gfs2: properly initial file_lock used for unlock.
[linux/fpc-iii.git] / kernel / audit_tree.c
blobea43181cde4a2d7efe7747ac5b9e0346ddbf5d3f
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
10 struct audit_tree;
11 struct audit_chunk;
13 struct audit_tree {
14 refcount_t count;
15 int goner;
16 struct audit_chunk *root;
17 struct list_head chunks;
18 struct list_head rules;
19 struct list_head list;
20 struct list_head same_root;
21 struct rcu_head head;
22 char pathname[];
25 struct audit_chunk {
26 struct list_head hash;
27 struct fsnotify_mark mark;
28 struct list_head trees; /* with root here */
29 int dead;
30 int count;
31 atomic_long_t refs;
32 struct rcu_head head;
33 struct node {
34 struct list_head list;
35 struct audit_tree *owner;
36 unsigned index; /* index; upper bit indicates 'will prune' */
37 } owners[];
40 static LIST_HEAD(tree_list);
41 static LIST_HEAD(prune_list);
42 static struct task_struct *prune_thread;
45 * One struct chunk is attached to each inode of interest.
46 * We replace struct chunk on tagging/untagging.
47 * Rules have pointer to struct audit_tree.
48 * Rules have struct list_head rlist forming a list of rules over
49 * the same tree.
50 * References to struct chunk are collected at audit_inode{,_child}()
51 * time and used in AUDIT_TREE rule matching.
52 * These references are dropped at the same time we are calling
53 * audit_free_names(), etc.
55 * Cyclic lists galore:
56 * tree.chunks anchors chunk.owners[].list hash_lock
57 * tree.rules anchors rule.rlist audit_filter_mutex
58 * chunk.trees anchors tree.same_root hash_lock
59 * chunk.hash is a hash with middle bits of watch.inode as
60 * a hash function. RCU, hash_lock
62 * tree is refcounted; one reference for "some rules on rules_list refer to
63 * it", one for each chunk with pointer to it.
65 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
66 * of watch contributes 1 to .refs).
68 * node.index allows to get from node.list to containing chunk.
69 * MSB of that sucker is stolen to mark taggings that we might have to
70 * revert - several operations have very unpleasant cleanup logics and
71 * that makes a difference. Some.
74 static struct fsnotify_group *audit_tree_group;
76 static struct audit_tree *alloc_tree(const char *s)
78 struct audit_tree *tree;
80 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
81 if (tree) {
82 refcount_set(&tree->count, 1);
83 tree->goner = 0;
84 INIT_LIST_HEAD(&tree->chunks);
85 INIT_LIST_HEAD(&tree->rules);
86 INIT_LIST_HEAD(&tree->list);
87 INIT_LIST_HEAD(&tree->same_root);
88 tree->root = NULL;
89 strcpy(tree->pathname, s);
91 return tree;
94 static inline void get_tree(struct audit_tree *tree)
96 refcount_inc(&tree->count);
99 static inline void put_tree(struct audit_tree *tree)
101 if (refcount_dec_and_test(&tree->count))
102 kfree_rcu(tree, head);
105 /* to avoid bringing the entire thing in audit.h */
106 const char *audit_tree_path(struct audit_tree *tree)
108 return tree->pathname;
111 static void free_chunk(struct audit_chunk *chunk)
113 int i;
115 for (i = 0; i < chunk->count; i++) {
116 if (chunk->owners[i].owner)
117 put_tree(chunk->owners[i].owner);
119 kfree(chunk);
122 void audit_put_chunk(struct audit_chunk *chunk)
124 if (atomic_long_dec_and_test(&chunk->refs))
125 free_chunk(chunk);
128 static void __put_chunk(struct rcu_head *rcu)
130 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
131 audit_put_chunk(chunk);
134 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
136 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
137 call_rcu(&chunk->head, __put_chunk);
140 static struct audit_chunk *alloc_chunk(int count)
142 struct audit_chunk *chunk;
143 size_t size;
144 int i;
146 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
147 chunk = kzalloc(size, GFP_KERNEL);
148 if (!chunk)
149 return NULL;
151 INIT_LIST_HEAD(&chunk->hash);
152 INIT_LIST_HEAD(&chunk->trees);
153 chunk->count = count;
154 atomic_long_set(&chunk->refs, 1);
155 for (i = 0; i < count; i++) {
156 INIT_LIST_HEAD(&chunk->owners[i].list);
157 chunk->owners[i].index = i;
159 fsnotify_init_mark(&chunk->mark, audit_tree_group);
160 chunk->mark.mask = FS_IN_IGNORED;
161 return chunk;
164 enum {HASH_SIZE = 128};
165 static struct list_head chunk_hash_heads[HASH_SIZE];
166 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
168 /* Function to return search key in our hash from inode. */
169 static unsigned long inode_to_key(const struct inode *inode)
171 /* Use address pointed to by connector->obj as the key */
172 return (unsigned long)&inode->i_fsnotify_marks;
176 * Function to return search key in our hash from chunk. Key 0 is special and
177 * should never be present in the hash.
