2 * Intel 5000(P/V/X) class Memory Controllers kernel module
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
10 * This module is based on the following document:
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://developer.intel.com/design/chipsets/datashts/313070.htm
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
25 #include "edac_module.h"
28 * Alter this version for the I5000 module when modifications are made
30 #define I5000_REVISION " Ver: 2.0.12"
31 #define EDAC_MOD_STR "i5000_edac"
33 #define i5000_printk(level, fmt, arg...) \
34 edac_printk(level, "i5000", fmt, ##arg)
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37 edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
47 * Function 0: System Address
48 * Function 1: Memory Branch Map, Control, Errors Register
49 * Function 2: FSB Error Registers
51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
55 /* OFFSETS for Function 0 */
57 /* OFFSETS for Function 1 */
60 #define MAXDIMMPERCH 0x57
63 #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
64 #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
73 #define FERR_FAT_FBD 0x98
74 #define NERR_FAT_FBD 0x9C
75 #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define FERR_FAT_FBDCHAN 0x30000000
77 #define FERR_FAT_M3ERR 0x00000004
78 #define FERR_FAT_M2ERR 0x00000002
79 #define FERR_FAT_M1ERR 0x00000001
80 #define FERR_FAT_MASK (FERR_FAT_M1ERR | \
84 #define FERR_NF_FBD 0xA0
86 /* Thermal and SPD or BFD errors */
87 #define FERR_NF_M28ERR 0x01000000
88 #define FERR_NF_M27ERR 0x00800000
89 #define FERR_NF_M26ERR 0x00400000
90 #define FERR_NF_M25ERR 0x00200000
91 #define FERR_NF_M24ERR 0x00100000
92 #define FERR_NF_M23ERR 0x00080000
93 #define FERR_NF_M22ERR 0x00040000
94 #define FERR_NF_M21ERR 0x00020000
96 /* Correctable errors */
97 #define FERR_NF_M20ERR 0x00010000
98 #define FERR_NF_M19ERR 0x00008000
99 #define FERR_NF_M18ERR 0x00004000
100 #define FERR_NF_M17ERR 0x00002000
102 /* Non-Retry or redundant Retry errors */
103 #define FERR_NF_M16ERR 0x00001000
104 #define FERR_NF_M15ERR 0x00000800
105 #define FERR_NF_M14ERR 0x00000400
106 #define FERR_NF_M13ERR 0x00000200
108 /* Uncorrectable errors */
109 #define FERR_NF_M12ERR 0x00000100
110 #define FERR_NF_M11ERR 0x00000080
111 #define FERR_NF_M10ERR 0x00000040
112 #define FERR_NF_M9ERR 0x00000020
113 #define FERR_NF_M8ERR 0x00000010
114 #define FERR_NF_M7ERR 0x00000008
115 #define FERR_NF_M6ERR 0x00000004
116 #define FERR_NF_M5ERR 0x00000002
117 #define FERR_NF_M4ERR 0x00000001
119 #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
128 #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
132 #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
134 #define FERR_NF_THERMAL (FERR_NF_M26ERR | \
138 #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
139 #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
140 #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
144 #define NERR_NF_FBD 0xA4
145 #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
146 FERR_NF_CORRECTABLE | \
147 FERR_NF_DIMM_SPARE | \
149 FERR_NF_SPD_PROTOCOL | \
150 FERR_NF_NORTH_CRC | \
153 #define EMASK_FBD 0xA8
154 #define EMASK_FBD_M28ERR 0x08000000
155 #define EMASK_FBD_M27ERR 0x04000000
156 #define EMASK_FBD_M26ERR 0x02000000
157 #define EMASK_FBD_M25ERR 0x01000000
158 #define EMASK_FBD_M24ERR 0x00800000
159 #define EMASK_FBD_M23ERR 0x00400000
160 #define EMASK_FBD_M22ERR 0x00200000
161 #define EMASK_FBD_M21ERR 0x00100000
162 #define EMASK_FBD_M20ERR 0x00080000
163 #define EMASK_FBD_M19ERR 0x00040000
164 #define EMASK_FBD_M18ERR 0x00020000
165 #define EMASK_FBD_M17ERR 0x00010000
167 #define EMASK_FBD_M15ERR 0x00004000
168 #define EMASK_FBD_M14ERR 0x00002000
169 #define EMASK_FBD_M13ERR 0x00001000
170 #define EMASK_FBD_M12ERR 0x00000800
171 #define EMASK_FBD_M11ERR 0x00000400
172 #define EMASK_FBD_M10ERR 0x00000200
173 #define EMASK_FBD_M9ERR 0x00000100
174 #define EMASK_FBD_M8ERR 0x00000080
175 #define EMASK_FBD_M7ERR 0x00000040
176 #define EMASK_FBD_M6ERR 0x00000020
177 #define EMASK_FBD_M5ERR 0x00000010
178 #define EMASK_FBD_M4ERR 0x00000008
179 #define EMASK_FBD_M3ERR 0x00000004
180 #define EMASK_FBD_M2ERR 0x00000002
181 #define EMASK_FBD_M1ERR 0x00000001
183 #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
187 #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
196 #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
200 #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
202 #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
206 #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
