perf intel-pt: Add lookahead callback
[linux/fpc-iii.git] / tools / perf / util / cs-etm.c
blob0c7776b51045bec4cd685e67a35c3ce858f551fa
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
15 #include <opencsd/ocsd_if_types.h>
16 #include <stdlib.h>
18 #include "auxtrace.h"
19 #include "color.h"
20 #include "cs-etm.h"
21 #include "cs-etm-decoder/cs-etm-decoder.h"
22 #include "debug.h"
23 #include "evlist.h"
24 #include "intlist.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "perf.h"
28 #include "symbol.h"
29 #include "thread.h"
30 #include "thread_map.h"
31 #include "thread-stack.h"
32 #include <tools/libc_compat.h>
33 #include "util.h"
35 #define MAX_TIMESTAMP (~0ULL)
37 struct cs_etm_auxtrace {
38 struct auxtrace auxtrace;
39 struct auxtrace_queues queues;
40 struct auxtrace_heap heap;
41 struct itrace_synth_opts synth_opts;
42 struct perf_session *session;
43 struct machine *machine;
44 struct thread *unknown_thread;
46 u8 timeless_decoding;
47 u8 snapshot_mode;
48 u8 data_queued;
49 u8 sample_branches;
50 u8 sample_instructions;
52 int num_cpu;
53 u32 auxtrace_type;
54 u64 branches_sample_type;
55 u64 branches_id;
56 u64 instructions_sample_type;
57 u64 instructions_sample_period;
58 u64 instructions_id;
59 u64 **metadata;
60 u64 kernel_start;
61 unsigned int pmu_type;
64 struct cs_etm_traceid_queue {
65 u8 trace_chan_id;
66 pid_t pid, tid;
67 u64 period_instructions;
68 size_t last_branch_pos;
69 union perf_event *event_buf;
70 struct thread *thread;
71 struct branch_stack *last_branch;
72 struct branch_stack *last_branch_rb;
73 struct cs_etm_packet *prev_packet;
74 struct cs_etm_packet *packet;
75 struct cs_etm_packet_queue packet_queue;
78 struct cs_etm_queue {
79 struct cs_etm_auxtrace *etm;
80 struct cs_etm_decoder *decoder;
81 struct auxtrace_buffer *buffer;
82 unsigned int queue_nr;
83 u8 pending_timestamp;
84 u64 offset;
85 const unsigned char *buf;
86 size_t buf_len, buf_used;
87 /* Conversion between traceID and index in traceid_queues array */
88 struct intlist *traceid_queues_list;
89 struct cs_etm_traceid_queue **traceid_queues;
92 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
93 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
94 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
95 pid_t tid);
96 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
97 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
99 /* PTMs ETMIDR [11:8] set to b0011 */
100 #define ETMIDR_PTM_VERSION 0x00000300
103 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
104 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
105 * encode the etm queue number as the upper 16 bit and the channel as
106 * the lower 16 bit.
108 #define TO_CS_QUEUE_NR(queue_nr, trace_id_chan) \
109 (queue_nr << 16 | trace_chan_id)
110 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
111 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
113 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
115 etmidr &= ETMIDR_PTM_VERSION;
117 if (etmidr == ETMIDR_PTM_VERSION)
118 return CS_ETM_PROTO_PTM;
120 return CS_ETM_PROTO_ETMV3;
123 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
125 struct int_node *inode;
126 u64 *metadata;
128 inode = intlist__find(traceid_list, trace_chan_id);
129 if (!inode)
130 return -EINVAL;
132 metadata = inode->priv;
133 *magic = metadata[CS_ETM_MAGIC];
134 return 0;
137 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
139 struct int_node *inode;
140 u64 *metadata;
142 inode = intlist__find(traceid_list, trace_chan_id);
143 if (!inode)
144 return -EINVAL;
146 metadata = inode->priv;
147 *cpu = (int)metadata[CS_ETM_CPU];
148 return 0;
151 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
152 u8 trace_chan_id)
155 * Wnen a timestamp packet is encountered the backend code
156 * is stopped so that the front end has time to process packets
157 * that were accumulated in the traceID queue. Since there can
158 * be more than one channel per cs_etm_queue, we need to specify
159 * what traceID queue needs servicing.
161 etmq->pending_timestamp = trace_chan_id;
164 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
165 u8 *trace_chan_id)
167 struct cs_etm_packet_queue *packet_queue;
169 if (!etmq->pending_timestamp)
170 return 0;
172 if (trace_chan_id)
173 *trace_chan_id = etmq->pending_timestamp;
175 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
176 etmq->pending_timestamp);
177 if (!packet_queue)
178 return 0;
180 /* Acknowledge pending status */
181 etmq->pending_timestamp = 0;
183 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
184 return packet_queue->timestamp;
187 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
189 int i;
191 queue->head = 0;
192 queue->tail = 0;
193 queue->packet_count = 0;
194 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
195 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
196 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
197 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
198 queue->packet_buffer[i].instr_count = 0;
199 queue->packet_buffer[i].last_instr_taken_branch = false;
200 queue->packet_buffer[i].last_instr_size = 0;
201 queue->packet_buffer[i].last_instr_type = 0;
202 queue->packet_buffer[i].last_instr_subtype = 0;
203 queue->packet_buffer[i].last_instr_cond = 0;
204 queue->packet_buffer[i].flags = 0;
205 queue->packet_buffer[i].exception_number = UINT32_MAX;
206 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
207 queue->packet_buffer[i].cpu = INT_MIN;
211 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
213 int idx;
214 struct int_node *inode;
215 struct cs_etm_traceid_queue *tidq;
216 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
218 intlist__for_each_entry(inode, traceid_queues_list) {
219 idx = (int)(intptr_t)inode->priv;
220 tidq = etmq->traceid_queues[idx];
221 cs_etm__clear_packet_queue(&tidq->packet_queue);
225 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
226 struct cs_etm_traceid_queue *tidq,
227 u8 trace_chan_id)
229 int rc = -ENOMEM;
230 struct auxtrace_queue *queue;
231 struct cs_etm_auxtrace *etm = etmq->etm;
233 cs_etm__clear_packet_queue(&tidq->packet_queue);
235 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
236 tidq->tid = queue->tid;
237 tidq->pid = -1;
238 tidq->trace_chan_id = trace_chan_id;
240 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
241 if (!tidq->packet)
242 goto out;
244 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
245 if (!tidq->prev_packet)
246 goto out_free;
248 if (etm->synth_opts.last_branch) {
249 size_t sz = sizeof(struct branch_stack);
251 sz += etm->synth_opts.last_branch_sz *
252 sizeof(struct branch_entry);
253 tidq->last_branch = zalloc(sz);
254 if (!tidq->last_branch)
255 goto out_free;
256 tidq->last_branch_rb = zalloc(sz);
257 if (!tidq->last_branch_rb)
258 goto out_free;
261 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
262 if (!tidq->event_buf)
263 goto out_free;
265 return 0;
267 out_free:
268 zfree(&tidq->last_branch_rb);
269 zfree(&tidq->last_branch);
270 zfree(&tidq->prev_packet);
271 zfree(&tidq->packet);
272 out:
273 return rc;
276 static struct cs_etm_traceid_queue
277 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
279 int idx;
280 struct int_node *inode;
281 struct intlist *traceid_queues_list;
282 struct cs_etm_traceid_queue *tidq, **traceid_queues;
283 struct cs_etm_auxtrace *etm = etmq->etm;
285 if (etm->timeless_decoding)
286 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
288 traceid_queues_list = etmq->traceid_queues_list;
291 * Check if the traceid_queue exist for this traceID by looking
292 * in the queue list.
294 inode = intlist__find(traceid_queues_list, trace_chan_id);
295 if (inode) {
296 idx = (int)(intptr_t)inode->priv;
297 return etmq->traceid_queues[idx];
300 /* We couldn't find a traceid_queue for this traceID, allocate one */
301 tidq = malloc(sizeof(*tidq));
302 if (!tidq)
303 return NULL;
305 memset(tidq, 0, sizeof(*tidq));
307 /* Get a valid index for the new traceid_queue */
308 idx = intlist__nr_entries(traceid_queues_list);
309 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
310 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
311 if (!inode)
312 goto out_free;
314 /* Associate this traceID with this index */
315 inode->priv = (void *)(intptr_t)idx;
317 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
318 goto out_free;
320 /* Grow the traceid_queues array by one unit */
321 traceid_queues = etmq->traceid_queues;
322 traceid_queues = reallocarray(traceid_queues,
323 idx + 1,
324 sizeof(*traceid_queues));
327 * On failure reallocarray() returns NULL and the original block of
328 * memory is left untouched.
