1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection
*con
);
177 static void cancel_con(struct ceph_connection
*con
);
178 static void con_work(struct work_struct
*);
179 static void con_fault(struct ceph_connection
*con
);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
191 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
193 static struct page
*zero_page
; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
199 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
200 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
202 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
205 switch (ss
->ss_family
) {
207 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
208 ntohs(in4
->sin_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
213 ntohs(in6
->sin6_port
));
217 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr
);
225 static void encode_my_addr(struct ceph_messenger
*msgr
)
227 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
228 ceph_encode_addr(&msgr
->my_enc_addr
);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct
*ceph_msgr_wq
;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache
);
239 ceph_msg_cache
= kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg
),
241 __alignof__(struct ceph_msg
), 0, NULL
);
246 BUG_ON(ceph_msg_data_cache
);
247 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data
),
249 __alignof__(struct ceph_msg_data
),
251 if (ceph_msg_data_cache
)
254 kmem_cache_destroy(ceph_msg_cache
);
255 ceph_msg_cache
= NULL
;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache
);
263 kmem_cache_destroy(ceph_msg_data_cache
);
264 ceph_msg_data_cache
= NULL
;
266 BUG_ON(!ceph_msg_cache
);
267 kmem_cache_destroy(ceph_msg_cache
);
268 ceph_msg_cache
= NULL
;
271 static void _ceph_msgr_exit(void)
274 destroy_workqueue(ceph_msgr_wq
);
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page
== NULL
);
282 page_cache_release(zero_page
);
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page
!= NULL
);
289 zero_page
= ZERO_PAGE(0);
290 page_cache_get(zero_page
);
292 if (ceph_msgr_slab_init())
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
303 pr_err("msgr_init failed to create workqueue\n");
308 EXPORT_SYMBOL(ceph_msgr_init
);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq
== NULL
);
316 EXPORT_SYMBOL(ceph_msgr_exit
);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq
);
322 EXPORT_SYMBOL(ceph_msgr_flush
);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection
*con
)
330 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
331 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
332 printk("%s: unexpected old state %d\n", __func__
, old_state
);
333 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
334 CON_SOCK_STATE_CLOSED
);
337 static void con_sock_state_connecting(struct ceph_connection
*con
)
341 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
342 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
343 printk("%s: unexpected old state %d\n", __func__
, old_state
);
344 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
345 CON_SOCK_STATE_CONNECTING
);
348 static void con_sock_state_connected(struct ceph_connection
*con
)
352 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
353 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
354 printk("%s: unexpected old state %d\n", __func__
, old_state
);
355 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
356 CON_SOCK_STATE_CONNECTED
);
359 static void con_sock_state_closing(struct ceph_connection
*con
)
363 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
364 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTED
&&
366 old_state
!= CON_SOCK_STATE_CLOSING
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSING
);
372 static void con_sock_state_closed(struct ceph_connection
*con
)
376 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
377 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
378 old_state
!= CON_SOCK_STATE_CLOSING
&&
379 old_state
!= CON_SOCK_STATE_CONNECTING
&&
380 old_state
!= CON_SOCK_STATE_CLOSED
))
381 printk("%s: unexpected old state %d\n", __func__
, old_state
);
382 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
383 CON_SOCK_STATE_CLOSED
);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock
*sk
)
393 struct ceph_connection
*con
= sk
->sk_user_data
;
394 if (atomic_read(&con
->msgr
->stopping
)) {
398 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
399 dout("%s on %p state = %lu, queueing work\n", __func__
,
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock
*sk
)
408 struct ceph_connection
*con
= sk
->sk_user_data
;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
418 if (sk_stream_is_writeable(sk
)) {
419 dout("%s %p queueing write work\n", __func__
, con
);
420 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
424 dout("%s %p nothing to write\n", __func__
, con
);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock
*sk
)
431 struct ceph_connection
*con
= sk
->sk_user_data
;
433 dout("%s %p state = %lu sk_state = %u\n", __func__
,
434 con
, con
->state
, sk
->sk_state
);
436 switch (sk
->sk_state
) {
438 dout("%s TCP_CLOSE\n", __func__
);
440 dout("%s TCP_CLOSE_WAIT\n", __func__
);
441 con_sock_state_closing(con
);
442 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
445 case TCP_ESTABLISHED
:
446 dout("%s TCP_ESTABLISHED\n", __func__
);
447 con_sock_state_connected(con
);
450 default: /* Everything else is uninteresting */
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket
*sock
,
459 struct ceph_connection
*con
)
461 struct sock
*sk
= sock
->sk
;
462 sk
->sk_user_data
= con
;
463 sk
->sk_data_ready
= ceph_sock_data_ready
;
464 sk
->sk_write_space
= ceph_sock_write_space
;
465 sk
->sk_state_change
= ceph_sock_state_change
;
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection
*con
)
478 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
483 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
487 sock
->sk
->sk_allocation
= GFP_NOFS
;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
493 set_sock_callbacks(sock
, con
);
495 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
497 con_sock_state_connecting(con
);
498 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
500 if (ret
== -EINPROGRESS
) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con
->peer_addr
.in_addr
),
504 } else if (ret
< 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
508 con
->error_msg
= "connect error";
516 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
518 struct kvec iov
= {buf
, len
};
519 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
522 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
528 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
529 int page_offset
, size_t length
)
534 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
538 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
545 * write something. @more is true if caller will be sending more data
548 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
549 size_t kvlen
, size_t len
, int more
)
551 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
555 msg
.msg_flags
|= MSG_MORE
;
557 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
559 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
565 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
566 int offset
, size_t size
, bool more
)
568 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
571 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
578 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
579 int offset
, size_t size
, bool more
)
584 /* sendpage cannot properly handle pages with page_count == 0,
585 * we need to fallback to sendmsg if that's the case */
586 if (page_count(page
) >= 1)
587 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
589 iov
.iov_base
= kmap(page
) + offset
;
591 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
598 * Shutdown/close the socket for the given connection.
600 static int con_close_socket(struct ceph_connection
*con
)
604 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
606 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
607 sock_release(con
->sock
);
612 * Forcibly clear the SOCK_CLOSED flag. It gets set
613 * independent of the connection mutex, and we could have
614 * received a socket close event before we had the chance to
615 * shut the socket down.
617 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
619 con_sock_state_closed(con
);
624 * Reset a connection. Discard all incoming and outgoing messages
625 * and clear *_seq state.
627 static void ceph_msg_remove(struct ceph_msg
*msg
)
629 list_del_init(&msg
->list_head
);
630 BUG_ON(msg
->con
== NULL
);
631 msg
->con
->ops
->put(msg
->con
);
636 static void ceph_msg_remove_list(struct list_head
*head
)
638 while (!list_empty(head
)) {
639 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
641 ceph_msg_remove(msg
);
645 static void reset_connection(struct ceph_connection
*con
)
647 /* reset connection, out_queue, msg_ and connect_seq */
648 /* discard existing out_queue and msg_seq */
649 dout("reset_connection %p\n", con
);
650 ceph_msg_remove_list(&con
->out_queue
);
651 ceph_msg_remove_list(&con
->out_sent
);
654 BUG_ON(con
->in_msg
->con
!= con
);
655 con
->in_msg
->con
= NULL
;
656 ceph_msg_put(con
->in_msg
);
661 con
->connect_seq
= 0;
664 ceph_msg_put(con
->out_msg
);
668 con
->in_seq_acked
= 0;
672 * mark a peer down. drop any open connections.