207 #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
208 #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
212 #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
213 ENABLE_EMASK_FBD_NORTH_CRC | \
214 ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 ENABLE_EMASK_FBD_THERMALS | \
216 ENABLE_EMASK_FBD_DIMM_SPARE | \
217 ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 ENABLE_EMASK_FBD_CORRECTABLE | \
219 ENABLE_EMASK_FBD_UNCORRECTABLE)
221 #define ERR0_FBD 0xAC
222 #define ERR1_FBD 0xB0
223 #define ERR2_FBD 0xB4
224 #define MCERR_FBD 0xB8
225 #define NRECMEMA 0xBE
226 #define NREC_BANK(x) (((x)>>12) & 0x7)
227 #define NREC_RDWR(x) (((x)>>11) & 1)
228 #define NREC_RANK(x) (((x)>>8) & 0x7)
229 #define NRECMEMB 0xC0
230 #define NREC_CAS(x) (((x)>>16) & 0xFFF)
231 #define NREC_RAS(x) ((x) & 0x7FFF)
232 #define NRECFGLOG 0xC4
233 #define NREEECFBDA 0xC8
234 #define NREEECFBDB 0xCC
235 #define NREEECFBDC 0xD0
236 #define NREEECFBDD 0xD4
237 #define NREEECFBDE 0xD8
240 #define REC_BANK(x) (((x)>>12) & 0x7)
241 #define REC_RDWR(x) (((x)>>11) & 1)
242 #define REC_RANK(x) (((x)>>8) & 0x7)
244 #define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
245 #define REC_RAS(x) ((x) & 0x7FFF)
246 #define RECFGLOG 0xE8
253 /* OFFSETS for Function 2 */
257 * Function 0: Memory Map Branch 0
260 * Function 0: Memory Map Branch 1
262 #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
265 #define AMB_PRESENT_0 0x64
266 #define AMB_PRESENT_1 0x66
273 #define CHANNELS_PER_BRANCH 2
274 #define MAX_BRANCHES 2
276 /* Defines to extract the various fields from the
277 * MTRx - Memory Technology Registers
279 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
280 #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
282 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283 #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
284 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
285 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
286 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
287 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
288 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
290 /* enables the report of miscellaneous messages as CE errors - default off */
291 static int misc_messages
;
293 /* Enumeration of supported devices */
296 I5000V
= 1, /* future */
297 I5000X
= 2 /* future */
300 /* Device name and register DID (Device ID) */
301 struct i5000_dev_info
{
302 const char *ctl_name
; /* name for this device */
303 u16 fsb_mapping_errors
; /* DID for the branchmap,control */
306 /* Table of devices attributes supported by this driver */
307 static const struct i5000_dev_info i5000_devs
[] = {
310 .fsb_mapping_errors
= PCI_DEVICE_ID_INTEL_I5000_DEV16
,
314 struct i5000_dimm_info
{
315 int megabytes
; /* size, 0 means not present */
319 #define MAX_CHANNELS 6 /* max possible channels */
320 #define MAX_CSROWS (8*2) /* max possible csrows per channel */
322 /* driver private data structure */
324 struct pci_dev
*system_address
; /* 16.0 */
325 struct pci_dev
*branchmap_werrors
; /* 16.1 */
326 struct pci_dev
*fsb_error_regs
; /* 16.2 */
327 struct pci_dev
*branch_0
; /* 21.0 */
328 struct pci_dev
*branch_1
; /* 22.0 */
330 u16 tolm
; /* top of low memory */
332 u64 ambase
; /* AMB BAR */
339 u16 mir0
, mir1
, mir2
;
341 u16 b0_mtr
[NUM_MTRS
]; /* Memory Technlogy Reg */
342 u16 b0_ambpresent0
; /* Branch 0, Channel 0 */
343 u16 b0_ambpresent1
; /* Brnach 0, Channel 1 */
345 u16 b1_mtr
[NUM_MTRS
]; /* Memory Technlogy Reg */
346 u16 b1_ambpresent0
; /* Branch 1, Channel 8 */
347 u16 b1_ambpresent1
; /* Branch 1, Channel 1 */
349 /* DIMM information matrix, allocating architecture maximums */
350 struct i5000_dimm_info dimm_info
[MAX_CSROWS
][MAX_CHANNELS
];
352 /* Actual values for this controller */
353 int maxch
; /* Max channels */
354 int maxdimmperch
; /* Max DIMMs per channel */
357 /* I5000 MCH error information retrieved from Hardware */
358 struct i5000_error_info
{
360 /* These registers are always read from the MC */
361 u32 ferr_fat_fbd
; /* First Errors Fatal */
362 u32 nerr_fat_fbd
; /* Next Errors Fatal */
363 u32 ferr_nf_fbd
; /* First Errors Non-Fatal */
364 u32 nerr_nf_fbd
; /* Next Errors Non-Fatal */
366 /* These registers are input ONLY if there was a Recoverable Error */
367 u32 redmemb
; /* Recoverable Mem Data Error log B */
368 u16 recmema
; /* Recoverable Mem Error log A */
369 u32 recmemb
; /* Recoverable Mem Error log B */
371 /* These registers are input ONLY if there was a
372 * Non-Recoverable Error */
373 u16 nrecmema