330 if (!traceid_queues)
331 goto out_free;
333 traceid_queues[idx] = tidq;
334 etmq->traceid_queues = traceid_queues;
336 return etmq->traceid_queues[idx];
338 out_free:
340 * Function intlist__remove() removes the inode from the list
341 * and delete the memory associated to it.
343 intlist__remove(traceid_queues_list, inode);
344 free(tidq);
346 return NULL;
349 struct cs_etm_packet_queue
350 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
352 struct cs_etm_traceid_queue *tidq;
354 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
355 if (tidq)
356 return &tidq->packet_queue;
358 return NULL;
361 static void cs_etm__packet_dump(const char *pkt_string)
363 const char *color = PERF_COLOR_BLUE;
364 int len = strlen(pkt_string);
366 if (len && (pkt_string[len-1] == '\n'))
367 color_fprintf(stdout, color, " %s", pkt_string);
368 else
369 color_fprintf(stdout, color, " %s\n", pkt_string);
371 fflush(stdout);
374 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
375 struct cs_etm_auxtrace *etm, int idx,
376 u32 etmidr)
378 u64 **metadata = etm->metadata;
380 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
381 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
382 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
385 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
386 struct cs_etm_auxtrace *etm, int idx)
388 u64 **metadata = etm->metadata;
390 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
391 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
392 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
393 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
394 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
395 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
396 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
399 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
400 struct cs_etm_auxtrace *etm)
402 int i;
403 u32 etmidr;
404 u64 architecture;
406 for (i = 0; i < etm->num_cpu; i++) {
407 architecture = etm->metadata[i][CS_ETM_MAGIC];
409 switch (architecture) {
410 case __perf_cs_etmv3_magic:
411 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
412 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
413 break;
414 case __perf_cs_etmv4_magic:
415 cs_etm__set_trace_param_etmv4(t_params, etm, i);
416 break;
417 default:
418 return -EINVAL;
422 return 0;
425 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
426 struct cs_etm_queue *etmq,
427 enum cs_etm_decoder_operation mode)
429 int ret = -EINVAL;
431 if (!(mode < CS_ETM_OPERATION_MAX))
432 goto out;
434 d_params->packet_printer = cs_etm__packet_dump;
435 d_params->operation = mode;
436 d_params->data = etmq;
437 d_params->formatted = true;
438 d_params->fsyncs = false;
439 d_params->hsyncs = false;
440 d_params->frame_aligned = true;
442 ret = 0;
443 out:
444 return ret;
447 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
448 struct auxtrace_buffer *buffer)
450 int ret;
451 const char *color = PERF_COLOR_BLUE;
452 struct cs_etm_decoder_params d_params;
453 struct cs_etm_trace_params *t_params;
454 struct cs_etm_decoder *decoder;
455 size_t buffer_used = 0;
457 fprintf(stdout, "\n");
458 color_fprintf(stdout, color,
459 ". ... CoreSight ETM Trace data: size %zu bytes\n",
460 buffer->size);
462 /* Use metadata to fill in trace parameters for trace decoder */
463 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
465 if (!t_params)
466 return;
468 if (cs_etm__init_trace_params(t_params, etm))
469 goto out_free;
471 /* Set decoder parameters to simply print the trace packets */
472 if (cs_etm__init_decoder_params(&d_params, NULL,
473 CS_ETM_OPERATION_PRINT))
474 goto out_free;
476 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
478 if (!decoder)
479 goto out_free;
480 do {
481 size_t consumed;
483 ret = cs_etm_decoder__process_data_block(
484 decoder, buffer->offset,
485 &((u8 *)buffer->data)[buffer_used],
486 buffer->size - buffer_used, &consumed);
487 if (ret)
488 break;
490 buffer_used += consumed;
491 } while (buffer_used < buffer->size);
493 cs_etm_decoder__free(decoder);
495 out_free:
496 zfree(&t_params);
499 static int cs_etm__flush_events(struct perf_session *session,
500 struct perf_tool *tool)
502 int ret;
503 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
504 struct cs_etm_auxtrace,
505 auxtrace);
506 if (dump_trace)
507 return 0;
509 if (!tool->ordered_events)
510 return -EINVAL;
512 ret = cs_etm__update_queues(etm);
514 if (ret < 0)
515 return ret;
517 if (etm->timeless_decoding)
518 return cs_etm__process_timeless_queues(etm, -1);
520 return cs_etm__process_queues(etm);
523 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
525 int idx;
526 uintptr_t priv;
527 struct int_node *inode, *tmp;
528 struct cs_etm_traceid_queue *tidq;
529 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
531 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
532 priv = (uintptr_t)inode->priv;
533 idx = priv;
535 /* Free this traceid_queue from the array */
536 tidq = etmq->traceid_queues[idx];
537 thread__zput(tidq->thread);
538 zfree(&tidq->event_buf);
539 zfree(&tidq->last_branch);
540 zfree(&tidq->last_branch_rb);
541 zfree(&tidq->prev_packet);
542 zfree(&tidq->packet);
543 zfree(&tidq);
546 * Function intlist__remove() removes the inode from the list
547 * and delete the memory associated to it.
549 intlist__remove(traceid_queues_list, inode);
552 /* Then the RB tree itself */
553 intlist__delete(traceid_queues_list);
554 etmq->traceid_queues_list = NULL;
556 /* finally free the traceid_queues array */
557 free(etmq->traceid_queues);
558 etmq->traceid_queues = NULL;
561 static void cs_etm__free_queue(void *priv)
563 struct cs_etm_queue *etmq = priv;
565 if (!etmq)
566 return;
568 cs_etm_decoder__free(etmq->decoder);
569 cs_etm__free_traceid_queues(etmq);
570 free(etmq);
573 static void cs_etm__free_events(struct perf_session *session)
575 unsigned int i;
576 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
577 struct cs_etm_auxtrace,
578 auxtrace);
579 struct auxtrace_queues *queues = &aux->queues;
581 for (i = 0; i < queues->nr_queues; i++) {
582 cs_etm__free_queue(queues->queue_array[i].priv);
583 queues->queue_array[i].priv = NULL;
586 auxtrace_queues__free(queues);
589 static void cs_etm__free(struct perf_session *session)
591 int i;
592 struct int_node *inode, *tmp;
593 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
594 struct cs_etm_auxtrace,
595 auxtrace);
596 cs_etm__free_events(session);
597 session->auxtrace = NULL;
599 /* First remove all traceID/metadata nodes for the RB tree */
600 intlist__for_each_entry_safe(inode, tmp, traceid_list)
601 intlist__remove(traceid_list, inode);
602 /* Then the RB tree itself */
603 intlist__delete(traceid_list);
605 for (i = 0; i < aux->num_cpu; i++)
606 zfree(&aux->metadata[i]);
608 thread__zput(aux->unknown_thread);
609 zfree(&aux->metadata);
610 zfree(&aux);
613 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
615 struct machine *machine;
617 machine = etmq->etm->machine;
619 if (address >= etmq->etm->kernel_start) {
620 if (machine__is_host(machine))
621 return PERF_RECORD_MISC_KERNEL;
622 else
623 return PERF_RECORD_MISC_GUEST_KERNEL;
624 } else {
625 if (machine__is_host(machine))
626 return PERF_RECORD_MISC_USER;
627 else if (perf_guest)
628 return PERF_RECORD_MISC_GUEST_USER;
629 else
630 return PERF_RECORD_MISC_HYPERVISOR;
634 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
635 u64 address, size_t size, u8 *buffer)
637 u8 cpumode;
638 u64 offset;
639 int len;
640 struct thread *thread;
641 struct machine *machine;
642 struct addr_location al;
643 struct cs_etm_traceid_queue *tidq;
645 if (!etmq)
646 return 0;
648 machine = etmq->etm->machine;
649 cpumode = cs_etm__cpu_mode(etmq, address);
650 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
651 if (!tidq)
652 return 0;
654 thread = tidq->thread;
655 if (!thread) {
656 if (cpumode != PERF_RECORD_MISC_KERNEL)
657 return 0;
658 thread = etmq->etm->unknown_thread;
661 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
662 return 0;
664 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
665 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
666 return 0;
668 offset = al.map->map_ip(al.map, address);
670 map__load(al.map);
672 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
674 if (len <= 0)
675 return 0;
677 return len;
680 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
682 struct cs_etm_decoder_params d_params;
683 struct cs_etm_trace_params *t_params = NULL;
684 struct cs_etm_queue *etmq;
686 etmq = zalloc(sizeof(*etmq));
687 if (!etmq)
688 return NULL;
690 etmq->traceid_queues_list = intlist__new(NULL);
691 if (!etmq->traceid_queues_list)
692 goto out_free;
694 /* Use metadata to fill in trace parameters for trace decoder */
695 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
697 if (!t_params)
698 goto out_free;
700 if (cs_etm__init_trace_params(t_params, etm))
701 goto out_free;
703 /* Set decoder parameters to decode trace packets */
704 if (cs_etm__init_decoder_params(&d_params, etmq,
705 CS_ETM_OPERATION_DECODE))
706 goto out_free;
708 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
710 if (!etmq->decoder)
711 goto out_free;
714 * Register a function to handle all memory accesses required by
715 * the trace decoder library.
