizeof(void **);
7038 #endif /* CONFIG_FAIR_GROUP_SCHED */
7039 #ifdef CONFIG_RT_GROUP_SCHED
7040 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7041 ptr
+= nr_cpu_ids
* sizeof(void **);
7043 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7044 ptr
+= nr_cpu_ids
* sizeof(void **);
7046 #endif /* CONFIG_RT_GROUP_SCHED */
7047 #ifdef CONFIG_CPUMASK_OFFSTACK
7048 for_each_possible_cpu(i
) {
7049 per_cpu(load_balance_mask
, i
) = (void *)ptr
;
7050 ptr
+= cpumask_size();
7052 #endif /* CONFIG_CPUMASK_OFFSTACK */
7055 init_rt_bandwidth(&def_rt_bandwidth
,
7056 global_rt_period(), global_rt_runtime());
7057 init_dl_bandwidth(&def_dl_bandwidth
,
7058 global_rt_period(), global_rt_runtime());
7061 init_defrootdomain();
7064 #ifdef CONFIG_RT_GROUP_SCHED
7065 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7066 global_rt_period(), global_rt_runtime());
7067 #endif /* CONFIG_RT_GROUP_SCHED */
7069 #ifdef CONFIG_CGROUP_SCHED
7070 list_add(&root_task_group
.list
, &task_groups
);
7071 INIT_LIST_HEAD(&root_task_group
.children
);
7072 INIT_LIST_HEAD(&root_task_group
.siblings
);
7073 autogroup_init(&init_task
);
7075 #endif /* CONFIG_CGROUP_SCHED */
7077 for_each_possible_cpu(i
) {
7081 raw_spin_lock_init(&rq
->lock
);
7083 rq
->calc_load_active
= 0;
7084 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7085 init_cfs_rq(&rq
->cfs
);
7086 init_rt_rq(&rq
->rt
, rq
);
7087 init_dl_rq(&rq
->dl
, rq
);
7088 #ifdef CONFIG_FAIR_GROUP_SCHED
7089 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7090 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7092 * How much cpu bandwidth does root_task_group get?
7094 * In case of task-groups formed thr' the cgroup filesystem, it
7095 * gets 100% of the cpu resources in the system. This overall
7096 * system cpu resource is divided among the tasks of
7097 * root_task_group and its child task-groups in a fair manner,
7098 * based on each entity's (task or task-group's) weight
7099 * (se->load.weight).
7101 * In other words, if root_task_group has 10 tasks of weight
7102 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7103 * then A0's share of the cpu resource is:
7105 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7107 * We achieve this by letting root_task_group's tasks sit
7108 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7110 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7111 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7112 #endif /* CONFIG_FAIR_GROUP_SCHED */
7114 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7115 #ifdef CONFIG_RT_GROUP_SCHED
7116 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7119 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7120 rq
->cpu_load
[j
] = 0;
7122 rq
->last_load_update_tick
= jiffies
;
7127 rq
->cpu_capacity
= SCHED_CAPACITY_SCALE
;
7128 rq
->post_schedule
= 0;
7129 rq
->active_balance
= 0;
7130 rq
->next_balance
= jiffies
;
7135 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7136 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7138 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7140 rq_attach_root(rq
, &def_root_domain
);
7141 #ifdef CONFIG_NO_HZ_COMMON
7144 #ifdef CONFIG_NO_HZ_FULL
7145 rq
->last_sched_tick
= 0;
7149 atomic_set(&rq
->nr_iowait
, 0);
7152 set_load_weight(&init_task
);
7154 #ifdef CONFIG_PREEMPT_NOTIFIERS
7155 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7159 * The boot idle thread does lazy MMU switching as well:
7161 atomic_inc(&init_mm
.mm_count
);
7162 enter_lazy_tlb(&init_mm
, current
);
7165 * Make us the idle thread. Technically, schedule() should not be
7166 * called from this thread, however somewhere below it might be,
7167 * but because we are the idle thread, we just pick up running again
7168 * when this runqueue becomes "idle".
