mm: use kcalloc() instead of kzalloc() to allocate array
[linux/fpc-iii.git] / drivers / hwmon / emc2103.c
blob9691f664c76eb236eba72407990cc5b5aaadbf6c
1 /*
2 * emc2103.c - Support for SMSC EMC2103
3 * Copyright (c) 2010 SMSC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/i2c.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/err.h>
28 #include <linux/mutex.h>
30 /* Addresses scanned */
31 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
33 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
34 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
35 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
37 #define REG_CONF1 0x20
38 #define REG_TEMP_MAX_ALARM 0x24
39 #define REG_TEMP_MIN_ALARM 0x25
40 #define REG_FAN_CONF1 0x42
41 #define REG_FAN_TARGET_LO 0x4c
42 #define REG_FAN_TARGET_HI 0x4d
43 #define REG_FAN_TACH_HI 0x4e
44 #define REG_FAN_TACH_LO 0x4f
45 #define REG_PRODUCT_ID 0xfd
46 #define REG_MFG_ID 0xfe
48 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
49 #define FAN_RPM_FACTOR 3932160
52 * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
53 * in anti-parallel mode, and in this configuration both can be read
54 * independently (so we have 4 temperature inputs). The device can't
55 * detect if it's connected in this mode, so we have to manually enable
56 * it. Default is to leave the device in the state it's already in (-1).
57 * This parameter allows APD mode to be optionally forced on or off
59 static int apd = -1;
60 module_param(apd, bint, 0);
61 MODULE_PARM_DESC(init, "Set to zero to disable anti-parallel diode mode");
63 struct temperature {
64 s8 degrees;
65 u8 fraction; /* 0-7 multiples of 0.125 */
68 struct emc2103_data {
69 struct device *hwmon_dev;
70 struct mutex update_lock;
71 bool valid; /* registers are valid */
72 bool fan_rpm_control;
73 int temp_count; /* num of temp sensors */
74 unsigned long last_updated; /* in jiffies */
75 struct temperature temp[4]; /* internal + 3 external */
76 s8 temp_min[4]; /* no fractional part */
77 s8 temp_max[4]; /* no fractional part */
78 u8 temp_min_alarm;
79 u8 temp_max_alarm;
80 u8 fan_multiplier;
81 u16 fan_tach;
82 u16 fan_target;
85 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
87 int status = i2c_smbus_read_byte_data(client, i2c_reg);
88 if (status < 0) {
89 dev_warn(&client->dev, "reg 0x%02x, err %d\n",
90 i2c_reg, status);
91 } else {
92 *output = status;
94 return status;
97 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
98 struct temperature *temp)
100 u8 degrees, fractional;
102 if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
103 return;
105 if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
106 return;
108 temp->degrees = degrees;
109 temp->fraction = (fractional & 0xe0) >> 5;
112 static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
113 u8 hi_addr, u8 lo_addr)
115 u8 high_byte, lo_byte;
117 if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
118 return;
120 if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
121 return;
123 *output = ((u16)high_byte << 5) | (lo_byte >> 3);
126 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
128 u8 high_byte = (new_target & 0x1fe0) >> 5;
129 u8 low_byte = (new_target & 0x001f) << 3;
130 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
131 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
134 static void read_fan_config_from_i2c(struct i2c_client *client)
137 struct emc2103_data *data = i2c_get_clientdata(client);
138 u8 conf1;
140 if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
141 return;
143 data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
144 data->fan_rpm_control = (conf1 & 0x80) != 0;
147 static struct emc2103_data *emc2103_update_device(struct device *dev)
149 struct i2c_client *client = to_i2c_client(dev);
150 struct emc2103_data *data = i2c_get_clientdata(client);
152 mutex_lock(&data->update_lock);
154 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
155 || !data->valid) {
156 int i;
158 for (i = 0; i < data->temp_count; i++) {
159 read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
160 read_u8_from_i2c(client, REG_TEMP_MIN[i],
161 &data->temp_min[i]);
162 read_u8_from_i2c(client, REG_TEMP_MAX[i],
163 &data->temp_max[i]);
166 read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
167 &data->temp_min_alarm);