; /* Non-Recoverable Mem log A */
374 u32 nrecmemb
; /* Non-Recoverable Mem log B */
378 static struct edac_pci_ctl_info
*i5000_pci
;
381 * i5000_get_error_info Retrieve the hardware error information from
382 * the hardware and cache it in the 'info'
385 static void i5000_get_error_info(struct mem_ctl_info
*mci
,
386 struct i5000_error_info
*info
)
388 struct i5000_pvt
*pvt
;
393 /* read in the 1st FATAL error register */
394 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_FAT_FBD
, &value
);
396 /* Mask only the bits that the doc says are valid
398 value
&= (FERR_FAT_FBDCHAN
| FERR_FAT_MASK
);
400 /* If there is an error, then read in the */
401 /* NEXT FATAL error register and the Memory Error Log Register A */
402 if (value
& FERR_FAT_MASK
) {
403 info
->ferr_fat_fbd
= value
;
405 /* harvest the various error data we need */
406 pci_read_config_dword(pvt
->branchmap_werrors
,
407 NERR_FAT_FBD
, &info
->nerr_fat_fbd
);
408 pci_read_config_word(pvt
->branchmap_werrors
,
409 NRECMEMA
, &info
->nrecmema
);
410 pci_read_config_dword(pvt
->branchmap_werrors
,
411 NRECMEMB
, &info
->nrecmemb
);
413 /* Clear the error bits, by writing them back */
414 pci_write_config_dword(pvt
->branchmap_werrors
,
415 FERR_FAT_FBD
, value
);
417 info
->ferr_fat_fbd
= 0;
418 info
->nerr_fat_fbd
= 0;
423 /* read in the 1st NON-FATAL error register */
424 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_NF_FBD
, &value
);
426 /* If there is an error, then read in the 1st NON-FATAL error
427 * register as well */
428 if (value
& FERR_NF_MASK
) {
429 info
->ferr_nf_fbd
= value
;
431 /* harvest the various error data we need */
432 pci_read_config_dword(pvt
->branchmap_werrors
,
433 NERR_NF_FBD
, &info
->nerr_nf_fbd
);
434 pci_read_config_word(pvt
->branchmap_werrors
,
435 RECMEMA
, &info
->recmema
);
436 pci_read_config_dword(pvt
->branchmap_werrors
,
437 RECMEMB
, &info
->recmemb
);
438 pci_read_config_dword(pvt
->branchmap_werrors
,
439 REDMEMB
, &info
->redmemb
);
441 /* Clear the error bits, by writing them back */
442 pci_write_config_dword(pvt
->branchmap_werrors
,
445 info
->ferr_nf_fbd
= 0;
446 info
->nerr_nf_fbd
= 0;
454 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455 * struct i5000_error_info *info,
456 * int handle_errors);
458 * handle the Intel FATAL errors, if any
460 static void i5000_process_fatal_error_info(struct mem_ctl_info
*mci
,
461 struct i5000_error_info
*info
,
464 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 160];
465 char *specific
= NULL
;
473 /* mask off the Error bits that are possible */
474 allErrors
= (info
->ferr_fat_fbd
& FERR_FAT_MASK
);
476 return; /* if no error, return now */
478 channel
= EXTRACT_FBDCHAN_INDX(info
->ferr_fat_fbd
);
480 /* Use the NON-Recoverable macros to extract data */
481 bank
= NREC_BANK(info
->nrecmema
);
482 rank
= NREC_RANK(info
->nrecmema
);
483 rdwr
= NREC_RDWR(info
->nrecmema
);
484 ras
= NREC_RAS(info
->nrecmemb
);
485 cas
= NREC_CAS(info
->nrecmemb
);
487 edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
489 rdwr
? "Write" : "Read", ras
, cas
);
491 /* Only 1 bit will be on */
494 specific
= "Alert on non-redundant retry or fast "
498 specific
= "Northbound CRC error on non-redundant "
506 * This error is generated to inform that the intelligent
507 * throttling is disabled and the temperature passed the
508 * specified middle point. Since this is something the BIOS
509 * should take care of, we'll warn only once to avoid
510 * worthlessly flooding the log.
516 specific
= ">Tmid Thermal event with intelligent "
517 "throttling disabled";
522 /* Form out message */
523 snprintf(msg
, sizeof(msg
),
524 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
525 bank
, ras
, cas
, allErrors
, specific
);
527 /* Call the helper to output message */
528 edac_mc_handle_error(HW_EVENT_ERR_FATAL
, mci
, 1, 0, 0, 0,
529 channel
>> 1, channel
& 1, rank
,
530 rdwr
? "Write error" : "Read error",
535 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536 * struct i5000_error_info *info,
537 * int handle_errors);
539 * handle the Intel NON-FATAL errors, if any
541 static void i5000_process_nonfatal_error_info(struct mem_ctl_info
*mci
,
542 struct i5000_error_info
*info
,
545 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 170];
546 char *specific
= NULL
;
558 /* mask off the Error bits that are possible */
559 allErrors
= (info
->ferr_nf_fbd
& FERR_NF_MASK
);
561 return; /* if no error, return now */
563 /* ONLY ONE of the possible error bits will be set, as per the docs */
564 ue_errors
= allErrors
& FERR_NF_UNCORRECTABLE
