reiserfs: Fix spurious unlock in reiserfs_fill_super() error handling
[linux/fpc-iii.git] / drivers / spi / spi-fsl-dspi.c
blob442cff71a0d2e95afdc378b0b1ad9d2d1b71653d
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
21 #define DRIVER_NAME "fsl-dspi"
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE 16
25 #else
26 #define DSPI_FIFO_SIZE 4
27 #endif
28 #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
30 #define SPI_MCR 0x00
31 #define SPI_MCR_MASTER BIT(31)
32 #define SPI_MCR_PCSIS (0x3F << 16)
33 #define SPI_MCR_CLR_TXF BIT(11)
34 #define SPI_MCR_CLR_RXF BIT(10)
35 #define SPI_MCR_XSPI BIT(3)
37 #define SPI_TCR 0x08
38 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
40 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL BIT(26)
43 #define SPI_CTAR_CPHA BIT(25)
44 #define SPI_CTAR_LSBFE BIT(24)
45 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS 0xf
55 #define SPI_CTAR0_SLAVE 0x0c
57 #define SPI_SR 0x2c
58 #define SPI_SR_TCFQF BIT(31)
59 #define SPI_SR_EOQF BIT(28)
60 #define SPI_SR_TFUF BIT(27)
61 #define SPI_SR_TFFF BIT(25)
62 #define SPI_SR_CMDTCF BIT(23)
63 #define SPI_SR_SPEF BIT(21)
64 #define SPI_SR_RFOF BIT(19)
65 #define SPI_SR_TFIWF BIT(18)
66 #define SPI_SR_RFDF BIT(17)
67 #define SPI_SR_CMDFFF BIT(16)
68 #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \
69 SPI_SR_TFUF | SPI_SR_TFFF | \
70 SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 SPI_SR_RFOF | SPI_SR_TFIWF | \
72 SPI_SR_RFDF | SPI_SR_CMDFFF)
74 #define SPI_RSER_TFFFE BIT(25)
75 #define SPI_RSER_TFFFD BIT(24)
76 #define SPI_RSER_RFDFE BIT(17)
77 #define SPI_RSER_RFDFD BIT(16)
79 #define SPI_RSER 0x30
80 #define SPI_RSER_TCFQE BIT(31)
81 #define SPI_RSER_EOQFE BIT(28)
83 #define SPI_PUSHR 0x34
84 #define SPI_PUSHR_CMD_CONT BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
90 #define SPI_PUSHR_SLAVE 0x34
92 #define SPI_POPR 0x38
94 #define SPI_TXFR0 0x3c
95 #define SPI_TXFR1 0x40
96 #define SPI_TXFR2 0x44
97 #define SPI_TXFR3 0x48
98 #define SPI_RXFR0 0x7c
99 #define SPI_RXFR1 0x80
100 #define SPI_RXFR2 0x84
101 #define SPI_RXFR3 0x88
103 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
107 #define SPI_SREX 0x13c
109 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD 0x0
114 #define PUSHR_TX 0x2
116 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
118 struct chip_data {
119 u32 ctar_val;
120 u16 void_write_data;
123 enum dspi_trans_mode {
124 DSPI_EOQ_MODE = 0,
125 DSPI_TCFQ_MODE,
126 DSPI_DMA_MODE,
129 struct fsl_dspi_devtype_data {
130 enum dspi_trans_mode trans_mode;
131 u8 max_clock_factor;
132 bool ptp_sts_supported;
133 bool xspi_mode;
136 static const struct fsl_dspi_devtype_data vf610_data = {
137 .trans_mode = DSPI_DMA_MODE,
138 .max_clock_factor = 2,
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142 .trans_mode = DSPI_TCFQ_MODE,
143 .max_clock_factor = 8,
144 .ptp_sts_supported = true,
145 .xspi_mode = true,
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149 .trans_mode = DSPI_TCFQ_MODE,
150 .max_clock_factor = 8,
151 .ptp_sts_supported = true,
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155 .trans_mode = DSPI_EOQ_MODE,
156 .max_clock_factor = 8,
159 struct fsl_dspi_dma {
160 /* Length of transfer in words of DSPI_FIFO_SIZE */
161 u32 curr_xfer_len;
163 u32 *tx_dma_buf;
164 struct dma_chan *chan_tx;
165 dma_addr_t tx_dma_phys;
166 struct completion cmd_tx_complete;
167 struct dma_async_tx_descriptor *tx_desc;
169 u32 *rx_dma_buf;
170 struct dma_chan *chan_rx;
171 dma_addr_t rx_dma_phys;
172 struct completion cmd_rx_complete;
