2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
13 #include "cpudeadline.h"
19 /* task_struct::on_rq states: */
20 #define TASK_ON_RQ_QUEUED 1
21 #define TASK_ON_RQ_MIGRATING 2
23 extern __read_mostly
int scheduler_running
;
25 extern unsigned long calc_load_update
;
26 extern atomic_long_t calc_load_tasks
;
28 extern long calc_load_fold_active(struct rq
*this_rq
);
29 extern void update_cpu_load_active(struct rq
*this_rq
);
32 * Helpers for converting nanosecond timing to jiffy resolution
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49 # define SCHED_LOAD_RESOLUTION 10
50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
53 # define SCHED_LOAD_RESOLUTION 0
54 # define scale_load(w) (w)
55 # define scale_load_down(w) (w)
58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61 #define NICE_0_LOAD SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
72 * These are the 'tuning knobs' of the scheduler:
76 * single value that denotes runtime == period, ie unlimited time.
78 #define RUNTIME_INF ((u64)~0ULL)
80 static inline int fair_policy(int policy
)
82 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
85 static inline int rt_policy(int policy
)
87 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
90 static inline int dl_policy(int policy
)
92 return policy
== SCHED_DEADLINE
;
95 static inline int task_has_rt_policy(struct task_struct
*p
)
97 return rt_policy(p
->policy
);
100 static inline int task_has_dl_policy(struct task_struct
*p
)
102 return dl_policy(p
->policy
);
105 static inline bool dl_time_before(u64 a
, u64 b
)
107 return (s64
)(a
- b
) < 0;
111 * Tells if entity @a should preempt entity @b.
114 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
116 return dl_time_before(a
->deadline
, b
->deadline
);
120 * This is the priority-queue data structure of the RT scheduling class:
122 struct rt_prio_array
{
123 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
124 struct list_head queue
[MAX_RT_PRIO
];
127 struct rt_bandwidth
{
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock
;
132 struct hrtimer rt_period_timer
;
135 void __dl_clear_params(struct task_struct
*p
);
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
161 struct dl_bandwidth
{
162 raw_spinlock_t dl_runtime_lock
;
167 static inline int dl_bandwidth_enabled(void)
169 return sysctl_sched_rt_runtime
>= 0;
172 extern struct dl_bw
*dl_bw_of(int i
);
179 extern struct mutex sched_domains_mutex
;
181 #ifdef CONFIG_CGROUP_SCHED
183 #include <linux/cgroup.h>
188 extern struct list_head task_groups
;
190 struct cfs_bandwidth
{
191 #ifdef CONFIG_CFS_BANDWIDTH
195 s64 hierarchical_quota
;
198 int idle
, timer_active
;
199 struct hrtimer period_timer
, slack_timer
;
200 struct list_head throttled_cfs_rq
;
203 int nr_periods
, nr_throttled
;
208 /* task group related information */
210 struct cgroup_subsys_state css
;
212 #ifdef CONFIG_FAIR_GROUP_SCHED
213 /* schedulable entities of this group on each cpu */
214 struct sched_entity
**se
;
215 /* runqueue "owned" by this group on each cpu */
216 struct cfs_rq
**cfs_rq
;
217 unsigned long shares
;
220 atomic_long_t load_avg
;
221 atomic_t runnable_avg
;
225 #ifdef CONFIG_RT_GROUP_SCHED
226 struct sched_rt_entity
**rt_se
;
227 struct rt_rq
**rt_rq
;
229 struct rt_bandwidth rt_bandwidth
;
233 struct list_head list
;
235 struct task_group
*parent
;
236 struct list_head siblings
;
237 struct list_head children
;
239 #ifdef CONFIG_SCHED_AUTOGROUP
240 struct autogroup
*autogroup
;
243 struct cfs_bandwidth cfs_bandwidth
;
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
250 * A weight of 0 or 1 can cause arithmetics problems.
251 * A weight of a cfs_rq is the sum of weights of which entities
252 * are queued on this cfs_rq, so a weight of a entity should not be
253 * too large, so as the shares value of a task group.