;
566 edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors
);
568 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
571 * According with i5000 datasheet, bit 28 has no significance
572 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
574 channel
= branch
& 2;
576 bank
= NREC_BANK(info
->nrecmema
);
577 rank
= NREC_RANK(info
->nrecmema
);
578 rdwr
= NREC_RDWR(info
->nrecmema
);
579 ras
= NREC_RAS(info
->nrecmemb
);
580 cas
= NREC_CAS(info
->nrecmemb
);
582 edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
583 rank
, channel
, channel
+ 1, branch
>> 1, bank
,
584 rdwr
? "Write" : "Read", ras
, cas
);
588 specific
= "Non-Aliased Uncorrectable Patrol Data ECC";
591 specific
= "Non-Aliased Uncorrectable Spare-Copy "
595 specific
= "Non-Aliased Uncorrectable Mirrored Demand "
599 specific
= "Non-Aliased Uncorrectable Non-Mirrored "
603 specific
= "Aliased Uncorrectable Patrol Data ECC";
606 specific
= "Aliased Uncorrectable Spare-Copy Data ECC";
609 specific
= "Aliased Uncorrectable Mirrored Demand "
613 specific
= "Aliased Uncorrectable Non-Mirrored Demand "
617 specific
= "Uncorrectable Data ECC on Replay";
621 /* Form out message */
622 snprintf(msg
, sizeof(msg
),
623 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
624 rank
, bank
, ras
, cas
, ue_errors
, specific
);
626 /* Call the helper to output message */
627 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED
, mci
, 1, 0, 0, 0,
628 channel
>> 1, -1, rank
,
629 rdwr
? "Write error" : "Read error",
633 /* Check correctable errors */
634 ce_errors
= allErrors
& FERR_NF_CORRECTABLE
;
636 edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors
);
638 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
641 if (REC_ECC_LOCATOR_ODD(info
->redmemb
))
644 /* Convert channel to be based from zero, instead of
645 * from branch base of 0 */
648 bank
= REC_BANK(info
->recmema
);
649 rank
= REC_RANK(info
->recmema
);
650 rdwr
= REC_RDWR(info
->recmema
);
651 ras
= REC_RAS(info
->recmemb
);
652 cas
= REC_CAS(info
->recmemb
);
654 edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
655 rank
, channel
, branch
>> 1, bank
,
656 rdwr
? "Write" : "Read", ras
, cas
);
660 specific
= "Correctable Non-Mirrored Demand Data ECC";
663 specific
= "Correctable Mirrored Demand Data ECC";
666 specific
= "Correctable Spare-Copy Data ECC";
669 specific
= "Correctable Patrol Data ECC";
673 /* Form out message */
674 snprintf(msg
, sizeof(msg
),
675 "Rank=%d Bank=%d RDWR=%s RAS=%d "
676 "CAS=%d, CE Err=0x%x (%s))", branch
>> 1, bank
,
677 rdwr
? "Write" : "Read", ras
, cas
, ce_errors
,
680 /* Call the helper to output message */
681 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED
, mci
, 1, 0, 0, 0,
682 channel
>> 1, channel
% 2, rank
,
683 rdwr
? "Write error" : "Read error",
690 misc_errors
= allErrors
& (FERR_NF_NON_RETRY
| FERR_NF_NORTH_CRC
|
691 FERR_NF_SPD_PROTOCOL
| FERR_NF_DIMM_SPARE
);
693 switch (misc_errors
) {
695 specific
= "Non-Retry or Redundant Retry FBD Memory "
696 "Alert or Redundant Fast Reset Timeout";
699 specific
= "Non-Retry or Redundant Retry FBD "
700 "Configuration Alert";
703 specific
= "Non-Retry or Redundant Retry FBD "
704 "Northbound CRC error on read data";
707 specific
= "FBD Northbound CRC error on "
711 specific
= "SPD protocol error";
714 specific
= "DIMM-spare copy started";
717 specific
= "DIMM-spare copy completed";
720 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
722 /* Form out message */
723 snprintf(msg
, sizeof(msg
),
724 "Err=%#x (%s)", misc_errors
, specific
);
726 /* Call the helper to output message */
727 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED
, mci
, 1, 0, 0, 0,
734 * i5000_process_error_info Process the error info that is
735 * in the 'info' structure, previously retrieved from hardware
737 static void i5000_process_error_info(struct mem_ctl_info
*mci
,
738 struct i5000_error_info
*info
,
741 /* First handle any fatal errors that occurred */
742 i5000_process_fatal_error_info(mci
, info
, handle_errors
);
744 /* now handle any non-fatal errors that occurred */
745 i5000_process_nonfatal_error_info(mci
, info
, handle_errors
);
749 * i5000_clear_error Retrieve any error from the hardware
750 * but do NOT process that error.
751 * Used for 'clearing' out of previous errors
752 * Called by the Core module.
754 static void i5000_clear_error(struct mem_ctl_info
*mci
)
756 struct i5000_error_info info
;
758 i5000_get_error_info(mci
, &info
);
762 * i5000_check_error Retrieve and process errors reported by the
763 * hardware. Called by the Core module.