717 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
718 0x0L, ((u64) -1L),
719 cs_etm__mem_access))
720 goto out_free_decoder;
722 zfree(&t_params);
723 return etmq;
725 out_free_decoder:
726 cs_etm_decoder__free(etmq->decoder);
727 out_free:
728 intlist__delete(etmq->traceid_queues_list);
729 free(etmq);
731 return NULL;
734 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
735 struct auxtrace_queue *queue,
736 unsigned int queue_nr)
738 int ret = 0;
739 unsigned int cs_queue_nr;
740 u8 trace_chan_id;
741 u64 timestamp;
742 struct cs_etm_queue *etmq = queue->priv;
744 if (list_empty(&queue->head) || etmq)
745 goto out;
747 etmq = cs_etm__alloc_queue(etm);
749 if (!etmq) {
750 ret = -ENOMEM;
751 goto out;
754 queue->priv = etmq;
755 etmq->etm = etm;
756 etmq->queue_nr = queue_nr;
757 etmq->offset = 0;
759 if (etm->timeless_decoding)
760 goto out;
763 * We are under a CPU-wide trace scenario. As such we need to know
764 * when the code that generated the traces started to execute so that
765 * it can be correlated with execution on other CPUs. So we get a
766 * handle on the beginning of traces and decode until we find a
767 * timestamp. The timestamp is then added to the auxtrace min heap
768 * in order to know what nibble (of all the etmqs) to decode first.
770 while (1) {
772 * Fetch an aux_buffer from this etmq. Bail if no more
773 * blocks or an error has been encountered.
775 ret = cs_etm__get_data_block(etmq);
776 if (ret <= 0)
777 goto out;
780 * Run decoder on the trace block. The decoder will stop when
781 * encountering a timestamp, a full packet queue or the end of
782 * trace for that block.
784 ret = cs_etm__decode_data_block(etmq);
785 if (ret)
786 goto out;
789 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
790 * the timestamp calculation for us.
792 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
794 /* We found a timestamp, no need to continue. */
795 if (timestamp)
796 break;
799 * We didn't find a timestamp so empty all the traceid packet
800 * queues before looking for another timestamp packet, either
801 * in the current data block or a new one. Packets that were
802 * just decoded are useless since no timestamp has been
803 * associated with them. As such simply discard them.
805 cs_etm__clear_all_packet_queues(etmq);
809 * We have a timestamp. Add it to the min heap to reflect when
810 * instructions conveyed by the range packets of this traceID queue
811 * started to execute. Once the same has been done for all the traceID
812 * queues of each etmq, redenring and decoding can start in
813 * chronological order.
815 * Note that packets decoded above are still in the traceID's packet
816 * queue and will be processed in cs_etm__process_queues().
818 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
819 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
820 out:
821 return ret;
824 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
826 unsigned int i;
827 int ret;
829 if (!etm->kernel_start)
830 etm->kernel_start = machine__kernel_start(etm->machine);
832 for (i = 0; i < etm->queues.nr_queues; i++) {
833 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
834 if (ret)
835 return ret;
838 return 0;
841 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
843 if (etm->queues.new_data) {
844 etm->queues.new_data = false;
845 return cs_etm__setup_queues(etm);
848 return 0;
851 static inline
852 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
853 struct cs_etm_traceid_queue *tidq)
855 struct branch_stack *bs_src = tidq->last_branch_rb;
856 struct branch_stack *bs_dst = tidq->last_branch;
857 size_t nr = 0;
860 * Set the number of records before early exit: ->nr is used to
861 * determine how many branches to copy from ->entries.
863 bs_dst->nr = bs_src->nr;
866 * Early exit when there is nothing to copy.
868 if (!bs_src->nr)
869 return;
872 * As bs_src->entries is a circular buffer, we need to copy from it in
873 * two steps. First, copy the branches from the most recently inserted
874 * branch ->last_branch_pos until the end of bs_src->entries buffer.
876 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
877 memcpy(&bs_dst->entries[0],
878 &bs_src->entries[tidq->last_branch_pos],
879 sizeof(struct branch_entry) * nr);
882 * If we wrapped around at least once, the branches from the beginning
883 * of the bs_src->entries buffer and until the ->last_branch_pos element
884 * are older valid branches: copy them over. The total number of
885 * branches copied over will be equal to the number of branches asked by
886 * the user in last_branch_sz.
888 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
889 memcpy(&bs_dst->entries[nr],
890 &bs_src->entries[0],
891 sizeof(struct branch_entry) * tidq->last_branch_pos);
895 static inline
896 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
898 tidq->last_branch_pos = 0;
899 tidq->last_branch_rb->nr = 0;
902 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
903 u8 trace_chan_id, u64 addr)
905 u8 instrBytes[2];
907 cs_etm__mem_access(etmq, trace_chan_id, addr,
908 ARRAY_SIZE(instrBytes), instrBytes);
910 * T32 instruction size is indicated by bits[15:11] of the first
911 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
912 * denote a 32-bit instruction.
914 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
917 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
919 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
920 if (packet->sample_type == CS_ETM_DISCONTINUITY)
921 return 0;
923 return packet->start_addr;
926 static inline
927 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
929 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
930 if (packet->sample_type == CS_ETM_DISCONTINUITY)
931 return 0;
933 return packet->end_addr - packet->last_instr_size;
936 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
937 u64 trace_chan_id,
938 const struct cs_etm_packet *packet,
939 u64 offset)
941 if (packet->isa == CS_ETM_ISA_T32) {
942 u64 addr = packet->start_addr;
944 while (offset > 0) {
945 addr += cs_etm__t32_instr_size(etmq,
946 trace_chan_id, addr);
947 offset--;
949 return addr;
952 /* Assume a 4 byte instruction size (A32/A64) */
953 return packet->start_addr + offset * 4;
956 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
957 struct cs_etm_traceid_queue *tidq)
959 struct branch_stack *bs = tidq->last_branch_rb;
960 struct branch_entry *be;
963 * The branches are recorded in a circular buffer in reverse
964 * chronological order: we start recording from the last element of the
965 * buffer down. After writing the first element of the stack, move the
966 * insert position back to the end of the buffer.
968 if (!tidq->last_branch_pos)
969 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
971 tidq->last_branch_pos -= 1;
973 be = &bs->entries[tidq->last_branch_pos];
974 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
975 be->to = cs_etm__first_executed_instr(tidq->packet);
976 /* No support for mispredict */
977 be->flags.mispred = 0;
978 be->flags.predicted = 1;
981 * Increment bs->nr until reaching the number of last branches asked by
982 * the user on the command line.