179 static unsigned long chunk_to_key(struct audit_chunk *chunk)
182 * We have a reference to the mark so it should be attached to a
183 * connector.
185 if (WARN_ON_ONCE(!chunk->mark.connector))
186 return 0;
187 return (unsigned long)chunk->mark.connector->obj;
190 static inline struct list_head *chunk_hash(unsigned long key)
192 unsigned long n = key / L1_CACHE_BYTES;
193 return chunk_hash_heads + n % HASH_SIZE;
196 /* hash_lock & entry->lock is held by caller */
197 static void insert_hash(struct audit_chunk *chunk)
199 unsigned long key = chunk_to_key(chunk);
200 struct list_head *list;
202 if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
203 return;
204 list = chunk_hash(key);
205 list_add_rcu(&chunk->hash, list);
208 /* called under rcu_read_lock */
209 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
211 unsigned long key = inode_to_key(inode);
212 struct list_head *list = chunk_hash(key);
213 struct audit_chunk *p;
215 list_for_each_entry_rcu(p, list, hash) {
216 if (chunk_to_key(p) == key) {
217 atomic_long_inc(&p->refs);
218 return p;
221 return NULL;
224 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
226 int n;
227 for (n = 0; n < chunk->count; n++)
228 if (chunk->owners[n].owner == tree)
229 return true;
230 return false;
233 /* tagging and untagging inodes with trees */
235 static struct audit_chunk *find_chunk(struct node *p)
237 int index = p->index & ~(1U<<31);
238 p -= index;
239 return container_of(p, struct audit_chunk, owners[0]);
242 static void untag_chunk(struct node *p)
244 struct audit_chunk *chunk = find_chunk(p);
245 struct fsnotify_mark *entry = &chunk->mark;
246 struct audit_chunk *new = NULL;
247 struct audit_tree *owner;
248 int size = chunk->count - 1;
249 int i, j;
251 fsnotify_get_mark(entry);
253 spin_unlock(&hash_lock);
255 if (size)
256 new = alloc_chunk(size);
258 mutex_lock(&entry->group->mark_mutex);
259 spin_lock(&entry->lock);
261 * mark_mutex protects mark from getting detached and thus also from
262 * mark->connector->obj getting NULL.
