hyperv: Add processing of MTU reduced by the host
[linux/fpc-iii.git] / net / ceph / messenger.c
blob559c9f619c2027e33f733469b2a8a59eda582f89
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 * connection states
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 static struct page *zero_page; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
221 return s;
223 EXPORT_SYMBOL(ceph_pr_addr);
225 static void encode_my_addr(struct ceph_messenger *msgr)
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct *ceph_msgr_wq;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
243 if (!ceph_msg_cache)
244 return -ENOMEM;
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
257 return -ENOMEM;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
271 static void _ceph_msgr_exit(void)
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
306 return -ENOMEM;
308 EXPORT_SYMBOL(ceph_msgr_init);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq == NULL);
314 _ceph_msgr_exit();
316 EXPORT_SYMBOL(ceph_msgr_exit);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq);
322 EXPORT_SYMBOL(ceph_msgr_flush);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection *con)
328 int old_state;
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
337 static void con_sock_state_connecting(struct ceph_connection *con)
339 int old_state;
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
348 static void con_sock_state_connected(struct ceph_connection *con)
350 int old_state;
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
359 static void con_sock_state_closing(struct ceph_connection *con)
361 int old_state;
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
372 static void con_sock_state_closed(struct ceph_connection *con)
374 int old_state;
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
408 struct ceph_connection *con = sk->sk_user_data;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
431 struct ceph_connection *con = sk->sk_user_data;
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
470 * socket helpers
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection *con)
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 int ret;
482 BUG_ON(con->sock);
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
493 set_sock_callbacks(sock, con);
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 con->error_msg = "connect error";
510 return ret;
512 con->sock = sock;
513 return 0;
516 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 struct kvec iov = {buf, len};
519 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
520 int r;
522 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
523 if (r == -EAGAIN)
524 r = 0;
525 return r;
528 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
529 int page_offset, size_t length)
531 void *kaddr;
532 int ret;
534 BUG_ON(page_offset + length > PAGE_SIZE);
536 kaddr = kmap(page);
537 BUG_ON(!kaddr);
538 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
539 kunmap(page);
541 return ret;
545 * write something. @more is true if caller will be sending more data
546 * shortly.
548 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
549 size_t kvlen, size_t len, int more)
551 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
552 int r;
554 if (more)
555 msg.msg_flags |= MSG_MORE;
556 else
557 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
559 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
560 if (r == -EAGAIN)
561 r = 0;
562 return r;
565 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
566 int offset, size_t size, bool more)
568 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
569 int ret;
571 ret = kernel_sendpage(sock, page, offset, size, flags);
572 if (ret == -EAGAIN)
573 ret = 0;
575 return ret;
578 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
579 int offset, size_t size, bool more)
581 int ret;
582 struct kvec iov;
584 /* sendpage cannot properly handle pages with page_count == 0,
585 * we need to fallback to sendmsg if that's the case */
586 if (page_count(page) >= 1)
587 return __ceph_tcp_sendpage(sock, page, offset, size, more);
589 iov.iov_base = kmap(page) + offset;
590 iov.iov_len = size;
591 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
592 kunmap(page);
594 return ret;
598 * Shutdown/close the socket for the given connection.
600 static int con_close_socket(struct ceph_connection *con)
602 int rc = 0;
604 dout("con_close_socket on %p sock %p\n", con, con->sock);
605 if (con->sock) {
606 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
607 sock_release(con->sock);
608 con->sock = NULL;
612 * Forcibly clear the SOCK_CLOSED flag. It gets set
613 * independent of the connection mutex, and we could have
614 * received a socket close event before we had the chance to
615 * shut the socket down.
617 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619 con_sock_state_closed(con);
620 return rc;
624 * Reset a connection. Discard all incoming and outgoing messages
625 * and clear *_seq state.
627 static void ceph_msg_remove(struct ceph_msg *msg)
629 list_del_init(&msg->list_head);
630 BUG_ON(msg->con == NULL);
631 msg->con->ops->put(msg->con);
632 msg->con = NULL;
634 ceph_msg_put(msg);
636 static void ceph_msg_remove_list(struct list_head *head)
638 while (!list_empty(head)) {
639 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
640 list_head);
641 ceph_msg_remove(msg);
645 static void reset_connection(struct ceph_connection *con)
647 /* reset connection, out_queue, msg_ and connect_seq */
648 /* discard existing out_queue and msg_seq */
649 dout("reset_connection %p\n", con);
650 ceph_msg_remove_list(&con->out_queue);
651 ceph_msg_remove_list(&con->out_sent);
653 if (con->in_msg) {
654 BUG_ON(con->in_msg->con != con);
655 con->in_msg->con = NULL;
656 ceph_msg_put(con->in_msg);
657 con->in_msg = NULL;
658 con->ops->put(con);
661 con->connect_seq = 0;
662 con->out_seq = 0;
663 if (con->out_msg) {
664 ceph_msg_put(con->out_msg);
665 con->out_msg = NULL;
667 con->in_seq = 0;
668 con->in_seq_acked = 0;
672 * mark a peer down. drop any open connections.
674 void ceph_con_close(struct ceph_connection *con)
676 mutex_lock(&con->mutex);
677 dout("con_close %p peer %s\n", con,
678 ceph_pr_addr(&con->peer_addr.in_addr));
679 con->state = CON_STATE_CLOSED;
681 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
682 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
683 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
684 con_flag_clear(con, CON_FLAG_BACKOFF);
686 reset_connection(con);
687 con->peer_global_seq = 0;
688 cancel_con(con);
689 con_close_socket(con);
690 mutex_unlock(&con->mutex);
692 EXPORT_SYMBOL(ceph_con_close);
695 * Reopen a closed connection, with a new peer address.
697 void ceph_con_open(struct ceph_connection *con,
698 __u8 entity_type, __u64 entity_num,
699 struct ceph_entity_addr *addr)
701 mutex_lock(&con->mutex);
702 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
704 WARN_ON(con->state != CON_STATE_CLOSED);
705 con->state = CON_STATE_PREOPEN;
707 con->peer_name.type = (__u8) entity_type;
708 con->peer_name.num = cpu_to_le64(entity_num);
710 memcpy(&con->peer_addr, addr, sizeof(*addr));
711 con->delay = 0; /* reset backoff memory */
712 mutex_unlock(&con->mutex);
713 queue_con(con);
715 EXPORT_SYMBOL(ceph_con_open);
718 * return true if this connection ever successfully opened
720 bool ceph_con_opened(struct ceph_connection *con)
722 return con->connect_seq > 0;
726 * initialize a new connection.
728 void ceph_con_init(struct ceph_connection *con, void *private,
729 const struct ceph_connection_operations *ops,
730 struct ceph_messenger *msgr)
732 dout("con_init %p\n", con);
733 memset(con, 0, sizeof(*con));
734 con->private = private;
735 con->ops = ops;
736 con->msgr = msgr;
738 con_sock_state_init(con);
740 mutex_init(&con->mutex);
741 INIT_LIST_HEAD(&con->out_queue);
742 INIT_LIST_HEAD(&con->out_sent);
743 INIT_DELAYED_WORK(&con->work, con_work);
745 con->state = CON_STATE_CLOSED;
747 EXPORT_SYMBOL(ceph_con_init);
751 * We maintain a global counter to order connection attempts. Get
752 * a unique seq greater than @gt.
754 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
756 u32 ret;
758 spin_lock(&msgr->global_seq_lock);
759 if (msgr->global_seq < gt)
760 msgr->global_seq = gt;
761 ret = ++msgr->global_seq;
762 spin_unlock(&msgr->global_seq_lock);
763 return ret;
766 static void con_out_kvec_reset(struct ceph_connection *con)
768 con->out_kvec_left = 0;
769 con->out_kvec_bytes = 0;
770 con->out_kvec_cur = &con->out_kvec[0];
773 static void con_out_kvec_add(struct ceph_connection *con,
774 size_t size, void *data)
776 int index;
778 index = con->out_kvec_left;
779 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781 con->out_kvec[index].iov_len = size;
782 con->out_kvec[index].iov_base = data;
783 con->out_kvec_left++;
784 con->out_kvec_bytes += size;
787 #ifdef CONFIG_BLOCK
790 * For a bio data item, a piece is whatever remains of the next
791 * entry in the current bio iovec, or the first entry in the next
792 * bio in the list.
794 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
795 size_t length)
797 struct ceph_msg_data *data = cursor->data;
798 struct bio *bio;
800 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
802 bio = data->bio;
803 BUG_ON(!bio);
805 cursor->resid = min(length, data->bio_length);
806 cursor->bio = bio;
807 cursor->bvec_iter = bio->bi_iter;
808 cursor->last_piece =
809 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
812 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
813 size_t *page_offset,
814 size_t *length)
816 struct ceph_msg_data *data = cursor->data;
817 struct bio *bio;
818 struct bio_vec bio_vec;
820 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
822 bio = cursor->bio;
823 BUG_ON(!bio);
825 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
827 *page_offset = (size_t) bio_vec.bv_offset;
828 BUG_ON(*page_offset >= PAGE_SIZE);
829 if (cursor->last_piece) /* pagelist offset is always 0 */
830 *length = cursor->resid;
831 else
832 *length = (size_t) bio_vec.bv_len;
833 BUG_ON(*length > cursor->resid);
834 BUG_ON(*page_offset + *length > PAGE_SIZE);
836 return bio_vec.bv_page;
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840 size_t bytes)
842 struct bio *bio;
843 struct bio_vec bio_vec;
845 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
847 bio = cursor->bio;
848 BUG_ON(!bio);
850 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
852 /* Advance the cursor offset */
854 BUG_ON(cursor->resid < bytes);
855 cursor->resid -= bytes;
857 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
859 if (bytes < bio_vec.bv_len)
860 return false; /* more bytes to process in this segment */
862 /* Move on to the next segment, and possibly the next bio */
864 if (!cursor->bvec_iter.bi_size) {
865 bio = bio->bi_next;
866 cursor->bio = bio;
867 if (bio)
868 cursor->bvec_iter = bio->bi_iter;
869 else
870 memset(&cursor->bvec_iter, 0,
871 sizeof(cursor->bvec_iter));
874 if (!cursor->last_piece) {
875 BUG_ON(!cursor->resid);
876 BUG_ON(!bio);
877 /* A short read is OK, so use <= rather than == */
878 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
879 cursor->last_piece = true;
882 return true;
884 #endif /* CONFIG_BLOCK */
887 * For a page array, a piece comes from the first page in the array
888 * that has not already been fully consumed.