254 * (The default weight is 1024 - so there's no practical
255 * limitation from this.)
257 #define MIN_SHARES (1UL << 1)
258 #define MAX_SHARES (1UL << 18)
261 typedef int (*tg_visitor
)(struct task_group
*, void *);
263 extern int walk_tg_tree_from(struct task_group
*from
,
264 tg_visitor down
, tg_visitor up
, void *data
);
267 * Iterate the full tree, calling @down when first entering a node and @up when
268 * leaving it for the final time.
270 * Caller must hold rcu_lock or sufficient equivalent.
272 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
274 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
277 extern int tg_nop(struct task_group
*tg
, void *data
);
279 extern void free_fair_sched_group(struct task_group
*tg
);
280 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
281 extern void unregister_fair_sched_group(struct task_group
*tg
, int cpu
);
282 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
283 struct sched_entity
*se
, int cpu
,
284 struct sched_entity
*parent
);
285 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
286 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
288 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
289 extern void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
, bool force
);
290 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
292 extern void free_rt_sched_group(struct task_group
*tg
);
293 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
294 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
295 struct sched_rt_entity
*rt_se
, int cpu
,
296 struct sched_rt_entity
*parent
);
298 extern struct task_group
*sched_create_group(struct task_group
*parent
);
299 extern void sched_online_group(struct task_group
*tg
,
300 struct task_group
*parent
);
301 extern void sched_destroy_group(struct task_group
*tg
);
302 extern void sched_offline_group(struct task_group
*tg
);
304 extern void sched_move_task(struct task_struct
*tsk
);
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
310 #else /* CONFIG_CGROUP_SCHED */
312 struct cfs_bandwidth
{ };
314 #endif /* CONFIG_CGROUP_SCHED */
316 /* CFS-related fields in a runqueue */
318 struct load_weight load
;
319 unsigned int nr_running
, h_nr_running
;
324 u64 min_vruntime_copy
;
327 struct rb_root tasks_timeline
;
328 struct rb_node
*rb_leftmost
;
331 * 'curr' points to currently running entity on this cfs_rq.
332 * It is set to NULL otherwise (i.e when none are currently running).
334 struct sched_entity
*curr
, *next
, *last
, *skip
;
336 #ifdef CONFIG_SCHED_DEBUG
337 unsigned int nr_spread_over
;
343 * Under CFS, load is tracked on a per-entity basis and aggregated up.
344 * This allows for the description of both thread and group usage (in
345 * the FAIR_GROUP_SCHED case).
347 unsigned long runnable_load_avg
, blocked_load_avg
;
348 atomic64_t decay_counter
;
350 atomic_long_t removed_load
;
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 /* Required to track per-cpu representation of a task_group */
354 u32 tg_runnable_contrib
;
355 unsigned long tg_load_contrib
;
358 * h_load = weight * f(tg)
360 * Where f(tg) is the recursive weight fraction assigned to
363 unsigned long h_load
;
364 u64 last_h_load_update
;
365 struct sched_entity
*h_load_next
;
366 #endif /* CONFIG_FAIR_GROUP_SCHED */
367 #endif /* CONFIG_SMP */
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
381 struct list_head leaf_cfs_rq_list
;
382 struct task_group
*tg
; /* group that "owns" this runqueue */
384 #ifdef CONFIG_CFS_BANDWIDTH
387 s64 runtime_remaining
;
389 u64 throttled_clock
, throttled_clock_task
;
390 u64 throttled_clock_task_time
;
391 int throttled
, throttle_count
;
392 struct list_head throttled_list
;
393 #endif /* CONFIG_CFS_BANDWIDTH */
394 #endif /* CONFIG_FAIR_GROUP_SCHED */
397 static inline int rt_bandwidth_enabled(void)
399 return sysctl_sched_rt_runtime
>= 0;
402 /* Real-Time classes' related field in a runqueue: */
404 struct rt_prio_array active
;
405 unsigned int rt_nr_running
;
406 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
408 int curr
; /* highest queued rt task prio */
410 int next
; /* next highest */
415 unsigned long rt_nr_migratory
;
416 unsigned long rt_nr_total
;
418 struct plist_head pushable_tasks
;
425 /* Nests inside the rq lock: */
426 raw_spinlock_t rt_runtime_lock
;
428 #ifdef CONFIG_RT_GROUP_SCHED
429 unsigned long rt_nr_boosted
;
432 struct task_group
*tg
;
436 /* Deadline class' related fields in a runqueue */
438 /* runqueue is an rbtree, ordered by deadline */
439 struct rb_root rb_root
;
440 struct rb_node
*rb_leftmost
;
442 unsigned long dl_nr_running
;
446 * Deadline values of the currently executing and the
447 * earliest ready task on this rq. Caching these facilitates
448 * the decision wether or not a ready but not running task
449 * should migrate somewhere else.