264 if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
265 spin_unlock(&entry->lock);
266 mutex_unlock(&entry->group->mark_mutex);
267 if (new)
268 fsnotify_put_mark(&new->mark);
269 goto out;
272 owner = p->owner;
274 if (!size) {
275 chunk->dead = 1;
276 spin_lock(&hash_lock);
277 list_del_init(&chunk->trees);
278 if (owner->root == chunk)
279 owner->root = NULL;
280 list_del_init(&p->list);
281 list_del_rcu(&chunk->hash);
282 spin_unlock(&hash_lock);
283 spin_unlock(&entry->lock);
284 mutex_unlock(&entry->group->mark_mutex);
285 fsnotify_destroy_mark(entry, audit_tree_group);
286 goto out;
289 if (!new)
290 goto Fallback;
292 if (fsnotify_add_mark_locked(&new->mark, entry->connector->obj,
293 FSNOTIFY_OBJ_TYPE_INODE, 1)) {
294 fsnotify_put_mark(&new->mark);
295 goto Fallback;
298 chunk->dead = 1;
299 spin_lock(&hash_lock);
300 list_replace_init(&chunk->trees, &new->trees);
301 if (owner->root == chunk) {
302 list_del_init(&owner->same_root);
303 owner->root = NULL;
306 for (i = j = 0; j <= size; i++, j++) {
307 struct audit_tree *s;
308 if (&chunk->owners[j] == p) {
309 list_del_init(&p->list);
310 i--;
311 continue;
313 s = chunk->owners[j].owner;
314 new->owners[i].owner = s;
315 new->owners[i].index = chunk->owners[j].index - j + i;
316 if (!s) /* result of earlier fallback */
317 continue;
318 get_tree(s);
319 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
322 list_replace_rcu(&chunk->hash, &new->hash);
323 list_for_each_entry(owner, &new->trees, same_root)
324 owner->root = new;
325 spin_unlock(&hash_lock);
326 spin_unlock(&entry->lock);
327 mutex_unlock(&entry->group->mark_mutex);
328 fsnotify_destroy_mark(entry, audit_tree_group);
329 fsnotify_put_mark(&new->mark); /* drop initial reference */
330 goto out;
332 Fallback:
333 // do the best we can
334 spin_lock(&hash_lock);
335 if (owner->root == chunk) {
336 list_del_init(&owner->same_root);
337 owner->root = NULL;
339 list_del_init(&p->list);
340 p->owner = NULL;
341 put_tree(owner);
342 spin_unlock(&hash_lock);
343 spin_unlock(&entry->lock);
344 mutex_unlock(&entry->group->mark_mutex);
345 out:
346 fsnotify_put_mark(entry);
347 spin_lock(&hash_lock);
350 static int create_chunk(struct inode *inode, struct audit_tree *tree)
352 struct fsnotify_mark *entry;
353 struct audit_chunk *chunk = alloc_chunk(1);
354 if (!chunk)
355 return -ENOMEM;
357 entry = &chunk->mark;
358 if (fsnotify_add_inode_mark(entry, inode, 0)) {
359 fsnotify_put_mark(entry);
360 return -ENOSPC;
363 spin_lock(&entry->lock);
364 spin_lock(&hash_lock);
365 if (tree->goner) {
366 spin_unlock(&hash_lock);
367 chunk->dead = 1;
368 spin_unlock(&entry->lock);
369 fsnotify_destroy_mark(entry, audit_tree_group);
370 fsnotify_put_mark(entry);
371 return 0;
373 chunk->owners[0].index = (1U << 31);
374 chunk->owners[0].owner = tree;
375 get_tree(tree);
376 list_add(&chunk->owners[0].list, &tree->chunks);
377 if (!tree->root) {
378 tree->root = chunk;
379 list_add(&tree->same_root, &chunk->trees);
381 insert_hash(chunk);
382 spin_unlock(&hash_lock);
383 spin_unlock(&entry->lock);
384 fsnotify_put_mark(entry); /* drop initial reference */
385 return 0;
388 /* the first tagged inode becomes root of tree */
389 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
391 struct fsnotify_mark *old_entry, *chunk_entry;
392 struct audit_tree *owner;
393 struct audit_chunk *chunk, *old;
394 struct node *p;
395 int n;
397 old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
398 audit_tree_group);
399 if (!old_entry)
400 return create_chunk(inode, tree);
402 old = container_of(old_entry, struct audit_chunk, mark);
404 /* are we already there? */
405 spin_lock(&hash_lock);
406 for (n = 0; n < old->count; n++) {
407 if (old->owners[n].owner == tree) {
408 spin_unlock(&hash_lock);
409 fsnotify_put_mark(old_entry);
410 return 0;
413 spin_unlock(&hash_lock);
415 chunk = alloc_chunk(old->count + 1);
416 if (!chunk) {
417 fsnotify_put_mark(old_entry);
418 return -ENOMEM;
421 chunk_entry = &chunk->mark;
423 mutex_lock(&old_entry->group->mark_mutex);
424 spin_lock(&old_entry->lock);
426 * mark_mutex protects mark from getting detached and thus also from
427 * mark->connector->obj getting NULL.