173 struct dma_async_tx_descriptor *rx_desc;
176 struct fsl_dspi {
177 struct spi_controller *ctlr;
178 struct platform_device *pdev;
180 struct regmap *regmap;
181 struct regmap *regmap_pushr;
182 int irq;
183 struct clk *clk;
185 struct spi_transfer *cur_transfer;
186 struct spi_message *cur_msg;
187 struct chip_data *cur_chip;
188 size_t len;
189 const void *tx;
190 void *rx;
191 void *rx_end;
192 u16 void_write_data;
193 u16 tx_cmd;
194 u8 bits_per_word;
195 u8 bytes_per_word;
196 const struct fsl_dspi_devtype_data *devtype_data;
198 wait_queue_head_t waitq;
199 u32 waitflags;
201 struct fsl_dspi_dma *dma;
204 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
206 u32 txdata = 0;
208 if (dspi->tx) {
209 if (dspi->bytes_per_word == 1)
210 txdata = *(u8 *)dspi->tx;
211 else if (dspi->bytes_per_word == 2)
212 txdata = *(u16 *)dspi->tx;
213 else /* dspi->bytes_per_word == 4 */
214 txdata = *(u32 *)dspi->tx;
215 dspi->tx += dspi->bytes_per_word;
217 dspi->len -= dspi->bytes_per_word;
218 return txdata;
221 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
223 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
225 if (spi_controller_is_slave(dspi->ctlr))
226 return data;
228 if (dspi->len > 0)
229 cmd |= SPI_PUSHR_CMD_CONT;
230 return cmd << 16 | data;
233 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
235 if (!dspi->rx)
236 return;
238 /* Mask off undefined bits */
239 rxdata &= (1 << dspi->bits_per_word) - 1;
241 if (dspi->bytes_per_word == 1)
242 *(u8 *)dspi->rx = rxdata;
243 else if (dspi->bytes_per_word == 2)
244 *(u16 *)dspi->rx = rxdata;
245 else /* dspi->bytes_per_word == 4 */
246 *(u32 *)dspi->rx = rxdata;
247 dspi->rx += dspi->bytes_per_word;
250 static void dspi_tx_dma_callback(void *arg)
252 struct fsl_dspi *dspi = arg;
253 struct fsl_dspi_dma *dma = dspi->dma;
255 complete(&dma->cmd_tx_complete);
258 static void dspi_rx_dma_callback(void *arg)
260 struct fsl_dspi *dspi = arg;
261 struct fsl_dspi_dma *dma = dspi->dma;
262 int i;
264 if (dspi->rx) {
265 for (i = 0; i < dma->curr_xfer_len; i++)
266 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
269 complete(&dma->cmd_rx_complete);
272 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
274 struct device *dev = &dspi->pdev->dev;
275 struct fsl_dspi_dma *dma = dspi->dma;
276 int time_left;
277 int i;
279 for (i = 0; i < dma->curr_xfer_len; i++)
280 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
282 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
283 dma->tx_dma_phys,
284 dma->curr_xfer_len *
285 DMA_SLAVE_BUSWIDTH_4_BYTES,
286 DMA_MEM_TO_DEV,
287 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
288 if (!dma->tx_desc) {
289 dev_err(dev, "Not able to get desc for DMA xfer\n");
290 return -EIO;
293 dma->tx_desc->callback = dspi_tx_dma_callback;
294 dma->tx_desc->callback_param = dspi;
295 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
296 dev_err(dev, "DMA submit failed\n");
297 return -EINVAL;
300 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
301 dma->rx_dma_phys,
302 dma->curr_xfer_len *
303 DMA_SLAVE_BUSWIDTH_4_BYTES,
304 DMA_DEV_TO_MEM,
305 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306 if (!dma->rx_desc) {
307 dev_err(dev, "Not able to get desc for DMA xfer\n");
308 return -EIO;
311 dma->rx_desc->callback = dspi_rx_dma_callback;
312 dma->rx_desc->callback_param = dspi;
313 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
314 dev_err(dev, "DMA submit failed\n");
315 return -EINVAL;
318 reinit_completion(&dspi->dma->cmd_rx_complete);
319 reinit_completion(&dspi->dma->cmd_tx_complete);