674 void ceph_con_close(struct ceph_connection
*con
)
676 mutex_lock(&con
->mutex
);
677 dout("con_close %p peer %s\n", con
,
678 ceph_pr_addr(&con
->peer_addr
.in_addr
));
679 con
->state
= CON_STATE_CLOSED
;
681 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
682 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
683 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
684 con_flag_clear(con
, CON_FLAG_BACKOFF
);
686 reset_connection(con
);
687 con
->peer_global_seq
= 0;
689 con_close_socket(con
);
690 mutex_unlock(&con
->mutex
);
692 EXPORT_SYMBOL(ceph_con_close
);
695 * Reopen a closed connection, with a new peer address.
697 void ceph_con_open(struct ceph_connection
*con
,
698 __u8 entity_type
, __u64 entity_num
,
699 struct ceph_entity_addr
*addr
)
701 mutex_lock(&con
->mutex
);
702 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
704 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
705 con
->state
= CON_STATE_PREOPEN
;
707 con
->peer_name
.type
= (__u8
) entity_type
;
708 con
->peer_name
.num
= cpu_to_le64(entity_num
);
710 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
711 con
->delay
= 0; /* reset backoff memory */
712 mutex_unlock(&con
->mutex
);
715 EXPORT_SYMBOL(ceph_con_open
);
718 * return true if this connection ever successfully opened
720 bool ceph_con_opened(struct ceph_connection
*con
)
722 return con
->connect_seq
> 0;
726 * initialize a new connection.
728 void ceph_con_init(struct ceph_connection
*con
, void *private,
729 const struct ceph_connection_operations
*ops
,
730 struct ceph_messenger
*msgr
)
732 dout("con_init %p\n", con
);
733 memset(con
, 0, sizeof(*con
));
734 con
->private = private;
738 con_sock_state_init(con
);
740 mutex_init(&con
->mutex
);
741 INIT_LIST_HEAD(&con
->out_queue
);
742 INIT_LIST_HEAD(&con
->out_sent
);
743 INIT_DELAYED_WORK(&con
->work
, con_work
);
745 con
->state
= CON_STATE_CLOSED
;
747 EXPORT_SYMBOL(ceph_con_init
);
751 * We maintain a global counter to order connection attempts. Get
752 * a unique seq greater than @gt.
754 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
758 spin_lock(&msgr
->global_seq_lock
);
759 if (msgr
->global_seq
< gt
)
760 msgr
->global_seq
= gt
;
761 ret
= ++msgr
->global_seq
;
762 spin_unlock(&msgr
->global_seq_lock
);
766 static void con_out_kvec_reset(struct ceph_connection
*con
)
768 con
->out_kvec_left
= 0;
769 con
->out_kvec_bytes
= 0;
770 con
->out_kvec_cur
= &con
->out_kvec
[0];
773 static void con_out_kvec_add(struct ceph_connection
*con
,
774 size_t size
, void *data
)
778 index
= con
->out_kvec_left
;
779 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
781 con
->out_kvec
[index
].iov_len
= size
;
782 con
->out_kvec
[index
].iov_base
= data
;
783 con
->out_kvec_left
++;
784 con
->out_kvec_bytes
+= size
;
790 * For a bio data item, a piece is whatever remains of the next
791 * entry in the current bio iovec, or the first entry in the next
794 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
797 struct ceph_msg_data
*data
= cursor
->data
;
800 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
805 cursor
->resid
= min(length
, data
->bio_length
);
807 cursor
->bvec_iter
= bio
->bi_iter
;
809 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
812 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
816 struct ceph_msg_data
*data
= cursor
->data
;
818 struct bio_vec bio_vec
;
820 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
825 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
827 *page_offset
= (size_t) bio_vec
.bv_offset
;
828 BUG_ON(*page_offset
>= PAGE_SIZE
);
829 if (cursor
->last_piece
) /* pagelist offset is always 0 */
830 *length
= cursor
->resid
;
832 *length
= (size_t) bio_vec
.bv_len
;
833 BUG_ON(*length
> cursor
->resid
);
834 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
836 return bio_vec
.bv_page
;
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
843 struct bio_vec bio_vec
;
845 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
850 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
852 /* Advance the cursor offset */
854 BUG_ON(cursor
->resid
< bytes
);
855 cursor
->resid
-= bytes
;
857 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
859 if (bytes
< bio_vec
.bv_len
)
860 return false; /* more bytes to process in this segment */
862 /* Move on to the next segment, and possibly the next bio */
864 if (!cursor
->bvec_iter
.bi_size
) {
868 cursor
->bvec_iter
= bio
->bi_iter
;
870 memset(&cursor
->bvec_iter
, 0,
871 sizeof(cursor
->bvec_iter
));
874 if (!cursor
->last_piece
) {
875 BUG_ON(!cursor
->resid
);
877 /* A short read is OK, so use <= rather than == */
878 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
879 cursor
->last_piece
= true;
884 #endif /* CONFIG_BLOCK */
887 * For a page array, a piece comes from the first page in the array
888 * that has not already been fully consumed.
890 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
893 struct ceph_msg_data
*data
= cursor
->data
;
896 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
898 BUG_ON(!data
->pages
);
899 BUG_ON(!data
->length
);
901 cursor
->resid
= min(length
, data
->length
);
902 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
903 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
904 cursor
->page_index
= 0;
905 BUG_ON(page_count
> (int)USHRT_MAX
);
906 cursor
->page_count
= (unsigned short)page_count
;
907 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
908 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
912 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
913 size_t *page_offset
, size_t *length
)
915 struct ceph_msg_data
*data
= cursor
->data
;
917 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
919 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
920 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
922 *page_offset
= cursor
->page_offset
;
923 if (cursor
->last_piece
)
924 *length
= cursor
->resid
;
926 *length
= PAGE_SIZE
- *page_offset
;
928 return data
->pages
[cursor
->page_index
];
931 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
934 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
936 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
938 /* Advance the cursor page offset */
940 cursor
->resid
-= bytes
;
941 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
942 if (!bytes
|| cursor
->page_offset
)
943 return false; /* more bytes to process in the current page */
946 return false; /* no more data */
948 /* Move on to the next page; offset is already at 0 */
950 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
951 cursor
->page_index
++;
952 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
958 * For a pagelist, a piece is whatever remains to be consumed in the
959 * first page in the list, or the front of the next page.
962 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
965 struct ceph_msg_data
*data
= cursor
->data
;
966 struct ceph_pagelist
*pagelist
;
969 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
971 pagelist
= data
->pagelist
;
975 return; /* pagelist can be assigned but empty */
977 BUG_ON(list_empty(&pagelist
->head
));
978 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
980 cursor
->resid
= min(length
, pagelist
->length
);
983 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
987 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
988 size_t *page_offset
, size_t *length
)
990 struct ceph_msg_data
*data
= cursor
->data
;
991 struct ceph_pagelist
*pagelist
;
993 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
995 pagelist
= data
->pagelist
;
998 BUG_ON(!cursor
->page
);
999 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1001 /* offset of first page in pagelist is always 0 */
1002 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1003 if (cursor
->last_piece
)
1004 *length
= cursor
->resid
;
1006 *length
= PAGE_SIZE
- *page_offset
;
1008 return cursor
->page
;
1011 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1014 struct ceph_msg_data
*data
= cursor
->data
;
1015 struct ceph_pagelist
*pagelist
;
1017 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1019 pagelist
= data
->pagelist
;
1022 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1023 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1025 /* Advance the cursor offset */
1027 cursor
->resid
-= bytes
;
1028 cursor
->offset
+= bytes
;
1029 /* offset of first page in pagelist is always 0 */
1030 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1031 return false; /* more bytes to process in the current page */
1034 return false; /* no more data */
1036 /* Move on to the next page */
1038 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1039 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1040 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1046 * Message data is handled (sent or received) in pieces, where each
1047 * piece resides on a single page. The network layer might not
1048 * consume an entire piece at once. A data item's cursor keeps
1049 * track of which piece is next to process and how much remains to
1050 * be processed in that piece. It also tracks whether the current
1051 * piece is the last one in the data item.