429 if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
430 /* old_entry is being shot, lets just lie */
431 spin_unlock(&old_entry->lock);
432 mutex_unlock(&old_entry->group->mark_mutex);
433 fsnotify_put_mark(old_entry);
434 fsnotify_put_mark(&chunk->mark);
435 return -ENOENT;
438 if (fsnotify_add_mark_locked(chunk_entry, old_entry->connector->obj,
439 FSNOTIFY_OBJ_TYPE_INODE, 1)) {
440 spin_unlock(&old_entry->lock);
441 mutex_unlock(&old_entry->group->mark_mutex);
442 fsnotify_put_mark(chunk_entry);
443 fsnotify_put_mark(old_entry);
444 return -ENOSPC;
447 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
448 spin_lock(&chunk_entry->lock);
449 spin_lock(&hash_lock);
451 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
452 if (tree->goner) {
453 spin_unlock(&hash_lock);
454 chunk->dead = 1;
455 spin_unlock(&chunk_entry->lock);
456 spin_unlock(&old_entry->lock);
457 mutex_unlock(&old_entry->group->mark_mutex);
459 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
461 fsnotify_put_mark(chunk_entry);
462 fsnotify_put_mark(old_entry);
463 return 0;
465 list_replace_init(&old->trees, &chunk->trees);
466 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
467 struct audit_tree *s = old->owners[n].owner;
468 p->owner = s;
469 p->index = old->owners[n].index;
470 if (!s) /* result of fallback in untag */
471 continue;
472 get_tree(s);
473 list_replace_init(&old->owners[n].list, &p->list);
475 p->index = (chunk->count - 1) | (1U<<31);
476 p->owner = tree;
477 get_tree(tree);
478 list_add(&p->list, &tree->chunks);
479 list_replace_rcu(&old->hash, &chunk->hash);
480 list_for_each_entry(owner, &chunk->trees, same_root)
481 owner->root = chunk;
482 old->dead = 1;
483 if (!tree->root) {
484 tree->root = chunk;
485 list_add(&tree->same_root, &chunk->trees);
487 spin_unlock(&hash_lock);
488 spin_unlock(&chunk_entry->lock);
489 spin_unlock(&old_entry->lock);
490 mutex_unlock(&old_entry->group->mark_mutex);
491 fsnotify_destroy_mark(old_entry, audit_tree_group);
492 fsnotify_put_mark(chunk_entry); /* drop initial reference */
493 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
494 return 0;
497 static void audit_tree_log_remove_rule(struct audit_krule *rule)
499 struct audit_buffer *ab;
501 if (!audit_enabled)
502 return;
503 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
504 if (unlikely(!ab))
505 return;
506 audit_log_format(ab, "op=remove_rule");
507 audit_log_format(ab, " dir=");
508 audit_log_untrustedstring(ab, rule->tree->pathname);
509 audit_log_key(ab, rule->filterkey);
510 audit_log_format(ab, " list=%d res=1", rule->listnr);
511 audit_log_end(ab);
514 static void kill_rules(struct audit_tree *tree)
516 struct audit_krule *rule, *next;
517 struct audit_entry *entry;
519 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
520 entry = container_of(rule, struct audit_entry, rule);
522 list_del_init(&rule->rlist);
523 if (rule->tree) {
524 /* not a half-baked one */
525 audit_tree_log_remove_rule(rule);
526 if (entry->rule.exe)
527 audit_remove_mark(entry->rule.exe);
528 rule->tree = NULL;
529 list_del_rcu(&entry->list);
530 list_del(&entry->rule.list);
531 call_rcu(&entry->rcu, audit_free_rule_rcu);
537 * finish killing struct audit_tree
539 static void prune_one(struct audit_tree *victim)
541 spin_lock(&hash_lock);
542 while (!list_empty(&victim->chunks)) {
543 struct node *p;
545 p = list_entry(victim->chunks.next, struct node, list);
547 untag_chunk(p);
549 spin_unlock(&hash_lock);
550 put_tree(victim);
553 /* trim the uncommitted chunks from tree */