890 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
891 size_t length)
893 struct ceph_msg_data *data = cursor->data;
894 int page_count;
896 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
898 BUG_ON(!data->pages);
899 BUG_ON(!data->length);
901 cursor->resid = min(length, data->length);
902 page_count = calc_pages_for(data->alignment, (u64)data->length);
903 cursor->page_offset = data->alignment & ~PAGE_MASK;
904 cursor->page_index = 0;
905 BUG_ON(page_count > (int)USHRT_MAX);
906 cursor->page_count = (unsigned short)page_count;
907 BUG_ON(length > SIZE_MAX - cursor->page_offset);
908 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
911 static struct page *
912 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
913 size_t *page_offset, size_t *length)
915 struct ceph_msg_data *data = cursor->data;
917 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919 BUG_ON(cursor->page_index >= cursor->page_count);
920 BUG_ON(cursor->page_offset >= PAGE_SIZE);
922 *page_offset = cursor->page_offset;
923 if (cursor->last_piece)
924 *length = cursor->resid;
925 else
926 *length = PAGE_SIZE - *page_offset;
928 return data->pages[cursor->page_index];
931 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
932 size_t bytes)
934 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
936 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
938 /* Advance the cursor page offset */
940 cursor->resid -= bytes;
941 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
942 if (!bytes || cursor->page_offset)
943 return false; /* more bytes to process in the current page */
945 if (!cursor->resid)
946 return false; /* no more data */
948 /* Move on to the next page; offset is already at 0 */
950 BUG_ON(cursor->page_index >= cursor->page_count);
951 cursor->page_index++;
952 cursor->last_piece = cursor->resid <= PAGE_SIZE;
954 return true;
958 * For a pagelist, a piece is whatever remains to be consumed in the
959 * first page in the list, or the front of the next page.
961 static void
962 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
963 size_t length)
965 struct ceph_msg_data *data = cursor->data;
966 struct ceph_pagelist *pagelist;
967 struct page *page;
969 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
971 pagelist = data->pagelist;
972 BUG_ON(!pagelist);
974 if (!length)
975 return; /* pagelist can be assigned but empty */
977 BUG_ON(list_empty(&pagelist->head));
978 page = list_first_entry(&pagelist->head, struct page, lru);
980 cursor->resid = min(length, pagelist->length);
981 cursor->page = page;
982 cursor->offset = 0;
983 cursor->last_piece = cursor->resid <= PAGE_SIZE;
986 static struct page *
987 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
988 size_t *page_offset, size_t *length)
990 struct ceph_msg_data *data = cursor->data;
991 struct ceph_pagelist *pagelist;
993 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
995 pagelist = data->pagelist;
996 BUG_ON(!pagelist);
998 BUG_ON(!cursor->page);
999 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001 /* offset of first page in pagelist is always 0 */
1002 *page_offset = cursor->offset & ~PAGE_MASK;
1003 if (cursor->last_piece)
1004 *length = cursor->resid;
1005 else
1006 *length = PAGE_SIZE - *page_offset;
1008 return cursor->page;
1011 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1012 size_t bytes)
1014 struct ceph_msg_data *data = cursor->data;
1015 struct ceph_pagelist *pagelist;
1017 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1019 pagelist = data->pagelist;
1020 BUG_ON(!pagelist);
1022 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1023 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1025 /* Advance the cursor offset */
1027 cursor->resid -= bytes;
1028 cursor->offset += bytes;
1029 /* offset of first page in pagelist is always 0 */
1030 if (!bytes || cursor->offset & ~PAGE_MASK)
1031 return false; /* more bytes to process in the current page */
1033 if (!cursor->resid)
1034 return false; /* no more data */
1036 /* Move on to the next page */
1038 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1039 cursor->page = list_entry_next(cursor->page, lru);
1040 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1042 return true;
1046 * Message data is handled (sent or received) in pieces, where each
1047 * piece resides on a single page. The network layer might not
1048 * consume an entire piece at once. A data item's cursor keeps
1049 * track of which piece is next to process and how much remains to
1050 * be processed in that piece. It also tracks whether the current
1051 * piece is the last one in the data item.
1053 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1055 size_t length = cursor->total_resid;
1057 switch (cursor->data->type) {
1058 case CEPH_MSG_DATA_PAGELIST:
1059 ceph_msg_data_pagelist_cursor_init(cursor, length);
1060 break;
1061 case CEPH_MSG_DATA_PAGES:
1062 ceph_msg_data_pages_cursor_init(cursor, length);
1063 break;
1064 #ifdef CONFIG_BLOCK
1065 case CEPH_MSG_DATA_BIO:
1066 ceph_msg_data_bio_cursor_init(cursor, length);
1067 break;
1068 #endif /* CONFIG_BLOCK */
1069 case CEPH_MSG_DATA_NONE:
1070 default:
1071 /* BUG(); */
1072 break;
1074 cursor->need_crc = true;
1077 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1079 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1080 struct ceph_msg_data *data;
1082 BUG_ON(!length);
1083 BUG_ON(length > msg->data_length);
1084 BUG_ON(list_empty(&msg->data));
1086 cursor->data_head = &msg->data;
1087 cursor->total_resid = length;
1088 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1089 cursor->data = data;
1091 __ceph_msg_data_cursor_init(cursor);
1095 * Return the page containing the next piece to process for a given
1096 * data item, and supply the page offset and length of that piece.
1097 * Indicate whether this is the last piece in this data item.
1099 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1100 size_t *page_offset, size_t *length,
1101 bool *last_piece)
1103 struct page *page;
1105 switch (cursor->data->type) {
1106 case CEPH_MSG_DATA_PAGELIST:
1107 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1108 break;
1109 case CEPH_MSG_DATA_PAGES:
1110 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1111 break;
1112 #ifdef CONFIG_BLOCK
1113 case CEPH_MSG_DATA_BIO:
1114 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1115 break;
1116 #endif /* CONFIG_BLOCK */
1117 case CEPH_MSG_DATA_NONE:
1118 default:
1119 page = NULL;
1120 break;
1122 BUG_ON(!page);
1123 BUG_ON(*page_offset + *length > PAGE_SIZE);
1124 BUG_ON(!*length);
1125 if (last_piece)
1126 *last_piece = cursor->last_piece;
1128 return page;
1132 * Returns true if the result moves the cursor on to the next piece
1133 * of the data item.
1135 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1136 size_t bytes)
1138 bool new_piece;
1140 BUG_ON(bytes > cursor->resid);
1141 switch (cursor->data->type) {
1142 case CEPH_MSG_DATA_PAGELIST:
1143 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1144 break;
1145 case CEPH_MSG_DATA_PAGES:
1146 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1147 break;
1148 #ifdef CONFIG_BLOCK
1149 case CEPH_MSG_DATA_BIO:
1150 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1151 break;
1152 #endif /* CONFIG_BLOCK */
1153 case CEPH_MSG_DATA_NONE:
1154 default:
1155 BUG();
1156 break;
1158 cursor->total_resid -= bytes;
1160 if (!cursor->resid && cursor->total_resid) {
1161 WARN_ON(!cursor->last_piece);
1162 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1163 cursor->data = list_entry_next(cursor->data, links);
1164 __ceph_msg_data_cursor_init(cursor);
1165 new_piece = true;
1167 cursor->need_crc = new_piece;
1169 return new_piece;
1172 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1174 BUG_ON(!msg);
1175 BUG_ON(!data_len);
1177 /* Initialize data cursor */
1179 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1183 * Prepare footer for currently outgoing message, and finish things
1184 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1186 static void prepare_write_message_footer(struct ceph_connection *con)
1188 struct ceph_msg *m = con->out_msg;
1189 int v = con->out_kvec_left;
1191 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1193 dout("prepare_write_message_footer %p\n", con);
1194 con->out_kvec_is_msg = true;
1195 con->out_kvec[v].iov_base = &m->footer;
1196 con->out_kvec[v].iov_len = sizeof(m->footer);
1197 con->out_kvec_bytes += sizeof(m->footer);
1198 con->out_kvec_left++;
1199 con->out_more = m->more_to_follow;
1200 con->out_msg_done = true;
1204 * Prepare headers for the next outgoing message.