765 static void i5000_check_error(struct mem_ctl_info
*mci
)
767 struct i5000_error_info info
;
768 edac_dbg(4, "MC%d\n", mci
->mc_idx
);
769 i5000_get_error_info(mci
, &info
);
770 i5000_process_error_info(mci
, &info
, 1);
774 * i5000_get_devices Find and perform 'get' operation on the MCH's
775 * device/functions we want to reference for this driver
777 * Need to 'get' device 16 func 1 and func 2
779 static int i5000_get_devices(struct mem_ctl_info
*mci
, int dev_idx
)
781 //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
782 struct i5000_pvt
*pvt
;
783 struct pci_dev
*pdev
;
787 /* Attempt to 'get' the MCH register we want */
790 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
791 PCI_DEVICE_ID_INTEL_I5000_DEV16
, pdev
);
793 /* End of list, leave */
795 i5000_printk(KERN_ERR
,
796 "'system address,Process Bus' "
798 "vendor 0x%x device 0x%x FUNC 1 "
801 PCI_DEVICE_ID_INTEL_I5000_DEV16
);
806 /* Scan for device 16 func 1 */
807 if (PCI_FUNC(pdev
->devfn
) == 1)
811 pvt
->branchmap_werrors
= pdev
;
813 /* Attempt to 'get' the MCH register we want */
816 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
817 PCI_DEVICE_ID_INTEL_I5000_DEV16
, pdev
);
820 i5000_printk(KERN_ERR
,
821 "MC: 'branchmap,control,errors' "
823 "vendor 0x%x device 0x%x Func 2 "
826 PCI_DEVICE_ID_INTEL_I5000_DEV16
);
828 pci_dev_put(pvt
->branchmap_werrors
);
832 /* Scan for device 16 func 1 */
833 if (PCI_FUNC(pdev
->devfn
) == 2)
837 pvt
->fsb_error_regs
= pdev
;
839 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
840 pci_name(pvt
->system_address
),
841 pvt
->system_address
->vendor
, pvt
->system_address
->device
);
842 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
843 pci_name(pvt
->branchmap_werrors
),
844 pvt
->branchmap_werrors
->vendor
,
845 pvt
->branchmap_werrors
->device
);
846 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
847 pci_name(pvt
->fsb_error_regs
),
848 pvt
->fsb_error_regs
->vendor
, pvt
->fsb_error_regs
->device
);
851 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
852 PCI_DEVICE_ID_I5000_BRANCH_0
, pdev
);
855 i5000_printk(KERN_ERR
,
856 "MC: 'BRANCH 0' device not found:"
857 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
858 PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_I5000_BRANCH_0
);
860 pci_dev_put(pvt
->branchmap_werrors
);
861 pci_dev_put(pvt
->fsb_error_regs
);
865 pvt
->branch_0
= pdev
;
867 /* If this device claims to have more than 2 channels then
868 * fetch Branch 1's information
870 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
) {
872 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
873 PCI_DEVICE_ID_I5000_BRANCH_1
, pdev
);
876 i5000_printk(KERN_ERR
,
877 "MC: 'BRANCH 1' device not found:"
878 "vendor 0x%x device 0x%x Func 0 "
881 PCI_DEVICE_ID_I5000_BRANCH_1
);
883 pci_dev_put(pvt
->branchmap_werrors
);
884 pci_dev_put(pvt
->fsb_error_regs
);
885 pci_dev_put(pvt
->branch_0
);
889 pvt
->branch_1
= pdev
;
896 * i5000_put_devices 'put' all the devices that we have
899 static void i5000_put_devices(struct mem_ctl_info
*mci
)
901 struct i5000_pvt
*pvt
;
905 pci_dev_put(pvt
->branchmap_werrors
); /* FUNC 1 */
906 pci_dev_put(pvt
->fsb_error_regs
); /* FUNC 2 */
907 pci_dev_put(pvt
->branch_0
); /* DEV 21 */
909 /* Only if more than 2 channels do we release the second branch */
910 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
)
911 pci_dev_put(pvt
->branch_1
); /* DEV 22 */
915 * determine_amb_resent
917 * the information is contained in NUM_MTRS different registers
918 * determineing which of the NUM_MTRS requires knowing
919 * which channel is in question
921 * 2 branches, each with 2 channels
922 * b0_ambpresent0 for channel '0'
923 * b0_ambpresent1 for channel '1'
924 * b1_ambpresent0 for channel '2'
925 * b1_ambpresent1 for channel '3'
927 static int determine_amb_present_reg(struct i5000_pvt
*pvt
, int channel
)
931 if (channel
< CHANNELS_PER_BRANCH
) {
933 amb_present
= pvt
->b0_ambpresent1
;
935 amb_present
= pvt
->b0_ambpresent0
;
938 amb_present
= pvt
->b1_ambpresent1
;
940 amb_present
= pvt
->b1_ambpresent0
;
947 * determine_mtr(pvt, csrow, channel)
949 * return the proper MTR register as determine by the csrow and channel desired
951 static int determine_mtr(struct i5000_pvt
*pvt
, int slot
, int channel
)
955 if (channel
< CHANNELS_PER_BRANCH
)
956 mtr
= pvt
->b0_mtr
[slot
];
958 mtr
= pvt
->b1_mtr
[slot
];
965 static void decode_mtr(int slot_row
, u16 mtr
)
969 ans
= MTR_DIMMS_PRESENT(mtr
);
971 edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
972 slot_row
, mtr
, ans
? "" : "NOT ");
976 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr
));
977 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr
));
978 edac_dbg(2, "\t\tNUMRANK: %s\n",
979 MTR_DIMM_RANK(mtr
) ? "double" : "single");
980 edac_dbg(2, "\t\tNUMROW: %s\n",
981 MTR_DIMM_ROWS(mtr
) == 0 ? "8,192 - 13 rows" :
982 MTR_DIMM_ROWS(mtr
) == 1 ? "16,384 - 14 rows" :
983 MTR_DIMM_ROWS(mtr
) == 2 ? "32,768 - 15 rows" :
985 edac_dbg(2, "\t\tNUMCOL: %s\n",
986 MTR_DIMM_COLS(mtr
) == 0 ? "1,024 - 10 columns" :
987 MTR_DIMM_COLS(mtr
) == 1 ? "2,048 - 11 columns" :