984 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
985 bs->nr += 1;
988 static int cs_etm__inject_event(union perf_event *event,
989 struct perf_sample *sample, u64 type)
991 event->header.size = perf_event__sample_event_size(sample, type, 0);
992 return perf_event__synthesize_sample(event, type, 0, sample);
996 static int
997 cs_etm__get_trace(struct cs_etm_queue *etmq)
999 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1000 struct auxtrace_buffer *old_buffer = aux_buffer;
1001 struct auxtrace_queue *queue;
1003 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1005 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1007 /* If no more data, drop the previous auxtrace_buffer and return */
1008 if (!aux_buffer) {
1009 if (old_buffer)
1010 auxtrace_buffer__drop_data(old_buffer);
1011 etmq->buf_len = 0;
1012 return 0;
1015 etmq->buffer = aux_buffer;
1017 /* If the aux_buffer doesn't have data associated, try to load it */
1018 if (!aux_buffer->data) {
1019 /* get the file desc associated with the perf data file */
1020 int fd = perf_data__fd(etmq->etm->session->data);
1022 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1023 if (!aux_buffer->data)
1024 return -ENOMEM;
1027 /* If valid, drop the previous buffer */
1028 if (old_buffer)
1029 auxtrace_buffer__drop_data(old_buffer);
1031 etmq->buf_used = 0;
1032 etmq->buf_len = aux_buffer->size;
1033 etmq->buf = aux_buffer->data;
1035 return etmq->buf_len;
1038 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1039 struct cs_etm_traceid_queue *tidq)
1041 if ((!tidq->thread) && (tidq->tid != -1))
1042 tidq->thread = machine__find_thread(etm->machine, -1,
1043 tidq->tid);
1045 if (tidq->thread)
1046 tidq->pid = tidq->thread->pid_;
1049 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1050 pid_t tid, u8 trace_chan_id)
1052 int cpu, err = -EINVAL;
1053 struct cs_etm_auxtrace *etm = etmq->etm;
1054 struct cs_etm_traceid_queue *tidq;
1056 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1057 if (!tidq)
1058 return err;
1060 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1061 return err;
1063 err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1064 if (err)
1065 return err;
1067 tidq->tid = tid;
1068 thread__zput(tidq->thread);
1070 cs_etm__set_pid_tid_cpu(etm, tidq);
1071 return 0;
1074 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1076 return !!etmq->etm->timeless_decoding;
1079 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1080 struct cs_etm_traceid_queue *tidq,
1081 u64 addr, u64 period)
1083 int ret = 0;
1084 struct cs_etm_auxtrace *etm = etmq->etm;
1085 union perf_event *event = tidq->event_buf;
1086 struct perf_sample sample = {.ip = 0,};
1088 event->sample.header.type = PERF_RECORD_SAMPLE;
1089 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1090 event->sample.header.size = sizeof(struct perf_event_header);
1092 sample.ip = addr;
1093 sample.pid = tidq->pid;
1094 sample.tid = tidq->tid;
1095 sample.id = etmq->etm->instructions_id;
1096 sample.stream_id = etmq->etm->instructions_id;
1097 sample.period = period;
1098 sample.cpu = tidq->packet->cpu;
1099 sample.flags = tidq->prev_packet->flags;
1100 sample.insn_len = 1;
1101 sample.cpumode = event->sample.header.misc;
1103 if (etm->synth_opts.last_branch) {
1104 cs_etm__copy_last_branch_rb(etmq, tidq);
1105 sample.branch_stack = tidq->last_branch;
1108 if (etm->synth_opts.inject) {
1109 ret = cs_etm__inject_event(event, &sample,
1110 etm->instructions_sample_type);
1111 if (ret)
1112 return ret;
1115 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1117 if (ret)
1118 pr_err(
1119 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1120 ret);
1122 if (etm->synth_opts.last_branch)
1123 cs_etm__reset_last_branch_rb(tidq);
1125 return ret;
1129 * The cs etm packet encodes an instruction range between a branch target
1130 * and the next taken branch. Generate sample accordingly.
1132 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1133 struct cs_etm_traceid_queue *tidq)
1135 int ret = 0;
1136 struct cs_etm_auxtrace *etm = etmq->etm;
1137 struct perf_sample sample = {.ip = 0,};
1138 union perf_event *event = tidq->event_buf;
1139 struct dummy_branch_stack {
1140 u64 nr;
1141 struct branch_entry entries;
1142 } dummy_bs;
1143 u64 ip;
1145 ip = cs_etm__last_executed_instr(tidq->prev_packet);
1147 event->sample.header.type = PERF_RECORD_SAMPLE;
1148 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1149 event->sample.header.size = sizeof(struct perf_event_header);
1151 sample.ip = ip;
1152 sample.pid = tidq->pid;
1153 sample.tid = tidq->tid;
1154 sample.addr = cs_etm__first_executed_instr(tidq->packet);
1155 sample.id = etmq->etm->branches_id;
1156 sample.stream_id = etmq->etm->branches_id;
1157 sample.period = 1;
1158 sample.cpu = tidq->packet->cpu;
1159 sample.flags = tidq->prev_packet->flags;
1160 sample.cpumode = event->sample.header.misc;
1163 * perf report cannot handle events without a branch stack
1165 if (etm->synth_opts.last_branch) {
1166 dummy_bs = (struct dummy_branch_stack){
1167 .nr = 1,
1168 .entries = {
1169 .from = sample.ip,
1170 .to = sample.addr,
1173 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1176 if (etm->synth_opts.inject) {
1177 ret = cs_etm__inject_event(event, &sample,
1178 etm->branches_sample_type);
1179 if (ret)
1180 return ret;
1183 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1185 if (ret)
1186 pr_err(
1187 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1188 ret);
1190 return ret;
1193 struct cs_etm_synth {
1194 struct perf_tool dummy_tool;
1195 struct perf_session *session;
1198 static int cs_etm__event_synth(struct perf_tool *tool,
1199 union perf_event *event,
1200 struct perf_sample *sample __maybe_unused,
1201 struct machine *machine __maybe_unused)
1203 struct cs_etm_synth *cs_etm_synth =
1204 container_of(tool, struct cs_etm_synth, dummy_tool);
1206 return perf_session__deliver_synth_event(cs_etm_synth->session,
1207 event, NULL);
1210 static int cs_etm__synth_event(struct perf_session *session,
1211 struct perf_event_attr *attr, u64 id)
1213 struct cs_etm_synth cs_etm_synth;
1215 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1216 cs_etm_synth.session = session;
1218 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1219 &id, cs_etm__event_synth);
1222 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1223 struct perf_session *session)
1225 struct perf_evlist *evlist = session->evlist;
1226 struct perf_evsel *evsel;
1227 struct perf_event_attr attr;
1228 bool found = false;
1229 u64 id;
1230 int err;
1232 evlist__for_each_entry(evlist, evsel) {
1233 if (evsel->attr.type == etm->pmu_type) {
1234 found = true;
1235 break;
1239 if (!found) {
1240 pr_debug("No selected events with CoreSight Trace data\n");
1241 return 0;
1244 memset(&attr, 0, sizeof(struct perf_event_attr));
1245 attr.size = sizeof(struct perf_event_attr);
1246 attr.type = PERF_TYPE_HARDWARE;
1247 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1248 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1249 PERF_SAMPLE_PERIOD;
1250 if (etm->timeless_decoding)
1251 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1252 else
1253 attr.sample_type |= PERF_SAMPLE_TIME;
1255 attr.exclude_user = evsel->attr.exclude_user;
1256 attr.exclude_kernel = evsel->attr.exclude_kernel;
1257 attr.exclude_hv = evsel->attr.exclude_hv;
1258 attr.exclude_host = evsel->attr.exclude_host;
1259 attr.exclude_guest = evsel->attr.exclude_guest;
1260 attr.sample_id_all = evsel->attr.sample_id_all;
1261 attr.read_format = evsel->attr.read_format;
1263 /* create new id val to be a fixed offset from evsel id */
1264 id = evsel->id[0] + 1000000000;
1266 if (!id)
1267 id = 1;
1269 if (etm->synth_opts.branches) {
1270 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1271 attr.sample_period = 1;
1272 attr.sample_type |= PERF_SAMPLE_ADDR;
1273 err = cs_etm__synth_event(session, &attr, id);
1274 if (err)
1275 return err;
1276 etm->sample_branches = true;
1277 etm->branches_sample_type = attr.sample_type;
1278 etm->branches_id = id;
1279 id += 1;
1280 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1283 if (etm->synth_opts.last_branch)
1284 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1286 if (etm->synth_opts.instructions) {
1287 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1288 attr.sample_period = etm->synth_opts.period;
1289 etm->instructions_sample_period = attr.sample_period;
1290 err = cs_etm__synth_event(session, &attr, id);
1291 if (err)
1292 return err;
1293 etm->sample_instructions = true;
1294 etm->instructions_sample_type = attr.sample_type;
1295 etm->instructions_id = id;
1296 id += 1;
1299 return 0;
1302 static int cs_etm__sample(struct cs_etm_queue *etmq,
1303 struct cs_etm_traceid_queue *tidq)
1305 struct cs_etm_auxtrace *etm = etmq->etm;
1306 struct cs_etm_packet *tmp;
1307 int ret;
1308 u8 trace_chan_id = tidq->trace_chan_id;
1309 u64 instrs_executed = tidq->packet->instr_count;
1311 tidq->period_instructions += instrs_executed;
1314 * Record a branch when the last instruction in
1315 * PREV_PACKET is a branch.