1206 static void prepare_write_message(struct ceph_connection *con)
1208 struct ceph_msg *m;
1209 u32 crc;
1211 con_out_kvec_reset(con);
1212 con->out_kvec_is_msg = true;
1213 con->out_msg_done = false;
1215 /* Sneak an ack in there first? If we can get it into the same
1216 * TCP packet that's a good thing. */
1217 if (con->in_seq > con->in_seq_acked) {
1218 con->in_seq_acked = con->in_seq;
1219 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1220 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1221 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1222 &con->out_temp_ack);
1225 BUG_ON(list_empty(&con->out_queue));
1226 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1227 con->out_msg = m;
1228 BUG_ON(m->con != con);
1230 /* put message on sent list */
1231 ceph_msg_get(m);
1232 list_move_tail(&m->list_head, &con->out_sent);
1235 * only assign outgoing seq # if we haven't sent this message
1236 * yet. if it is requeued, resend with it's original seq.
1238 if (m->needs_out_seq) {
1239 m->hdr.seq = cpu_to_le64(++con->out_seq);
1240 m->needs_out_seq = false;
1242 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1244 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1245 m, con->out_seq, le16_to_cpu(m->hdr.type),
1246 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1247 m->data_length);
1248 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1250 /* tag + hdr + front + middle */
1251 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1252 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1253 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1255 if (m->middle)
1256 con_out_kvec_add(con, m->middle->vec.iov_len,
1257 m->middle->vec.iov_base);
1259 /* fill in crc (except data pages), footer */
1260 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1261 con->out_msg->hdr.crc = cpu_to_le32(crc);
1262 con->out_msg->footer.flags = 0;
1264 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1265 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1266 if (m->middle) {
1267 crc = crc32c(0, m->middle->vec.iov_base,
1268 m->middle->vec.iov_len);
1269 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1270 } else
1271 con->out_msg->footer.middle_crc = 0;
1272 dout("%s front_crc %u middle_crc %u\n", __func__,
1273 le32_to_cpu(con->out_msg->footer.front_crc),
1274 le32_to_cpu(con->out_msg->footer.middle_crc));
1276 /* is there a data payload? */
1277 con->out_msg->footer.data_crc = 0;
1278 if (m->data_length) {
1279 prepare_message_data(con->out_msg, m->data_length);
1280 con->out_more = 1; /* data + footer will follow */
1281 } else {
1282 /* no, queue up footer too and be done */
1283 prepare_write_message_footer(con);
1286 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1290 * Prepare an ack.
1292 static void prepare_write_ack(struct ceph_connection *con)
1294 dout("prepare_write_ack %p %llu -> %llu\n", con,
1295 con->in_seq_acked, con->in_seq);
1296 con->in_seq_acked = con->in_seq;
1298 con_out_kvec_reset(con);
1300 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1302 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1303 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1304 &con->out_temp_ack);
1306 con->out_more = 1; /* more will follow.. eventually.. */
1307 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1311 * Prepare to share the seq during handshake
1313 static void prepare_write_seq(struct ceph_connection *con)
1315 dout("prepare_write_seq %p %llu -> %llu\n", con,
1316 con->in_seq_acked, con->in_seq);
1317 con->in_seq_acked = con->in_seq;
1319 con_out_kvec_reset(con);
1321 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1322 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1323 &con->out_temp_ack);
1325 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1329 * Prepare to write keepalive byte.
1331 static void prepare_write_keepalive(struct ceph_connection *con)
1333 dout("prepare_write_keepalive %p\n", con);
1334 con_out_kvec_reset(con);
1335 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1336 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 * Connection negotiation.
1343 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1344 int *auth_proto)
1346 struct ceph_auth_handshake *auth;
1348 if (!con->ops->get_authorizer) {
1349 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1350 con->out_connect.authorizer_len = 0;
1351 return NULL;
1354 /* Can't hold the mutex while getting authorizer */
1355 mutex_unlock(&con->mutex);
1356 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1357 mutex_lock(&con->mutex);
1359 if (IS_ERR(auth))
1360 return auth;
1361 if (con->state != CON_STATE_NEGOTIATING)
1362 return ERR_PTR(-EAGAIN);
1364 con->auth_reply_buf = auth->authorizer_reply_buf;
1365 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1366 return auth;
1370 * We connected to a peer and are saying hello.
1372 static void prepare_write_banner(struct ceph_connection *con)
1374 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1375 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1376 &con->msgr->my_enc_addr);
1378 con->out_more = 0;
1379 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1382 static int prepare_write_connect(struct ceph_connection *con)
1384 unsigned int global_seq = get_global_seq(con->msgr, 0);
1385 int proto;
1386 int auth_proto;
1387 struct ceph_auth_handshake *auth;
1389 switch (con->peer_name.type) {
1390 case CEPH_ENTITY_TYPE_MON:
1391 proto = CEPH_MONC_PROTOCOL;
1392 break;
1393 case CEPH_ENTITY_TYPE_OSD:
1394 proto = CEPH_OSDC_PROTOCOL;
1395 break;
1396 case CEPH_ENTITY_TYPE_MDS:
1397 proto = CEPH_MDSC_PROTOCOL;
1398 break;
1399 default:
1400 BUG();
1403 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1404 con->connect_seq, global_seq, proto);
1406 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1407 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1408 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1409 con->out_connect.global_seq = cpu_to_le32(global_seq);
1410 con->out_connect.protocol_version = cpu_to_le32(proto);
1411 con->out_connect.flags = 0;
1413 auth_proto = CEPH_AUTH_UNKNOWN;
1414 auth = get_connect_authorizer(con, &auth_proto);
1415 if (IS_ERR(auth))
1416 return PTR_ERR(auth);
1418 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1419 con->out_connect.authorizer_len = auth ?
1420 cpu_to_le32(auth->authorizer_buf_len) : 0;
1422 con_out_kvec_add(con, sizeof (con->out_connect),
1423 &con->out_connect);
1424 if (auth && auth->authorizer_buf_len)
1425 con_out_kvec_add(con, auth->authorizer_buf_len,
1426 auth->authorizer_buf);
1428 con->out_more = 0;
1429 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 return 0;
1435 * write as much of pending kvecs to the socket as we can.
1436 * 1 -> done
1437 * 0 -> socket full, but more to do
1438 * <0 -> error
1440 static int write_partial_kvec(struct ceph_connection *con)
1442 int ret;
1444 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1445 while (con->out_kvec_bytes > 0) {
1446 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1447 con->out_kvec_left, con->out_kvec_bytes,
1448 con->out_more);
1449 if (ret <= 0)
1450 goto out;
1451 con->out_kvec_bytes -= ret;
1452 if (con->out_kvec_bytes == 0)
1453 break; /* done */
1455 /* account for full iov entries consumed */
1456 while (ret >= con->out_kvec_cur->iov_len) {
1457 BUG_ON(!con->out_kvec_left);
1458 ret -= con->out_kvec_cur->iov_len;
1459 con->out_kvec_cur++;
1460 con->out_kvec_left--;
1462 /* and for a partially-consumed entry */
1463 if (ret) {
1464 con->out_kvec_cur->iov_len -= ret;
1465 con->out_kvec_cur->iov_base += ret;
1468 con->out_kvec_left = 0;
1469 con->out_kvec_is_msg = false;
1470 ret = 1;
1471 out:
1472 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1473 con->out_kvec_bytes, con->out_kvec_left, ret);
1474 return ret; /* done! */
1477 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1478 unsigned int page_offset,
1479 unsigned int length)
1481 char *kaddr;
1483 kaddr = kmap(page);
1484 BUG_ON(kaddr == NULL);
1485 crc = crc32c(crc, kaddr + page_offset, length);
1486 kunmap(page);
1488 return crc;
1491 * Write as much message data payload as we can. If we finish, queue
1492 * up the footer.
1493 * 1 -> done, footer is now queued in out_kvec[].
1494 * 0 -> socket full, but more to do
1495 * <0 -> error
1497 static int write_partial_message_data(struct ceph_connection *con)
1499 struct ceph_msg *msg = con->out_msg;
1500 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1501 bool do_datacrc = !con->msgr->nocrc;
1502 u32 crc;
1504 dout("%s %p msg %p\n", __func__, con, msg);
1506 if (list_empty(&msg->data))
1507 return -EINVAL;
1510 * Iterate through each page that contains data to be
1511 * written, and send as much as possible for each.
1513 * If we are calculating the data crc (the default), we will
1514 * need to map the page. If we have no pages, they have
1515 * been revoked, so use the zero page.
1517 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1518 while (cursor->resid) {
1519 struct page *page;
1520 size_t page_offset;
1521 size_t length;
1522 bool last_piece;
1523 bool need_crc;
1524 int ret;
1526 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1527 &last_piece);
1528 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1529 length, last_piece);
1530 if (ret <= 0) {
1531 if (do_datacrc)
1532 msg->footer.data_crc = cpu_to_le32(crc);
1534 return ret;
1536 if (do_datacrc && cursor->need_crc)
1537 crc = ceph_crc32c_page(crc, page, page_offset, length);
1538 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1541 dout("%s %p msg %p done\n", __func__, con, msg);
1543 /* prepare and queue up footer, too */
1544 if (do_datacrc)
1545 msg->footer.data_crc = cpu_to_le32(crc);
1546 else
1547 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1548 con_out_kvec_reset(con);
1549 prepare_write_message_footer(con);
1551 return 1; /* must return > 0 to indicate success */
1555 * write some zeros
1557 static int write_partial_skip(struct ceph_connection *con)
1559 int ret;
1561 while (con->out_skip > 0) {
1562 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1564 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1565 if (ret <= 0)
1566 goto out;
1567 con->out_skip -= ret;
1569 ret = 1;
1570 out:
1571 return ret;
1575 * Prepare to read connection handshake, or an ack.