1053 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1055 size_t length
= cursor
->total_resid
;
1057 switch (cursor
->data
->type
) {
1058 case CEPH_MSG_DATA_PAGELIST
:
1059 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1061 case CEPH_MSG_DATA_PAGES
:
1062 ceph_msg_data_pages_cursor_init(cursor
, length
);
1065 case CEPH_MSG_DATA_BIO
:
1066 ceph_msg_data_bio_cursor_init(cursor
, length
);
1068 #endif /* CONFIG_BLOCK */
1069 case CEPH_MSG_DATA_NONE
:
1074 cursor
->need_crc
= true;
1077 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1079 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1080 struct ceph_msg_data
*data
;
1083 BUG_ON(length
> msg
->data_length
);
1084 BUG_ON(list_empty(&msg
->data
));
1086 cursor
->data_head
= &msg
->data
;
1087 cursor
->total_resid
= length
;
1088 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1089 cursor
->data
= data
;
1091 __ceph_msg_data_cursor_init(cursor
);
1095 * Return the page containing the next piece to process for a given
1096 * data item, and supply the page offset and length of that piece.
1097 * Indicate whether this is the last piece in this data item.
1099 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1100 size_t *page_offset
, size_t *length
,
1105 switch (cursor
->data
->type
) {
1106 case CEPH_MSG_DATA_PAGELIST
:
1107 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1109 case CEPH_MSG_DATA_PAGES
:
1110 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1113 case CEPH_MSG_DATA_BIO
:
1114 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1116 #endif /* CONFIG_BLOCK */
1117 case CEPH_MSG_DATA_NONE
:
1123 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1126 *last_piece
= cursor
->last_piece
;
1132 * Returns true if the result moves the cursor on to the next piece
1135 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1140 BUG_ON(bytes
> cursor
->resid
);
1141 switch (cursor
->data
->type
) {
1142 case CEPH_MSG_DATA_PAGELIST
:
1143 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1145 case CEPH_MSG_DATA_PAGES
:
1146 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1149 case CEPH_MSG_DATA_BIO
:
1150 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1152 #endif /* CONFIG_BLOCK */
1153 case CEPH_MSG_DATA_NONE
:
1158 cursor
->total_resid
-= bytes
;
1160 if (!cursor
->resid
&& cursor
->total_resid
) {
1161 WARN_ON(!cursor
->last_piece
);
1162 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1163 cursor
->data
= list_entry_next(cursor
->data
, links
);
1164 __ceph_msg_data_cursor_init(cursor
);
1167 cursor
->need_crc
= new_piece
;
1172 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1177 /* Initialize data cursor */
1179 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1183 * Prepare footer for currently outgoing message, and finish things
1184 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1186 static void prepare_write_message_footer(struct ceph_connection
*con
)
1188 struct ceph_msg
*m
= con
->out_msg
;
1189 int v
= con
->out_kvec_left
;
1191 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1193 dout("prepare_write_message_footer %p\n", con
);
1194 con
->out_kvec_is_msg
= true;
1195 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1196 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1197 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1198 con
->out_kvec_left
++;
1199 con
->out_more
= m
->more_to_follow
;
1200 con
->out_msg_done
= true;
1204 * Prepare headers for the next outgoing message.
1206 static void prepare_write_message(struct ceph_connection
*con
)
1211 con_out_kvec_reset(con
);
1212 con
->out_kvec_is_msg
= true;
1213 con
->out_msg_done
= false;
1215 /* Sneak an ack in there first? If we can get it into the same
1216 * TCP packet that's a good thing. */
1217 if (con
->in_seq
> con
->in_seq_acked
) {
1218 con
->in_seq_acked
= con
->in_seq
;
1219 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1220 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1221 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1222 &con
->out_temp_ack
);
1225 BUG_ON(list_empty(&con
->out_queue
));
1226 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1228 BUG_ON(m
->con
!= con
);
1230 /* put message on sent list */
1232 list_move_tail(&m
->list_head
, &con
->out_sent
);
1235 * only assign outgoing seq # if we haven't sent this message
1236 * yet. if it is requeued, resend with it's original seq.
1238 if (m
->needs_out_seq
) {
1239 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1240 m
->needs_out_seq
= false;
1242 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1244 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1245 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1246 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1248 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1250 /* tag + hdr + front + middle */
1251 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1252 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1253 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1256 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1257 m
->middle
->vec
.iov_base
);
1259 /* fill in crc (except data pages), footer */
1260 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1261 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1262 con
->out_msg
->footer
.flags
= 0;
1264 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1265 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1267 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1268 m
->middle
->vec
.iov_len
);
1269 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1271 con
->out_msg
->footer
.middle_crc
= 0;
1272 dout("%s front_crc %u middle_crc %u\n", __func__
,
1273 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1274 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1276 /* is there a data payload? */
1277 con
->out_msg
->footer
.data_crc
= 0;
1278 if (m
->data_length
) {
1279 prepare_message_data(con
->out_msg
, m
->data_length
);
1280 con
->out_more
= 1; /* data + footer will follow */
1282 /* no, queue up footer too and be done */
1283 prepare_write_message_footer(con
);
1286 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1292 static void prepare_write_ack(struct ceph_connection
*con
)
1294 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1295 con
->in_seq_acked
, con
->in_seq
);
1296 con
->in_seq_acked
= con
->in_seq
;
1298 con_out_kvec_reset(con
);
1300 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1302 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1303 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1304 &con
->out_temp_ack
);
1306 con
->out_more
= 1; /* more will follow.. eventually.. */
1307 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1311 * Prepare to share the seq during handshake
1313 static void prepare_write_seq(struct ceph_connection
*con
)
1315 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1316 con
->in_seq_acked
, con
->in_seq
);
1317 con
->in_seq_acked
= con
->in_seq
;
1319 con_out_kvec_reset(con
);
1321 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1322 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1323 &con
->out_temp_ack
);
1325 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1329 * Prepare to write keepalive byte.
1331 static void prepare_write_keepalive(struct ceph_connection
*con
)
1333 dout("prepare_write_keepalive %p\n", con
);
1334 con_out_kvec_reset(con
);
1335 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1336 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1340 * Connection negotiation.
1343 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1346 struct ceph_auth_handshake
*auth
;
1348 if (!con
->ops
->get_authorizer
) {
1349 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1350 con
->out_connect
.authorizer_len
= 0;
1354 /* Can't hold the mutex while getting authorizer */
1355 mutex_unlock(&con
->mutex
);
1356 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1357 mutex_lock(&con
->mutex
);
1361 if (con
->state
!= CON_STATE_NEGOTIATING
)
1362 return ERR_PTR(-EAGAIN
);
1364 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1365 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1370 * We connected to a peer and are saying hello.
1372 static void prepare_write_banner(struct ceph_connection
*con
)
1374 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1375 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1376 &con
->msgr
->my_enc_addr
);
1379 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1382 static int prepare_write_connect(struct ceph_connection
*con
)
1384 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1387 struct ceph_auth_handshake
*auth
;
1389 switch (con
->peer_name
.type
) {
1390 case CEPH_ENTITY_TYPE_MON
:
1391 proto
= CEPH_MONC_PROTOCOL
;
1393 case CEPH_ENTITY_TYPE_OSD
:
1394 proto
= CEPH_OSDC_PROTOCOL
;
1396 case CEPH_ENTITY_TYPE_MDS
:
1397 proto
= CEPH_MDSC_PROTOCOL
;
1403 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1404 con
->connect_seq
, global_seq
, proto
);
1406 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1407 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1408 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1409 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1410 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1411 con
->out_connect
.flags
= 0;
1413 auth_proto
= CEPH_AUTH_UNKNOWN
;
1414 auth
= get_connect_authorizer(con
, &auth_proto
);
1416 return PTR_ERR(auth
);
1418 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1419 con
->out_connect
.authorizer_len
= auth
?