456 unsigned long dl_nr_migratory
;
460 * Tasks on this rq that can be pushed away. They are kept in
461 * an rb-tree, ordered by tasks' deadlines, with caching
462 * of the leftmost (earliest deadline) element.
464 struct rb_root pushable_dl_tasks_root
;
465 struct rb_node
*pushable_dl_tasks_leftmost
;
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
486 cpumask_var_t online
;
488 /* Indicate more than one runnable task for any CPU */
492 * The bit corresponding to a CPU gets set here if such CPU has more
493 * than one runnable -deadline task (as it is below for RT tasks).
495 cpumask_var_t dlo_mask
;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask
;
505 struct cpupri cpupri
;
508 extern struct root_domain def_root_domain
;
510 #endif /* CONFIG_SMP */
513 * This is the main, per-CPU runqueue data structure.
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
527 unsigned int nr_running
;
528 #ifdef CONFIG_NUMA_BALANCING
529 unsigned int nr_numa_running
;
530 unsigned int nr_preferred_running
;
532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
534 unsigned long last_load_update_tick
;
535 #ifdef CONFIG_NO_HZ_COMMON
537 unsigned long nohz_flags
;
539 #ifdef CONFIG_NO_HZ_FULL
540 unsigned long last_sched_tick
;
542 int skip_clock_update
;
544 /* capture load from *all* tasks on this cpu: */
545 struct load_weight load
;
546 unsigned long nr_load_updates
;
553 #ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list
;
557 struct sched_avg avg
;
558 #endif /* CONFIG_FAIR_GROUP_SCHED */
561 * This is part of a global counter where only the total sum
562 * over all CPUs matters. A task can increase this counter on
563 * one CPU and if it got migrated afterwards it may decrease
564 * it on another CPU. Always updated under the runqueue lock:
566 unsigned long nr_uninterruptible
;
568 struct task_struct
*curr
, *idle
, *stop
;
569 unsigned long next_balance
;
570 struct mm_struct
*prev_mm
;
578 struct root_domain
*rd
;
579 struct sched_domain
*sd
;
581 unsigned long cpu_capacity
;
583 unsigned char idle_balance
;
584 /* For active balancing */
588 struct cpu_stop_work active_balance_work
;
589 /* cpu of this runqueue: */
593 struct list_head cfs_tasks
;
600 /* This is used to determine avg_idle's max value */
601 u64 max_idle_balance_cost
;
604 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
607 #ifdef CONFIG_PARAVIRT
610 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
611 u64 prev_steal_time_rq
;
614 /* calc_load related fields */
615 unsigned long calc_load_update
;
616 long calc_load_active
;
618 #ifdef CONFIG_SCHED_HRTICK
620 int hrtick_csd_pending
;
621 struct call_single_data hrtick_csd
;
623 struct hrtimer hrtick_timer
;
626 #ifdef CONFIG_SCHEDSTATS
628 struct sched_info rq_sched_info
;
629 unsigned long long rq_cpu_time
;
630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
632 /* sys_sched_yield() stats */
633 unsigned int yld_count
;
635 /* schedule() stats */
636 unsigned int sched_count
;
637 unsigned int sched_goidle
;
639 /* try_to_wake_up() stats */
640 unsigned int ttwu_count
;
641 unsigned int ttwu_local
;
645 struct llist_head wake_list
;
648 #ifdef CONFIG_CPU_IDLE
649 /* Must be inspected within a rcu lock section */
650 struct cpuidle_state
*idle_state
;
654 static inline int cpu_of(struct rq
*rq
)
663 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
665 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
666 #define this_rq() this_cpu_ptr(&runqueues)
667 #define task_rq(p) cpu_rq(task_cpu(p))
668 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
669 #define raw_rq() raw_cpu_ptr(&runqueues)
671 static inline u64
rq_clock(struct rq
*rq
)
676 static inline u64
rq_clock_task(struct rq
*rq
)
678 return rq
->clock_task
;
681 #ifdef CONFIG_NUMA_BALANCING
682 extern void sched_setnuma(struct task_struct
*p
, int node
);
683 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
684 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
685 #endif /* CONFIG_NUMA_BALANCING */
689 extern void sched_ttwu_pending(void);
691 #define rcu_dereference_check_sched_domain(p) \
692 rcu_dereference_check((p), \
693 lockdep_is_held(&sched_domains_mutex))
696 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
697 * See detach_destroy_domains: synchronize_sched for details.