1577 static void prepare_read_banner(struct ceph_connection *con)
1579 dout("prepare_read_banner %p\n", con);
1580 con->in_base_pos = 0;
1583 static void prepare_read_connect(struct ceph_connection *con)
1585 dout("prepare_read_connect %p\n", con);
1586 con->in_base_pos = 0;
1589 static void prepare_read_ack(struct ceph_connection *con)
1591 dout("prepare_read_ack %p\n", con);
1592 con->in_base_pos = 0;
1595 static void prepare_read_seq(struct ceph_connection *con)
1597 dout("prepare_read_seq %p\n", con);
1598 con->in_base_pos = 0;
1599 con->in_tag = CEPH_MSGR_TAG_SEQ;
1602 static void prepare_read_tag(struct ceph_connection *con)
1604 dout("prepare_read_tag %p\n", con);
1605 con->in_base_pos = 0;
1606 con->in_tag = CEPH_MSGR_TAG_READY;
1610 * Prepare to read a message.
1612 static int prepare_read_message(struct ceph_connection *con)
1614 dout("prepare_read_message %p\n", con);
1615 BUG_ON(con->in_msg != NULL);
1616 con->in_base_pos = 0;
1617 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1618 return 0;
1622 static int read_partial(struct ceph_connection *con,
1623 int end, int size, void *object)
1625 while (con->in_base_pos < end) {
1626 int left = end - con->in_base_pos;
1627 int have = size - left;
1628 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1629 if (ret <= 0)
1630 return ret;
1631 con->in_base_pos += ret;
1633 return 1;
1638 * Read all or part of the connect-side handshake on a new connection
1640 static int read_partial_banner(struct ceph_connection *con)
1642 int size;
1643 int end;
1644 int ret;
1646 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1648 /* peer's banner */
1649 size = strlen(CEPH_BANNER);
1650 end = size;
1651 ret = read_partial(con, end, size, con->in_banner);
1652 if (ret <= 0)
1653 goto out;
1655 size = sizeof (con->actual_peer_addr);
1656 end += size;
1657 ret = read_partial(con, end, size, &con->actual_peer_addr);
1658 if (ret <= 0)
1659 goto out;
1661 size = sizeof (con->peer_addr_for_me);
1662 end += size;
1663 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1664 if (ret <= 0)
1665 goto out;
1667 out:
1668 return ret;
1671 static int read_partial_connect(struct ceph_connection *con)
1673 int size;
1674 int end;
1675 int ret;
1677 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1679 size = sizeof (con->in_reply);
1680 end = size;
1681 ret = read_partial(con, end, size, &con->in_reply);
1682 if (ret <= 0)
1683 goto out;
1685 size = le32_to_cpu(con->in_reply.authorizer_len);
1686 end += size;
1687 ret = read_partial(con, end, size, con->auth_reply_buf);
1688 if (ret <= 0)
1689 goto out;
1691 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1692 con, (int)con->in_reply.tag,
1693 le32_to_cpu(con->in_reply.connect_seq),
1694 le32_to_cpu(con->in_reply.global_seq));
1695 out:
1696 return ret;
1701 * Verify the hello banner looks okay.
1703 static int verify_hello(struct ceph_connection *con)
1705 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1706 pr_err("connect to %s got bad banner\n",
1707 ceph_pr_addr(&con->peer_addr.in_addr));
1708 con->error_msg = "protocol error, bad banner";
1709 return -1;
1711 return 0;
1714 static bool addr_is_blank(struct sockaddr_storage *ss)
1716 switch (ss->ss_family) {
1717 case AF_INET:
1718 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1719 case AF_INET6:
1720 return
1721 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1722 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1723 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1726 return false;
1729 static int addr_port(struct sockaddr_storage *ss)
1731 switch (ss->ss_family) {
1732 case AF_INET:
1733 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1734 case AF_INET6:
1735 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1737 return 0;
1740 static void addr_set_port(struct sockaddr_storage *ss, int p)
1742 switch (ss->ss_family) {
1743 case AF_INET:
1744 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1745 break;
1746 case AF_INET6:
1747 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1748 break;
1753 * Unlike other *_pton function semantics, zero indicates success.
1755 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1756 char delim, const char **ipend)
1758 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1759 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1761 memset(ss, 0, sizeof(*ss));
1763 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1764 ss->ss_family = AF_INET;
1765 return 0;
1768 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1769 ss->ss_family = AF_INET6;
1770 return 0;
1773 return -EINVAL;
1777 * Extract hostname string and resolve using kernel DNS facility.
1779 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1780 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1781 struct sockaddr_storage *ss, char delim, const char **ipend)
1783 const char *end, *delim_p;
1784 char *colon_p, *ip_addr = NULL;
1785 int ip_len, ret;
1788 * The end of the hostname occurs immediately preceding the delimiter or
1789 * the port marker (':') where the delimiter takes precedence.
1791 delim_p = memchr(name, delim, namelen);
1792 colon_p = memchr(name, ':', namelen);
1794 if (delim_p && colon_p)
1795 end = delim_p < colon_p ? delim_p : colon_p;
1796 else if (!delim_p && colon_p)
1797 end = colon_p;
1798 else {
1799 end = delim_p;
1800 if (!end) /* case: hostname:/ */
1801 end = name + namelen;
1804 if (end <= name)
1805 return -EINVAL;
1807 /* do dns_resolve upcall */
1808 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1809 if (ip_len > 0)
1810 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1811 else
1812 ret = -ESRCH;
1814 kfree(ip_addr);
1816 *ipend = end;
1818 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1819 ret, ret ? "failed" : ceph_pr_addr(ss));
1821 return ret;
1823 #else
1824 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1825 struct sockaddr_storage *ss, char delim, const char **ipend)
1827 return -EINVAL;
1829 #endif
1832 * Parse a server name (IP or hostname). If a valid IP address is not found
1833 * then try to extract a hostname to resolve using userspace DNS upcall.
1835 static int ceph_parse_server_name(const char *name, size_t namelen,
1836 struct sockaddr_storage *ss, char delim, const char **ipend)
1838 int ret;
1840 ret = ceph_pton(name, namelen, ss, delim, ipend);
1841 if (ret)
1842 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1844 return ret;
1848 * Parse an ip[:port] list into an addr array. Use the default
1849 * monitor port if a port isn't specified.
1851 int ceph_parse_ips(const char *c, const char *end,
1852 struct ceph_entity_addr *addr,
1853 int max_count, int *count)
1855 int i, ret = -EINVAL;
1856 const char *p = c;
1858 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1859 for (i = 0; i < max_count; i++) {
1860 const char *ipend;
1861 struct sockaddr_storage *ss = &addr[i].in_addr;
1862 int port;
1863 char delim = ',';
1865 if (*p == '[') {
1866 delim = ']';
1867 p++;
1870 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1871 if (ret)
1872 goto bad;
1873 ret = -EINVAL;
1875 p = ipend;
1877 if (delim == ']') {
1878 if (*p != ']') {
1879 dout("missing matching ']'\n");
1880 goto bad;
1882 p++;
1885 /* port? */
1886 if (p < end && *p == ':') {
1887 port = 0;
1888 p++;
1889 while (p < end && *p >= '0' && *p <= '9') {
1890 port = (port * 10) + (*p - '0');
1891 p++;
1893 if (port == 0)
1894 port = CEPH_MON_PORT;
1895 else if (port > 65535)
1896 goto bad;
1897 } else {
1898 port = CEPH_MON_PORT;
1901 addr_set_port(ss, port);
1903 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1905 if (p == end)
1906 break;
1907 if (*p != ',')
1908 goto bad;
1909 p++;
1912 if (p != end)
1913 goto bad;
1915 if (count)
1916 *count = i + 1;
1917 return 0;
1919 bad:
1920 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1921 return ret;
1923 EXPORT_SYMBOL(ceph_parse_ips);
1925 static int process_banner(struct ceph_connection *con)
1927 dout("process_banner on %p\n", con);
1929 if (verify_hello(con) < 0)
1930 return -1;
1932 ceph_decode_addr(&con->actual_peer_addr);
1933 ceph_decode_addr(&con->peer_addr_for_me);
1936 * Make sure the other end is who we wanted. note that the other
1937 * end may not yet know their ip address, so if it's 0.0.0.0, give
1938 * them the benefit of the doubt.
1940 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1941 sizeof(con->peer_addr)) != 0 &&
1942 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1943 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1944 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1945 ceph_pr_addr(&con->peer_addr.in_addr),
1946 (int)le32_to_cpu(con->peer_addr.nonce),
1947 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1948 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1949 con->error_msg = "wrong peer at address";
1950 return -1;
1954 * did we learn our address?