321 dma_async_issue_pending(dma->chan_rx);
322 dma_async_issue_pending(dma->chan_tx);
324 if (spi_controller_is_slave(dspi->ctlr)) {
325 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
326 return 0;
329 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
330 DMA_COMPLETION_TIMEOUT);
331 if (time_left == 0) {
332 dev_err(dev, "DMA tx timeout\n");
333 dmaengine_terminate_all(dma->chan_tx);
334 dmaengine_terminate_all(dma->chan_rx);
335 return -ETIMEDOUT;
338 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
339 DMA_COMPLETION_TIMEOUT);
340 if (time_left == 0) {
341 dev_err(dev, "DMA rx timeout\n");
342 dmaengine_terminate_all(dma->chan_tx);
343 dmaengine_terminate_all(dma->chan_rx);
344 return -ETIMEDOUT;
347 return 0;
350 static int dspi_dma_xfer(struct fsl_dspi *dspi)
352 struct spi_message *message = dspi->cur_msg;
353 struct device *dev = &dspi->pdev->dev;
354 struct fsl_dspi_dma *dma = dspi->dma;
355 int curr_remaining_bytes;
356 int bytes_per_buffer;
357 int ret = 0;
359 curr_remaining_bytes = dspi->len;
360 bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
361 while (curr_remaining_bytes) {
362 /* Check if current transfer fits the DMA buffer */
363 dma->curr_xfer_len = curr_remaining_bytes
364 / dspi->bytes_per_word;
365 if (dma->curr_xfer_len > bytes_per_buffer)
366 dma->curr_xfer_len = bytes_per_buffer;
368 ret = dspi_next_xfer_dma_submit(dspi);
369 if (ret) {
370 dev_err(dev, "DMA transfer failed\n");
371 goto exit;
373 } else {
374 const int len =
375 dma->curr_xfer_len * dspi->bytes_per_word;
376 curr_remaining_bytes -= len;
377 message->actual_length += len;
378 if (curr_remaining_bytes < 0)
379 curr_remaining_bytes = 0;
383 exit:
384 return ret;
387 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
389 struct device *dev = &dspi->pdev->dev;
390 struct dma_slave_config cfg;
391 struct fsl_dspi_dma *dma;
392 int ret;
394 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
395 if (!dma)
396 return -ENOMEM;
398 dma->chan_rx = dma_request_slave_channel(dev, "rx");
399 if (!dma->chan_rx) {
400 dev_err(dev, "rx dma channel not available\n");
401 ret = -ENODEV;
402 return ret;
405 dma->chan_tx = dma_request_slave_channel(dev, "tx");
406 if (!dma->chan_tx) {
407 dev_err(dev, "tx dma channel not available\n");
408 ret = -ENODEV;
409 goto err_tx_channel;
412 dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
413 &dma->tx_dma_phys, GFP_KERNEL);
414 if (!dma->tx_dma_buf) {
415 ret = -ENOMEM;
416 goto err_tx_dma_buf;
419 dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
420 &dma->rx_dma_phys, GFP_KERNEL);
421 if (!dma->rx_dma_buf) {
422 ret = -ENOMEM;
423 goto err_rx_dma_buf;
426 cfg.src_addr = phy_addr + SPI_POPR;
427 cfg.dst_addr = phy_addr + SPI_PUSHR;
428 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430 cfg.src_maxburst = 1;
431 cfg.dst_maxburst = 1;
433 cfg.direction = DMA_DEV_TO_MEM;
434 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
435 if (ret) {
436 dev_err(dev, "can't configure rx dma channel\n");
437 ret = -EINVAL;
438 goto err_slave_config;
441 cfg.direction = DMA_MEM_TO_DEV;
442 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
443 if (ret) {
444 dev_err(dev, "can't configure tx dma channel\n");
445 ret = -EINVAL;
446 goto err_slave_config;
449 dspi->dma = dma;
450 init_completion(&dma->cmd_tx_complete);
451 init_completion(&dma->cmd_rx_complete);
453 return 0;
455 err_slave_config:
456 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
457 dma->rx_dma_buf, dma->rx_dma_phys);
458 err_rx_dma_buf:
459 dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
460 dma->tx_dma_buf, dma->tx_dma_phys);
461 err_tx_dma_buf:
462 dma_release_channel(dma->chan_tx);
463 err_tx_channel:
464 dma_release_channel(dma->chan_rx);
466 devm_kfree(dev, dma);
467 dspi->dma = NULL;
469 return ret;
472 static void dspi_release_dma(struct fsl_dspi *dspi)
474 struct fsl_dspi_dma *dma = dspi->dma;
475 struct device *dev = &dspi->pdev->dev;
477 if (!dma)
478 return;
480 if (dma->chan_tx) {
481 dma_unmap_single(dev, dma->tx_dma_phys,
482 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
483 dma_release_channel(dma->chan_tx);
486 if (dma->chan_rx) {
487 dma_unmap_single(dev, dma->rx_dma_phys,
488 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
489 dma_release_channel(dma->chan_rx);
493 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
494 unsigned long clkrate)
496 /* Valid baud rate pre-scaler values */
497 int pbr_tbl[4] = {2, 3, 5, 7};
498 int brs[16] = { 2, 4, 6, 8,
499 16, 32, 64, 128,
500 256, 512, 1024, 2048,
501 4096, 8192, 16384, 32768 };
502 int scale_needed, scale, minscale = INT_MAX;
503 int i, j;
505 scale_needed = clkrate / speed_hz;
506 if (clkrate % speed_hz)
507 scale_needed++;
509 for (i = 0; i < ARRAY_SIZE(brs); i++)
510 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
511 scale = brs[i] * pbr_tbl[j];
512 if (scale >= scale_needed) {
513 if (scale < minscale) {
514 minscale = scale;
515 *br = i;
516 *pbr = j;
518 break;
522 if (minscale == INT_MAX) {
523 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
524 speed_hz, clkrate);
525 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
526 *br = ARRAY_SIZE(brs) - 1;
530 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
531 unsigned long clkrate)
533 int scale_needed, scale, minscale = INT_MAX;
534 int pscale_tbl[4] = {1, 3, 5, 7};
535 u32 remainder;
536 int i, j;
538 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
539 &remainder);
540 if (remainder)
541 scale_needed++;
543 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
544 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
545 scale = pscale_tbl[i] * (2 << j);
546 if (scale >= scale_needed) {
547 if (scale < minscale) {
548 minscale = scale;
549 *psc = i;
550 *sc = j;
552 break;
556 if (minscale == INT_MAX) {
557 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
558 delay_ns, clkrate);
559 *psc = ARRAY_SIZE(pscale_tbl) - 1;
560 *sc = SPI_CTAR_SCALE_BITS;
564 static void fifo_write(struct fsl_dspi *dspi)
566 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
569 static void cmd_fifo_write(struct fsl_dspi *dspi)
571 u16 cmd = dspi->tx_cmd;
573 if (dspi->len > 0)
574 cmd |= SPI_PUSHR_CMD_CONT;
575 regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
578 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
580 regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
583 static void dspi_tcfq_write(struct fsl_dspi *dspi)
585 /* Clear transfer count */
586 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
588 if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
589 /* Write two TX FIFO entries first, and then the corresponding
590 * CMD FIFO entry.
592 u32 data = dspi_pop_tx(dspi);
594 if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) {
595 /* LSB */
596 tx_fifo_write(dspi, data & 0xFFFF);
597 tx_fifo_write(dspi, data >> 16);
598 } else {
599 /* MSB */
600 tx_fifo_write(dspi, data >> 16);
601 tx_fifo_write(dspi, data & 0xFFFF);
603 cmd_fifo_write(dspi);
604 } else {
605 /* Write one entry to both TX FIFO and CMD FIFO
606 * simultaneously.