1420 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1422 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1424 if (auth
&& auth
->authorizer_buf_len
)
1425 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1426 auth
->authorizer_buf
);
1429 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1435 * write as much of pending kvecs to the socket as we can.
1437 * 0 -> socket full, but more to do
1440 static int write_partial_kvec(struct ceph_connection
*con
)
1444 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1445 while (con
->out_kvec_bytes
> 0) {
1446 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1447 con
->out_kvec_left
, con
->out_kvec_bytes
,
1451 con
->out_kvec_bytes
-= ret
;
1452 if (con
->out_kvec_bytes
== 0)
1455 /* account for full iov entries consumed */
1456 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1457 BUG_ON(!con
->out_kvec_left
);
1458 ret
-= con
->out_kvec_cur
->iov_len
;
1459 con
->out_kvec_cur
++;
1460 con
->out_kvec_left
--;
1462 /* and for a partially-consumed entry */
1464 con
->out_kvec_cur
->iov_len
-= ret
;
1465 con
->out_kvec_cur
->iov_base
+= ret
;
1468 con
->out_kvec_left
= 0;
1469 con
->out_kvec_is_msg
= false;
1472 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1473 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1474 return ret
; /* done! */
1477 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1478 unsigned int page_offset
,
1479 unsigned int length
)
1484 BUG_ON(kaddr
== NULL
);
1485 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1491 * Write as much message data payload as we can. If we finish, queue
1493 * 1 -> done, footer is now queued in out_kvec[].
1494 * 0 -> socket full, but more to do
1497 static int write_partial_message_data(struct ceph_connection
*con
)
1499 struct ceph_msg
*msg
= con
->out_msg
;
1500 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1501 bool do_datacrc
= !con
->msgr
->nocrc
;
1504 dout("%s %p msg %p\n", __func__
, con
, msg
);
1506 if (list_empty(&msg
->data
))
1510 * Iterate through each page that contains data to be
1511 * written, and send as much as possible for each.
1513 * If we are calculating the data crc (the default), we will
1514 * need to map the page. If we have no pages, they have
1515 * been revoked, so use the zero page.
1517 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1518 while (cursor
->resid
) {
1526 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1528 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1529 length
, last_piece
);
1532 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1536 if (do_datacrc
&& cursor
->need_crc
)
1537 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1538 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1541 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1543 /* prepare and queue up footer, too */
1545 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1547 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1548 con_out_kvec_reset(con
);
1549 prepare_write_message_footer(con
);
1551 return 1; /* must return > 0 to indicate success */
1557 static int write_partial_skip(struct ceph_connection
*con
)
1561 while (con
->out_skip
> 0) {
1562 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1564 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1567 con
->out_skip
-= ret
;
1575 * Prepare to read connection handshake, or an ack.
1577 static void prepare_read_banner(struct ceph_connection
*con
)
1579 dout("prepare_read_banner %p\n", con
);
1580 con
->in_base_pos
= 0;
1583 static void prepare_read_connect(struct ceph_connection
*con
)
1585 dout("prepare_read_connect %p\n", con
);
1586 con
->in_base_pos
= 0;
1589 static void prepare_read_ack(struct ceph_connection
*con
)
1591 dout("prepare_read_ack %p\n", con
);
1592 con
->in_base_pos
= 0;
1595 static void prepare_read_seq(struct ceph_connection
*con
)
1597 dout("prepare_read_seq %p\n", con
);
1598 con
->in_base_pos
= 0;
1599 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1602 static void prepare_read_tag(struct ceph_connection
*con
)
1604 dout("prepare_read_tag %p\n", con
);
1605 con
->in_base_pos
= 0;
1606 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1610 * Prepare to read a message.
1612 static int prepare_read_message(struct ceph_connection
*con
)
1614 dout("prepare_read_message %p\n", con
);
1615 BUG_ON(con
->in_msg
!= NULL
);
1616 con
->in_base_pos
= 0;
1617 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1622 static int read_partial(struct ceph_connection
*con
,
1623 int end
, int size
, void *object
)
1625 while (con
->in_base_pos
< end
) {
1626 int left
= end
- con
->in_base_pos
;
1627 int have
= size
- left
;
1628 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1631 con
->in_base_pos
+= ret
;
1638 * Read all or part of the connect-side handshake on a new connection
1640 static int read_partial_banner(struct ceph_connection
*con
)
1646 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1649 size
= strlen(CEPH_BANNER
);
1651 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1655 size
= sizeof (con
->actual_peer_addr
);
1657 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1661 size
= sizeof (con
->peer_addr_for_me
);
1663 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1671 static int read_partial_connect(struct ceph_connection
*con
)
1677 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1679 size
= sizeof (con
->in_reply
);
1681 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1685 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1687 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1691 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1692 con
, (int)con
->in_reply
.tag
,
1693 le32_to_cpu(con
->in_reply
.connect_seq
),
1694 le32_to_cpu(con
->in_reply
.global_seq
));
1701 * Verify the hello banner looks okay.
1703 static int verify_hello(struct ceph_connection
*con
)
1705 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1706 pr_err("connect to %s got bad banner\n",
1707 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1708 con
->error_msg
= "protocol error, bad banner";
1714 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1716 switch (ss
->ss_family
) {
1718 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1721 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1722 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1723 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1724 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1729 static int addr_port(struct sockaddr_storage
*ss
)
1731 switch (ss
->ss_family
) {
1733 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1735 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1740 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1742 switch (ss
->ss_family
) {
1744 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1747 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1753 * Unlike other *_pton function semantics, zero indicates success.
1755 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1756 char delim
, const char **ipend
)
1758 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1759 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1761 memset(ss
, 0, sizeof(*ss
));
1763 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1764 ss
->ss_family
= AF_INET
;
1768 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1769 ss
->ss_family
= AF_INET6
;
1777 * Extract hostname string and resolve using kernel DNS facility.
1779 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1780 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1781 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1783 const char *end
, *delim_p
;
1784 char *colon_p
, *ip_addr
= NULL
;
1788 * The end of the hostname occurs immediately preceding the delimiter or
1789 * the port marker (':') where the delimiter takes precedence.
1791 delim_p
= memchr(name
, delim
, namelen
);
1792 colon_p
= memchr(name
, ':', namelen
);
1794 if (delim_p
&& colon_p
)
1795 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1796 else if (!delim_p
&& colon_p
)
1800 if (!end
) /* case: hostname:/ */
1801 end
= name
+ namelen
;
1807 /* do dns_resolve upcall */
1808 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1810 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1818 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1819 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1824 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1825 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1832 * Parse a server name (IP or hostname). If a valid IP address is not found
1833 * then try to extract a hostname to resolve using userspace DNS upcall.
1835 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1836 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1840 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1842 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1848 * Parse an ip[:port] list into an addr array. Use the default
1849 * monitor port if a port isn't specified.