555 static void trim_marked(struct audit_tree *tree)
557 struct list_head *p, *q;
558 spin_lock(&hash_lock);
559 if (tree->goner) {
560 spin_unlock(&hash_lock);
561 return;
563 /* reorder */
564 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
565 struct node *node = list_entry(p, struct node, list);
566 q = p->next;
567 if (node->index & (1U<<31)) {
568 list_del_init(p);
569 list_add(p, &tree->chunks);
573 while (!list_empty(&tree->chunks)) {
574 struct node *node;
576 node = list_entry(tree->chunks.next, struct node, list);
578 /* have we run out of marked? */
579 if (!(node->index & (1U<<31)))
580 break;
582 untag_chunk(node);
584 if (!tree->root && !tree->goner) {
585 tree->goner = 1;
586 spin_unlock(&hash_lock);
587 mutex_lock(&audit_filter_mutex);
588 kill_rules(tree);
589 list_del_init(&tree->list);
590 mutex_unlock(&audit_filter_mutex);
591 prune_one(tree);
592 } else {
593 spin_unlock(&hash_lock);
597 static void audit_schedule_prune(void);
599 /* called with audit_filter_mutex */
600 int audit_remove_tree_rule(struct audit_krule *rule)
602 struct audit_tree *tree;
603 tree = rule->tree;
604 if (tree) {
605 spin_lock(&hash_lock);
606 list_del_init(&rule->rlist);
607 if (list_empty(&tree->rules) && !tree->goner) {
608 tree->root = NULL;
609 list_del_init(&tree->same_root);
610 tree->goner = 1;
611 list_move(&tree->list, &prune_list);
612 rule->tree = NULL;
613 spin_unlock(&hash_lock);
614 audit_schedule_prune();
615 return 1;
617 rule->tree = NULL;
618 spin_unlock(&hash_lock);
619 return 1;
621 return 0;
624 static int compare_root(struct vfsmount *mnt, void *arg)
626 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
627 (unsigned long)arg;
630 void audit_trim_trees(void)
632 struct list_head cursor;
634 mutex_lock(&audit_filter_mutex);
635 list_add(&cursor, &tree_list);
636 while (cursor.next != &tree_list) {
637 struct audit_tree *tree;
638 struct path path;
639 struct vfsmount *root_mnt;
640 struct node *node;
641 int err;
643 tree = container_of(cursor.next, struct audit_tree, list);
644 get_tree(tree);
645 list_del(&cursor);
646 list_add(&cursor, &tree->list);
647 mutex_unlock(&audit_filter_mutex);
649 err = kern_path(tree->pathname, 0, &path);
650 if (err)
651 goto skip_it;
653 root_mnt = collect_mounts(&path);
654 path_put(&path);
655 if (IS_ERR(root_mnt))
656 goto skip_it;
658 spin_lock(&hash_lock);
659 list_for_each_entry(node, &tree->chunks, list) {
660 struct audit_chunk *chunk = find_chunk(node);
661 /* this could be NULL if the watch is dying else where... */
662 node->index |= 1U<<31;
663 if (iterate_mounts(compare_root,
664 (void *)chunk_to_key(chunk),
665 root_mnt))
666 node->index &= ~(1U<<31);
668 spin_unlock(&hash_lock);
669 trim_marked(tree);
670 drop_collected_mounts(root_mnt);
671 skip_it:
672 put_tree(tree);
673 mutex_lock(&audit_filter_mutex);
675 list_del(&cursor);
676 mutex_unlock(&audit_filter_mutex);
679 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
682 if (pathname[0] != '/' ||
683 rule->listnr != AUDIT_FILTER_EXIT ||
684 op != Audit_equal ||
685 rule->inode_f || rule->watch || rule->tree)
686 return -EINVAL;
687 rule->tree = alloc_tree(pathname);
688 if (!rule->tree)
689 return -ENOMEM;
690 return 0;
693 void audit_put_tree(struct audit_tree *tree)
695 put_tree(tree);
698 static int tag_mount(struct vfsmount *mnt, void *arg)
700 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
704 * That gets run when evict_chunk() ends up needing to kill audit_tree.
705 * Runs from a separate thread.