7170 init_idle(current
, smp_processor_id());
7172 calc_load_update
= jiffies
+ LOAD_FREQ
;
7175 * During early bootup we pretend to be a normal task:
7177 current
->sched_class
= &fair_sched_class
;
7180 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7181 /* May be allocated at isolcpus cmdline parse time */
7182 if (cpu_isolated_map
== NULL
)
7183 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7184 idle_thread_set_boot_cpu();
7185 set_cpu_rq_start_time();
7187 init_sched_fair_class();
7189 scheduler_running
= 1;
7192 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7193 static inline int preempt_count_equals(int preempt_offset
)
7195 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7197 return (nested
== preempt_offset
);
7200 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7202 static unsigned long prev_jiffy
; /* ratelimiting */
7204 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7205 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7206 !is_idle_task(current
)) ||
7207 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7209 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7211 prev_jiffy
= jiffies
;
7214 "BUG: sleeping function called from invalid context at %s:%d\n",
7217 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7218 in_atomic(), irqs_disabled(),
7219 current
->pid
, current
->comm
);
7221 debug_show_held_locks(current
);
7222 if (irqs_disabled())
7223 print_irqtrace_events(current
);
7224 #ifdef CONFIG_DEBUG_PREEMPT
7225 if (!preempt_count_equals(preempt_offset
)) {
7226 pr_err("Preemption disabled at:");
7227 print_ip_sym(current
->preempt_disable_ip
);
7233 EXPORT_SYMBOL(__might_sleep
);
7236 #ifdef CONFIG_MAGIC_SYSRQ
7237 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7239 const struct sched_class
*prev_class
= p
->sched_class
;
7240 struct sched_attr attr
= {
7241 .sched_policy
= SCHED_NORMAL
,
7243 int old_prio
= p
->prio
;
7246 queued
= task_on_rq_queued(p
);
7248 dequeue_task(rq
, p
, 0);
7249 __setscheduler(rq
, p
, &attr
);
7251 enqueue_task(rq
, p
, 0);
7255 check_class_changed(rq
, p
, prev_class
, old_prio
);
7258 void normalize_rt_tasks(void)
7260 struct task_struct
*g
, *p
;
7261 unsigned long flags
;
7264 read_lock(&tasklist_lock
);
7265 for_each_process_thread(g
, p
) {
7267 * Only normalize user tasks:
7269 if (p
->flags
& PF_KTHREAD
)
7272 p
->se
.exec_start
= 0;
7273 #ifdef CONFIG_SCHEDSTATS
7274 p
->se
.statistics
.wait_start
= 0;
7275 p
->se
.statistics
.sleep_start
= 0;
7276 p
->se
.statistics
.block_start
= 0;
7279 if (!dl_task(p
) && !rt_task(p
)) {
7281 * Renice negative nice level userspace
7284 if (task_nice(p
) < 0)
7285 set_user_nice(p
, 0);
7289 rq
= task_rq_lock(p
, &flags
);
7290 normalize_task(rq
, p
);
7291 task_rq_unlock(rq
, p
, &flags
);
7293 read_unlock(&tasklist_lock
);
7296 #endif /* CONFIG_MAGIC_SYSRQ */
7298 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7300 * These functions are only useful for the IA64 MCA handling, or kdb.
7302 * They can only be called when the whole system has been
7303 * stopped - every CPU needs to be quiescent, and no scheduling
7304 * activity can take place. Using them for anything else would
7305 * be a serious bug, and as a result, they aren't even visible
7306 * under any other configuration.
7310 * curr_task - return the current task for a given cpu.
7311 * @cpu: the processor in question.
7313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7315 * Return: The current task for @cpu.
7317 struct task_struct
*curr_task(int cpu
)
7319 return cpu_curr(cpu
);
7322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7326 * set_curr_task - set the current task for a given cpu.
7327 * @cpu: the processor in question.
7328 * @p: the task pointer to set.