168 read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
169 &data->temp_max_alarm);
171 read_fan_from_i2c(client, &data->fan_tach,
172 REG_FAN_TACH_HI, REG_FAN_TACH_LO);
173 read_fan_from_i2c(client, &data->fan_target,
174 REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
175 read_fan_config_from_i2c(client);
177 data->last_updated = jiffies;
178 data->valid = true;
181 mutex_unlock(&data->update_lock);
183 return data;
186 static ssize_t
187 show_temp(struct device *dev, struct device_attribute *da, char *buf)
189 int nr = to_sensor_dev_attr(da)->index;
190 struct emc2103_data *data = emc2103_update_device(dev);
191 int millidegrees = data->temp[nr].degrees * 1000
192 + data->temp[nr].fraction * 125;
193 return sprintf(buf, "%d\n", millidegrees);
196 static ssize_t
197 show_temp_min(struct device *dev, struct device_attribute *da, char *buf)
199 int nr = to_sensor_dev_attr(da)->index;
200 struct emc2103_data *data = emc2103_update_device(dev);
201 int millidegrees = data->temp_min[nr] * 1000;
202 return sprintf(buf, "%d\n", millidegrees);
205 static ssize_t
206 show_temp_max(struct device *dev, struct device_attribute *da, char *buf)
208 int nr = to_sensor_dev_attr(da)->index;
209 struct emc2103_data *data = emc2103_update_device(dev);
210 int millidegrees = data->temp_max[nr] * 1000;
211 return sprintf(buf, "%d\n", millidegrees);
214 static ssize_t
215 show_temp_fault(struct device *dev, struct device_attribute *da, char *buf)
217 int nr = to_sensor_dev_attr(da)->index;
218 struct emc2103_data *data = emc2103_update_device(dev);
219 bool fault = (data->temp[nr].degrees == -128);
220 return sprintf(buf, "%d\n", fault ? 1 : 0);
223 static ssize_t
224 show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf)
226 int nr = to_sensor_dev_attr(da)->index;
227 struct emc2103_data *data = emc2103_update_device(dev);
228 bool alarm = data->temp_min_alarm & (1 << nr);
229 return sprintf(buf, "%d\n", alarm ? 1 : 0);
232 static ssize_t
233 show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf)
235 int nr = to_sensor_dev_attr(da)->index;
236 struct emc2103_data *data = emc2103_update_device(dev);
237 bool alarm = data->temp_max_alarm & (1 << nr);
238 return sprintf(buf, "%d\n", alarm ? 1 : 0);
241 static ssize_t set_temp_min(struct device *dev, struct device_attribute *da,
242 const char *buf, size_t count)
244 int nr = to_sensor_dev_attr(da)->index;
245 struct i2c_client *client = to_i2c_client(dev);
246 struct emc2103_data *data = i2c_get_clientdata(client);
247 long val;
249 int result = kstrtol(buf, 10, &val);
250 if (result < 0)
251 return -EINVAL;
253 val = DIV_ROUND_CLOSEST(val, 1000);
254 if ((val < -63) || (val > 127))
255 return -EINVAL;
257 mutex_lock(&data->update_lock);
258 data->temp_min[nr] = val;
259 i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
260 mutex_unlock(&data->update_lock);
262 return count;
265 static ssize_t set_temp_max(struct device *dev, struct device_attribute *da,
266 const char *buf, size_t count)
268 int nr = to_sensor_dev_attr(da)->index;
269 struct i2c_client *client = to_i2c_client(dev);
270 struct emc2103_data *data = i2c_get_clientdata(client);
271 long val;
273 int result = kstrtol(buf, 10, &val);
274 if (result < 0)
275 return -EINVAL;
277 val = DIV_ROUND_CLOSEST(val, 1000);
278 if ((val < -63) || (val > 127))
279 return -EINVAL;
281 mutex_lock(&data->update_lock);
282 data->temp_max[nr] = val;
283 i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
284 mutex_unlock(&data->update_lock);
286 return count;
289 static ssize_t
290 show_fan(struct device *dev, struct device_attribute *da, char *buf)
292 struct emc2103_data *data = emc2103_update_device(dev);
293 int rpm = 0;
294 if (data->fan_tach != 0)
295 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
296 return sprintf(buf, "%d\n", rpm);
299 static ssize_t
300 show_fan_div(struct device *dev, struct device_attribute *da, char *buf)
302 struct emc2103_data *data = emc2103_update_device(dev);
303 int fan_div = 8 / data->fan_multiplier;
304 return sprintf(buf, "%d\n", fan_div);
308 * Note: we also update the fan target here, because its value is
309 * determined in part by the fan clock divider. This follows the principle
310 * of least surprise; the user doesn't expect the fan target to change just
311 * because the divider changed.