988 MTR_DIMM_COLS(mtr
) == 2 ? "4,096 - 12 columns" :
992 static void handle_channel(struct i5000_pvt
*pvt
, int slot
, int channel
,
993 struct i5000_dimm_info
*dinfo
)
999 mtr
= determine_mtr(pvt
, slot
, channel
);
1000 if (MTR_DIMMS_PRESENT(mtr
)) {
1001 amb_present_reg
= determine_amb_present_reg(pvt
, channel
);
1003 /* Determine if there is a DIMM present in this DIMM slot */
1004 if (amb_present_reg
) {
1005 dinfo
->dual_rank
= MTR_DIMM_RANK(mtr
);
1007 /* Start with the number of bits for a Bank
1009 addrBits
= MTR_DRAM_BANKS_ADDR_BITS(mtr
);
1010 /* Add the number of ROW bits */
1011 addrBits
+= MTR_DIMM_ROWS_ADDR_BITS(mtr
);
1012 /* add the number of COLUMN bits */
1013 addrBits
+= MTR_DIMM_COLS_ADDR_BITS(mtr
);
1015 /* Dual-rank memories have twice the size */
1016 if (dinfo
->dual_rank
)
1019 addrBits
+= 6; /* add 64 bits per DIMM */
1020 addrBits
-= 20; /* divide by 2^^20 */
1021 addrBits
-= 3; /* 8 bits per bytes */
1023 dinfo
->megabytes
= 1 << addrBits
;
1029 * calculate_dimm_size
1031 * also will output a DIMM matrix map, if debug is enabled, for viewing
1032 * how the DIMMs are populated
1034 static void calculate_dimm_size(struct i5000_pvt
*pvt
)
1036 struct i5000_dimm_info
*dinfo
;
1037 int slot
, channel
, branch
;
1038 char *p
, *mem_buffer
;
1041 /* ================= Generate some debug output ================= */
1043 mem_buffer
= p
= kmalloc(space
, GFP_KERNEL
);
1045 i5000_printk(KERN_ERR
, "MC: %s:%s() kmalloc() failed\n",
1046 __FILE__
, __func__
);
1050 /* Scan all the actual slots
1051 * and calculate the information for each DIMM
1052 * Start with the highest slot first, to display it first
1053 * and work toward the 0th slot
1055 for (slot
= pvt
->maxdimmperch
- 1; slot
>= 0; slot
--) {
1057 /* on an odd slot, first output a 'boundary' marker,
1058 * then reset the message buffer */
1060 n
= snprintf(p
, space
, "--------------------------"
1061 "--------------------------------");
1064 edac_dbg(2, "%s\n", mem_buffer
);
1068 n
= snprintf(p
, space
, "slot %2d ", slot
);
1072 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1073 dinfo
= &pvt
->dimm_info
[slot
][channel
];
1074 handle_channel(pvt
, slot
, channel
, dinfo
);
1075 if (dinfo
->megabytes
)
1076 n
= snprintf(p
, space
, "%4d MB %dR| ",
1077 dinfo
->megabytes
, dinfo
->dual_rank
+ 1);
1079 n
= snprintf(p
, space
, "%4d MB | ", 0);
1085 edac_dbg(2, "%s\n", mem_buffer
);
1090 /* Output the last bottom 'boundary' marker */
1091 n
= snprintf(p
, space
, "--------------------------"
1092 "--------------------------------");
1095 edac_dbg(2, "%s\n", mem_buffer
);
1099 /* now output the 'channel' labels */
1100 n
= snprintf(p
, space
, " ");
1103 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1104 n
= snprintf(p
, space
, "channel %d | ", channel
);
1108 edac_dbg(2, "%s\n", mem_buffer
);
1112 n
= snprintf(p
, space
, " ");
1114 for (branch
= 0; branch
< MAX_BRANCHES
; branch
++) {
1115 n
= snprintf(p
, space
, " branch %d | ", branch
);
1120 /* output the last message and free buffer */
1121 edac_dbg(2, "%s\n", mem_buffer
);
1126 * i5000_get_mc_regs read in the necessary registers and
1129 * Fills in the private data members
1131 static void i5000_get_mc_regs(struct mem_ctl_info
*mci
)
1133 struct i5000_pvt
*pvt
;
1139 pvt
= mci
->pvt_info
;
1141 pci_read_config_dword(pvt
->system_address
, AMBASE
,
1142 &pvt
->u
.ambase_bottom
);
1143 pci_read_config_dword(pvt
->system_address
, AMBASE
+ sizeof(u32
),
1144 &pvt
->u
.ambase_top
);
1146 edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1147 (long unsigned int)pvt
->ambase
, pvt
->maxch
, pvt
->maxdimmperch
);
1149 /* Get the Branch Map regs */
1150 pci_read_config_word(pvt
->branchmap_werrors
, TOLM
, &pvt
->tolm
);
1152 edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153 pvt
->tolm
, pvt
->tolm
);
1155 actual_tolm
= pvt
->tolm
<< 28;
1156 edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157 actual_tolm
, actual_tolm
);
1159 pci_read_config_word(pvt
->branchmap_werrors
, MIR0
, &pvt
->mir0
);
1160 pci_read_config_word(pvt
->branchmap_werrors
, MIR1
, &pvt
->mir1
);
1161 pci_read_config_word(pvt
->branchmap_werrors
, MIR2
, &pvt
->mir2
);
1163 /* Get the MIR[0-2] regs */
1164 limit
= (pvt
->mir0
>> 4) & 0x0FFF;
1165 way0
= pvt
->mir0
& 0x1;
1166 way1
= pvt
->mir0
& 0x2;
1167 edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1169 limit
= (pvt
->mir1
>> 4) & 0x0FFF;
1170 way0
= pvt
->mir1
& 0x1;
1171 way1
= pvt
->mir1
& 0x2;
1172 edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1174 limit
= (pvt
->mir2
>> 4) & 0x0FFF;
1175 way0
= pvt
->mir2
& 0x1;
1176 way1
= pvt
->mir2
& 0x2;
1177 edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n",
1180 /* Get the MTR[0-3] regs */
1181 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1182 int where
= MTR0
+ (slot_row
* sizeof(u32
));
1184 pci_read_config_word(pvt
->branch_0
, where
,
1185 &pvt
->b0_mtr
[slot_row
]);
1187 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188 slot_row
, where
, pvt
->b0_mtr
[slot_row
]);
1190 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
) {
1191 pci_read_config_word(pvt
->branch_1