7330 * Description: This function must only be used when non-maskable interrupts
7331 * are serviced on a separate stack. It allows the architecture to switch the
7332 * notion of the current task on a cpu in a non-blocking manner. This function
7333 * must be called with all CPU's synchronized, and interrupts disabled, the
7334 * and caller must save the original value of the current task (see
7335 * curr_task() above) and restore that value before reenabling interrupts and
7336 * re-starting the system.
7338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7340 void set_curr_task(int cpu
, struct task_struct
*p
)
7347 #ifdef CONFIG_CGROUP_SCHED
7348 /* task_group_lock serializes the addition/removal of task groups */
7349 static DEFINE_SPINLOCK(task_group_lock
);
7351 static void free_sched_group(struct task_group
*tg
)
7353 free_fair_sched_group(tg
);
7354 free_rt_sched_group(tg
);
7359 /* allocate runqueue etc for a new task group */
7360 struct task_group
*sched_create_group(struct task_group
*parent
)
7362 struct task_group
*tg
;
7364 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7366 return ERR_PTR(-ENOMEM
);
7368 if (!alloc_fair_sched_group(tg
, parent
))
7371 if (!alloc_rt_sched_group(tg
, parent
))
7377 free_sched_group(tg
);
7378 return ERR_PTR(-ENOMEM
);
7381 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7383 unsigned long flags
;
7385 spin_lock_irqsave(&task_group_lock
, flags
);
7386 list_add_rcu(&tg
->list
, &task_groups
);
7388 WARN_ON(!parent
); /* root should already exist */
7390 tg
->parent
= parent
;
7391 INIT_LIST_HEAD(&tg
->children
);
7392 list_add_rcu(&tg
->siblings
, &parent
->children
);
7393 spin_unlock_irqrestore(&task_group_lock
, flags
);
7396 /* rcu callback to free various structures associated with a task group */
7397 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7399 /* now it should be safe to free those cfs_rqs */
7400 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7403 /* Destroy runqueue etc associated with a task group */
7404 void sched_destroy_group(struct task_group
*tg
)
7406 /* wait for possible concurrent references to cfs_rqs complete */
7407 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7410 void sched_offline_group(struct task_group
*tg
)
7412 unsigned long flags
;
7415 /* end participation in shares distribution */
7416 for_each_possible_cpu(i
)
7417 unregister_fair_sched_group(tg
, i
);
7419 spin_lock_irqsave(&task_group_lock
, flags
);
7420 list_del_rcu(&tg
->list
);
7421 list_del_rcu(&tg
->siblings
);
7422 spin_unlock_irqrestore(&task_group_lock
, flags
);
7425 /* change task's runqueue when it moves between groups.
7426 * The caller of this function should have put the task in its new group
7427 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7428 * reflect its new group.
7430 void sched_move_task(struct task_struct
*tsk
)
7432 struct task_group
*tg
;
7433 int queued
, running
;
7434 unsigned long flags
;
7437 rq
= task_rq_lock(tsk
, &flags
);
7439 running
= task_current(rq
, tsk
);
7440 queued
= task_on_rq_queued(tsk
);
7443 dequeue_task(rq
, tsk
, 0);
7444 if (unlikely(running
))
7445 put_prev_task(rq
, tsk
);
7447 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
,
7448 lockdep_is_held(&tsk
->sighand
->siglock
)),
7449 struct task_group
, css
);
7450 tg
= autogroup_task_group(tsk
, tg
);
7451 tsk
->sched_task_group
= tg
;
7453 #ifdef CONFIG_FAIR_GROUP_SCHED
7454 if (tsk
->sched_class
->task_move_group
)
7455 tsk
->sched_class
->task_move_group(tsk
, queued
);
7458 set_task_rq(tsk
, task_cpu(tsk
));
7460 if (unlikely(running
))
7461 tsk
->sched_class
->set_curr_task(rq
);
7463 enqueue_task(rq
, tsk
, 0);
7465 task_rq_unlock(rq
, tsk
, &flags
);
7467 #endif /* CONFIG_CGROUP_SCHED */
7469 #ifdef CONFIG_RT_GROUP_SCHED
7471 * Ensure that the real time constraints are schedulable.