707 static int prune_tree_thread(void *unused)
709 for (;;) {
710 if (list_empty(&prune_list)) {
711 set_current_state(TASK_INTERRUPTIBLE);
712 schedule();
715 audit_ctl_lock();
716 mutex_lock(&audit_filter_mutex);
718 while (!list_empty(&prune_list)) {
719 struct audit_tree *victim;
721 victim = list_entry(prune_list.next,
722 struct audit_tree, list);
723 list_del_init(&victim->list);
725 mutex_unlock(&audit_filter_mutex);
727 prune_one(victim);
729 mutex_lock(&audit_filter_mutex);
732 mutex_unlock(&audit_filter_mutex);
733 audit_ctl_unlock();
735 return 0;
738 static int audit_launch_prune(void)
740 if (prune_thread)
741 return 0;
742 prune_thread = kthread_run(prune_tree_thread, NULL,
743 "audit_prune_tree");
744 if (IS_ERR(prune_thread)) {
745 pr_err("cannot start thread audit_prune_tree");
746 prune_thread = NULL;
747 return -ENOMEM;
749 return 0;
752 /* called with audit_filter_mutex */
753 int audit_add_tree_rule(struct audit_krule *rule)
755 struct audit_tree *seed = rule->tree, *tree;
756 struct path path;
757 struct vfsmount *mnt;
758 int err;
760 rule->tree = NULL;
761 list_for_each_entry(tree, &tree_list, list) {
762 if (!strcmp(seed->pathname, tree->pathname)) {
763 put_tree(seed);
764 rule->tree = tree;
765 list_add(&rule->rlist, &tree->rules);
766 return 0;
769 tree = seed;
770 list_add(&tree->list, &tree_list);
771 list_add(&rule->rlist, &tree->rules);
772 /* do not set rule->tree yet */
773 mutex_unlock(&audit_filter_mutex);
775 if (unlikely(!prune_thread)) {
776 err = audit_launch_prune();
777 if (err)
778 goto Err;
781 err = kern_path(tree->pathname, 0, &path);
782 if (err)
783 goto Err;
784 mnt = collect_mounts(&path);
785 path_put(&path);
786 if (IS_ERR(mnt)) {
787 err = PTR_ERR(mnt);
788 goto Err;
791 get_tree(tree);
792 err = iterate_mounts(tag_mount, tree, mnt);
793 drop_collected_mounts(mnt);
795 if (!err) {
796 struct node *node;
797 spin_lock(&hash_lock);
798 list_for_each_entry(node, &tree->chunks, list)
799 node->index &= ~(1U<<31);
800 spin_unlock(&hash_lock);
801 } else {
802 trim_marked(tree);
803 goto Err;
806 mutex_lock(&audit_filter_mutex);
807 if (list_empty(&rule->rlist)) {
808 put_tree(tree);
809 return -ENOENT;
811 rule->tree = tree;
812 put_tree(tree);
814 return 0;
815 Err:
816 mutex_lock(&audit_filter_mutex);
817 list_del_init(&tree->list);
818 list_del_init(&tree->rules);
819 put_tree(tree);
820 return err;
823 int audit_tag_tree(char *old, char *new)
825 struct list_head cursor, barrier;
826 int failed = 0;
827 struct path path1, path2;
828 struct vfsmount *tagged;
829 int err;
831 err = kern_path(new, 0, &path2);
832 if (err)
833 return err;
834 tagged = collect_mounts(&path2);
835 path_put(&path2);
836 if (IS_ERR(tagged))
837 return PTR_ERR(tagged);
839 err = kern_path(old, 0, &path1);
840 if (err) {
841 drop_collected_mounts(tagged);
842 return err;
845 mutex_lock(&audit_filter_mutex);
846 list_add(&barrier, &tree_list);
847 list_add(&cursor, &barrier);
849 while (cursor.next != &tree_list) {
850 struct audit_tree *tree;
851 int good_one = 0;
853 tree = container_of(cursor.next, struct audit_tree, list);
854 get_tree(tree);
855 list_del(&cursor);
856 list_add(&cursor, &tree->list);
857 mutex_unlock(&audit_filter_mutex);
859 err = kern_path(tree->pathname, 0, &path2);
860 if (!err) {
861 good_one = path_is_under(&path1, &path2);
862 path_put(&path2);
865 if (!good_one) {
866 put_tree(tree);
867 mutex_lock(&audit_filter_mutex);
868 continue;
871 failed = iterate_mounts(tag_mount, tree, tagged);
872 if (failed) {
873 put_tree(tree);
874 mutex_lock(&audit_filter_mutex);
875 break;
878 mutex_lock(&audit_filter_mutex);