699 * The domain tree of any CPU may only be accessed from within
700 * preempt-disabled sections.
702 #define for_each_domain(cpu, __sd) \
703 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
704 __sd; __sd = __sd->parent)
706 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
709 * highest_flag_domain - Return highest sched_domain containing flag.
710 * @cpu: The cpu whose highest level of sched domain is to
712 * @flag: The flag to check for the highest sched_domain
715 * Returns the highest sched_domain of a cpu which contains the given flag.
717 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
719 struct sched_domain
*sd
, *hsd
= NULL
;
721 for_each_domain(cpu
, sd
) {
722 if (!(sd
->flags
& flag
))
730 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
732 struct sched_domain
*sd
;
734 for_each_domain(cpu
, sd
) {
735 if (sd
->flags
& flag
)
742 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
743 DECLARE_PER_CPU(int, sd_llc_size
);
744 DECLARE_PER_CPU(int, sd_llc_id
);
745 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
746 DECLARE_PER_CPU(struct sched_domain
*, sd_busy
);
747 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
749 struct sched_group_capacity
{
752 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
755 unsigned int capacity
, capacity_orig
;
756 unsigned long next_update
;
757 int imbalance
; /* XXX unrelated to capacity but shared group state */
759 * Number of busy cpus in this group.
761 atomic_t nr_busy_cpus
;
763 unsigned long cpumask
[0]; /* iteration mask */
767 struct sched_group
*next
; /* Must be a circular list */
770 unsigned int group_weight
;
771 struct sched_group_capacity
*sgc
;
774 * The CPUs this group covers.
776 * NOTE: this field is variable length. (Allocated dynamically
777 * by attaching extra space to the end of the structure,
778 * depending on how many CPUs the kernel has booted up with)
780 unsigned long cpumask
[0];
783 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
785 return to_cpumask(sg
->cpumask
);
789 * cpumask masking which cpus in the group are allowed to iterate up the domain
792 static inline struct cpumask
*sched_group_mask(struct sched_group
*sg
)
794 return to_cpumask(sg
->sgc
->cpumask
);
798 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
799 * @group: The group whose first cpu is to be returned.
801 static inline unsigned int group_first_cpu(struct sched_group
*group
)
803 return cpumask_first(sched_group_cpus(group
));
806 extern int group_balance_cpu(struct sched_group
*sg
);
810 static inline void sched_ttwu_pending(void) { }
812 #endif /* CONFIG_SMP */
815 #include "auto_group.h"
817 #ifdef CONFIG_CGROUP_SCHED
820 * Return the group to which this tasks belongs.
822 * We cannot use task_css() and friends because the cgroup subsystem
823 * changes that value before the cgroup_subsys::attach() method is called,
824 * therefore we cannot pin it and might observe the wrong value.
826 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
827 * core changes this before calling sched_move_task().