1851 int ceph_parse_ips(const char *c
, const char *end
,
1852 struct ceph_entity_addr
*addr
,
1853 int max_count
, int *count
)
1855 int i
, ret
= -EINVAL
;
1858 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1859 for (i
= 0; i
< max_count
; i
++) {
1861 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1870 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1879 dout("missing matching ']'\n");
1886 if (p
< end
&& *p
== ':') {
1889 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1890 port
= (port
* 10) + (*p
- '0');
1894 port
= CEPH_MON_PORT
;
1895 else if (port
> 65535)
1898 port
= CEPH_MON_PORT
;
1901 addr_set_port(ss
, port
);
1903 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1920 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1923 EXPORT_SYMBOL(ceph_parse_ips
);
1925 static int process_banner(struct ceph_connection
*con
)
1927 dout("process_banner on %p\n", con
);
1929 if (verify_hello(con
) < 0)
1932 ceph_decode_addr(&con
->actual_peer_addr
);
1933 ceph_decode_addr(&con
->peer_addr_for_me
);
1936 * Make sure the other end is who we wanted. note that the other
1937 * end may not yet know their ip address, so if it's 0.0.0.0, give
1938 * them the benefit of the doubt.
1940 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1941 sizeof(con
->peer_addr
)) != 0 &&
1942 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1943 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1944 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1945 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1946 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1947 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1948 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1949 con
->error_msg
= "wrong peer at address";
1954 * did we learn our address?
1956 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1957 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1959 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1960 &con
->peer_addr_for_me
.in_addr
,
1961 sizeof(con
->peer_addr_for_me
.in_addr
));
1962 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1963 encode_my_addr(con
->msgr
);
1964 dout("process_banner learned my addr is %s\n",
1965 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1971 static int process_connect(struct ceph_connection
*con
)
1973 u64 sup_feat
= con
->msgr
->supported_features
;
1974 u64 req_feat
= con
->msgr
->required_features
;
1975 u64 server_feat
= ceph_sanitize_features(
1976 le64_to_cpu(con
->in_reply
.features
));
1979 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1981 switch (con
->in_reply
.tag
) {
1982 case CEPH_MSGR_TAG_FEATURES
:
1983 pr_err("%s%lld %s feature set mismatch,"
1984 " my %llx < server's %llx, missing %llx\n",
1985 ENTITY_NAME(con
->peer_name
),
1986 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1987 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1988 con
->error_msg
= "missing required protocol features";
1989 reset_connection(con
);
1992 case CEPH_MSGR_TAG_BADPROTOVER
:
1993 pr_err("%s%lld %s protocol version mismatch,"
1994 " my %d != server's %d\n",
1995 ENTITY_NAME(con
->peer_name
),
1996 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1997 le32_to_cpu(con
->out_connect
.protocol_version
),
1998 le32_to_cpu(con
->in_reply
.protocol_version
));
1999 con
->error_msg
= "protocol version mismatch";
2000 reset_connection(con
);
2003 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2005 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2007 if (con
->auth_retry
== 2) {
2008 con
->error_msg
= "connect authorization failure";
2011 con_out_kvec_reset(con
);
2012 ret
= prepare_write_connect(con
);
2015 prepare_read_connect(con
);
2018 case CEPH_MSGR_TAG_RESETSESSION
:
2020 * If we connected with a large connect_seq but the peer
2021 * has no record of a session with us (no connection, or
2022 * connect_seq == 0), they will send RESETSESION to indicate
2023 * that they must have reset their session, and may have
2026 dout("process_connect got RESET peer seq %u\n",
2027 le32_to_cpu(con
->in_reply
.connect_seq
));
2028 pr_err("%s%lld %s connection reset\n",
2029 ENTITY_NAME(con
->peer_name
),
2030 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2031 reset_connection(con
);
2032 con_out_kvec_reset(con
);
2033 ret
= prepare_write_connect(con
);
2036 prepare_read_connect(con
);
2038 /* Tell ceph about it. */
2039 mutex_unlock(&con
->mutex
);
2040 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2041 if (con
->ops
->peer_reset
)
2042 con
->ops
->peer_reset(con
);
2043 mutex_lock(&con
->mutex
);
2044 if (con
->state
!= CON_STATE_NEGOTIATING
)
2048 case CEPH_MSGR_TAG_RETRY_SESSION
:
2050 * If we sent a smaller connect_seq than the peer has, try
2051 * again with a larger value.
2053 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2054 le32_to_cpu(con
->out_connect
.connect_seq
),
2055 le32_to_cpu(con
->in_reply
.connect_seq
));
2056 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2057 con_out_kvec_reset(con
);
2058 ret
= prepare_write_connect(con
);
2061 prepare_read_connect(con
);
2064 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2066 * If we sent a smaller global_seq than the peer has, try
2067 * again with a larger value.
2069 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2070 con
->peer_global_seq
,
2071 le32_to_cpu(con
->in_reply
.global_seq
));
2072 get_global_seq(con
->msgr
,
2073 le32_to_cpu(con
->in_reply
.global_seq
));
2074 con_out_kvec_reset(con
);
2075 ret
= prepare_write_connect(con
);
2078 prepare_read_connect(con
);
2081 case CEPH_MSGR_TAG_SEQ
:
2082 case CEPH_MSGR_TAG_READY
:
2083 if (req_feat
& ~server_feat
) {
2084 pr_err("%s%lld %s protocol feature mismatch,"
2085 " my required %llx > server's %llx, need %llx\n",
2086 ENTITY_NAME(con
->peer_name
),
2087 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2088 req_feat
, server_feat
, req_feat
& ~server_feat
);
2089 con
->error_msg
= "missing required protocol features";
2090 reset_connection(con
);
2094 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2095 con
->state
= CON_STATE_OPEN
;
2096 con
->auth_retry
= 0; /* we authenticated; clear flag */
2097 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2099 con
->peer_features
= server_feat
;
2100 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2101 con
->peer_global_seq
,
2102 le32_to_cpu(con
->in_reply
.connect_seq
),
2104 WARN_ON(con
->connect_seq
!=
2105 le32_to_cpu(con
->in_reply
.connect_seq
));
2107 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2108 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2110 con
->delay
= 0; /* reset backoff memory */
2112 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2113 prepare_write_seq(con
);
2114 prepare_read_seq(con
);
2116 prepare_read_tag(con
);
2120 case CEPH_MSGR_TAG_WAIT
:
2122 * If there is a connection race (we are opening
2123 * connections to each other), one of us may just have
2124 * to WAIT. This shouldn't happen if we are the
2127 pr_err("process_connect got WAIT as client\n");
2128 con
->error_msg
= "protocol error, got WAIT as client";
2132 pr_err("connect protocol error, will retry\n");
2133 con
->error_msg
= "protocol error, garbage tag during connect";
2141 * read (part of) an ack
2143 static int read_partial_ack(struct ceph_connection
*con
)
2145 int size
= sizeof (con
->in_temp_ack
);
2148 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2152 * We can finally discard anything that's been acked.
2154 static void process_ack(struct ceph_connection
*con
)
2157 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2160 while (!list_empty(&con
->out_sent
)) {
2161 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2163 seq
= le64_to_cpu(m
->hdr
.seq
);
2166 dout("got ack for seq %llu type %d at %p\n", seq
,
2167 le16_to_cpu(m
->hdr
.type
), m
);
2168 m
->ack_stamp
= jiffies
;
2171 prepare_read_tag(con
);
2175 static int read_partial_message_section(struct ceph_connection
*con
,
2176 struct kvec
*section
,
2177 unsigned int sec_len
, u32
*crc
)
2183 while (section
->iov_len
< sec_len
) {
2184 BUG_ON(section
->iov_base
== NULL
);
2185 left
= sec_len
- section
->iov_len
;
2186 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2187 section
->iov_len
, left
);
2190 section
->iov_len
+= ret
;
2192 if (section
->iov_len
== sec_len
)
2193 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2198 static int read_partial_msg_data(struct ceph_connection
*con
)
2200 struct ceph_msg
*msg
= con
->in_msg
;
2201 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2202 const bool do_datacrc
= !con
->msgr
->nocrc
;
2210 if (list_empty(&msg
->data
))
2214 crc
= con
->in_data_crc
;
2215 while (cursor
->resid
) {
2216 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2218 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2221 con
->in_data_crc
= crc
;
2227 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2228 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2231 con
->in_data_crc
= crc
;
2233 return 1; /* must return > 0 to indicate success */
2237 * read (part of) a message.