1317 if (etm->synth_opts.last_branch &&
1318 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1319 tidq->prev_packet->last_instr_taken_branch)
1320 cs_etm__update_last_branch_rb(etmq, tidq);
1322 if (etm->sample_instructions &&
1323 tidq->period_instructions >= etm->instructions_sample_period) {
1325 * Emit instruction sample periodically
1326 * TODO: allow period to be defined in cycles and clock time
1329 /* Get number of instructions executed after the sample point */
1330 u64 instrs_over = tidq->period_instructions -
1331 etm->instructions_sample_period;
1334 * Calculate the address of the sampled instruction (-1 as
1335 * sample is reported as though instruction has just been
1336 * executed, but PC has not advanced to next instruction)
1338 u64 offset = (instrs_executed - instrs_over - 1);
1339 u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1340 tidq->packet, offset);
1342 ret = cs_etm__synth_instruction_sample(
1343 etmq, tidq, addr, etm->instructions_sample_period);
1344 if (ret)
1345 return ret;
1347 /* Carry remaining instructions into next sample period */
1348 tidq->period_instructions = instrs_over;
1351 if (etm->sample_branches) {
1352 bool generate_sample = false;
1354 /* Generate sample for tracing on packet */
1355 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1356 generate_sample = true;
1358 /* Generate sample for branch taken packet */
1359 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1360 tidq->prev_packet->last_instr_taken_branch)
1361 generate_sample = true;
1363 if (generate_sample) {
1364 ret = cs_etm__synth_branch_sample(etmq, tidq);
1365 if (ret)
1366 return ret;
1370 if (etm->sample_branches || etm->synth_opts.last_branch) {
1372 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1373 * the next incoming packet.
1375 tmp = tidq->packet;
1376 tidq->packet = tidq->prev_packet;
1377 tidq->prev_packet = tmp;
1380 return 0;
1383 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1386 * When the exception packet is inserted, whether the last instruction
1387 * in previous range packet is taken branch or not, we need to force
1388 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1389 * to generate branch sample for the instruction range before the
1390 * exception is trapped to kernel or before the exception returning.
1392 * The exception packet includes the dummy address values, so don't
1393 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1394 * for generating instruction and branch samples.
1396 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1397 tidq->prev_packet->last_instr_taken_branch = true;
1399 return 0;
1402 static int cs_etm__flush(struct cs_etm_queue *etmq,
1403 struct cs_etm_traceid_queue *tidq)
1405 int err = 0;
1406 struct cs_etm_auxtrace *etm = etmq->etm;
1407 struct cs_etm_packet *tmp;
1409 /* Handle start tracing packet */
1410 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1411 goto swap_packet;
1413 if (etmq->etm->synth_opts.last_branch &&
1414 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1416 * Generate a last branch event for the branches left in the
1417 * circular buffer at the end of the trace.
1419 * Use the address of the end of the last reported execution
1420 * range
1422 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1424 err = cs_etm__synth_instruction_sample(
1425 etmq, tidq, addr,
1426 tidq->period_instructions);
1427 if (err)
1428 return err;
1430 tidq->period_instructions = 0;
1434 if (etm->sample_branches &&
1435 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1436 err = cs_etm__synth_branch_sample(etmq, tidq);
1437 if (err)
1438 return err;
1441 swap_packet:
1442 if (etm->sample_branches || etm->synth_opts.last_branch) {
1444 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1445 * the next incoming packet.
1447 tmp = tidq->packet;
1448 tidq->packet = tidq->prev_packet;
1449 tidq->prev_packet = tmp;
1452 return err;
1455 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1456 struct cs_etm_traceid_queue *tidq)
1458 int err;
1461 * It has no new packet coming and 'etmq->packet' contains the stale
1462 * packet which was set at the previous time with packets swapping;
1463 * so skip to generate branch sample to avoid stale packet.
1465 * For this case only flush branch stack and generate a last branch
1466 * event for the branches left in the circular buffer at the end of
1467 * the trace.
1469 if (etmq->etm->synth_opts.last_branch &&
1470 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1472 * Use the address of the end of the last reported execution
1473 * range.
1475 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1477 err = cs_etm__synth_instruction_sample(
1478 etmq, tidq, addr,
1479 tidq->period_instructions);
1480 if (err)
1481 return err;
1483 tidq->period_instructions = 0;
1486 return 0;
1489 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1490 * if need be.
1491 * Returns: < 0 if error
1492 * = 0 if no more auxtrace_buffer to read
1493 * > 0 if the current buffer isn't empty yet
1495 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1497 int ret;
1499 if (!etmq->buf_len) {
1500 ret = cs_etm__get_trace(etmq);
1501 if (ret <= 0)
1502 return ret;
1504 * We cannot assume consecutive blocks in the data file
1505 * are contiguous, reset the decoder to force re-sync.
1507 ret = cs_etm_decoder__reset(etmq->decoder);
1508 if (ret)
1509 return ret;
1512 return etmq->buf_len;
1515 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1516 struct cs_etm_packet *packet,
1517 u64 end_addr)
1519 /* Initialise to keep compiler happy */
1520 u16 instr16 = 0;
1521 u32 instr32 = 0;
1522 u64 addr;
1524 switch (packet->isa) {
1525 case CS_ETM_ISA_T32:
1527 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1529 * b'15 b'8
1530 * +-----------------+--------+
1531 * | 1 1 0 1 1 1 1 1 | imm8 |
1532 * +-----------------+--------+
1534 * According to the specifiction, it only defines SVC for T32
1535 * with 16 bits instruction and has no definition for 32bits;
1536 * so below only read 2 bytes as instruction size for T32.
1538 addr = end_addr - 2;
1539 cs_etm__mem_access(etmq, trace_chan_id, addr,
1540 sizeof(instr16), (u8 *)&instr16);
1541 if ((instr16 & 0xFF00) == 0xDF00)
1542 return true;
1544 break;
1545 case CS_ETM_ISA_A32:
1547 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1549 * b'31 b'28 b'27 b'24
1550 * +---------+---------+-------------------------+
1551 * | !1111 | 1 1 1 1 | imm24 |
1552 * +---------+---------+-------------------------+
1554 addr = end_addr - 4;
1555 cs_etm__mem_access(etmq, trace_chan_id, addr,
1556 sizeof(instr32), (u8 *)&instr32);
1557 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1558 (instr32 & 0xF0000000) != 0xF0000000)
1559 return true;
1561 break;
1562 case CS_ETM_ISA_A64:
1564 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1566 * b'31 b'21 b'4 b'0
1567 * +-----------------------+---------+-----------+
1568 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1569 * +-----------------------+---------+-----------+
1571 addr = end_addr - 4;
1572 cs_etm__mem_access(etmq, trace_chan_id, addr,
1573 sizeof(instr32), (u8 *)&instr32);
1574 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1575 return true;
1577 break;
1578 case CS_ETM_ISA_UNKNOWN:
1579 default:
1580 break;
1583 return false;
1586 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1587 struct cs_etm_traceid_queue *tidq, u64 magic)
1589 u8 trace_chan_id = tidq->trace_chan_id;
1590 struct cs_etm_packet *packet = tidq->packet;
1591 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1593 if (magic == __perf_cs_etmv3_magic)
1594 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1595 return true;
1598 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1599 * HVC cases; need to check if it's SVC instruction based on
1600 * packet address.
1602 if (magic == __perf_cs_etmv4_magic) {
1603 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1604 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1605 prev_packet->end_addr))
1606 return true;
1609 return false;
1612 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1613 u64 magic)
1615 struct cs_etm_packet *packet = tidq->packet;
1617 if (magic == __perf_cs_etmv3_magic)
1618 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1619 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1620 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1621 packet->exception_number == CS_ETMV3_EXC_IRQ ||
1622 packet->exception_number == CS_ETMV3_EXC_FIQ)
1623 return true;
1625 if (magic == __perf_cs_etmv4_magic)
1626 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1627 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1628 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1629 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1630 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1631 packet->exception_number == CS_ETMV4_EXC_IRQ ||
1632 packet->exception_number == CS_ETMV4_EXC_FIQ)
1633 return true;
1635 return false;
1638 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1639 struct cs_etm_traceid_queue *tidq,
1640 u64 magic)
1642 u8 trace_chan_id = tidq->trace_chan_id;
1643 struct cs_etm_packet *packet = tidq->packet;
1644 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1646 if (magic == __perf_cs_etmv3_magic)
1647 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1648 packet->exception_number == CS_ETMV3_EXC_HYP ||
1649 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1650 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1651 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1652 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1653 packet->exception_number == CS_ETMV3_EXC_GENERIC)
1654 return true;
1656 if (magic == __perf_cs_etmv4_magic) {
1657 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1658 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1659 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1660 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1661 return true;
1664 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1665 * (SMC, HVC) are taken as sync exceptions.