829 * Instead we use a 'copy' which is updated from sched_move_task() while
830 * holding both task_struct::pi_lock and rq::lock.
832 static inline struct task_group
*task_group(struct task_struct
*p
)
834 return p
->sched_task_group
;
837 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
838 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
840 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
841 struct task_group
*tg
= task_group(p
);
844 #ifdef CONFIG_FAIR_GROUP_SCHED
845 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
846 p
->se
.parent
= tg
->se
[cpu
];
849 #ifdef CONFIG_RT_GROUP_SCHED
850 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
851 p
->rt
.parent
= tg
->rt_se
[cpu
];
855 #else /* CONFIG_CGROUP_SCHED */
857 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
858 static inline struct task_group
*task_group(struct task_struct
*p
)
863 #endif /* CONFIG_CGROUP_SCHED */
865 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
870 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
871 * successfuly executed on another CPU. We must ensure that updates of
872 * per-task data have been completed by this moment.
875 task_thread_info(p
)->cpu
= cpu
;
881 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
883 #ifdef CONFIG_SCHED_DEBUG
884 # include <linux/static_key.h>
885 # define const_debug __read_mostly
887 # define const_debug const
890 extern const_debug
unsigned int sysctl_sched_features
;
892 #define SCHED_FEAT(name, enabled) \
893 __SCHED_FEAT_##name ,
896 #include "features.h"
902 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
903 #define SCHED_FEAT(name, enabled) \
904 static __always_inline bool static_branch_##name(struct static_key *key) \
906 return static_key_##enabled(key); \
909 #include "features.h"
913 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
914 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
915 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
916 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
917 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
919 #ifdef CONFIG_NUMA_BALANCING
920 #define sched_feat_numa(x) sched_feat(x)
921 #ifdef CONFIG_SCHED_DEBUG
922 #define numabalancing_enabled sched_feat_numa(NUMA)
924 extern bool numabalancing_enabled
;
925 #endif /* CONFIG_SCHED_DEBUG */
927 #define sched_feat_numa(x) (0)
928 #define numabalancing_enabled (0)
929 #endif /* CONFIG_NUMA_BALANCING */
931 static inline u64
global_rt_period(void)
933 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
936 static inline u64
global_rt_runtime(void)
938 if (sysctl_sched_rt_runtime
< 0)
941 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
944 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
946 return rq
->curr
== p
;
949 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
954 return task_current(rq
, p
);
958 static inline int task_on_rq_queued(struct task_struct
*p
)
960 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
963 static inline int task_on_rq_migrating(struct task_struct
*p
)
965 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
968 #ifndef prepare_arch_switch
969 # define prepare_arch_switch(next) do { } while (0)
971 #ifndef finish_arch_switch
972 # define finish_arch_switch(prev) do { } while (0)
974 #ifndef finish_arch_post_lock_switch
975 # define finish_arch_post_lock_switch() do { } while (0)
978 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
982 * We can optimise this out completely for !SMP, because the
983 * SMP rebalancing from interrupt is the only thing that cares
990 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
994 * After ->on_cpu is cleared, the task can be moved to a different CPU.
995 * We must ensure this doesn't happen until the switch is completely
1001 #ifdef CONFIG_DEBUG_SPINLOCK
1002 /* this is a valid case when another task releases the spinlock */
1003 rq
->lock
.owner
= current
;
1006 * If we are tracking spinlock dependencies then we have to
1007 * fix up the runqueue lock - which gets 'carried over' from
1008 * prev into current:
1010 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1012 raw_spin_unlock_irq(&rq
->lock
);
1018 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1019 #define WF_FORK 0x02 /* child wakeup after fork */
1020 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1023 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1024 * of tasks with abnormal "nice" values across CPUs the contribution that
1025 * each task makes to its run queue's load is weighted according to its
1026 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1027 * scaled version of the new time slice allocation that they receive on time
1031 #define WEIGHT_IDLEPRIO 3
1032 #define WMULT_IDLEPRIO 1431655765
1035 * Nice levels are multiplicative, with a gentle 10% change for every
1036 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1037 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1038 * that remained on nice 0.