608 fifo_write(dspi);
612 static u32 fifo_read(struct fsl_dspi *dspi)
614 u32 rxdata = 0;
616 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
617 return rxdata;
620 static void dspi_tcfq_read(struct fsl_dspi *dspi)
622 dspi_push_rx(dspi, fifo_read(dspi));
625 static void dspi_eoq_write(struct fsl_dspi *dspi)
627 int fifo_size = DSPI_FIFO_SIZE;
628 u16 xfer_cmd = dspi->tx_cmd;
630 /* Fill TX FIFO with as many transfers as possible */
631 while (dspi->len && fifo_size--) {
632 dspi->tx_cmd = xfer_cmd;
633 /* Request EOQF for last transfer in FIFO */
634 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
635 dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
636 /* Clear transfer count for first transfer in FIFO */
637 if (fifo_size == (DSPI_FIFO_SIZE - 1))
638 dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
639 /* Write combined TX FIFO and CMD FIFO entry */
640 fifo_write(dspi);
644 static void dspi_eoq_read(struct fsl_dspi *dspi)
646 int fifo_size = DSPI_FIFO_SIZE;
648 /* Read one FIFO entry and push to rx buffer */
649 while ((dspi->rx < dspi->rx_end) && fifo_size--)
650 dspi_push_rx(dspi, fifo_read(dspi));
653 static int dspi_rxtx(struct fsl_dspi *dspi)
655 struct spi_message *msg = dspi->cur_msg;
656 enum dspi_trans_mode trans_mode;
657 u16 spi_tcnt;
658 u32 spi_tcr;
660 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
661 dspi->tx - dspi->bytes_per_word, !dspi->irq);
663 /* Get transfer counter (in number of SPI transfers). It was
664 * reset to 0 when transfer(s) were started.
666 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
667 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
668 /* Update total number of bytes that were transferred */
669 msg->actual_length += spi_tcnt * dspi->bytes_per_word;
671 trans_mode = dspi->devtype_data->trans_mode;
672 if (trans_mode == DSPI_EOQ_MODE)
673 dspi_eoq_read(dspi);
674 else if (trans_mode == DSPI_TCFQ_MODE)
675 dspi_tcfq_read(dspi);
677 if (!dspi->len)
678 /* Success! */
679 return 0;
681 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
682 dspi->tx, !dspi->irq);
684 if (trans_mode == DSPI_EOQ_MODE)
685 dspi_eoq_write(dspi);
686 else if (trans_mode == DSPI_TCFQ_MODE)
687 dspi_tcfq_write(dspi);
689 return -EINPROGRESS;
692 static int dspi_poll(struct fsl_dspi *dspi)
694 int tries = 1000;
695 u32 spi_sr;
697 do {
698 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
699 regmap_write(dspi->regmap, SPI_SR, spi_sr);
701 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
702 break;
703 } while (--tries);
705 if (!tries)
706 return -ETIMEDOUT;
708 return dspi_rxtx(dspi);
711 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
713 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
714 u32 spi_sr;
716 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
717 regmap_write(dspi->regmap, SPI_SR, spi_sr);
719 if (!(spi_sr & SPI_SR_EOQF))
720 return IRQ_NONE;
722 if (dspi_rxtx(dspi) == 0) {
723 dspi->waitflags = 1;
724 wake_up_interruptible(&dspi->waitq);
727 return IRQ_HANDLED;
730 static int dspi_transfer_one_message(struct spi_controller *ctlr,
731 struct spi_message *message)
733 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
734 struct spi_device *spi = message->spi;
735 enum dspi_trans_mode trans_mode;
736 struct spi_transfer *transfer;
737 int status = 0;
739 message->actual_length = 0;
741 list_for_each_entry(transfer, &message->transfers, transfer_list) {
742 dspi->cur_transfer = transfer;
743 dspi->cur_msg = message;
744 dspi->cur_chip = spi_get_ctldata(spi);
745 /* Prepare command word for CMD FIFO */
746 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
747 SPI_PUSHR_CMD_PCS(spi->chip_select);
748 if (list_is_last(&dspi->cur_transfer->transfer_list,
749 &dspi->cur_msg->transfers)) {
750 /* Leave PCS activated after last transfer when
751 * cs_change is set.
753 if (transfer->cs_change)
754 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
755 } else {
756 /* Keep PCS active between transfers in same message
757 * when cs_change is not set, and de-activate PCS
758 * between transfers in the same message when
759 * cs_change is set.