1667 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1668 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1669 prev_packet->end_addr))
1670 return true;
1673 * ETMv4 has 5 bits for exception number; if the numbers
1674 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1675 * they are implementation defined exceptions.
1677 * For this case, simply take it as sync exception.
1679 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1680 packet->exception_number <= CS_ETMV4_EXC_END)
1681 return true;
1684 return false;
1687 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1688 struct cs_etm_traceid_queue *tidq)
1690 struct cs_etm_packet *packet = tidq->packet;
1691 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1692 u8 trace_chan_id = tidq->trace_chan_id;
1693 u64 magic;
1694 int ret;
1696 switch (packet->sample_type) {
1697 case CS_ETM_RANGE:
1699 * Immediate branch instruction without neither link nor
1700 * return flag, it's normal branch instruction within
1701 * the function.
1703 if (packet->last_instr_type == OCSD_INSTR_BR &&
1704 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1705 packet->flags = PERF_IP_FLAG_BRANCH;
1707 if (packet->last_instr_cond)
1708 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1712 * Immediate branch instruction with link (e.g. BL), this is
1713 * branch instruction for function call.
1715 if (packet->last_instr_type == OCSD_INSTR_BR &&
1716 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1717 packet->flags = PERF_IP_FLAG_BRANCH |
1718 PERF_IP_FLAG_CALL;
1721 * Indirect branch instruction with link (e.g. BLR), this is
1722 * branch instruction for function call.
1724 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1725 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1726 packet->flags = PERF_IP_FLAG_BRANCH |
1727 PERF_IP_FLAG_CALL;
1730 * Indirect branch instruction with subtype of
1731 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1732 * function return for A32/T32.
1734 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1735 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1736 packet->flags = PERF_IP_FLAG_BRANCH |
1737 PERF_IP_FLAG_RETURN;
1740 * Indirect branch instruction without link (e.g. BR), usually
1741 * this is used for function return, especially for functions
1742 * within dynamic link lib.
1744 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1745 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1746 packet->flags = PERF_IP_FLAG_BRANCH |
1747 PERF_IP_FLAG_RETURN;
1749 /* Return instruction for function return. */
1750 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1751 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1752 packet->flags = PERF_IP_FLAG_BRANCH |
1753 PERF_IP_FLAG_RETURN;
1756 * Decoder might insert a discontinuity in the middle of
1757 * instruction packets, fixup prev_packet with flag
1758 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1760 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1761 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1762 PERF_IP_FLAG_TRACE_BEGIN;
1765 * If the previous packet is an exception return packet
1766 * and the return address just follows SVC instuction,
1767 * it needs to calibrate the previous packet sample flags
1768 * as PERF_IP_FLAG_SYSCALLRET.
1770 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1771 PERF_IP_FLAG_RETURN |
1772 PERF_IP_FLAG_INTERRUPT) &&
1773 cs_etm__is_svc_instr(etmq, trace_chan_id,
1774 packet, packet->start_addr))
1775 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1776 PERF_IP_FLAG_RETURN |
1777 PERF_IP_FLAG_SYSCALLRET;
1778 break;
1779 case CS_ETM_DISCONTINUITY:
1781 * The trace is discontinuous, if the previous packet is
1782 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1783 * for previous packet.
1785 if (prev_packet->sample_type == CS_ETM_RANGE)
1786 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1787 PERF_IP_FLAG_TRACE_END;
1788 break;
1789 case CS_ETM_EXCEPTION:
1790 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1791 if (ret)
1792 return ret;
1794 /* The exception is for system call. */
1795 if (cs_etm__is_syscall(etmq, tidq, magic))
1796 packet->flags = PERF_IP_FLAG_BRANCH |
1797 PERF_IP_FLAG_CALL |
1798 PERF_IP_FLAG_SYSCALLRET;
1800 * The exceptions are triggered by external signals from bus,
1801 * interrupt controller, debug module, PE reset or halt.
1803 else if (cs_etm__is_async_exception(tidq, magic))
1804 packet->flags = PERF_IP_FLAG_BRANCH |
1805 PERF_IP_FLAG_CALL |
1806 PERF_IP_FLAG_ASYNC |
1807 PERF_IP_FLAG_INTERRUPT;
1809 * Otherwise, exception is caused by trap, instruction &
1810 * data fault, or alignment errors.
1812 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1813 packet->flags = PERF_IP_FLAG_BRANCH |
1814 PERF_IP_FLAG_CALL |
1815 PERF_IP_FLAG_INTERRUPT;
1818 * When the exception packet is inserted, since exception
1819 * packet is not used standalone for generating samples
1820 * and it's affiliation to the previous instruction range
1821 * packet; so set previous range packet flags to tell perf
1822 * it is an exception taken branch.
1824 if (prev_packet->sample_type == CS_ETM_RANGE)
1825 prev_packet->flags = packet->flags;
1826 break;
1827 case CS_ETM_EXCEPTION_RET:
1829 * When the exception return packet is inserted, since
1830 * exception return packet is not used standalone for
1831 * generating samples and it's affiliation to the previous
1832 * instruction range packet; so set previous range packet
1833 * flags to tell perf it is an exception return branch.
1835 * The exception return can be for either system call or
1836 * other exception types; unfortunately the packet doesn't
1837 * contain exception type related info so we cannot decide
1838 * the exception type purely based on exception return packet.
1839 * If we record the exception number from exception packet and
1840 * reuse it for excpetion return packet, this is not reliable
1841 * due the trace can be discontinuity or the interrupt can
1842 * be nested, thus the recorded exception number cannot be
1843 * used for exception return packet for these two cases.
1845 * For exception return packet, we only need to distinguish the
1846 * packet is for system call or for other types. Thus the
1847 * decision can be deferred when receive the next packet which
1848 * contains the return address, based on the return address we
1849 * can read out the previous instruction and check if it's a
1850 * system call instruction and then calibrate the sample flag
1851 * as needed.
1853 if (prev_packet->sample_type == CS_ETM_RANGE)
1854 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1855 PERF_IP_FLAG_RETURN |
1856 PERF_IP_FLAG_INTERRUPT;
1857 break;
1858 case CS_ETM_EMPTY:
1859 default:
1860 break;
1863 return 0;
1866 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1868 int ret = 0;
1869 size_t processed = 0;
1872 * Packets are decoded and added to the decoder's packet queue
1873 * until the decoder packet processing callback has requested that
1874 * processing stops or there is nothing left in the buffer. Normal
1875 * operations that stop processing are a timestamp packet or a full
1876 * decoder buffer queue.
1878 ret = cs_etm_decoder__process_data_block(etmq->decoder,
1879 etmq->offset,
1880 &etmq->buf[etmq->buf_used],
1881 etmq->buf_len,
1882 &processed);
1883 if (ret)
1884 goto out;
1886 etmq->offset += processed;
1887 etmq->buf_used += processed;
1888 etmq->buf_len -= processed;
1890 out:
1891 return ret;
1894 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1895 struct cs_etm_traceid_queue *tidq)
1897 int ret;
1898 struct cs_etm_packet_queue *packet_queue;
1900 packet_queue = &tidq->packet_queue;
1902 /* Process each packet in this chunk */
1903 while (1) {
1904 ret = cs_etm_decoder__get_packet(packet_queue,
1905 tidq->packet);
1906 if (ret <= 0)
1908 * Stop processing this chunk on
1909 * end of data or error
1911 break;
1914 * Since packet addresses are swapped in packet
1915 * handling within below switch() statements,
1916 * thus setting sample flags must be called
1917 * prior to switch() statement to use address
1918 * information before packets swapping.
1920 ret = cs_etm__set_sample_flags(etmq, tidq);
1921 if (ret < 0)
1922 break;
1924 switch (tidq->packet->sample_type) {
1925 case CS_ETM_RANGE:
1927 * If the packet contains an instruction
1928 * range, generate instruction sequence
1929 * events.
1931 cs_etm__sample(etmq, tidq);
1932 break;
1933 case CS_ETM_EXCEPTION:
1934 case CS_ETM_EXCEPTION_RET:
1936 * If the exception packet is coming,
1937 * make sure the previous instruction
1938 * range packet to be handled properly.