879 spin_lock(&hash_lock);
880 if (!tree->goner) {
881 list_del(&tree->list);
882 list_add(&tree->list, &tree_list);
884 spin_unlock(&hash_lock);
885 put_tree(tree);
888 while (barrier.prev != &tree_list) {
889 struct audit_tree *tree;
891 tree = container_of(barrier.prev, struct audit_tree, list);
892 get_tree(tree);
893 list_del(&tree->list);
894 list_add(&tree->list, &barrier);
895 mutex_unlock(&audit_filter_mutex);
897 if (!failed) {
898 struct node *node;
899 spin_lock(&hash_lock);
900 list_for_each_entry(node, &tree->chunks, list)
901 node->index &= ~(1U<<31);
902 spin_unlock(&hash_lock);
903 } else {
904 trim_marked(tree);
907 put_tree(tree);
908 mutex_lock(&audit_filter_mutex);
910 list_del(&barrier);
911 list_del(&cursor);
912 mutex_unlock(&audit_filter_mutex);
913 path_put(&path1);
914 drop_collected_mounts(tagged);
915 return failed;
919 static void audit_schedule_prune(void)
921 wake_up_process(prune_thread);
925 * ... and that one is done if evict_chunk() decides to delay until the end
926 * of syscall. Runs synchronously.
928 void audit_kill_trees(struct list_head *list)
930 audit_ctl_lock();
931 mutex_lock(&audit_filter_mutex);
933 while (!list_empty(list)) {
934 struct audit_tree *victim;
936 victim = list_entry(list->next, struct audit_tree, list);
937 kill_rules(victim);
938 list_del_init(&victim->list);
940 mutex_unlock(&audit_filter_mutex);
942 prune_one(victim);
944 mutex_lock(&audit_filter_mutex);
947 mutex_unlock(&audit_filter_mutex);
948 audit_ctl_unlock();
952 * Here comes the stuff asynchronous to auditctl operations
955 static void evict_chunk(struct audit_chunk *chunk)
957 struct audit_tree *owner;
958 struct list_head *postponed = audit_killed_trees();
959 int need_prune = 0;
960 int n;
962 if (chunk->dead)
963 return;
965 chunk->dead = 1;
966 mutex_lock(&audit_filter_mutex);
967 spin_lock(&hash_lock);
968 while (!list_empty(&chunk->trees)) {
969 owner = list_entry(chunk->trees.next,
970 struct audit_tree, same_root);
971 owner->goner = 1;
972 owner->root = NULL;
973 list_del_init(&owner->same_root);
974 spin_unlock(&hash_lock);
975 if (!postponed) {
976 kill_rules(owner);
977 list_move(&owner->list, &prune_list);
978 need_prune = 1;
979 } else {
980 list_move(&owner->list, postponed);
982 spin_lock(&hash_lock);
984 list_del_rcu(&chunk->hash);
985 for (n = 0; n < chunk->count; n++)
986 list_del_init(&chunk->owners[n].list);
987 spin_unlock(&hash_lock);
988 mutex_unlock(&audit_filter_mutex);
989 if (need_prune)
990 audit_schedule_prune();
993 static int audit_tree_handle_event(struct fsnotify_group *group,
994 struct inode *to_tell,
995 u32 mask, const void *data, int data_type,
996 const unsigned char *file_name, u32 cookie,
997 struct fsnotify_iter_info *iter_info)
999 return 0;
1002 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1004 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1006 evict_chunk(chunk);
1009 * We are guaranteed to have at least one reference to the mark from
1010 * either the inode or the caller of fsnotify_destroy_mark().
1012 BUG_ON(refcount_read(&entry->refcnt) < 1);
1015 static const struct fsnotify_ops audit_tree_ops = {
1016 .handle_event = audit_tree_handle_event,
1017 .freeing_mark = audit_tree_freeing_mark,
1018 .free_mark = audit_tree_destroy_watch,
1021 static int __init audit_tree_init(void)
1023 int i;
1025 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1026 if (IS_ERR(audit_tree_group))
1027 audit_panic("cannot initialize fsnotify group for rectree watches");
1029 for (i = 0; i < HASH_SIZE; i++)
1030 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1032 return 0;
1034 __initcall(audit_tree_init);