2239 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2241 static int read_partial_message(struct ceph_connection
*con
)
2243 struct ceph_msg
*m
= con
->in_msg
;
2247 unsigned int front_len
, middle_len
, data_len
;
2248 bool do_datacrc
= !con
->msgr
->nocrc
;
2252 dout("read_partial_message con %p msg %p\n", con
, m
);
2255 size
= sizeof (con
->in_hdr
);
2257 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2261 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2262 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2263 pr_err("read_partial_message bad hdr "
2264 " crc %u != expected %u\n",
2265 crc
, con
->in_hdr
.crc
);
2269 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2270 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2272 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2273 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2275 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2276 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2280 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2281 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2282 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2283 ENTITY_NAME(con
->peer_name
),
2284 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2285 seq
, con
->in_seq
+ 1);
2286 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2288 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2290 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2291 pr_err("read_partial_message bad seq %lld expected %lld\n",
2292 seq
, con
->in_seq
+ 1);
2293 con
->error_msg
= "bad message sequence # for incoming message";
2297 /* allocate message? */
2301 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2302 front_len
, data_len
);
2303 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2307 BUG_ON(!con
->in_msg
^ skip
);
2308 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2309 pr_warn("%s skipping long message (%u > %zd)\n",
2310 __func__
, data_len
, con
->in_msg
->data_length
);
2311 ceph_msg_put(con
->in_msg
);
2316 /* skip this message */
2317 dout("alloc_msg said skip message\n");
2318 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2320 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2325 BUG_ON(!con
->in_msg
);
2326 BUG_ON(con
->in_msg
->con
!= con
);
2328 m
->front
.iov_len
= 0; /* haven't read it yet */
2330 m
->middle
->vec
.iov_len
= 0;
2332 /* prepare for data payload, if any */
2335 prepare_message_data(con
->in_msg
, data_len
);
2339 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2340 &con
->in_front_crc
);
2346 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2348 &con
->in_middle_crc
);
2355 ret
= read_partial_msg_data(con
);
2361 size
= sizeof (m
->footer
);
2363 ret
= read_partial(con
, end
, size
, &m
->footer
);
2367 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2368 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2369 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2372 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2373 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2374 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2377 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2378 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2379 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2383 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2384 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2385 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2386 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2390 return 1; /* done! */
2394 * Process message. This happens in the worker thread. The callback should
2395 * be careful not to do anything that waits on other incoming messages or it
2398 static void process_message(struct ceph_connection
*con
)
2400 struct ceph_msg
*msg
;
2402 BUG_ON(con
->in_msg
->con
!= con
);
2403 con
->in_msg
->con
= NULL
;
2408 /* if first message, set peer_name */
2409 if (con
->peer_name
.type
== 0)
2410 con
->peer_name
= msg
->hdr
.src
;
2413 mutex_unlock(&con
->mutex
);
2415 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2416 msg
, le64_to_cpu(msg
->hdr
.seq
),
2417 ENTITY_NAME(msg
->hdr
.src
),
2418 le16_to_cpu(msg
->hdr
.type
),
2419 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2420 le32_to_cpu(msg
->hdr
.front_len
),
2421 le32_to_cpu(msg
->hdr
.data_len
),
2422 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2423 con
->ops
->dispatch(con
, msg
);
2425 mutex_lock(&con
->mutex
);
2430 * Write something to the socket. Called in a worker thread when the
2431 * socket appears to be writeable and we have something ready to send.
2433 static int try_write(struct ceph_connection
*con
)
2437 dout("try_write start %p state %lu\n", con
, con
->state
);
2440 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2442 /* open the socket first? */
2443 if (con
->state
== CON_STATE_PREOPEN
) {
2445 con
->state
= CON_STATE_CONNECTING
;
2447 con_out_kvec_reset(con
);
2448 prepare_write_banner(con
);
2449 prepare_read_banner(con
);
2451 BUG_ON(con
->in_msg
);
2452 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2453 dout("try_write initiating connect on %p new state %lu\n",
2455 ret
= ceph_tcp_connect(con
);
2457 con
->error_msg
= "connect error";
2463 /* kvec data queued? */
2464 if (con
->out_skip
) {
2465 ret
= write_partial_skip(con
);
2469 if (con
->out_kvec_left
) {
2470 ret
= write_partial_kvec(con
);
2477 if (con
->out_msg_done
) {
2478 ceph_msg_put(con
->out_msg
);
2479 con
->out_msg
= NULL
; /* we're done with this one */
2483 ret
= write_partial_message_data(con
);
2485 goto more_kvec
; /* we need to send the footer, too! */
2489 dout("try_write write_partial_message_data err %d\n",
2496 if (con
->state
== CON_STATE_OPEN
) {
2497 /* is anything else pending? */
2498 if (!list_empty(&con
->out_queue
)) {
2499 prepare_write_message(con
);
2502 if (con
->in_seq
> con
->in_seq_acked
) {
2503 prepare_write_ack(con
);
2506 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2507 prepare_write_keepalive(con
);
2512 /* Nothing to do! */
2513 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2514 dout("try_write nothing else to write.\n");
2517 dout("try_write done on %p ret %d\n", con
, ret
);
2524 * Read what we can from the socket.
2526 static int try_read(struct ceph_connection
*con
)
2531 dout("try_read start on %p state %lu\n", con
, con
->state
);
2532 if (con
->state
!= CON_STATE_CONNECTING
&&
2533 con
->state
!= CON_STATE_NEGOTIATING
&&
2534 con
->state
!= CON_STATE_OPEN
)
2539 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2542 if (con
->state
== CON_STATE_CONNECTING
) {
2543 dout("try_read connecting\n");
2544 ret
= read_partial_banner(con
);
2547 ret
= process_banner(con
);
2551 con
->state
= CON_STATE_NEGOTIATING
;
2554 * Received banner is good, exchange connection info.
2555 * Do not reset out_kvec, as sending our banner raced
2556 * with receiving peer banner after connect completed.
2558 ret
= prepare_write_connect(con
);
2561 prepare_read_connect(con
);
2563 /* Send connection info before awaiting response */
2567 if (con
->state
== CON_STATE_NEGOTIATING
) {
2568 dout("try_read negotiating\n");
2569 ret
= read_partial_connect(con
);
2572 ret
= process_connect(con
);
2578 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2580 if (con
->in_base_pos
< 0) {
2582 * skipping + discarding content.
2584 * FIXME: there must be a better way to do this!
2586 static char buf
[SKIP_BUF_SIZE
];
2587 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2589 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2590 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2593 con
->in_base_pos
+= ret
;
2594 if (con
->in_base_pos
)
2597 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2601 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2604 dout("try_read got tag %d\n", (int)con
->in_tag
);
2605 switch (con
->in_tag
) {
2606 case CEPH_MSGR_TAG_MSG
:
2607 prepare_read_message(con
);
2609 case CEPH_MSGR_TAG_ACK
:
2610 prepare_read_ack(con
);
2612 case CEPH_MSGR_TAG_CLOSE
:
2613 con_close_socket(con
);
2614 con
->state
= CON_STATE_CLOSED
;
2620 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2621 ret
= read_partial_message(con
);
2625 con
->error_msg
= "bad crc";
2629 con
->error_msg
= "io error";
2634 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2636 process_message(con
);
2637 if (con
->state
== CON_STATE_OPEN
)
2638 prepare_read_tag(con
);
2641 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2642 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2644 * the final handshake seq exchange is semantically
2645 * equivalent to an ACK
2647 ret
= read_partial_ack(con
);
2655 dout("try_read done on %p ret %d\n", con
, ret
);
2659 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2660 con
->error_msg
= "protocol error, garbage tag";
2667 * Atomically queue work on a connection after the specified delay.