1940 cs_etm__exception(tidq);
1941 break;
1942 case CS_ETM_DISCONTINUITY:
1944 * Discontinuity in trace, flush
1945 * previous branch stack
1947 cs_etm__flush(etmq, tidq);
1948 break;
1949 case CS_ETM_EMPTY:
1951 * Should not receive empty packet,
1952 * report error.
1954 pr_err("CS ETM Trace: empty packet\n");
1955 return -EINVAL;
1956 default:
1957 break;
1961 return ret;
1964 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
1966 int idx;
1967 struct int_node *inode;
1968 struct cs_etm_traceid_queue *tidq;
1969 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
1971 intlist__for_each_entry(inode, traceid_queues_list) {
1972 idx = (int)(intptr_t)inode->priv;
1973 tidq = etmq->traceid_queues[idx];
1975 /* Ignore return value */
1976 cs_etm__process_traceid_queue(etmq, tidq);
1979 * Generate an instruction sample with the remaining
1980 * branchstack entries.
1982 cs_etm__flush(etmq, tidq);
1986 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
1988 int err = 0;
1989 struct cs_etm_traceid_queue *tidq;
1991 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
1992 if (!tidq)
1993 return -EINVAL;
1995 /* Go through each buffer in the queue and decode them one by one */
1996 while (1) {
1997 err = cs_etm__get_data_block(etmq);
1998 if (err <= 0)
1999 return err;
2001 /* Run trace decoder until buffer consumed or end of trace */
2002 do {
2003 err = cs_etm__decode_data_block(etmq);
2004 if (err)
2005 return err;
2008 * Process each packet in this chunk, nothing to do if
2009 * an error occurs other than hoping the next one will
2010 * be better.
2012 err = cs_etm__process_traceid_queue(etmq, tidq);
2014 } while (etmq->buf_len);
2016 if (err == 0)
2017 /* Flush any remaining branch stack entries */
2018 err = cs_etm__end_block(etmq, tidq);
2021 return err;
2024 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2025 pid_t tid)
2027 unsigned int i;
2028 struct auxtrace_queues *queues = &etm->queues;
2030 for (i = 0; i < queues->nr_queues; i++) {
2031 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2032 struct cs_etm_queue *etmq = queue->priv;
2033 struct cs_etm_traceid_queue *tidq;
2035 if (!etmq)
2036 continue;
2038 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2039 CS_ETM_PER_THREAD_TRACEID);
2041 if (!tidq)
2042 continue;
2044 if ((tid == -1) || (tidq->tid == tid)) {
2045 cs_etm__set_pid_tid_cpu(etm, tidq);
2046 cs_etm__run_decoder(etmq);
2050 return 0;
2053 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2055 int ret = 0;
2056 unsigned int cs_queue_nr, queue_nr;
2057 u8 trace_chan_id;
2058 u64 timestamp;
2059 struct auxtrace_queue *queue;
2060 struct cs_etm_queue *etmq;
2061 struct cs_etm_traceid_queue *tidq;
2063 while (1) {
2064 if (!etm->heap.heap_cnt)
2065 goto out;
2067 /* Take the entry at the top of the min heap */
2068 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2069 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2070 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2071 queue = &etm->queues.queue_array[queue_nr];
2072 etmq = queue->priv;
2075 * Remove the top entry from the heap since we are about
2076 * to process it.
2078 auxtrace_heap__pop(&etm->heap);
2080 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2081 if (!tidq) {
2083 * No traceID queue has been allocated for this traceID,
2084 * which means something somewhere went very wrong. No
2085 * other choice than simply exit.
2087 ret = -EINVAL;
2088 goto out;
2092 * Packets associated with this timestamp are already in
2093 * the etmq's traceID queue, so process them.
2095 ret = cs_etm__process_traceid_queue(etmq, tidq);
2096 if (ret < 0)
2097 goto out;
2100 * Packets for this timestamp have been processed, time to
2101 * move on to the next timestamp, fetching a new auxtrace_buffer
2102 * if need be.
2104 refetch:
2105 ret = cs_etm__get_data_block(etmq);
2106 if (ret < 0)
2107 goto out;
2110 * No more auxtrace_buffers to process in this etmq, simply
2111 * move on to another entry in the auxtrace_heap.
2113 if (!ret)
2114 continue;
2116 ret = cs_etm__decode_data_block(etmq);
2117 if (ret)
2118 goto out;
2120 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2122 if (!timestamp) {
2124 * Function cs_etm__decode_data_block() returns when
2125 * there is no more traces to decode in the current
2126 * auxtrace_buffer OR when a timestamp has been
2127 * encountered on any of the traceID queues. Since we
2128 * did not get a timestamp, there is no more traces to
2129 * process in this auxtrace_buffer. As such empty and
2130 * flush all traceID queues.
2132 cs_etm__clear_all_traceid_queues(etmq);
2134 /* Fetch another auxtrace_buffer for this etmq */
2135 goto refetch;
2139 * Add to the min heap the timestamp for packets that have
2140 * just been decoded. They will be processed and synthesized
2141 * during the next call to cs_etm__process_traceid_queue() for
2142 * this queue/traceID.
2144 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2145 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2148 out:
2149 return ret;
2152 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2153 union perf_event *event)
2155 struct thread *th;
2157 if (etm->timeless_decoding)
2158 return 0;
2161 * Add the tid/pid to the log so that we can get a match when
2162 * we get a contextID from the decoder.
2164 th = machine__findnew_thread(etm->machine,
2165 event->itrace_start.pid,
2166 event->itrace_start.tid);
2167 if (!th)
2168 return -ENOMEM;
2170 thread__put(th);
2172 return 0;
2175 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2176 union perf_event *event)
2178 struct thread *th;
2179 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2182 * Context switch in per-thread mode are irrelevant since perf
2183 * will start/stop tracing as the process is scheduled.
2185 if (etm->timeless_decoding)
2186 return 0;
2189 * SWITCH_IN events carry the next process to be switched out while
2190 * SWITCH_OUT events carry the process to be switched in. As such
2191 * we don't care about IN events.
2193 if (!out)
2194 return 0;
2197 * Add the tid/pid to the log so that we can get a match when
2198 * we get a contextID from the decoder.
2200 th = machine__findnew_thread(etm->machine,
2201 event->context_switch.next_prev_pid,
2202 event->context_switch.next_prev_tid);
2203 if (!th)
2204 return -ENOMEM;
2206 thread__put(th);
2208 return 0;
2211 static int cs_etm__process_event(struct perf_session *session,
2212 union perf_event *event,
2213 struct perf_sample *sample,
2214 struct perf_tool *tool)
2216 int err = 0;
2217 u64 timestamp;
2218 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2219 struct cs_etm_auxtrace,
2220 auxtrace);
2222 if (dump_trace)
2223 return 0;
2225 if (!tool->ordered_events) {
2226 pr_err("CoreSight ETM Trace requires ordered events\n");
2227 return -EINVAL;
2230 if (sample->time && (sample->time != (u64) -1))
2231 timestamp = sample->time;
2232 else
2233 timestamp = 0;
2235 if (timestamp || etm->timeless_decoding) {
2236 err = cs_etm__update_queues(etm);
2237 if (err)
2238 return err;
2241 if (etm->timeless_decoding &&
2242 event->header.type == PERF_RECORD_EXIT)
2243 return cs_etm__process_timeless_queues(etm,
2244 event->fork.tid);
2246 if (event->header.type == PERF_RECORD_ITRACE_START)
2247 return cs_etm__process_itrace_start(etm, event);
2248 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2249 return cs_etm__process_switch_cpu_wide(etm, event);
2251 if (!etm->timeless_decoding &&
2252 event->header.type == PERF_RECORD_AUX)
2253 return cs_etm__process_queues(etm);
2255 return 0;
2258 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2259 union perf_event *event,
2260 struct perf_tool *tool __maybe_unused)
2262 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2263 struct cs_etm_auxtrace,
2264 auxtrace);
2265 if (!etm->data_queued) {
2266 struct auxtrace_buffer *buffer;
2267 off_t data_offset;
2268 int fd = perf_data__fd(session->data);
2269 bool is_pipe = perf_data__is_pipe(session->data);
2270 int err;
2272 if (is_pipe)
2273 data_offset = 0;
2274 else {
2275 data_offset = lseek(fd, 0, SEEK_CUR);
2276 if (data_offset == -1)
2277 return -errno;
2280 err = auxtrace_queues__add_event(&etm->queues, session,
2281 event, data_offset, &buffer);
2282 if (err)
2283 return err;
2285 if (dump_trace)
2286 if (auxtrace_buffer__get_data(buffer, fd)) {
2287 cs_etm__dump_event(etm, buffer);
2288 auxtrace_buffer__put_data(buffer);
2292 return 0;
2295 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2297 struct perf_evsel *evsel;
2298 struct perf_evlist *evlist = etm->session->evlist;
2299 bool timeless_decoding = true;
2302 * Circle through the list of event and complain if we find one
2303 * with the time bit set.