1956 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1957 int port = addr_port(&con->msgr->inst.addr.in_addr);
1959 memcpy(&con->msgr->inst.addr.in_addr,
1960 &con->peer_addr_for_me.in_addr,
1961 sizeof(con->peer_addr_for_me.in_addr));
1962 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1963 encode_my_addr(con->msgr);
1964 dout("process_banner learned my addr is %s\n",
1965 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1968 return 0;
1971 static int process_connect(struct ceph_connection *con)
1973 u64 sup_feat = con->msgr->supported_features;
1974 u64 req_feat = con->msgr->required_features;
1975 u64 server_feat = ceph_sanitize_features(
1976 le64_to_cpu(con->in_reply.features));
1977 int ret;
1979 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1981 switch (con->in_reply.tag) {
1982 case CEPH_MSGR_TAG_FEATURES:
1983 pr_err("%s%lld %s feature set mismatch,"
1984 " my %llx < server's %llx, missing %llx\n",
1985 ENTITY_NAME(con->peer_name),
1986 ceph_pr_addr(&con->peer_addr.in_addr),
1987 sup_feat, server_feat, server_feat & ~sup_feat);
1988 con->error_msg = "missing required protocol features";
1989 reset_connection(con);
1990 return -1;
1992 case CEPH_MSGR_TAG_BADPROTOVER:
1993 pr_err("%s%lld %s protocol version mismatch,"
1994 " my %d != server's %d\n",
1995 ENTITY_NAME(con->peer_name),
1996 ceph_pr_addr(&con->peer_addr.in_addr),
1997 le32_to_cpu(con->out_connect.protocol_version),
1998 le32_to_cpu(con->in_reply.protocol_version));
1999 con->error_msg = "protocol version mismatch";
2000 reset_connection(con);
2001 return -1;
2003 case CEPH_MSGR_TAG_BADAUTHORIZER:
2004 con->auth_retry++;
2005 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2006 con->auth_retry);
2007 if (con->auth_retry == 2) {
2008 con->error_msg = "connect authorization failure";
2009 return -1;
2011 con_out_kvec_reset(con);
2012 ret = prepare_write_connect(con);
2013 if (ret < 0)
2014 return ret;
2015 prepare_read_connect(con);
2016 break;
2018 case CEPH_MSGR_TAG_RESETSESSION:
2020 * If we connected with a large connect_seq but the peer
2021 * has no record of a session with us (no connection, or
2022 * connect_seq == 0), they will send RESETSESION to indicate
2023 * that they must have reset their session, and may have
2024 * dropped messages.
2026 dout("process_connect got RESET peer seq %u\n",
2027 le32_to_cpu(con->in_reply.connect_seq));
2028 pr_err("%s%lld %s connection reset\n",
2029 ENTITY_NAME(con->peer_name),
2030 ceph_pr_addr(&con->peer_addr.in_addr));
2031 reset_connection(con);
2032 con_out_kvec_reset(con);
2033 ret = prepare_write_connect(con);
2034 if (ret < 0)
2035 return ret;
2036 prepare_read_connect(con);
2038 /* Tell ceph about it. */
2039 mutex_unlock(&con->mutex);
2040 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2041 if (con->ops->peer_reset)
2042 con->ops->peer_reset(con);
2043 mutex_lock(&con->mutex);
2044 if (con->state != CON_STATE_NEGOTIATING)
2045 return -EAGAIN;
2046 break;
2048 case CEPH_MSGR_TAG_RETRY_SESSION:
2050 * If we sent a smaller connect_seq than the peer has, try
2051 * again with a larger value.
2053 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2054 le32_to_cpu(con->out_connect.connect_seq),
2055 le32_to_cpu(con->in_reply.connect_seq));
2056 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2057 con_out_kvec_reset(con);
2058 ret = prepare_write_connect(con);
2059 if (ret < 0)
2060 return ret;
2061 prepare_read_connect(con);
2062 break;
2064 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2066 * If we sent a smaller global_seq than the peer has, try
2067 * again with a larger value.
2069 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2070 con->peer_global_seq,
2071 le32_to_cpu(con->in_reply.global_seq));
2072 get_global_seq(con->msgr,
2073 le32_to_cpu(con->in_reply.global_seq));
2074 con_out_kvec_reset(con);
2075 ret = prepare_write_connect(con);
2076 if (ret < 0)
2077 return ret;
2078 prepare_read_connect(con);
2079 break;
2081 case CEPH_MSGR_TAG_SEQ:
2082 case CEPH_MSGR_TAG_READY:
2083 if (req_feat & ~server_feat) {
2084 pr_err("%s%lld %s protocol feature mismatch,"
2085 " my required %llx > server's %llx, need %llx\n",
2086 ENTITY_NAME(con->peer_name),
2087 ceph_pr_addr(&con->peer_addr.in_addr),
2088 req_feat, server_feat, req_feat & ~server_feat);
2089 con->error_msg = "missing required protocol features";
2090 reset_connection(con);
2091 return -1;
2094 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2095 con->state = CON_STATE_OPEN;
2096 con->auth_retry = 0; /* we authenticated; clear flag */
2097 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2098 con->connect_seq++;
2099 con->peer_features = server_feat;
2100 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2101 con->peer_global_seq,
2102 le32_to_cpu(con->in_reply.connect_seq),
2103 con->connect_seq);
2104 WARN_ON(con->connect_seq !=
2105 le32_to_cpu(con->in_reply.connect_seq));
2107 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2108 con_flag_set(con, CON_FLAG_LOSSYTX);
2110 con->delay = 0; /* reset backoff memory */
2112 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2113 prepare_write_seq(con);
2114 prepare_read_seq(con);
2115 } else {
2116 prepare_read_tag(con);
2118 break;
2120 case CEPH_MSGR_TAG_WAIT:
2122 * If there is a connection race (we are opening
2123 * connections to each other), one of us may just have
2124 * to WAIT. This shouldn't happen if we are the
2125 * client.
2127 pr_err("process_connect got WAIT as client\n");
2128 con->error_msg = "protocol error, got WAIT as client";
2129 return -1;
2131 default:
2132 pr_err("connect protocol error, will retry\n");
2133 con->error_msg = "protocol error, garbage tag during connect";
2134 return -1;
2136 return 0;
2141 * read (part of) an ack
2143 static int read_partial_ack(struct ceph_connection *con)
2145 int size = sizeof (con->in_temp_ack);
2146 int end = size;
2148 return read_partial(con, end, size, &con->in_temp_ack);
2152 * We can finally discard anything that's been acked.
2154 static void process_ack(struct ceph_connection *con)
2156 struct ceph_msg *m;
2157 u64 ack = le64_to_cpu(con->in_temp_ack);
2158 u64 seq;
2160 while (!list_empty(&con->out_sent)) {
2161 m = list_first_entry(&con->out_sent, struct ceph_msg,
2162 list_head);
2163 seq = le64_to_cpu(m->hdr.seq);
2164 if (seq > ack)
2165 break;
2166 dout("got ack for seq %llu type %d at %p\n", seq,
2167 le16_to_cpu(m->hdr.type), m);
2168 m->ack_stamp = jiffies;
2169 ceph_msg_remove(m);
2171 prepare_read_tag(con);
2175 static int read_partial_message_section(struct ceph_connection *con,
2176 struct kvec *section,
2177 unsigned int sec_len, u32 *crc)
2179 int ret, left;
2181 BUG_ON(!section);
2183 while (section->iov_len < sec_len) {
2184 BUG_ON(section->iov_base == NULL);
2185 left = sec_len - section->iov_len;
2186 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2187 section->iov_len, left);
2188 if (ret <= 0)
2189 return ret;
2190 section->iov_len += ret;
2192 if (section->iov_len == sec_len)
2193 *crc = crc32c(0, section->iov_base, section->iov_len);
2195 return 1;
2198 static int read_partial_msg_data(struct ceph_connection *con)
2200 struct ceph_msg *msg = con->in_msg;
2201 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2202 const bool do_datacrc = !con->msgr->nocrc;
2203 struct page *page;
2204 size_t page_offset;
2205 size_t length;
2206 u32 crc = 0;
2207 int ret;
2209 BUG_ON(!msg);
2210 if (list_empty(&msg->data))
2211 return -EIO;
2213 if (do_datacrc)
2214 crc = con->in_data_crc;
2215 while (cursor->resid) {
2216 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2217 NULL);
2218 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2219 if (ret <= 0) {
2220 if (do_datacrc)
2221 con->in_data_crc = crc;
2223 return ret;
2226 if (do_datacrc)
2227 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2228 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2230 if (do_datacrc)
2231 con->in_data_crc = crc;
2233 return 1; /* must return > 0 to indicate success */
2237 * read (part of) a message.