313 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
314 const char *buf, size_t count)
316 struct emc2103_data *data = emc2103_update_device(dev);
317 struct i2c_client *client = to_i2c_client(dev);
318 int new_range_bits, old_div = 8 / data->fan_multiplier;
319 long new_div;
321 int status = kstrtol(buf, 10, &new_div);
322 if (status < 0)
323 return -EINVAL;
325 if (new_div == old_div) /* No change */
326 return count;
328 switch (new_div) {
329 case 1:
330 new_range_bits = 3;
331 break;
332 case 2:
333 new_range_bits = 2;
334 break;
335 case 4:
336 new_range_bits = 1;
337 break;
338 case 8:
339 new_range_bits = 0;
340 break;
341 default:
342 return -EINVAL;
345 mutex_lock(&data->update_lock);
347 status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
348 if (status < 0) {
349 dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
350 REG_FAN_CONF1, status);
351 mutex_unlock(&data->update_lock);
352 return -EIO;
354 status &= 0x9F;
355 status |= (new_range_bits << 5);
356 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
358 data->fan_multiplier = 8 / new_div;
360 /* update fan target if high byte is not disabled */
361 if ((data->fan_target & 0x1fe0) != 0x1fe0) {
362 u16 new_target = (data->fan_target * old_div) / new_div;
363 data->fan_target = min(new_target, (u16)0x1fff);
364 write_fan_target_to_i2c(client, data->fan_target);
367 /* invalidate data to force re-read from hardware */
368 data->valid = false;
370 mutex_unlock(&data->update_lock);
371 return count;
374 static ssize_t
375 show_fan_target(struct device *dev, struct device_attribute *da, char *buf)
377 struct emc2103_data *data = emc2103_update_device(dev);
378 int rpm = 0;
380 /* high byte of 0xff indicates disabled so return 0 */
381 if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
382 rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
383 / data->fan_target;
385 return sprintf(buf, "%d\n", rpm);
388 static ssize_t set_fan_target(struct device *dev, struct device_attribute *da,
389 const char *buf, size_t count)
391 struct emc2103_data *data = emc2103_update_device(dev);
392 struct i2c_client *client = to_i2c_client(dev);
393 long rpm_target;
395 int result = kstrtol(buf, 10, &rpm_target);
396 if (result < 0)
397 return -EINVAL;
399 /* Datasheet states 16384 as maximum RPM target (table 3.2) */
400 if ((rpm_target < 0) || (rpm_target > 16384))
401 return -EINVAL;
403 mutex_lock(&data->update_lock);
405 if (rpm_target == 0)
406 data->fan_target = 0x1fff;
407 else
408 data->fan_target = SENSORS_LIMIT(
409 (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
410 0, 0x1fff);
412 write_fan_target_to_i2c(client, data->fan_target);
414 mutex_unlock(&data->update_lock);
415 return count;
418 static ssize_t
419 show_fan_fault(struct device *dev, struct device_attribute *da, char *buf)
421 struct emc2103_data *data = emc2103_update_device(dev);
422 bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
423 return sprintf(buf, "%d\n", fault ? 1 : 0);
426 static ssize_t
427 show_pwm_enable(struct device *dev, struct device_attribute *da, char *buf)
429 struct emc2103_data *data = emc2103_update_device(dev);
430 return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
433 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *da,
434 const char *buf, size_t count)
436 struct i2c_client *client = to_i2c_client(dev);
437 struct emc2103_data *data = i2c_get_clientdata(client);
438 long new_value;
439 u8 conf_reg;
441 int result = kstrtol(buf, 10, &new_value);
442 if (result < 0)
443 return -EINVAL;
445 mutex_lock(&data->update_lock);
446 switch (new_value) {
447 case 0:
448 data->fan_rpm_control = false;
449 break;
450 case 3:
451 data->fan_rpm_control = true;
452 break;
453 default:
454 mutex_unlock(&data->update_lock);
455 return -EINVAL;
458 read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
460 if (data->fan_rpm_control)
461 conf_reg |= 0x80;
462 else
463 conf_reg &= ~0x80;
465 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
467 mutex_unlock(&data->update_lock);
468 return count;
471 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