761 if (!transfer->cs_change)
762 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
765 dspi->void_write_data = dspi->cur_chip->void_write_data;
767 dspi->tx = transfer->tx_buf;
768 dspi->rx = transfer->rx_buf;
769 dspi->rx_end = dspi->rx + transfer->len;
770 dspi->len = transfer->len;
771 /* Validated transfer specific frame size (defaults applied) */
772 dspi->bits_per_word = transfer->bits_per_word;
773 if (transfer->bits_per_word <= 8)
774 dspi->bytes_per_word = 1;
775 else if (transfer->bits_per_word <= 16)
776 dspi->bytes_per_word = 2;
777 else
778 dspi->bytes_per_word = 4;
780 regmap_update_bits(dspi->regmap, SPI_MCR,
781 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
782 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
783 regmap_write(dspi->regmap, SPI_CTAR(0),
784 dspi->cur_chip->ctar_val |
785 SPI_FRAME_BITS(transfer->bits_per_word));
786 if (dspi->devtype_data->xspi_mode)
787 regmap_write(dspi->regmap, SPI_CTARE(0),
788 SPI_FRAME_EBITS(transfer->bits_per_word) |
789 SPI_CTARE_DTCP(1));
791 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
792 dspi->tx, !dspi->irq);
794 trans_mode = dspi->devtype_data->trans_mode;
795 switch (trans_mode) {
796 case DSPI_EOQ_MODE:
797 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
798 dspi_eoq_write(dspi);
799 break;
800 case DSPI_TCFQ_MODE:
801 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
802 dspi_tcfq_write(dspi);
803 break;
804 case DSPI_DMA_MODE:
805 regmap_write(dspi->regmap, SPI_RSER,
806 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
807 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
808 status = dspi_dma_xfer(dspi);
809 break;
810 default:
811 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
812 trans_mode);
813 status = -EINVAL;
814 goto out;
817 if (!dspi->irq) {
818 do {
819 status = dspi_poll(dspi);
820 } while (status == -EINPROGRESS);
821 } else if (trans_mode != DSPI_DMA_MODE) {
822 status = wait_event_interruptible(dspi->waitq,
823 dspi->waitflags);
824 dspi->waitflags = 0;
826 if (status)
827 dev_err(&dspi->pdev->dev,
828 "Waiting for transfer to complete failed!\n");
830 spi_transfer_delay_exec(transfer);
833 out:
834 message->status = status;
835 spi_finalize_current_message(ctlr);
837 return status;
840 static int dspi_setup(struct spi_device *spi)
842 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
843 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
844 u32 cs_sck_delay = 0, sck_cs_delay = 0;
845 struct fsl_dspi_platform_data *pdata;
846 unsigned char pasc = 0, asc = 0;
847 struct chip_data *chip;
848 unsigned long clkrate;
850 /* Only alloc on first setup */
851 chip = spi_get_ctldata(spi);
852 if (chip == NULL) {
853 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
854 if (!chip)
855 return -ENOMEM;
858 pdata = dev_get_platdata(&dspi->pdev->dev);
860 if (!pdata) {
861 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
862 &cs_sck_delay);
864 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
865 &sck_cs_delay);
866 } else {
867 cs_sck_delay = pdata->cs_sck_delay;
868 sck_cs_delay = pdata->sck_cs_delay;
871 chip->void_write_data = 0;
873 clkrate = clk_get_rate(dspi->clk);
874 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
876 /* Set PCS to SCK delay scale values */
877 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
879 /* Set After SCK delay scale values */
880 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
882 chip->ctar_val = 0;
883 if (spi->mode & SPI_CPOL)
884 chip->ctar_val |= SPI_CTAR_CPOL;
885 if (spi->mode & SPI_CPHA)
886 chip->ctar_val |= SPI_CTAR_CPHA;
888 if (!spi_controller_is_slave(dspi->ctlr)) {
889 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
890 SPI_CTAR_CSSCK(cssck) |
891 SPI_CTAR_PASC(pasc) |
892 SPI_CTAR_ASC(asc) |
893 SPI_CTAR_PBR(pbr) |
894 SPI_CTAR_BR(br);
896 if (spi->mode & SPI_LSB_FIRST)
897 chip->ctar_val |= SPI_CTAR_LSBFE;
900 spi_set_ctldata(spi, chip);
902 return 0;
905 static void dspi_cleanup(struct spi_device *spi)
907 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
909 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
910 spi->controller->bus_num, spi->chip_select);
912 kfree(chip);