2239 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2241 static int read_partial_message(struct ceph_connection *con)
2243 struct ceph_msg *m = con->in_msg;
2244 int size;
2245 int end;
2246 int ret;
2247 unsigned int front_len, middle_len, data_len;
2248 bool do_datacrc = !con->msgr->nocrc;
2249 u64 seq;
2250 u32 crc;
2252 dout("read_partial_message con %p msg %p\n", con, m);
2254 /* header */
2255 size = sizeof (con->in_hdr);
2256 end = size;
2257 ret = read_partial(con, end, size, &con->in_hdr);
2258 if (ret <= 0)
2259 return ret;
2261 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2262 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2263 pr_err("read_partial_message bad hdr "
2264 " crc %u != expected %u\n",
2265 crc, con->in_hdr.crc);
2266 return -EBADMSG;
2269 front_len = le32_to_cpu(con->in_hdr.front_len);
2270 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2271 return -EIO;
2272 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2273 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2274 return -EIO;
2275 data_len = le32_to_cpu(con->in_hdr.data_len);
2276 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2277 return -EIO;
2279 /* verify seq# */
2280 seq = le64_to_cpu(con->in_hdr.seq);
2281 if ((s64)seq - (s64)con->in_seq < 1) {
2282 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2283 ENTITY_NAME(con->peer_name),
2284 ceph_pr_addr(&con->peer_addr.in_addr),
2285 seq, con->in_seq + 1);
2286 con->in_base_pos = -front_len - middle_len - data_len -
2287 sizeof(m->footer);
2288 con->in_tag = CEPH_MSGR_TAG_READY;
2289 return 0;
2290 } else if ((s64)seq - (s64)con->in_seq > 1) {
2291 pr_err("read_partial_message bad seq %lld expected %lld\n",
2292 seq, con->in_seq + 1);
2293 con->error_msg = "bad message sequence # for incoming message";
2294 return -EBADMSG;
2297 /* allocate message? */
2298 if (!con->in_msg) {
2299 int skip = 0;
2301 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2302 front_len, data_len);
2303 ret = ceph_con_in_msg_alloc(con, &skip);
2304 if (ret < 0)
2305 return ret;
2307 BUG_ON(!con->in_msg ^ skip);
2308 if (con->in_msg && data_len > con->in_msg->data_length) {
2309 pr_warn("%s skipping long message (%u > %zd)\n",
2310 __func__, data_len, con->in_msg->data_length);
2311 ceph_msg_put(con->in_msg);
2312 con->in_msg = NULL;
2313 skip = 1;
2315 if (skip) {
2316 /* skip this message */
2317 dout("alloc_msg said skip message\n");
2318 con->in_base_pos = -front_len - middle_len - data_len -
2319 sizeof(m->footer);
2320 con->in_tag = CEPH_MSGR_TAG_READY;
2321 con->in_seq++;
2322 return 0;
2325 BUG_ON(!con->in_msg);
2326 BUG_ON(con->in_msg->con != con);
2327 m = con->in_msg;
2328 m->front.iov_len = 0; /* haven't read it yet */
2329 if (m->middle)
2330 m->middle->vec.iov_len = 0;
2332 /* prepare for data payload, if any */
2334 if (data_len)
2335 prepare_message_data(con->in_msg, data_len);
2338 /* front */
2339 ret = read_partial_message_section(con, &m->front, front_len,
2340 &con->in_front_crc);
2341 if (ret <= 0)
2342 return ret;
2344 /* middle */
2345 if (m->middle) {
2346 ret = read_partial_message_section(con, &m->middle->vec,
2347 middle_len,
2348 &con->in_middle_crc);
2349 if (ret <= 0)
2350 return ret;
2353 /* (page) data */
2354 if (data_len) {
2355 ret = read_partial_msg_data(con);
2356 if (ret <= 0)
2357 return ret;
2360 /* footer */
2361 size = sizeof (m->footer);
2362 end += size;
2363 ret = read_partial(con, end, size, &m->footer);
2364 if (ret <= 0)
2365 return ret;
2367 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2368 m, front_len, m->footer.front_crc, middle_len,
2369 m->footer.middle_crc, data_len, m->footer.data_crc);
2371 /* crc ok? */
2372 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2373 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2374 m, con->in_front_crc, m->footer.front_crc);
2375 return -EBADMSG;
2377 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2378 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2379 m, con->in_middle_crc, m->footer.middle_crc);
2380 return -EBADMSG;
2382 if (do_datacrc &&
2383 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2384 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2385 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2386 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2387 return -EBADMSG;
2390 return 1; /* done! */
2394 * Process message. This happens in the worker thread. The callback should
2395 * be careful not to do anything that waits on other incoming messages or it
2396 * may deadlock.
2398 static void process_message(struct ceph_connection *con)
2400 struct ceph_msg *msg;
2402 BUG_ON(con->in_msg->con != con);
2403 con->in_msg->con = NULL;
2404 msg = con->in_msg;
2405 con->in_msg = NULL;
2406 con->ops->put(con);
2408 /* if first message, set peer_name */
2409 if (con->peer_name.type == 0)
2410 con->peer_name = msg->hdr.src;
2412 con->in_seq++;
2413 mutex_unlock(&con->mutex);
2415 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2416 msg, le64_to_cpu(msg->hdr.seq),
2417 ENTITY_NAME(msg->hdr.src),
2418 le16_to_cpu(msg->hdr.type),
2419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2420 le32_to_cpu(msg->hdr.front_len),
2421 le32_to_cpu(msg->hdr.data_len),
2422 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2423 con->ops->dispatch(con, msg);
2425 mutex_lock(&con->mutex);
2430 * Write something to the socket. Called in a worker thread when the
2431 * socket appears to be writeable and we have something ready to send.
2433 static int try_write(struct ceph_connection *con)
2435 int ret = 1;
2437 dout("try_write start %p state %lu\n", con, con->state);
2439 more:
2440 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2442 /* open the socket first? */
2443 if (con->state == CON_STATE_PREOPEN) {
2444 BUG_ON(con->sock);
2445 con->state = CON_STATE_CONNECTING;
2447 con_out_kvec_reset(con);
2448 prepare_write_banner(con);
2449 prepare_read_banner(con);
2451 BUG_ON(con->in_msg);
2452 con->in_tag = CEPH_MSGR_TAG_READY;
2453 dout("try_write initiating connect on %p new state %lu\n",
2454 con, con->state);
2455 ret = ceph_tcp_connect(con);
2456 if (ret < 0) {
2457 con->error_msg = "connect error";
2458 goto out;
2462 more_kvec:
2463 /* kvec data queued? */
2464 if (con->out_skip) {
2465 ret = write_partial_skip(con);
2466 if (ret <= 0)
2467 goto out;
2469 if (con->out_kvec_left) {
2470 ret = write_partial_kvec(con);
2471 if (ret <= 0)
2472 goto out;
2475 /* msg pages? */
2476 if (con->out_msg) {
2477 if (con->out_msg_done) {
2478 ceph_msg_put(con->out_msg);
2479 con->out_msg = NULL; /* we're done with this one */
2480 goto do_next;
2483 ret = write_partial_message_data(con);
2484 if (ret == 1)
2485 goto more_kvec; /* we need to send the footer, too! */
2486 if (ret == 0)
2487 goto out;
2488 if (ret < 0) {
2489 dout("try_write write_partial_message_data err %d\n",
2490 ret);
2491 goto out;
2495 do_next:
2496 if (con->state == CON_STATE_OPEN) {
2497 /* is anything else pending? */
2498 if (!list_empty(&con->out_queue)) {
2499 prepare_write_message(con);
2500 goto more;
2502 if (con->in_seq > con->in_seq_acked) {
2503 prepare_write_ack(con);
2504 goto more;
2506 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2507 prepare_write_keepalive(con);
2508 goto more;
2512 /* Nothing to do! */
2513 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2514 dout("try_write nothing else to write.\n");
2515 ret = 0;
2516 out:
2517 dout("try_write done on %p ret %d\n", con, ret);
2518 return ret;
2524 * Read what we can from the socket.
2526 static int try_read(struct ceph_connection *con)
2528 int ret = -1;
2530 more:
2531 dout("try_read start on %p state %lu\n", con, con->state);
2532 if (con->state != CON_STATE_CONNECTING &&
2533 con->state != CON_STATE_NEGOTIATING &&
2534 con->state != CON_STATE_OPEN)
2535 return 0;
2537 BUG_ON(!con->sock);
2539 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2540 con->in_base_pos);
2542 if (con->state == CON_STATE_CONNECTING) {
2543 dout("try_read connecting\n");
2544 ret = read_partial_banner(con);
2545 if (ret <= 0)
2546 goto out;
2547 ret = process_banner(con);
2548 if (ret < 0)
2549 goto out;
2551 con->state = CON_STATE_NEGOTIATING;
2554 * Received banner is good, exchange connection info.
2555 * Do not reset out_kvec, as sending our banner raced
2556 * with receiving peer banner after connect completed.
2558 ret = prepare_write_connect(con);
2559 if (ret < 0)
2560 goto out;
2561 prepare_read_connect(con);
2563 /* Send connection info before awaiting response */
2564 goto out;
2567 if (con->state == CON_STATE_NEGOTIATING) {
2568 dout("try_read negotiating\n");
2569 ret = read_partial_connect(con);
2570 if (ret <= 0)
2571 goto out;
2572 ret = process_connect(con);
2573 if (ret < 0)
2574 goto out;
2575 goto more;
2578 WARN_ON(con->state != CON_STATE_OPEN);
2580 if (con->in_base_pos < 0) {
2582 * skipping + discarding content.
2584 * FIXME: there must be a better way to do this!
2586 static char buf[SKIP_BUF_SIZE];
2587 int skip = min((int) sizeof (buf), -con->in_base_pos);
2589 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2590 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2591 if (ret <= 0)
2592 goto out;
2593 con->in_base_pos += ret;
2594 if (con->in_base_pos)
2595 goto more;
2597 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2599 * what's next?
2601 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2602 if (ret <= 0)
2603 goto out;
2604 dout("try_read got tag %d\n", (int)con->in_tag);
2605 switch (con->in_tag) {
2606 case CEPH_MSGR_TAG_MSG:
2607 prepare_read_message(con);
2608 break;
2609 case CEPH_MSGR_TAG_ACK:
2610 prepare_read_ack(con);
2611 break;
2612 case CEPH_MSGR_TAG_CLOSE:
2613 con_close_socket(con);
2614 con->state = CON_STATE_CLOSED;
2615 goto out;
2616 default:
2617 goto bad_tag;
2620 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2621 ret = read_partial_message(con);
2622 if (ret <= 0) {
2623 switch (ret) {
2624 case -EBADMSG:
2625 con->error_msg = "bad crc";
2626 ret = -EIO;
2627 break;
2628 case -EIO:
2629 con->error_msg = "io error";
2630 break;
2632 goto out;
2634 if (con->in_tag == CEPH_MSGR_TAG_READY)
2635 goto more;
2636 process_message(con);
2637 if (con->state == CON_STATE_OPEN)
2638 prepare_read_tag(con);
2639 goto more;
2641 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2642 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2644 * the final handshake seq exchange is semantically
2645 * equivalent to an ACK
2647 ret = read_partial_ack(con);
2648 if (ret <= 0)
2649 goto out;
2650 process_ack(con);
2651 goto more;
2654 out:
2655 dout("try_read done on %p ret %d\n", con, ret);
2656 return ret;
2658 bad_tag:
2659 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2660 con->error_msg = "protocol error, garbage tag";
2661 ret = -1;
2662 goto out;
2667 * Atomically queue work on a connection after the specified delay.