, where
,
1192 &pvt
->b1_mtr
[slot_row
]);
1193 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194 slot_row
, where
, pvt
->b1_mtr
[slot_row
]);
1196 pvt
->b1_mtr
[slot_row
] = 0;
1200 /* Read and dump branch 0's MTRs */
1201 edac_dbg(2, "Memory Technology Registers:\n");
1202 edac_dbg(2, " Branch 0:\n");
1203 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1204 decode_mtr(slot_row
, pvt
->b0_mtr
[slot_row
]);
1206 pci_read_config_word(pvt
->branch_0
, AMB_PRESENT_0
,
1207 &pvt
->b0_ambpresent0
);
1208 edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt
->b0_ambpresent0
);
1209 pci_read_config_word(pvt
->branch_0
, AMB_PRESENT_1
,
1210 &pvt
->b0_ambpresent1
);
1211 edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt
->b0_ambpresent1
);
1213 /* Only if we have 2 branchs (4 channels) */
1214 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1215 pvt
->b1_ambpresent0
= 0;
1216 pvt
->b1_ambpresent1
= 0;
1218 /* Read and dump branch 1's MTRs */
1219 edac_dbg(2, " Branch 1:\n");
1220 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1221 decode_mtr(slot_row
, pvt
->b1_mtr
[slot_row
]);
1223 pci_read_config_word(pvt
->branch_1
, AMB_PRESENT_0
,
1224 &pvt
->b1_ambpresent0
);
1225 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226 pvt
->b1_ambpresent0
);
1227 pci_read_config_word(pvt
->branch_1
, AMB_PRESENT_1
,
1228 &pvt
->b1_ambpresent1
);
1229 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230 pvt
->b1_ambpresent1
);
1233 /* Go and determine the size of each DIMM and place in an
1235 calculate_dimm_size(pvt
);
1239 * i5000_init_csrows Initialize the 'csrows' table within
1240 * the mci control structure with the
1241 * addressing of memory.
1245 * 1 no actual memory found on this MC
1247 static int i5000_init_csrows(struct mem_ctl_info
*mci
)
1249 struct i5000_pvt
*pvt
;
1250 struct dimm_info
*dimm
;
1258 pvt
= mci
->pvt_info
;
1259 max_csrows
= pvt
->maxdimmperch
* 2;
1261 empty
= 1; /* Assume NO memory */
1264 * FIXME: The memory layout used to map slot/channel into the
1265 * real memory architecture is weird: branch+slot are "csrows"
1266 * and channel is channel. That required an extra array (dimm_info)
1267 * to map the dimms. A good cleanup would be to remove this array,
1268 * and do a loop here with branch, channel, slot
1270 for (slot
= 0; slot
< max_csrows
; slot
++) {
1271 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1273 mtr
= determine_mtr(pvt
, slot
, channel
);
1275 if (!MTR_DIMMS_PRESENT(mtr
))
1278 dimm
= edac_get_dimm(mci
, channel
/ MAX_BRANCHES
,
1279 channel
% MAX_BRANCHES
, slot
);
1281 csrow_megs
= pvt
->dimm_info
[slot
][channel
].megabytes
;
1284 /* Assume DDR2 for now */
1285 dimm
->mtype
= MEM_FB_DDR2
;
1287 /* ask what device type on this row */
1288 if (MTR_DRAM_WIDTH(mtr
) == 8)
1289 dimm
->dtype
= DEV_X8
;
1291 dimm
->dtype
= DEV_X4
;
1293 dimm
->edac_mode
= EDAC_S8ECD8ED
;
1294 dimm
->nr_pages
= csrow_megs
<< 8;
1304 * i5000_enable_error_reporting
1305 * Turn on the memory reporting features of the hardware
1307 static void i5000_enable_error_reporting(struct mem_ctl_info
*mci
)
1309 struct i5000_pvt
*pvt
;
1312 pvt
= mci
->pvt_info
;
1314 /* Read the FBD Error Mask Register */
1315 pci_read_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1318 /* Enable with a '0' */
1319 fbd_error_mask
&= ~(ENABLE_EMASK_ALL
);
1321 pci_write_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1326 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1328 * ask the device how many channels are present and how many CSROWS
1331 static void i5000_get_dimm_and_channel_counts(struct pci_dev
*pdev
,
1332 int *num_dimms_per_channel
,
1337 /* Need to retrieve just how many channels and dimms per channel are
1338 * supported on this memory controller
1340 pci_read_config_byte(pdev
, MAXDIMMPERCH
, &value
);
1341 *num_dimms_per_channel
= (int)value
;
1343 pci_read_config_byte(pdev
, MAXCH
, &value
);
1344 *num_channels
= (int)value
;
1348 * i5000_probe1 Probe for ONE instance of device to see if it is
1351 * 0 for FOUND a device
1352 * < 0 for error code
1354 static int i5000_probe1(struct pci_dev
*pdev
, int dev_idx
)
1356 struct mem_ctl_info
*mci
;
1357 struct edac_mc_layer layers
[3];
1358 struct i5000_pvt
*pvt
;
1360 int num_dimms_per_channel
;
1362 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1364 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1366 /* We only are looking for func 0 of the set */
1367 if (PCI_FUNC(pdev
->devfn
) != 0)
1370 /* Ask the devices for the number of CSROWS and CHANNELS so
1371 * that we can calculate the memory resources, etc
1373 * The Chipset will report what it can handle which will be greater
1374 * or equal to what the motherboard manufacturer will implement.
1376 * As we don't have a motherboard identification routine to determine
1377 * actual number of slots/dimms per channel, we thus utilize the
1378 * resource as specified by the chipset. Thus, we might have
1379 * have more DIMMs per channel than actually on the mobo, but this
1380 * allows the driver to support up to the chipset max, without
1381 * some fancy mobo determination.