7473 static DEFINE_MUTEX(rt_constraints_mutex
);
7475 /* Must be called with tasklist_lock held */
7476 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7478 struct task_struct
*g
, *p
;
7480 for_each_process_thread(g
, p
) {
7481 if (rt_task(p
) && task_group(p
) == tg
)
7488 struct rt_schedulable_data
{
7489 struct task_group
*tg
;
7494 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7496 struct rt_schedulable_data
*d
= data
;
7497 struct task_group
*child
;
7498 unsigned long total
, sum
= 0;
7499 u64 period
, runtime
;
7501 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7502 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7505 period
= d
->rt_period
;
7506 runtime
= d
->rt_runtime
;
7510 * Cannot have more runtime than the period.
7512 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7516 * Ensure we don't starve existing RT tasks.
7518 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7521 total
= to_ratio(period
, runtime
);
7524 * Nobody can have more than the global setting allows.
7526 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7530 * The sum of our children's runtime should not exceed our own.
7532 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7533 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7534 runtime
= child
->rt_bandwidth
.rt_runtime
;
7536 if (child
== d
->tg
) {
7537 period
= d
->rt_period
;
7538 runtime
= d
->rt_runtime
;
7541 sum
+= to_ratio(period
, runtime
);
7550 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7554 struct rt_schedulable_data data
= {
7556 .rt_period
= period
,
7557 .rt_runtime
= runtime
,
7561 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7567 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7568 u64 rt_period
, u64 rt_runtime
)
7572 mutex_lock(&rt_constraints_mutex
);
7573 read_lock(&tasklist_lock
);
7574 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7578 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7579 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7580 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7582 for_each_possible_cpu(i
) {
7583 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7585 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7586 rt_rq
->rt_runtime
= rt_runtime
;
7587 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7589 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7591 read_unlock(&tasklist_lock
);
7592 mutex_unlock(&rt_constraints_mutex
);
7597 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7599 u64 rt_runtime
, rt_period
;
7601 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7602 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7603 if (rt_runtime_us
< 0)
7604 rt_runtime
= RUNTIME_INF
;
7606 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7609 static long sched_group_rt_runtime(struct task_group
*tg
)
7613 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7616 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7617 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7618 return rt_runtime_us
;
7621 static int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7623 u64 rt_runtime
, rt_period
;
7625 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7626 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7631 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7634 static long sched_group_rt_period(struct task_group
*tg
)
7638 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7639 do_div(rt_period_us
, NSEC_PER_USEC
);
7640 return rt_period_us
;
7642 #endif /* CONFIG_RT_GROUP_SCHED */
7644 #ifdef CONFIG_RT_GROUP_SCHED
7645 static int sched_rt_global_constraints(void)
7649 mutex_lock(&rt_constraints_mutex
);
7650 read_lock(&tasklist_lock
);
7651 ret
= __rt_schedulable(NULL
, 0, 0);
7652 read_unlock(&tasklist_lock
);
7653 mutex_unlock(&rt_constraints_mutex
);
7658 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7660 /* Don't accept realtime tasks when there is no way for them to run */
7661 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7667 #else /* !CONFIG_RT_GROUP_SCHED */
7668 static int sched_rt_global_constraints(void)
7670 unsigned long flags
;
7673 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7674 for_each_possible_cpu(i
) {
7675 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7677 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7678 rt_rq
->rt_runtime
= global_rt_runtime();
7679 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7681 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7685 #endif /* CONFIG_RT_GROUP_SCHED */
7687 static int sched_dl_global_constraints(void)
7689 u64 runtime
= global_rt_runtime();
7690 u64 period
= global_rt_period();
7691 u64 new_bw
= to_ratio(period
, runtime
);
7694 unsigned long flags
;
7697 * Here we want to check the bandwidth not being set to some
7698 * value smaller than the currently allocated bandwidth in
7699 * any of the root_domains.