1040 * The "10% effect" is relative and cumulative: from _any_ nice level,
1041 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1042 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1043 * If a task goes up by ~10% and another task goes down by ~10% then
1044 * the relative distance between them is ~25%.)
1046 static const int prio_to_weight
[40] = {
1047 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1048 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1049 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1050 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1051 /* 0 */ 1024, 820, 655, 526, 423,
1052 /* 5 */ 335, 272, 215, 172, 137,
1053 /* 10 */ 110, 87, 70, 56, 45,
1054 /* 15 */ 36, 29, 23, 18, 15,
1058 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1060 * In cases where the weight does not change often, we can use the
1061 * precalculated inverse to speed up arithmetics by turning divisions
1062 * into multiplications:
1064 static const u32 prio_to_wmult
[40] = {
1065 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1066 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1067 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1068 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1069 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1070 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1071 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1072 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1075 #define ENQUEUE_WAKEUP 1
1076 #define ENQUEUE_HEAD 2
1078 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1080 #define ENQUEUE_WAKING 0
1082 #define ENQUEUE_REPLENISH 8
1084 #define DEQUEUE_SLEEP 1
1086 #define RETRY_TASK ((void *)-1UL)
1088 struct sched_class
{
1089 const struct sched_class
*next
;
1091 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1092 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1093 void (*yield_task
) (struct rq
*rq
);
1094 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1096 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1099 * It is the responsibility of the pick_next_task() method that will
1100 * return the next task to call put_prev_task() on the @prev task or
1101 * something equivalent.
1103 * May return RETRY_TASK when it finds a higher prio class has runnable
1106 struct task_struct
* (*pick_next_task
) (struct rq
*rq
,
1107 struct task_struct
*prev
);
1108 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1111 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1112 void (*migrate_task_rq
)(struct task_struct
*p
, int next_cpu
);
1114 void (*post_schedule
) (struct rq
*this_rq
);
1115 void (*task_waking
) (struct task_struct
*task
);
1116 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1118 void (*set_cpus_allowed
)(struct task_struct
*p
,
1119 const struct cpumask
*newmask
);
1121 void (*rq_online
)(struct rq
*rq
);
1122 void (*rq_offline
)(struct rq
*rq
);
1125 void (*set_curr_task
) (struct rq
*rq
);
1126 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1127 void (*task_fork
) (struct task_struct
*p
);
1128 void (*task_dead
) (struct task_struct
*p
);
1130 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1131 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1132 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1135 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1136 struct task_struct
*task
);
1138 #ifdef CONFIG_FAIR_GROUP_SCHED
1139 void (*task_move_group
) (struct task_struct
*p
, int on_rq
);
1143 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1145 prev
->sched_class
->put_prev_task(rq
, prev
);
1148 #define sched_class_highest (&stop_sched_class)
1149 #define for_each_class(class) \
1150 for (class = sched_class_highest; class; class = class->next)
1152 extern const struct sched_class stop_sched_class
;
1153 extern const struct sched_class dl_sched_class
;
1154 extern const struct sched_class rt_sched_class
;
1155 extern const struct sched_class fair_sched_class
;
1156 extern const struct sched_class idle_sched_class
;
1161 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1163 extern void trigger_load_balance(struct rq
*rq
);
1165 extern void idle_enter_fair(struct rq
*this_rq
);
1166 extern void idle_exit_fair(struct rq
*this_rq
);
1170 static inline void idle_enter_fair(struct rq
*rq
) { }
1171 static inline void idle_exit_fair(struct rq
*rq
) { }
1175 #ifdef CONFIG_CPU_IDLE
1176 static inline void idle_set_state(struct rq