915 static const struct of_device_id fsl_dspi_dt_ids[] = {
916 { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
917 { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
918 { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
919 { /* sentinel */ }
921 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
923 #ifdef CONFIG_PM_SLEEP
924 static int dspi_suspend(struct device *dev)
926 struct spi_controller *ctlr = dev_get_drvdata(dev);
927 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
929 spi_controller_suspend(ctlr);
930 clk_disable_unprepare(dspi->clk);
932 pinctrl_pm_select_sleep_state(dev);
934 return 0;
937 static int dspi_resume(struct device *dev)
939 struct spi_controller *ctlr = dev_get_drvdata(dev);
940 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
941 int ret;
943 pinctrl_pm_select_default_state(dev);
945 ret = clk_prepare_enable(dspi->clk);
946 if (ret)
947 return ret;
948 spi_controller_resume(ctlr);
950 return 0;
952 #endif /* CONFIG_PM_SLEEP */
954 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
956 static const struct regmap_range dspi_volatile_ranges[] = {
957 regmap_reg_range(SPI_MCR, SPI_TCR),
958 regmap_reg_range(SPI_SR, SPI_SR),
959 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
962 static const struct regmap_access_table dspi_volatile_table = {
963 .yes_ranges = dspi_volatile_ranges,
964 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
967 static const struct regmap_config dspi_regmap_config = {
968 .reg_bits = 32,
969 .val_bits = 32,
970 .reg_stride = 4,
971 .max_register = 0x88,
972 .volatile_table = &dspi_volatile_table,
975 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
976 regmap_reg_range(SPI_MCR, SPI_TCR),
977 regmap_reg_range(SPI_SR, SPI_SR),
978 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
979 regmap_reg_range(SPI_SREX, SPI_SREX),
982 static const struct regmap_access_table dspi_xspi_volatile_table = {
983 .yes_ranges = dspi_xspi_volatile_ranges,
984 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
987 static const struct regmap_config dspi_xspi_regmap_config[] = {
989 .reg_bits = 32,
990 .val_bits = 32,
991 .reg_stride = 4,
992 .max_register = 0x13c,
993 .volatile_table = &dspi_xspi_volatile_table,
996 .name = "pushr",
997 .reg_bits = 16,
998 .val_bits = 16,
999 .reg_stride = 2,
1000 .max_register = 0x2,
1004 static void dspi_init(struct fsl_dspi *dspi)
1006 unsigned int mcr = SPI_MCR_PCSIS;
1008 if (dspi->devtype_data->xspi_mode)
1009 mcr |= SPI_MCR_XSPI;
1010 if (!spi_controller_is_slave(dspi->ctlr))
1011 mcr |= SPI_MCR_MASTER;
1013 regmap_write(dspi->regmap, SPI_MCR, mcr);
1014 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1015 if (dspi->devtype_data->xspi_mode)
1016 regmap_write(dspi->regmap, SPI_CTARE(0),
1017 SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1020 static int dspi_slave_abort(struct spi_master *master)
1022 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1025 * Terminate all pending DMA transactions for the SPI working
1026 * in SLAVE mode.
1028 dmaengine_terminate_sync(dspi->dma->chan_rx);
1029 dmaengine_terminate_sync(dspi->dma->chan_tx);
1031 /* Clear the internal DSPI RX and TX FIFO buffers */
1032 regmap_update_bits(dspi->regmap, SPI_MCR,
1033 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1034 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1036 return 0;
1039 static int dspi_probe(struct platform_device *pdev)
1041 struct device_node *np = pdev->dev.of_node;
1042 const struct regmap_config *regmap_config;
1043 struct fsl_dspi_platform_data *pdata;
1044 struct spi_controller *ctlr;
1045 int ret, cs_num, bus_num;
1046 struct fsl_dspi *dspi;
1047 struct resource *res;
1048 void __iomem *base;
1050 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1051 if (!ctlr)
1052 return -ENOMEM;
1054 dspi = spi_controller_get_devdata(ctlr);
1055 dspi->pdev = pdev;
1056 dspi->ctlr = ctlr;
1058 ctlr->setup = dspi_setup;
1059 ctlr->transfer_one_message = dspi_transfer_one_message;
1060 ctlr->dev.of_node = pdev->dev.of_node;
1062 ctlr->cleanup = dspi_cleanup;
1063 ctlr->slave_abort = dspi_slave_abort;
1064 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1066 pdata = dev_get_platdata(&pdev->dev);