7701 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7702 * cycling on root_domains... Discussion on different/better
7703 * solutions is welcome!
7705 for_each_possible_cpu(cpu
) {
7706 rcu_read_lock_sched();
7707 dl_b
= dl_bw_of(cpu
);
7709 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7710 if (new_bw
< dl_b
->total_bw
)
7712 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7714 rcu_read_unlock_sched();
7723 static void sched_dl_do_global(void)
7728 unsigned long flags
;
7730 def_dl_bandwidth
.dl_period
= global_rt_period();
7731 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7733 if (global_rt_runtime() != RUNTIME_INF
)
7734 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7737 * FIXME: As above...
7739 for_each_possible_cpu(cpu
) {
7740 rcu_read_lock_sched();
7741 dl_b
= dl_bw_of(cpu
);
7743 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7745 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7747 rcu_read_unlock_sched();
7751 static int sched_rt_global_validate(void)
7753 if (sysctl_sched_rt_period
<= 0)
7756 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
7757 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
7763 static void sched_rt_do_global(void)
7765 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7766 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
7769 int sched_rt_handler(struct ctl_table
*table
, int write
,
7770 void __user
*buffer
, size_t *lenp
,
7773 int old_period
, old_runtime
;
7774 static DEFINE_MUTEX(mutex
);
7778 old_period
= sysctl_sched_rt_period
;
7779 old_runtime
= sysctl_sched_rt_runtime
;
7781 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7783 if (!ret
&& write
) {
7784 ret
= sched_rt_global_validate();
7788 ret
= sched_rt_global_constraints();
7792 ret
= sched_dl_global_constraints();
7796 sched_rt_do_global();
7797 sched_dl_do_global();
7801 sysctl_sched_rt_period
= old_period
;
7802 sysctl_sched_rt_runtime
= old_runtime
;
7804 mutex_unlock(&mutex
);
7809 int sched_rr_handler(struct ctl_table
*table
, int write
,
7810 void __user
*buffer
, size_t *lenp
,
7814 static DEFINE_MUTEX(mutex
);
7817 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7818 /* make sure that internally we keep jiffies */
7819 /* also, writing zero resets timeslice to default */
7820 if (!ret
&& write
) {
7821 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
7822 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
7824 mutex_unlock(&mutex
);
7828 #ifdef CONFIG_CGROUP_SCHED
7830 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7832 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7835 static struct cgroup_subsys_state
*
7836 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7838 struct task_group
*parent
= css_tg(parent_css
);
7839 struct task_group
*tg
;
7842 /* This is early initialization for the top cgroup */
7843 return &root_task_group
.css
;
7846 tg
= sched_create_group(parent
);
7848 return ERR_PTR(-ENOMEM
);
7853 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7855 struct task_group
*tg
= css_tg(css
);
7856 struct task_group
*parent
= css_tg(css
->parent
);
7859 sched_online_group(tg
, parent
);
7863 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7865 struct task_group
*tg
= css_tg(css
);
7867 sched_destroy_group(tg
);
7870 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
7872 struct task_group
*tg
= css_tg(css
);
7874 sched_offline_group(tg
);
7877 static void cpu_cgroup_fork(struct task_struct
*task
)
7879 sched_move_task(task
);
7882 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7883 struct cgroup_taskset
*tset
)
7885 struct task_struct
*task
;
7887 cgroup_taskset_for_each(task
, tset
) {
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 if (!sched_rt_can_attach(css_tg(css
), task
))
7892 /* We don't support RT-tasks being in separate groups */
7893 if (task
->sched_class
!= &fair_sched_class
)
7900 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
7901 struct cgroup_taskset
*tset
)
7903 struct task_struct
*task
;
7905 cgroup_taskset_for_each(task
, tset
)
7906 sched_move_task(task
);
7909 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
7910 struct cgroup_subsys_state
*old_css
,
7911 struct task_struct
*task
)
7914 * cgroup_exit() is called in the copy_process() failure path.
7915 * Ignore this case since the task hasn't ran yet, this avoids
7916 * trying to poke a half freed task state from generic code.