2668 * Bump @con reference to avoid races with connection teardown.
2669 * Returns 0 if work was queued, or an error code otherwise.
2671 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2673 if (!con
->ops
->get(con
)) {
2674 dout("%s %p ref count 0\n", __func__
, con
);
2678 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2679 dout("%s %p - already queued\n", __func__
, con
);
2684 dout("%s %p %lu\n", __func__
, con
, delay
);
2688 static void queue_con(struct ceph_connection
*con
)
2690 (void) queue_con_delay(con
, 0);
2693 static void cancel_con(struct ceph_connection
*con
)
2695 if (cancel_delayed_work(&con
->work
)) {
2696 dout("%s %p\n", __func__
, con
);
2701 static bool con_sock_closed(struct ceph_connection
*con
)
2703 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2707 case CON_STATE_ ## x: \
2708 con->error_msg = "socket closed (con state " #x ")"; \
2711 switch (con
->state
) {
2719 pr_warn("%s con %p unrecognized state %lu\n",
2720 __func__
, con
, con
->state
);
2721 con
->error_msg
= "unrecognized con state";
2730 static bool con_backoff(struct ceph_connection
*con
)
2734 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2737 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2739 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2741 BUG_ON(ret
== -ENOENT
);
2742 con_flag_set(con
, CON_FLAG_BACKOFF
);
2748 /* Finish fault handling; con->mutex must *not* be held here */
2750 static void con_fault_finish(struct ceph_connection
*con
)
2753 * in case we faulted due to authentication, invalidate our
2754 * current tickets so that we can get new ones.
2756 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2757 dout("calling invalidate_authorizer()\n");
2758 con
->ops
->invalidate_authorizer(con
);
2761 if (con
->ops
->fault
)
2762 con
->ops
->fault(con
);
2766 * Do some work on a connection. Drop a connection ref when we're done.
2768 static void con_work(struct work_struct
*work
)
2770 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2774 mutex_lock(&con
->mutex
);
2778 if ((fault
= con_sock_closed(con
))) {
2779 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2782 if (con_backoff(con
)) {
2783 dout("%s: con %p BACKOFF\n", __func__
, con
);
2786 if (con
->state
== CON_STATE_STANDBY
) {
2787 dout("%s: con %p STANDBY\n", __func__
, con
);
2790 if (con
->state
== CON_STATE_CLOSED
) {
2791 dout("%s: con %p CLOSED\n", __func__
, con
);
2795 if (con
->state
== CON_STATE_PREOPEN
) {
2796 dout("%s: con %p PREOPEN\n", __func__
, con
);
2800 ret
= try_read(con
);
2804 con
->error_msg
= "socket error on read";
2809 ret
= try_write(con
);
2813 con
->error_msg
= "socket error on write";
2817 break; /* If we make it to here, we're done */
2821 mutex_unlock(&con
->mutex
);
2824 con_fault_finish(con
);
2830 * Generic error/fault handler. A retry mechanism is used with
2831 * exponential backoff
2833 static void con_fault(struct ceph_connection
*con
)
2835 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2836 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2837 dout("fault %p state %lu to peer %s\n",
2838 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2840 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2841 con
->state
!= CON_STATE_NEGOTIATING
&&
2842 con
->state
!= CON_STATE_OPEN
);
2844 con_close_socket(con
);
2846 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2847 dout("fault on LOSSYTX channel, marking CLOSED\n");
2848 con
->state
= CON_STATE_CLOSED
;
2853 BUG_ON(con
->in_msg
->con
!= con
);
2854 con
->in_msg
->con
= NULL
;
2855 ceph_msg_put(con
->in_msg
);
2860 /* Requeue anything that hasn't been acked */
2861 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2863 /* If there are no messages queued or keepalive pending, place
2864 * the connection in a STANDBY state */
2865 if (list_empty(&con
->out_queue
) &&
2866 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2867 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2868 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2869 con
->state
= CON_STATE_STANDBY
;
2871 /* retry after a delay. */
2872 con
->state
= CON_STATE_PREOPEN
;
2873 if (con
->delay
== 0)
2874 con
->delay
= BASE_DELAY_INTERVAL
;
2875 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2877 con_flag_set(con
, CON_FLAG_BACKOFF
);
2885 * initialize a new messenger instance
2887 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2888 struct ceph_entity_addr
*myaddr
,
2889 u64 supported_features
,
2890 u64 required_features
,
2893 msgr
->supported_features
= supported_features
;
2894 msgr
->required_features
= required_features
;
2896 spin_lock_init(&msgr
->global_seq_lock
);
2899 msgr
->inst
.addr
= *myaddr
;
2901 /* select a random nonce */
2902 msgr
->inst
.addr
.type
= 0;
2903 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2904 encode_my_addr(msgr
);
2905 msgr
->nocrc
= nocrc
;
2907 atomic_set(&msgr
->stopping
, 0);
2909 dout("%s %p\n", __func__
, msgr
);
2911 EXPORT_SYMBOL(ceph_messenger_init
);
2913 static void clear_standby(struct ceph_connection
*con
)
2915 /* come back from STANDBY? */
2916 if (con
->state
== CON_STATE_STANDBY
) {
2917 dout("clear_standby %p and ++connect_seq\n", con
);
2918 con
->state
= CON_STATE_PREOPEN
;
2920 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2921 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2926 * Queue up an outgoing message on the given connection.
2928 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2931 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2932 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2933 msg
->needs_out_seq
= true;
2935 mutex_lock(&con
->mutex
);
2937 if (con
->state
== CON_STATE_CLOSED
) {
2938 dout("con_send %p closed, dropping %p\n", con
, msg
);
2940 mutex_unlock(&con
->mutex
);
2944 BUG_ON(msg
->con
!= NULL
);
2945 msg
->con
= con
->ops
->get(con
);
2946 BUG_ON(msg
->con
== NULL
);
2948 BUG_ON(!list_empty(&msg
->list_head
));
2949 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2950 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2951 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2952 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2953 le32_to_cpu(msg
->hdr
.front_len
),
2954 le32_to_cpu(msg
->hdr
.middle_len
),
2955 le32_to_cpu(msg
->hdr
.data_len
));
2958 mutex_unlock(&con
->mutex
);
2960 /* if there wasn't anything waiting to send before, queue
2962 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2965 EXPORT_SYMBOL(ceph_con_send
);
2968 * Revoke a message that was previously queued for send
2970 void ceph_msg_revoke(struct ceph_msg
*msg
)
2972 struct ceph_connection
*con
= msg
->con
;
2975 return; /* Message not in our possession */
2977 mutex_lock(&con
->mutex
);
2978 if (!list_empty(&msg
->list_head
)) {
2979 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2980 list_del_init(&msg
->list_head
);
2981 BUG_ON(msg
->con
== NULL
);
2982 msg
->con
->ops
->put(msg
->con
);
2988 if (con
->out_msg
== msg
) {
2989 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2990 con
->out_msg
= NULL
;
2991 if (con
->out_kvec_is_msg
) {
2992 con
->out_skip
= con
->out_kvec_bytes
;
2993 con
->out_kvec_is_msg
= false;
2999 mutex_unlock(&con
->mutex
);
3003 * Revoke a message that we may be reading data into
3005 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3007 struct ceph_connection
*con
;
3009 BUG_ON(msg
== NULL
);
3011 dout("%s msg %p null con\n", __func__
, msg
);
3013 return; /* Message not in our possession */
3017 mutex_lock(&con
->mutex
);
3018 if (con
->in_msg
== msg
) {
3019 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3020 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3021 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3023 /* skip rest of message */
3024 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3025 con
->in_base_pos
= con
->in_base_pos
-
3026 sizeof(struct ceph_msg_header
) -
3030 sizeof(struct ceph_msg_footer
);
3031 ceph_msg_put(con
->in_msg
);
3033 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3036 dout("%s %p in_msg %p msg %p no-op\n",
3037 __func__
, con
, con
->in_msg
, msg
);
3039 mutex_unlock(&con
->mutex
);
3043 * Queue a keepalive byte to ensure the tcp connection is alive.