472 static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min,
473 set_temp_min, 0);
474 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
475 set_temp_max, 0);
476 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0);
477 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm,
478 NULL, 0);
479 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm,
480 NULL, 0);
482 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
483 static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min,
484 set_temp_min, 1);
485 static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
486 set_temp_max, 1);
487 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1);
488 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm,
489 NULL, 1);
490 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm,
491 NULL, 1);
493 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
494 static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min,
495 set_temp_min, 2);
496 static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
497 set_temp_max, 2);
498 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2);
499 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm,
500 NULL, 2);
501 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm,
502 NULL, 2);
504 static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
505 static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min,
506 set_temp_min, 3);
507 static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
508 set_temp_max, 3);
509 static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3);
510 static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm,
511 NULL, 3);
512 static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm,
513 NULL, 3);
515 static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL);
516 static DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div);
517 static DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, show_fan_target,
518 set_fan_target);
519 static DEVICE_ATTR(fan1_fault, S_IRUGO, show_fan_fault, NULL);
521 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
522 set_pwm_enable);
524 /* sensors present on all models */
525 static struct attribute *emc2103_attributes[] = {
526 &sensor_dev_attr_temp1_input.dev_attr.attr,
527 &sensor_dev_attr_temp1_min.dev_attr.attr,
528 &sensor_dev_attr_temp1_max.dev_attr.attr,
529 &sensor_dev_attr_temp1_fault.dev_attr.attr,
530 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
531 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
532 &sensor_dev_attr_temp2_input.dev_attr.attr,
533 &sensor_dev_attr_temp2_min.dev_attr.attr,
534 &sensor_dev_attr_temp2_max.dev_attr.attr,
535 &sensor_dev_attr_temp2_fault.dev_attr.attr,
536 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
537 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
538 &dev_attr_fan1_input.attr,
539 &dev_attr_fan1_div.attr,
540 &dev_attr_fan1_target.attr,
541 &dev_attr_fan1_fault.attr,
542 &dev_attr_pwm1_enable.attr,
543 NULL
546 /* extra temperature sensors only present on 2103-2 and 2103-4 */
547 static struct attribute *emc2103_attributes_temp3[] = {
548 &sensor_dev_attr_temp3_input.dev_attr.attr,
549 &sensor_dev_attr_temp3_min.dev_attr.attr,
550 &sensor_dev_attr_temp3_max.dev_attr.attr,
551 &sensor_dev_attr_temp3_fault.dev_attr.attr,
552 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
553 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
554 NULL
557 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
558 static struct attribute *emc2103_attributes_temp4[] = {
559 &sensor_dev_attr_temp4_input.dev_attr.attr,
560 &sensor_dev_attr_temp4_min.dev_attr.attr,
561 &sensor_dev_attr_temp4_max.dev_attr.attr,
562 &sensor_dev_attr_temp4_fault.dev_attr.attr,
563 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
564 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
565 NULL
568 static const struct attribute_group emc2103_group = {
569 .attrs = emc2103_attributes,
572 static const struct attribute_group emc2103_temp3_group = {
573 .attrs = emc2103_attributes_temp3,