7918 if (!(task
->flags
& PF_EXITING
))
7921 sched_move_task(task
);
7924 #ifdef CONFIG_FAIR_GROUP_SCHED
7925 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
7926 struct cftype
*cftype
, u64 shareval
)
7928 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
7931 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
7934 struct task_group
*tg
= css_tg(css
);
7936 return (u64
) scale_load_down(tg
->shares
);
7939 #ifdef CONFIG_CFS_BANDWIDTH
7940 static DEFINE_MUTEX(cfs_constraints_mutex
);
7942 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7943 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7945 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7947 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7949 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7950 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7952 if (tg
== &root_task_group
)
7956 * Ensure we have at some amount of bandwidth every period. This is
7957 * to prevent reaching a state of large arrears when throttled via
7958 * entity_tick() resulting in prolonged exit starvation.
7960 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7964 * Likewise, bound things on the otherside by preventing insane quota
7965 * periods. This also allows us to normalize in computing quota
7968 if (period
> max_cfs_quota_period
)
7972 * Prevent race between setting of cfs_rq->runtime_enabled and
7973 * unthrottle_offline_cfs_rqs().
7976 mutex_lock(&cfs_constraints_mutex
);
7977 ret
= __cfs_schedulable(tg
, period
, quota
);
7981 runtime_enabled
= quota
!= RUNTIME_INF
;
7982 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7984 * If we need to toggle cfs_bandwidth_used, off->on must occur
7985 * before making related changes, and on->off must occur afterwards
7987 if (runtime_enabled
&& !runtime_was_enabled
)
7988 cfs_bandwidth_usage_inc();
7989 raw_spin_lock_irq(&cfs_b
->lock
);
7990 cfs_b
->period
= ns_to_ktime(period
);
7991 cfs_b
->quota
= quota
;
7993 __refill_cfs_bandwidth_runtime(cfs_b
);
7994 /* restart the period timer (if active) to handle new period expiry */
7995 if (runtime_enabled
&& cfs_b
->timer_active
) {
7996 /* force a reprogram */
7997 __start_cfs_bandwidth(cfs_b
, true);
7999 raw_spin_unlock_irq(&cfs_b
->lock
);
8001 for_each_online_cpu(i
) {
8002 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
8003 struct rq
*rq
= cfs_rq
->rq
;
8005 raw_spin_lock_irq(&rq
->lock
);
8006 cfs_rq
->runtime_enabled
= runtime_enabled
;
8007 cfs_rq
->runtime_remaining
= 0;
8009 if (cfs_rq
->throttled
)
8010 unthrottle_cfs_rq(cfs_rq
);
8011 raw_spin_unlock_irq(&rq
->lock
);
8013 if (runtime_was_enabled
&& !runtime_enabled
)
8014 cfs_bandwidth_usage_dec();
8016 mutex_unlock(&cfs_constraints_mutex
);
8022 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
8026 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8027 if (cfs_quota_us
< 0)
8028 quota
= RUNTIME_INF
;
8030 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
8032 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8035 long tg_get_cfs_quota(struct task_group
*tg
)
8039 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
8042 quota_us
= tg
->cfs_bandwidth
.quota
;
8043 do_div(quota_us
, NSEC_PER_USEC
);
8048 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
8052 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
8053 quota
= tg
->cfs_bandwidth
.quota
;
8055 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8058 long tg_get_cfs_period(struct task_group
*tg
)
8062 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8063 do_div(cfs_period_us
, NSEC_PER_USEC
);
8065 return cfs_period_us
;
8068 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
8071 return tg_get_cfs_quota(css_tg(css
));
8074 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
8075 struct cftype
*cftype
, s64 cfs_quota_us
)
8077 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