2668 * Bump @con reference to avoid races with connection teardown.
2669 * Returns 0 if work was queued, or an error code otherwise.
2671 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2673 if (!con->ops->get(con)) {
2674 dout("%s %p ref count 0\n", __func__, con);
2675 return -ENOENT;
2678 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2679 dout("%s %p - already queued\n", __func__, con);
2680 con->ops->put(con);
2681 return -EBUSY;
2684 dout("%s %p %lu\n", __func__, con, delay);
2685 return 0;
2688 static void queue_con(struct ceph_connection *con)
2690 (void) queue_con_delay(con, 0);
2693 static void cancel_con(struct ceph_connection *con)
2695 if (cancel_delayed_work(&con->work)) {
2696 dout("%s %p\n", __func__, con);
2697 con->ops->put(con);
2701 static bool con_sock_closed(struct ceph_connection *con)
2703 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2704 return false;
2706 #define CASE(x) \
2707 case CON_STATE_ ## x: \
2708 con->error_msg = "socket closed (con state " #x ")"; \
2709 break;
2711 switch (con->state) {
2712 CASE(CLOSED);
2713 CASE(PREOPEN);
2714 CASE(CONNECTING);
2715 CASE(NEGOTIATING);
2716 CASE(OPEN);
2717 CASE(STANDBY);
2718 default:
2719 pr_warn("%s con %p unrecognized state %lu\n",
2720 __func__, con, con->state);
2721 con->error_msg = "unrecognized con state";
2722 BUG();
2723 break;
2725 #undef CASE
2727 return true;
2730 static bool con_backoff(struct ceph_connection *con)
2732 int ret;
2734 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2735 return false;
2737 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2738 if (ret) {
2739 dout("%s: con %p FAILED to back off %lu\n", __func__,
2740 con, con->delay);
2741 BUG_ON(ret == -ENOENT);
2742 con_flag_set(con, CON_FLAG_BACKOFF);
2745 return true;
2748 /* Finish fault handling; con->mutex must *not* be held here */
2750 static void con_fault_finish(struct ceph_connection *con)
2753 * in case we faulted due to authentication, invalidate our
2754 * current tickets so that we can get new ones.
2756 if (con->auth_retry && con->ops->invalidate_authorizer) {
2757 dout("calling invalidate_authorizer()\n");
2758 con->ops->invalidate_authorizer(con);
2761 if (con->ops->fault)
2762 con->ops->fault(con);
2766 * Do some work on a connection. Drop a connection ref when we're done.
2768 static void con_work(struct work_struct *work)
2770 struct ceph_connection *con = container_of(work, struct ceph_connection,
2771 work.work);
2772 bool fault;
2774 mutex_lock(&con->mutex);
2775 while (true) {
2776 int ret;
2778 if ((fault = con_sock_closed(con))) {
2779 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2780 break;
2782 if (con_backoff(con)) {
2783 dout("%s: con %p BACKOFF\n", __func__, con);
2784 break;
2786 if (con->state == CON_STATE_STANDBY) {
2787 dout("%s: con %p STANDBY\n", __func__, con);
2788 break;
2790 if (con->state == CON_STATE_CLOSED) {
2791 dout("%s: con %p CLOSED\n", __func__, con);
2792 BUG_ON(con->sock);
2793 break;
2795 if (con->state == CON_STATE_PREOPEN) {
2796 dout("%s: con %p PREOPEN\n", __func__, con);
2797 BUG_ON(con->sock);
2800 ret = try_read(con);
2801 if (ret < 0) {
2802 if (ret == -EAGAIN)
2803 continue;
2804 con->error_msg = "socket error on read";
2805 fault = true;
2806 break;
2809 ret = try_write(con);
2810 if (ret < 0) {
2811 if (ret == -EAGAIN)
2812 continue;
2813 con->error_msg = "socket error on write";
2814 fault = true;
2817 break; /* If we make it to here, we're done */
2819 if (fault)
2820 con_fault(con);
2821 mutex_unlock(&con->mutex);
2823 if (fault)
2824 con_fault_finish(con);
2826 con->ops->put(con);
2830 * Generic error/fault handler. A retry mechanism is used with
2831 * exponential backoff
2833 static void con_fault(struct ceph_connection *con)
2835 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2836 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2837 dout("fault %p state %lu to peer %s\n",
2838 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2840 WARN_ON(con->state != CON_STATE_CONNECTING &&
2841 con->state != CON_STATE_NEGOTIATING &&
2842 con->state != CON_STATE_OPEN);
2844 con_close_socket(con);
2846 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2847 dout("fault on LOSSYTX channel, marking CLOSED\n");
2848 con->state = CON_STATE_CLOSED;
2849 return;
2852 if (con->in_msg) {
2853 BUG_ON(con->in_msg->con != con);
2854 con->in_msg->con = NULL;
2855 ceph_msg_put(con->in_msg);
2856 con->in_msg = NULL;
2857 con->ops->put(con);
2860 /* Requeue anything that hasn't been acked */
2861 list_splice_init(&con->out_sent, &con->out_queue);
2863 /* If there are no messages queued or keepalive pending, place
2864 * the connection in a STANDBY state */
2865 if (list_empty(&con->out_queue) &&
2866 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2867 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2868 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2869 con->state = CON_STATE_STANDBY;
2870 } else {
2871 /* retry after a delay. */
2872 con->state = CON_STATE_PREOPEN;
2873 if (con->delay == 0)
2874 con->delay = BASE_DELAY_INTERVAL;
2875 else if (con->delay < MAX_DELAY_INTERVAL)
2876 con->delay *= 2;
2877 con_flag_set(con, CON_FLAG_BACKOFF);
2878 queue_con(con);
2885 * initialize a new messenger instance
2887 void ceph_messenger_init(struct ceph_messenger *msgr,
2888 struct ceph_entity_addr *myaddr,
2889 u64 supported_features,
2890 u64 required_features,
2891 bool nocrc)
2893 msgr->supported_features = supported_features;
2894 msgr->required_features = required_features;
2896 spin_lock_init(&msgr->global_seq_lock);
2898 if (myaddr)
2899 msgr->inst.addr = *myaddr;
2901 /* select a random nonce */
2902 msgr->inst.addr.type = 0;
2903 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2904 encode_my_addr(msgr);
2905 msgr->nocrc = nocrc;
2907 atomic_set(&msgr->stopping, 0);
2909 dout("%s %p\n", __func__, msgr);
2911 EXPORT_SYMBOL(ceph_messenger_init);
2913 static void clear_standby(struct ceph_connection *con)
2915 /* come back from STANDBY? */
2916 if (con->state == CON_STATE_STANDBY) {
2917 dout("clear_standby %p and ++connect_seq\n", con);
2918 con->state = CON_STATE_PREOPEN;
2919 con->connect_seq++;
2920 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2921 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2926 * Queue up an outgoing message on the given connection.
2928 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2930 /* set src+dst */
2931 msg->hdr.src = con->msgr->inst.name;
2932 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2933 msg->needs_out_seq = true;
2935 mutex_lock(&con->mutex);
2937 if (con->state == CON_STATE_CLOSED) {
2938 dout("con_send %p closed, dropping %p\n", con, msg);
2939 ceph_msg_put(msg);
2940 mutex_unlock(&con->mutex);
2941 return;
2944 BUG_ON(msg->con != NULL);
2945 msg->con = con->ops->get(con);
2946 BUG_ON(msg->con == NULL);
2948 BUG_ON(!list_empty(&msg->list_head));
2949 list_add_tail(&msg->list_head, &con->out_queue);
2950 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2951 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2952 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2953 le32_to_cpu(msg->hdr.front_len),
2954 le32_to_cpu(msg->hdr.middle_len),
2955 le32_to_cpu(msg->hdr.data_len));
2957 clear_standby(con);
2958 mutex_unlock(&con->mutex);
2960 /* if there wasn't anything waiting to send before, queue
2961 * new work */
2962 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2963 queue_con(con);
2965 EXPORT_SYMBOL(ceph_con_send);
2968 * Revoke a message that was previously queued for send
2970 void ceph_msg_revoke(struct ceph_msg *msg)
2972 struct ceph_connection *con = msg->con;
2974 if (!con)
2975 return; /* Message not in our possession */
2977 mutex_lock(&con->mutex);
2978 if (!list_empty(&msg->list_head)) {
2979 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2980 list_del_init(&msg->list_head);
2981 BUG_ON(msg->con == NULL);
2982 msg->con->ops->put(msg->con);
2983 msg->con = NULL;
2984 msg->hdr.seq = 0;
2986 ceph_msg_put(msg);
2988 if (con->out_msg == msg) {
2989 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2990 con->out_msg = NULL;
2991 if (con->out_kvec_is_msg) {
2992 con->out_skip = con->out_kvec_bytes;
2993 con->out_kvec_is_msg = false;
2995 msg->hdr.seq = 0;
2997 ceph_msg_put(msg);
2999 mutex_unlock(&con->mutex);
3003 * Revoke a message that we may be reading data into
3005 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3007 struct ceph_connection *con;
3009 BUG_ON(msg == NULL);
3010 if (!msg->con) {
3011 dout("%s msg %p null con\n", __func__, msg);
3013 return; /* Message not in our possession */
3016 con = msg->con;
3017 mutex_lock(&con->mutex);
3018 if (con->in_msg == msg) {
3019 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3020 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3021 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3023 /* skip rest of message */
3024 dout("%s %p msg %p revoked\n", __func__, con, msg);
3025 con->in_base_pos = con->in_base_pos -
3026 sizeof(struct ceph_msg_header) -
3027 front_len -
3028 middle_len -
3029 data_len -
3030 sizeof(struct ceph_msg_footer);
3031 ceph_msg_put(con->in_msg);
3032 con->in_msg = NULL;
3033 con->in_tag = CEPH_MSGR_TAG_READY;
3034 con->in_seq++;
3035 } else {
3036 dout("%s %p in_msg %p msg %p no-op\n",
3037 __func__, con, con->in_msg, msg);
3039 mutex_unlock(&con->mutex);
3043 * Queue a keepalive byte to ensure the tcp connection is alive.