576 static const struct attribute_group emc2103_temp4_group = {
577 .attrs = emc2103_attributes_temp4,
580 static int
581 emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id)
583 struct emc2103_data *data;
584 int status;
586 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
587 return -EIO;
589 data = kzalloc(sizeof(struct emc2103_data), GFP_KERNEL);
590 if (!data)
591 return -ENOMEM;
593 i2c_set_clientdata(client, data);
594 mutex_init(&data->update_lock);
596 /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
597 status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
598 if (status == 0x24) {
599 /* 2103-1 only has 1 external diode */
600 data->temp_count = 2;
601 } else {
602 /* 2103-2 and 2103-4 have 3 or 4 external diodes */
603 status = i2c_smbus_read_byte_data(client, REG_CONF1);
604 if (status < 0) {
605 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
606 status);
607 goto exit_free;
610 /* detect current state of hardware */
611 data->temp_count = (status & 0x01) ? 4 : 3;
613 /* force APD state if module parameter is set */
614 if (apd == 0) {
615 /* force APD mode off */
616 data->temp_count = 3;
617 status &= ~(0x01);
618 i2c_smbus_write_byte_data(client, REG_CONF1, status);
619 } else if (apd == 1) {
620 /* force APD mode on */
621 data->temp_count = 4;
622 status |= 0x01;
623 i2c_smbus_write_byte_data(client, REG_CONF1, status);
627 /* Register sysfs hooks */
628 status = sysfs_create_group(&client->dev.kobj, &emc2103_group);
629 if (status)
630 goto exit_free;
632 if (data->temp_count >= 3) {
633 status = sysfs_create_group(&client->dev.kobj,
634 &emc2103_temp3_group);
635 if (status)
636 goto exit_remove;
639 if (data->temp_count == 4) {
640 status = sysfs_create_group(&client->dev.kobj,
641 &emc2103_temp4_group);
642 if (status)
643 goto exit_remove_temp3;
646 data->hwmon_dev = hwmon_device_register(&client->dev);
647 if (IS_ERR(data->hwmon_dev)) {
648 status = PTR_ERR(data->hwmon_dev);
649 goto exit_remove_temp4;
652 dev_info(&client->dev, "%s: sensor '%s'\n",
653 dev_name(data->hwmon_dev), client->name);
655 return 0;
657 exit_remove_temp4:
658 if (data->temp_count == 4)
659 sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
660 exit_remove_temp3:
661 if (data->temp_count >= 3)
662 sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
663 exit_remove:
664 sysfs_remove_group(&client->dev.kobj, &emc2103_group);
665 exit_free:
666 kfree(data);
667 return status;
670 static int emc2103_remove(struct i2c_client *client)
672 struct emc2103_data *data = i2c_get_clientdata(client);
674 hwmon_device_unregister(data->hwmon_dev);
676 if (data->temp_count == 4)
677 sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
679 if (data->temp_count >= 3)
680 sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
682 sysfs_remove_group(&client->dev.kobj, &emc2103_group);
684 kfree(data);
685 return 0;
688 static const struct i2c_device_id emc2103_ids[] = {
689 { "emc2103", 0, },
690 { /* LIST END */ }
692 MODULE_DEVICE_TABLE(i2c, emc2103_ids);
694 /* Return 0 if detection is successful, -ENODEV otherwise */
695 static int
696 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
698 struct i2c_adapter *adapter = new_client->adapter;
699 int manufacturer, product;
701 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
702 return -ENODEV;
704 manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
705 if (manufacturer != 0x5D)
706 return -ENODEV;
708 product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
709 if ((product != 0x24) && (product != 0x26))
710 return -ENODEV;
712 strlcpy(info->type, "emc2103", I2C_NAME_SIZE);
714 return 0;
717 static struct i2c_driver emc2103_driver = {
718 .class = I2C_CLASS_HWMON,
719 .driver = {
720 .name = "emc2103",
722 .probe = emc2103_probe,
723 .remove = emc2103_remove,
724 .id_table = emc2103_ids,
725 .detect = emc2103_detect,
726 .address_list = normal_i2c,
729 module_i2c_driver(emc2103_driver);
731 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@smsc.com>");
732 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
733 MODULE_LICENSE("GPL");