1067 if (pdata) {
1068 ctlr->num_chipselect = pdata->cs_num;
1069 ctlr->bus_num = pdata->bus_num;
1071 dspi->devtype_data = &coldfire_data;
1072 } else {
1074 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1075 if (ret < 0) {
1076 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1077 goto out_ctlr_put;
1079 ctlr->num_chipselect = cs_num;
1081 ret = of_property_read_u32(np, "bus-num", &bus_num);
1082 if (ret < 0) {
1083 dev_err(&pdev->dev, "can't get bus-num\n");
1084 goto out_ctlr_put;
1086 ctlr->bus_num = bus_num;
1088 if (of_property_read_bool(np, "spi-slave"))
1089 ctlr->slave = true;
1091 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1092 if (!dspi->devtype_data) {
1093 dev_err(&pdev->dev, "can't get devtype_data\n");
1094 ret = -EFAULT;
1095 goto out_ctlr_put;
1099 if (dspi->devtype_data->xspi_mode)
1100 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1101 else
1102 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1104 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1105 base = devm_ioremap_resource(&pdev->dev, res);
1106 if (IS_ERR(base)) {
1107 ret = PTR_ERR(base);
1108 goto out_ctlr_put;
1111 if (dspi->devtype_data->xspi_mode)
1112 regmap_config = &dspi_xspi_regmap_config[0];
1113 else
1114 regmap_config = &dspi_regmap_config;
1115 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1116 if (IS_ERR(dspi->regmap)) {
1117 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1118 PTR_ERR(dspi->regmap));
1119 ret = PTR_ERR(dspi->regmap);
1120 goto out_ctlr_put;
1123 if (dspi->devtype_data->xspi_mode) {
1124 dspi->regmap_pushr = devm_regmap_init_mmio(
1125 &pdev->dev, base + SPI_PUSHR,
1126 &dspi_xspi_regmap_config[1]);
1127 if (IS_ERR(dspi->regmap_pushr)) {
1128 dev_err(&pdev->dev,
1129 "failed to init pushr regmap: %ld\n",
1130 PTR_ERR(dspi->regmap_pushr));
1131 ret = PTR_ERR(dspi->regmap_pushr);
1132 goto out_ctlr_put;
1136 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1137 if (IS_ERR(dspi->clk)) {
1138 ret = PTR_ERR(dspi->clk);
1139 dev_err(&pdev->dev, "unable to get clock\n");
1140 goto out_ctlr_put;
1142 ret = clk_prepare_enable(dspi->clk);
1143 if (ret)
1144 goto out_ctlr_put;
1146 dspi_init(dspi);
1148 if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1149 goto poll_mode;
1151 dspi->irq = platform_get_irq(pdev, 0);
1152 if (dspi->irq <= 0) {
1153 dev_info(&pdev->dev,
1154 "can't get platform irq, using poll mode\n");
1155 dspi->irq = 0;
1156 goto poll_mode;
1159 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1160 IRQF_SHARED, pdev->name, dspi);
1161 if (ret < 0) {
1162 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1163 goto out_clk_put;
1166 init_waitqueue_head(&dspi->waitq);
1168 poll_mode:
1170 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1171 ret = dspi_request_dma(dspi, res->start);
1172 if (ret < 0) {
1173 dev_err(&pdev->dev, "can't get dma channels\n");
1174 goto out_clk_put;
1178 ctlr->max_speed_hz =
1179 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1181 ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1183 platform_set_drvdata(pdev, ctlr);
1185 ret = spi_register_controller(ctlr);
1186 if (ret != 0) {
1187 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1188 goto out_clk_put;
1191 return ret;
1193 out_clk_put:
1194 clk_disable_unprepare(dspi->clk);
1195 out_ctlr_put:
1196 spi_controller_put(ctlr);
1198 return ret;
1201 static int dspi_remove(struct platform_device *pdev)
1203 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1204 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1206 /* Disconnect from the SPI framework */
1207 dspi_release_dma(dspi);
1208 clk_disable_unprepare(dspi->clk);
1209 spi_unregister_controller(dspi->ctlr);
1211 return 0;
1214 static struct platform_driver fsl_dspi_driver = {
1215 .driver.name = DRIVER_NAME,
1216 .driver.of_match_table = fsl_dspi_dt_ids,
1217 .driver.owner = THIS_MODULE,
1218 .driver.pm = &dspi_pm,
1219 .probe = dspi_probe,
1220 .remove = dspi_remove,
1222 module_platform_driver(fsl_dspi_driver);
1224 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1225 MODULE_LICENSE("GPL");
1226 MODULE_ALIAS("platform:" DRIVER_NAME);