3045 void ceph_con_keepalive(struct ceph_connection *con)
3047 dout("con_keepalive %p\n", con);
3048 mutex_lock(&con->mutex);
3049 clear_standby(con);
3050 mutex_unlock(&con->mutex);
3051 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3052 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3053 queue_con(con);
3055 EXPORT_SYMBOL(ceph_con_keepalive);
3057 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3059 struct ceph_msg_data *data;
3061 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3062 return NULL;
3064 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3065 if (data)
3066 data->type = type;
3067 INIT_LIST_HEAD(&data->links);
3069 return data;
3072 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3074 if (!data)
3075 return;
3077 WARN_ON(!list_empty(&data->links));
3078 if (data->type == CEPH_MSG_DATA_PAGELIST)
3079 ceph_pagelist_release(data->pagelist);
3080 kmem_cache_free(ceph_msg_data_cache, data);
3083 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3084 size_t length, size_t alignment)
3086 struct ceph_msg_data *data;
3088 BUG_ON(!pages);
3089 BUG_ON(!length);
3091 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3092 BUG_ON(!data);
3093 data->pages = pages;
3094 data->length = length;
3095 data->alignment = alignment & ~PAGE_MASK;
3097 list_add_tail(&data->links, &msg->data);
3098 msg->data_length += length;
3100 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3102 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3103 struct ceph_pagelist *pagelist)
3105 struct ceph_msg_data *data;
3107 BUG_ON(!pagelist);
3108 BUG_ON(!pagelist->length);
3110 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3111 BUG_ON(!data);
3112 data->pagelist = pagelist;
3114 list_add_tail(&data->links, &msg->data);
3115 msg->data_length += pagelist->length;
3117 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3119 #ifdef CONFIG_BLOCK
3120 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3121 size_t length)
3123 struct ceph_msg_data *data;
3125 BUG_ON(!bio);
3127 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3128 BUG_ON(!data);
3129 data->bio = bio;
3130 data->bio_length = length;
3132 list_add_tail(&data->links, &msg->data);
3133 msg->data_length += length;
3135 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3136 #endif /* CONFIG_BLOCK */
3139 * construct a new message with given type, size
3140 * the new msg has a ref count of 1.
3142 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3143 bool can_fail)
3145 struct ceph_msg *m;
3147 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3148 if (m == NULL)
3149 goto out;
3151 m->hdr.type = cpu_to_le16(type);
3152 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3153 m->hdr.front_len = cpu_to_le32(front_len);
3155 INIT_LIST_HEAD(&m->list_head);
3156 kref_init(&m->kref);
3157 INIT_LIST_HEAD(&m->data);
3159 /* front */
3160 if (front_len) {
3161 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3162 if (m->front.iov_base == NULL) {
3163 dout("ceph_msg_new can't allocate %d bytes\n",
3164 front_len);
3165 goto out2;
3167 } else {
3168 m->front.iov_base = NULL;
3170 m->front_alloc_len = m->front.iov_len = front_len;
3172 dout("ceph_msg_new %p front %d\n", m, front_len);
3173 return m;
3175 out2:
3176 ceph_msg_put(m);
3177 out:
3178 if (!can_fail) {
3179 pr_err("msg_new can't create type %d front %d\n", type,
3180 front_len);
3181 WARN_ON(1);
3182 } else {
3183 dout("msg_new can't create type %d front %d\n", type,
3184 front_len);
3186 return NULL;
3188 EXPORT_SYMBOL(ceph_msg_new);
3191 * Allocate "middle" portion of a message, if it is needed and wasn't
3192 * allocated by alloc_msg. This allows us to read a small fixed-size
3193 * per-type header in the front and then gracefully fail (i.e.,
3194 * propagate the error to the caller based on info in the front) when
3195 * the middle is too large.
3197 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3199 int type = le16_to_cpu(msg->hdr.type);
3200 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3202 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3203 ceph_msg_type_name(type), middle_len);
3204 BUG_ON(!middle_len);
3205 BUG_ON(msg->middle);
3207 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3208 if (!msg->middle)
3209 return -ENOMEM;
3210 return 0;
3214 * Allocate a message for receiving an incoming message on a
3215 * connection, and save the result in con->in_msg. Uses the
3216 * connection's private alloc_msg op if available.
3218 * Returns 0 on success, or a negative error code.
3220 * On success, if we set *skip = 1:
3221 * - the next message should be skipped and ignored.
3222 * - con->in_msg == NULL
3223 * or if we set *skip = 0:
3224 * - con->in_msg is non-null.
3225 * On error (ENOMEM, EAGAIN, ...),
3226 * - con->in_msg == NULL
3228 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3230 struct ceph_msg_header *hdr = &con->in_hdr;
3231 int middle_len = le32_to_cpu(hdr->middle_len);
3232 struct ceph_msg *msg;
3233 int ret = 0;
3235 BUG_ON(con->in_msg != NULL);
3236 BUG_ON(!con->ops->alloc_msg);
3238 mutex_unlock(&con->mutex);
3239 msg = con->ops->alloc_msg(con, hdr, skip);
3240 mutex_lock(&con->mutex);
3241 if (con->state != CON_STATE_OPEN) {
3242 if (msg)
3243 ceph_msg_put(msg);
3244 return -EAGAIN;
3246 if (msg) {
3247 BUG_ON(*skip);
3248 con->in_msg = msg;
3249 con->in_msg->con = con->ops->get(con);
3250 BUG_ON(con->in_msg->con == NULL);
3251 } else {
3253 * Null message pointer means either we should skip
3254 * this message or we couldn't allocate memory. The
3255 * former is not an error.
3257 if (*skip)
3258 return 0;
3259 con->error_msg = "error allocating memory for incoming message";
3261 return -ENOMEM;
3263 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3265 if (middle_len && !con->in_msg->middle) {
3266 ret = ceph_alloc_middle(con, con->in_msg);
3267 if (ret < 0) {
3268 ceph_msg_put(con->in_msg);
3269 con->in_msg = NULL;
3273 return ret;
3278 * Free a generically kmalloc'd message.
3280 static void ceph_msg_free(struct ceph_msg *m)
3282 dout("%s %p\n", __func__, m);
3283 ceph_kvfree(m->front.iov_base);
3284 kmem_cache_free(ceph_msg_cache, m);
3287 static void ceph_msg_release(struct kref *kref)
3289 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3290 LIST_HEAD(data);
3291 struct list_head *links;
3292 struct list_head *next;
3294 dout("%s %p\n", __func__, m);
3295 WARN_ON(!list_empty(&m->list_head));
3297 /* drop middle, data, if any */
3298 if (m->middle) {
3299 ceph_buffer_put(m->middle);
3300 m->middle = NULL;
3303 list_splice_init(&m->data, &data);
3304 list_for_each_safe(links, next, &data) {
3305 struct ceph_msg_data *data;
3307 data = list_entry(links, struct ceph_msg_data, links);
3308 list_del_init(links);
3309 ceph_msg_data_destroy(data);
3311 m->data_length = 0;
3313 if (m->pool)
3314 ceph_msgpool_put(m->pool, m);
3315 else
3316 ceph_msg_free(m);
3319 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3321 dout("%s %p (was %d)\n", __func__, msg,
3322 atomic_read(&msg->kref.refcount));
3323 kref_get(&msg->kref);
3324 return msg;
3326 EXPORT_SYMBOL(ceph_msg_get);
3328 void ceph_msg_put(struct ceph_msg *msg)
3330 dout("%s %p (was %d)\n", __func__, msg,
3331 atomic_read(&msg->kref.refcount));
3332 kref_put(&msg->kref, ceph_msg_release);
3334 EXPORT_SYMBOL(ceph_msg_put);
3336 void ceph_msg_dump(struct ceph_msg *msg)
3338 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3339 msg->front_alloc_len, msg->data_length);
3340 print_hex_dump(KERN_DEBUG, "header: ",
3341 DUMP_PREFIX_OFFSET, 16, 1,
3342 &msg->hdr, sizeof(msg->hdr), true);
3343 print_hex_dump(KERN_DEBUG, " front: ",
3344 DUMP_PREFIX_OFFSET, 16, 1,
3345 msg->front.iov_base, msg->front.iov_len, true);
3346 if (msg->middle)
3347 print_hex_dump(KERN_DEBUG, "middle: ",
3348 DUMP_PREFIX_OFFSET, 16, 1,
3349 msg->middle->vec.iov_base,
3350 msg->middle->vec.iov_len, true);
3351 print_hex_dump(KERN_DEBUG, "footer: ",
3352 DUMP_PREFIX_OFFSET, 16, 1,
3353 &msg->footer, sizeof(msg->footer), true);
3355 EXPORT_SYMBOL(ceph_msg_dump);