1383 i5000_get_dimm_and_channel_counts(pdev
, &num_dimms_per_channel
,
1386 edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n",
1387 num_channels
, num_dimms_per_channel
);
1389 /* allocate a new MC control structure */
1391 layers
[0].type
= EDAC_MC_LAYER_BRANCH
;
1392 layers
[0].size
= MAX_BRANCHES
;
1393 layers
[0].is_virt_csrow
= false;
1394 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
1395 layers
[1].size
= num_channels
/ MAX_BRANCHES
;
1396 layers
[1].is_virt_csrow
= false;
1397 layers
[2].type
= EDAC_MC_LAYER_SLOT
;
1398 layers
[2].size
= num_dimms_per_channel
;
1399 layers
[2].is_virt_csrow
= true;
1400 mci
= edac_mc_alloc(0, ARRAY_SIZE(layers
), layers
, sizeof(*pvt
));
1404 edac_dbg(0, "MC: mci = %p\n", mci
);
1406 mci
->pdev
= &pdev
->dev
; /* record ptr to the generic device */
1408 pvt
= mci
->pvt_info
;
1409 pvt
->system_address
= pdev
; /* Record this device in our private */
1410 pvt
->maxch
= num_channels
;
1411 pvt
->maxdimmperch
= num_dimms_per_channel
;
1413 /* 'get' the pci devices we want to reserve for our use */
1414 if (i5000_get_devices(mci
, dev_idx
))
1417 /* Time to get serious */
1418 i5000_get_mc_regs(mci
); /* retrieve the hardware registers */
1421 mci
->mtype_cap
= MEM_FLAG_FB_DDR2
;
1422 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1423 mci
->edac_cap
= EDAC_FLAG_NONE
;
1424 mci
->mod_name
= "i5000_edac.c";
1425 mci
->ctl_name
= i5000_devs
[dev_idx
].ctl_name
;
1426 mci
->dev_name
= pci_name(pdev
);
1427 mci
->ctl_page_to_phys
= NULL
;
1429 /* Set the function pointer to an actual operation function */
1430 mci
->edac_check
= i5000_check_error
;
1432 /* initialize the MC control structure 'csrows' table
1433 * with the mapping and control information */
1434 if (i5000_init_csrows(mci
)) {
1435 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1436 mci
->edac_cap
= EDAC_FLAG_NONE
; /* no csrows found */
1438 edac_dbg(1, "MC: Enable error reporting now\n");
1439 i5000_enable_error_reporting(mci
);
1442 /* add this new MC control structure to EDAC's list of MCs */
1443 if (edac_mc_add_mc(mci
)) {
1444 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1445 /* FIXME: perhaps some code should go here that disables error
1446 * reporting if we just enabled it
1451 i5000_clear_error(mci
);
1453 /* allocating generic PCI control info */
1454 i5000_pci
= edac_pci_create_generic_ctl(&pdev
->dev
, EDAC_MOD_STR
);
1457 "%s(): Unable to create PCI control\n",
1460 "%s(): PCI error report via EDAC not setup\n",
1466 /* Error exit unwinding stack */
1469 i5000_put_devices(mci
);
1477 * i5000_init_one constructor for one instance of device
1483 static int i5000_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1487 edac_dbg(0, "MC:\n");
1489 /* wake up device */
1490 rc
= pci_enable_device(pdev
);
1494 /* now probe and enable the device */
1495 return i5000_probe1(pdev
, id
->driver_data
);
1499 * i5000_remove_one destructor for one instance of device
1502 static void i5000_remove_one(struct pci_dev
*pdev
)
1504 struct mem_ctl_info
*mci
;
1509 edac_pci_release_generic_ctl(i5000_pci
);
1511 if ((mci
= edac_mc_del_mc(&pdev
->dev
)) == NULL
)
1514 /* retrieve references to resources, and free those resources */
1515 i5000_put_devices(mci
);
1520 * pci_device_id table for which devices we are looking for
1522 * The "E500P" device is the first device supported.
1524 static const struct pci_device_id i5000_pci_tbl
[] = {
1525 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_I5000_DEV16
),
1526 .driver_data
= I5000P
},
1528 {0,} /* 0 terminated list. */
1531 MODULE_DEVICE_TABLE(pci
, i5000_pci_tbl
);
1534 * i5000_driver pci_driver structure for this module
1537 static struct pci_driver i5000_driver
= {
1538 .name
= KBUILD_BASENAME
,
1539 .probe
= i5000_init_one
,
1540 .remove
= i5000_remove_one
,
1541 .id_table
= i5000_pci_tbl
,
1545 * i5000_init Module entry function
1546 * Try to initialize this module for its devices
1548 static int __init
i5000_init(void)
1552 edac_dbg(2, "MC:\n");
1554 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1557 pci_rc
= pci_register_driver(&i5000_driver
);
1559 return (pci_rc
< 0) ? pci_rc
: 0;
1563 * i5000_exit() Module exit function
1564 * Unregister the driver
1566 static void __exit
i5000_exit(void)
1568 edac_dbg(2, "MC:\n");
1569 pci_unregister_driver(&i5000_driver
);
1572 module_init(i5000_init
);
1573 module_exit(i5000_exit
);
1575 MODULE_LICENSE("GPL");
1577 ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1578 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1581 module_param(edac_op_state
, int, 0444);
1582 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1583 module_param(misc_messages
, int, 0444);
1584 MODULE_PARM_DESC(misc_messages
, "Log miscellaneous non fatal messages");