8080 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
8083 return tg_get_cfs_period(css_tg(css
));
8086 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
8087 struct cftype
*cftype
, u64 cfs_period_us
)
8089 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
8092 struct cfs_schedulable_data
{
8093 struct task_group
*tg
;
8098 * normalize group quota/period to be quota/max_period
8099 * note: units are usecs
8101 static u64
normalize_cfs_quota(struct task_group
*tg
,
8102 struct cfs_schedulable_data
*d
)
8110 period
= tg_get_cfs_period(tg
);
8111 quota
= tg_get_cfs_quota(tg
);
8114 /* note: these should typically be equivalent */
8115 if (quota
== RUNTIME_INF
|| quota
== -1)
8118 return to_ratio(period
, quota
);
8121 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8123 struct cfs_schedulable_data
*d
= data
;
8124 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8125 s64 quota
= 0, parent_quota
= -1;
8128 quota
= RUNTIME_INF
;
8130 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8132 quota
= normalize_cfs_quota(tg
, d
);
8133 parent_quota
= parent_b
->hierarchical_quota
;
8136 * ensure max(child_quota) <= parent_quota, inherit when no
8139 if (quota
== RUNTIME_INF
)
8140 quota
= parent_quota
;
8141 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8144 cfs_b
->hierarchical_quota
= quota
;
8149 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8152 struct cfs_schedulable_data data
= {
8158 if (quota
!= RUNTIME_INF
) {
8159 do_div(data
.period
, NSEC_PER_USEC
);
8160 do_div(data
.quota
, NSEC_PER_USEC
);
8164 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8170 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8172 struct task_group
*tg
= css_tg(seq_css(sf
));
8173 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8175 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8176 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8177 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8181 #endif /* CONFIG_CFS_BANDWIDTH */
8182 #endif /* CONFIG_FAIR_GROUP_SCHED */
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8186 struct cftype
*cft
, s64 val
)
8188 return sched_group_set_rt_runtime(css_tg(css
), val
);
8191 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8194 return sched_group_rt_runtime(css_tg(css
));
8197 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8198 struct cftype
*cftype
, u64 rt_period_us
)
8200 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8203 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8206 return sched_group_rt_period(css_tg(css
));
8208 #endif /* CONFIG_RT_GROUP_SCHED */
8210 static struct cftype cpu_files
[] = {
8211 #ifdef CONFIG_FAIR_GROUP_SCHED
8214 .read_u64
= cpu_shares_read_u64
,
8215 .write_u64
= cpu_shares_write_u64
,
8218 #ifdef CONFIG_CFS_BANDWIDTH
8220 .name
= "cfs_quota_us",
8221 .read_s64
= cpu_cfs_quota_read_s64
,
8222 .write_s64
= cpu_cfs_quota_write_s64
,
8225 .name
= "cfs_period_us",
8226 .read_u64
= cpu_cfs_period_read_u64
,
8227 .write_u64
= cpu_cfs_period_write_u64
,
8231 .seq_show
= cpu_stats_show
,
8234 #ifdef CONFIG_RT_GROUP_SCHED
8236 .name
= "rt_runtime_us",
8237 .read_s64
= cpu_rt_runtime_read
,
8238 .write_s64
= cpu_rt_runtime_write
,
8241 .name
= "rt_period_us",
8242 .read_u64
= cpu_rt_period_read_uint
,
8243 .write_u64
= cpu_rt_period_write_uint
,
8249 struct cgroup_subsys cpu_cgrp_subsys
= {
8250 .css_alloc
= cpu_cgroup_css_alloc
,
8251 .css_free
= cpu_cgroup_css_free
,
8252 .css_online
= cpu_cgroup_css_online
,
8253 .css_offline
= cpu_cgroup_css_offline
,
8254 .fork
= cpu_cgroup_fork
,
8255 .can_attach
= cpu_cgroup_can_attach
,
8256 .attach
= cpu_cgroup_attach
,
8257 .exit
= cpu_cgroup_exit
,
8258 .legacy_cftypes
= cpu_files
,
8262 #endif /* CONFIG_CGROUP_SCHED */
8264 void dump_cpu_task(int cpu
)
8266 pr_info("Task dump for CPU %d:\n", cpu
);
8267 sched_show_task(cpu_curr(cpu
));