*rq
,
1177 struct cpuidle_state
*idle_state
)
1179 rq
->idle_state
= idle_state
;
1182 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1184 WARN_ON(!rcu_read_lock_held());
1185 return rq
->idle_state
;
1188 static inline void idle_set_state(struct rq
*rq
,
1189 struct cpuidle_state
*idle_state
)
1193 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1199 extern void sysrq_sched_debug_show(void);
1200 extern void sched_init_granularity(void);
1201 extern void update_max_interval(void);
1203 extern void init_sched_dl_class(void);
1204 extern void init_sched_rt_class(void);
1205 extern void init_sched_fair_class(void);
1206 extern void init_sched_dl_class(void);
1208 extern void resched_curr(struct rq
*rq
);
1209 extern void resched_cpu(int cpu
);
1211 extern struct rt_bandwidth def_rt_bandwidth
;
1212 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1214 extern struct dl_bandwidth def_dl_bandwidth
;
1215 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1216 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1218 unsigned long to_ratio(u64 period
, u64 runtime
);
1220 extern void update_idle_cpu_load(struct rq
*this_rq
);
1222 extern void init_task_runnable_average(struct task_struct
*p
);
1224 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1226 unsigned prev_nr
= rq
->nr_running
;
1228 rq
->nr_running
= prev_nr
+ count
;
1230 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1232 if (!rq
->rd
->overload
)
1233 rq
->rd
->overload
= true;
1236 #ifdef CONFIG_NO_HZ_FULL
1237 if (tick_nohz_full_cpu(rq
->cpu
)) {
1239 * Tick is needed if more than one task runs on a CPU.
1240 * Send the target an IPI to kick it out of nohz mode.
1242 * We assume that IPI implies full memory barrier and the
1243 * new value of rq->nr_running is visible on reception
1246 tick_nohz_full_kick_cpu(rq
->cpu
);
1252 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1254 rq
->nr_running
-= count
;
1257 static inline void rq_last_tick_reset(struct rq
*rq
)
1259 #ifdef CONFIG_NO_HZ_FULL
1260 rq
->last_sched_tick
= jiffies
;
1264 extern void update_rq_clock(struct rq
*rq
);
1266 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1267 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1269 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1271 extern const_debug
unsigned int sysctl_sched_time_avg
;
1272 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1273 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1275 static inline u64
sched_avg_period(void)
1277 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1280 #ifdef CONFIG_SCHED_HRTICK
1284 * - enabled by features
1285 * - hrtimer is actually high res
1287 static inline int hrtick_enabled(struct rq
*rq
)
1289 if (!sched_feat(HRTICK
))
1291 if (!cpu_active(cpu_of(rq
)))
1293 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1296 void hrtick_start(struct rq
*rq
, u64 delay
);
1300 static inline int hrtick_enabled(struct rq
*rq
)
1305 #endif /* CONFIG_SCHED_HRTICK */
1308 extern void sched_avg_update(struct rq
*rq
);
1309 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1311 rq
->rt_avg
+= rt_delta
;
1312 sched_avg_update(rq
);
1315 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1316 static inline void sched_avg_update(struct rq
*rq
) { }
1319 extern void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
);
1322 #ifdef CONFIG_PREEMPT
1324 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1327 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1328 * way at the expense of forcing extra atomic operations in all
1329 * invocations. This assures that the double_lock is acquired using the
1330 * same underlying policy as the spinlock_t on this architecture, which
1331 * reduces latency compared to the unfair variant below. However, it
1332 * also adds more overhead and therefore may reduce throughput.
1334 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1335 __releases(this_rq
->lock
)
1336 __acquires(busiest
->lock
)
1337 __acquires(this_rq
->lock
)
1339 raw_spin_unlock(&this_rq
->lock
);
1340 double_rq_lock(this_rq
, busiest
);
1347 * Unfair double_lock_balance: Optimizes throughput at the expense of
1348 * latency by eliminating extra atomic operations when the locks are
1349 * already in proper order on entry. This favors lower cpu-ids and will
1350 * grant the double lock to lower cpus over higher ids under contention,
1351 * regardless of entry order into the function.