3045 void ceph_con_keepalive(struct ceph_connection
*con
)
3047 dout("con_keepalive %p\n", con
);
3048 mutex_lock(&con
->mutex
);
3050 mutex_unlock(&con
->mutex
);
3051 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3052 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3055 EXPORT_SYMBOL(ceph_con_keepalive
);
3057 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3059 struct ceph_msg_data
*data
;
3061 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3064 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3067 INIT_LIST_HEAD(&data
->links
);
3072 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3077 WARN_ON(!list_empty(&data
->links
));
3078 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3079 ceph_pagelist_release(data
->pagelist
);
3080 kmem_cache_free(ceph_msg_data_cache
, data
);
3083 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3084 size_t length
, size_t alignment
)
3086 struct ceph_msg_data
*data
;
3091 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3093 data
->pages
= pages
;
3094 data
->length
= length
;
3095 data
->alignment
= alignment
& ~PAGE_MASK
;
3097 list_add_tail(&data
->links
, &msg
->data
);
3098 msg
->data_length
+= length
;
3100 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3102 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3103 struct ceph_pagelist
*pagelist
)
3105 struct ceph_msg_data
*data
;
3108 BUG_ON(!pagelist
->length
);
3110 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3112 data
->pagelist
= pagelist
;
3114 list_add_tail(&data
->links
, &msg
->data
);
3115 msg
->data_length
+= pagelist
->length
;
3117 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3120 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3123 struct ceph_msg_data
*data
;
3127 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3130 data
->bio_length
= length
;
3132 list_add_tail(&data
->links
, &msg
->data
);
3133 msg
->data_length
+= length
;
3135 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3136 #endif /* CONFIG_BLOCK */
3139 * construct a new message with given type, size
3140 * the new msg has a ref count of 1.
3142 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3147 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3151 m
->hdr
.type
= cpu_to_le16(type
);
3152 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3153 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3155 INIT_LIST_HEAD(&m
->list_head
);
3156 kref_init(&m
->kref
);
3157 INIT_LIST_HEAD(&m
->data
);
3161 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3162 if (m
->front
.iov_base
== NULL
) {
3163 dout("ceph_msg_new can't allocate %d bytes\n",
3168 m
->front
.iov_base
= NULL
;
3170 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3172 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3179 pr_err("msg_new can't create type %d front %d\n", type
,
3183 dout("msg_new can't create type %d front %d\n", type
,
3188 EXPORT_SYMBOL(ceph_msg_new
);
3191 * Allocate "middle" portion of a message, if it is needed and wasn't
3192 * allocated by alloc_msg. This allows us to read a small fixed-size
3193 * per-type header in the front and then gracefully fail (i.e.,
3194 * propagate the error to the caller based on info in the front) when
3195 * the middle is too large.
3197 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3199 int type
= le16_to_cpu(msg
->hdr
.type
);
3200 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3202 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3203 ceph_msg_type_name(type
), middle_len
);
3204 BUG_ON(!middle_len
);
3205 BUG_ON(msg
->middle
);
3207 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3214 * Allocate a message for receiving an incoming message on a
3215 * connection, and save the result in con->in_msg. Uses the
3216 * connection's private alloc_msg op if available.
3218 * Returns 0 on success, or a negative error code.
3220 * On success, if we set *skip = 1:
3221 * - the next message should be skipped and ignored.
3222 * - con->in_msg == NULL
3223 * or if we set *skip = 0:
3224 * - con->in_msg is non-null.
3225 * On error (ENOMEM, EAGAIN, ...),
3226 * - con->in_msg == NULL
3228 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3230 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3231 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3232 struct ceph_msg
*msg
;
3235 BUG_ON(con
->in_msg
!= NULL
);
3236 BUG_ON(!con
->ops
->alloc_msg
);
3238 mutex_unlock(&con
->mutex
);
3239 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3240 mutex_lock(&con
->mutex
);
3241 if (con
->state
!= CON_STATE_OPEN
) {
3249 con
->in_msg
->con
= con
->ops
->get(con
);
3250 BUG_ON(con
->in_msg
->con
== NULL
);
3253 * Null message pointer means either we should skip
3254 * this message or we couldn't allocate memory. The
3255 * former is not an error.
3259 con
->error_msg
= "error allocating memory for incoming message";
3263 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3265 if (middle_len
&& !con
->in_msg
->middle
) {
3266 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3268 ceph_msg_put(con
->in_msg
);
3278 * Free a generically kmalloc'd message.
3280 static void ceph_msg_free(struct ceph_msg
*m
)
3282 dout("%s %p\n", __func__
, m
);
3283 ceph_kvfree(m
->front
.iov_base
);
3284 kmem_cache_free(ceph_msg_cache
, m
);
3287 static void ceph_msg_release(struct kref
*kref
)
3289 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3291 struct list_head
*links
;
3292 struct list_head
*next
;
3294 dout("%s %p\n", __func__
, m
);
3295 WARN_ON(!list_empty(&m
->list_head
));
3297 /* drop middle, data, if any */
3299 ceph_buffer_put(m
->middle
);
3303 list_splice_init(&m
->data
, &data
);
3304 list_for_each_safe(links
, next
, &data
) {
3305 struct ceph_msg_data
*data
;
3307 data
= list_entry(links
, struct ceph_msg_data
, links
);
3308 list_del_init(links
);
3309 ceph_msg_data_destroy(data
);
3314 ceph_msgpool_put(m
->pool
, m
);
3319 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3321 dout("%s %p (was %d)\n", __func__
, msg
,
3322 atomic_read(&msg
->kref
.refcount
));
3323 kref_get(&msg
->kref
);
3326 EXPORT_SYMBOL(ceph_msg_get
);
3328 void ceph_msg_put(struct ceph_msg
*msg
)
3330 dout("%s %p (was %d)\n", __func__
, msg
,
3331 atomic_read(&msg
->kref
.refcount
));
3332 kref_put(&msg
->kref
, ceph_msg_release
);
3334 EXPORT_SYMBOL(ceph_msg_put
);
3336 void ceph_msg_dump(struct ceph_msg
*msg
)
3338 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3339 msg
->front_alloc_len
, msg
->data_length
);
3340 print_hex_dump(KERN_DEBUG
, "header: ",
3341 DUMP_PREFIX_OFFSET
, 16, 1,
3342 &msg
->hdr
, sizeof(msg
->hdr
), true);
3343 print_hex_dump(KERN_DEBUG
, " front: ",
3344 DUMP_PREFIX_OFFSET
, 16, 1,
3345 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3347 print_hex_dump(KERN_DEBUG
, "middle: ",
3348 DUMP_PREFIX_OFFSET
, 16, 1,
3349 msg
->middle
->vec
.iov_base
,
3350 msg
->middle
->vec
.iov_len
, true);
3351 print_hex_dump(KERN_DEBUG
, "footer: ",
3352 DUMP_PREFIX_OFFSET
, 16, 1,
3353 &msg
->footer
, sizeof(msg
->footer
), true);
3355 EXPORT_SYMBOL(ceph_msg_dump
);