2305 evlist__for_each_entry(evlist, evsel) {
2306 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
2307 timeless_decoding = false;
2310 return timeless_decoding;
2313 static const char * const cs_etm_global_header_fmts[] = {
2314 [CS_HEADER_VERSION_0] = " Header version %llx\n",
2315 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
2316 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
2319 static const char * const cs_etm_priv_fmts[] = {
2320 [CS_ETM_MAGIC] = " Magic number %llx\n",
2321 [CS_ETM_CPU] = " CPU %lld\n",
2322 [CS_ETM_ETMCR] = " ETMCR %llx\n",
2323 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
2324 [CS_ETM_ETMCCER] = " ETMCCER %llx\n",
2325 [CS_ETM_ETMIDR] = " ETMIDR %llx\n",
2328 static const char * const cs_etmv4_priv_fmts[] = {
2329 [CS_ETM_MAGIC] = " Magic number %llx\n",
2330 [CS_ETM_CPU] = " CPU %lld\n",
2331 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
2332 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
2333 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
2334 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
2335 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
2336 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
2337 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
2340 static void cs_etm__print_auxtrace_info(u64 *val, int num)
2342 int i, j, cpu = 0;
2344 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2345 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2347 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2348 if (val[i] == __perf_cs_etmv3_magic)
2349 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2350 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2351 else if (val[i] == __perf_cs_etmv4_magic)
2352 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2353 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2354 else
2355 /* failure.. return */
2356 return;
2360 int cs_etm__process_auxtrace_info(union perf_event *event,
2361 struct perf_session *session)
2363 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2364 struct cs_etm_auxtrace *etm = NULL;
2365 struct int_node *inode;
2366 unsigned int pmu_type;
2367 int event_header_size = sizeof(struct perf_event_header);
2368 int info_header_size;
2369 int total_size = auxtrace_info->header.size;
2370 int priv_size = 0;
2371 int num_cpu;
2372 int err = 0, idx = -1;
2373 int i, j, k;
2374 u64 *ptr, *hdr = NULL;
2375 u64 **metadata = NULL;
2378 * sizeof(auxtrace_info_event::type) +
2379 * sizeof(auxtrace_info_event::reserved) == 8
2381 info_header_size = 8;
2383 if (total_size < (event_header_size + info_header_size))
2384 return -EINVAL;
2386 priv_size = total_size - event_header_size - info_header_size;
2388 /* First the global part */
2389 ptr = (u64 *) auxtrace_info->priv;
2391 /* Look for version '0' of the header */
2392 if (ptr[0] != 0)
2393 return -EINVAL;
2395 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2396 if (!hdr)
2397 return -ENOMEM;
2399 /* Extract header information - see cs-etm.h for format */
2400 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2401 hdr[i] = ptr[i];
2402 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2403 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2404 0xffffffff);
2407 * Create an RB tree for traceID-metadata tuple. Since the conversion
2408 * has to be made for each packet that gets decoded, optimizing access
2409 * in anything other than a sequential array is worth doing.
2411 traceid_list = intlist__new(NULL);
2412 if (!traceid_list) {
2413 err = -ENOMEM;
2414 goto err_free_hdr;
2417 metadata = zalloc(sizeof(*metadata) * num_cpu);
2418 if (!metadata) {
2419 err = -ENOMEM;
2420 goto err_free_traceid_list;
2424 * The metadata is stored in the auxtrace_info section and encodes
2425 * the configuration of the ARM embedded trace macrocell which is
2426 * required by the trace decoder to properly decode the trace due
2427 * to its highly compressed nature.
2429 for (j = 0; j < num_cpu; j++) {
2430 if (ptr[i] == __perf_cs_etmv3_magic) {
2431 metadata[j] = zalloc(sizeof(*metadata[j]) *
2432 CS_ETM_PRIV_MAX);
2433 if (!metadata[j]) {
2434 err = -ENOMEM;
2435 goto err_free_metadata;
2437 for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2438 metadata[j][k] = ptr[i + k];
2440 /* The traceID is our handle */
2441 idx = metadata[j][CS_ETM_ETMTRACEIDR];
2442 i += CS_ETM_PRIV_MAX;
2443 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2444 metadata[j] = zalloc(sizeof(*metadata[j]) *
2445 CS_ETMV4_PRIV_MAX);
2446 if (!metadata[j]) {
2447 err = -ENOMEM;
2448 goto err_free_metadata;
2450 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2451 metadata[j][k] = ptr[i + k];
2453 /* The traceID is our handle */
2454 idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2455 i += CS_ETMV4_PRIV_MAX;
2458 /* Get an RB node for this CPU */
2459 inode = intlist__findnew(traceid_list, idx);
2461 /* Something went wrong, no need to continue */
2462 if (!inode) {
2463 err = PTR_ERR(inode);
2464 goto err_free_metadata;
2468 * The node for that CPU should not be taken.
2469 * Back out if that's the case.
2471 if (inode->priv) {
2472 err = -EINVAL;
2473 goto err_free_metadata;
2475 /* All good, associate the traceID with the metadata pointer */
2476 inode->priv = metadata[j];
2480 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2481 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2482 * global metadata, and each cpu's metadata respectively.
2483 * The following tests if the correct number of double words was
2484 * present in the auxtrace info section.
2486 if (i * 8 != priv_size) {
2487 err = -EINVAL;
2488 goto err_free_metadata;
2491 etm = zalloc(sizeof(*etm));
2493 if (!etm) {
2494 err = -ENOMEM;
2495 goto err_free_metadata;
2498 err = auxtrace_queues__init(&etm->queues);
2499 if (err)
2500 goto err_free_etm;
2502 etm->session = session;
2503 etm->machine = &session->machines.host;
2505 etm->num_cpu = num_cpu;
2506 etm->pmu_type = pmu_type;
2507 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2508 etm->metadata = metadata;
2509 etm->auxtrace_type = auxtrace_info->type;
2510 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2512 etm->auxtrace.process_event = cs_etm__process_event;
2513 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2514 etm->auxtrace.flush_events = cs_etm__flush_events;
2515 etm->auxtrace.free_events = cs_etm__free_events;
2516 etm->auxtrace.free = cs_etm__free;
2517 session->auxtrace = &etm->auxtrace;
2519 etm->unknown_thread = thread__new(999999999, 999999999);
2520 if (!etm->unknown_thread)
2521 goto err_free_queues;
2524 * Initialize list node so that at thread__zput() we can avoid
2525 * segmentation fault at list_del_init().
2527 INIT_LIST_HEAD(&etm->unknown_thread->node);
2529 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2530 if (err)
2531 goto err_delete_thread;
2533 if (thread__init_map_groups(etm->unknown_thread, etm->machine))
2534 goto err_delete_thread;
2536 if (dump_trace) {
2537 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2538 return 0;
2541 if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2542 etm->synth_opts = *session->itrace_synth_opts;
2543 } else {
2544 itrace_synth_opts__set_default(&etm->synth_opts,
2545 session->itrace_synth_opts->default_no_sample);
2546 etm->synth_opts.callchain = false;
2549 err = cs_etm__synth_events(etm, session);
2550 if (err)
2551 goto err_delete_thread;
2553 err = auxtrace_queues__process_index(&etm->queues, session);
2554 if (err)
2555 goto err_delete_thread;
2557 etm->data_queued = etm->queues.populated;
2559 return 0;
2561 err_delete_thread:
2562 thread__zput(etm->unknown_thread);
2563 err_free_queues:
2564 auxtrace_queues__free(&etm->queues);
2565 session->auxtrace = NULL;
2566 err_free_etm:
2567 zfree(&etm);
2568 err_free_metadata:
2569 /* No need to check @metadata[j], free(NULL) is supported */
2570 for (j = 0; j < num_cpu; j++)
2571 free(metadata[j]);
2572 zfree(&metadata);
2573 err_free_traceid_list:
2574 intlist__delete(traceid_list);
2575 err_free_hdr:
2576 zfree(&hdr);
2578 return -EINVAL;