1353 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1354 __releases(this_rq
->lock
)
1355 __acquires(busiest
->lock
)
1356 __acquires(this_rq
->lock
)
1360 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1361 if (busiest
< this_rq
) {
1362 raw_spin_unlock(&this_rq
->lock
);
1363 raw_spin_lock(&busiest
->lock
);
1364 raw_spin_lock_nested(&this_rq
->lock
,
1365 SINGLE_DEPTH_NESTING
);
1368 raw_spin_lock_nested(&busiest
->lock
,
1369 SINGLE_DEPTH_NESTING
);
1374 #endif /* CONFIG_PREEMPT */
1377 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1379 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1381 if (unlikely(!irqs_disabled())) {
1382 /* printk() doesn't work good under rq->lock */
1383 raw_spin_unlock(&this_rq
->lock
);
1387 return _double_lock_balance(this_rq
, busiest
);
1390 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1391 __releases(busiest
->lock
)
1393 raw_spin_unlock(&busiest
->lock
);
1394 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1397 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1403 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1406 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1412 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1415 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1421 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1425 * double_rq_lock - safely lock two runqueues
1427 * Note this does not disable interrupts like task_rq_lock,
1428 * you need to do so manually before calling.
1430 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1431 __acquires(rq1
->lock
)
1432 __acquires(rq2
->lock
)
1434 BUG_ON(!irqs_disabled());
1436 raw_spin_lock(&rq1
->lock
);
1437 __acquire(rq2
->lock
); /* Fake it out ;) */
1440 raw_spin_lock(&rq1
->lock
);
1441 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1443 raw_spin_lock(&rq2
->lock
);
1444 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1450 * double_rq_unlock - safely unlock two runqueues
1452 * Note this does not restore interrupts like task_rq_unlock,
1453 * you need to do so manually after calling.
1455 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1456 __releases(rq1
->lock
)
1457 __releases(rq2
->lock
)
1459 raw_spin_unlock(&rq1
->lock
);
1461 raw_spin_unlock(&rq2
->lock
);
1463 __release(rq2
->lock
);
1466 #else /* CONFIG_SMP */
1469 * double_rq_lock - safely lock two runqueues
1471 * Note this does not disable interrupts like task_rq_lock,
1472 * you need to do so manually before calling.
1474 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1475 __acquires(rq1
->lock
)
1476 __acquires(rq2
->lock
)
1478 BUG_ON(!irqs_disabled());
1480 raw_spin_lock(&rq1
->lock
);
1481 __acquire(rq2
->lock
); /* Fake it out ;) */
1485 * double_rq_unlock - safely unlock two runqueues
1487 * Note this does not restore interrupts like task_rq_unlock,
1488 * you need to do so manually after calling.
1490 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1491 __releases(rq1
->lock
)
1492 __releases(rq2
->lock
)
1495 raw_spin_unlock(&rq1
->lock
);
1496 __release(rq2
->lock
);
1501 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1502 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1503 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1504 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1506 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1507 extern void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
);
1508 extern void init_dl_rq(struct dl_rq
*dl_rq
, struct rq
*rq
);
1510 extern void cfs_bandwidth_usage_inc(void);
1511 extern void cfs_bandwidth_usage_dec(void);
1513 #ifdef CONFIG_NO_HZ_COMMON
1514 enum rq_nohz_flag_bits
{
1519 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1524 DECLARE_PER_CPU(u64
, cpu_hardirq_time
);
1525 DECLARE_PER_CPU(u64
, cpu_softirq_time
);
1527 #ifndef CONFIG_64BIT
1528 DECLARE_PER_CPU(seqcount_t
, irq_time_seq
);
1530 static inline void irq_time_write_begin(void)
1532 __this_cpu_inc(irq_time_seq
.sequence
);
1536 static inline void irq_time_write_end(void)
1539 __this_cpu_inc(irq_time_seq
.sequence
);
1542 static inline u64
irq_time_read(int cpu
)
1548 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1549 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1550 per_cpu(cpu_hardirq_time
, cpu
);
1551 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1555 #else /* CONFIG_64BIT */
1556 static inline void irq_time_write_begin(void)
1560 static inline void irq_time_write_end(void)
1564 static inline u64
irq_time_read(int cpu
)
1566 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1568 #endif /* CONFIG_64BIT */
1569 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */