2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
40 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
41 * allocating too much.
43 #define UBIFS_KMALLOC_OK (128*1024)
45 /* Slab cache for UBIFS inodes */
46 struct kmem_cache
*ubifs_inode_slab
;
48 /* UBIFS TNC shrinker description */
49 static struct shrinker ubifs_shrinker_info
= {
50 .shrink
= ubifs_shrinker
,
51 .seeks
= DEFAULT_SEEKS
,
55 * validate_inode - validate inode.
56 * @c: UBIFS file-system description object
57 * @inode: the inode to validate
59 * This is a helper function for 'ubifs_iget()' which validates various fields
60 * of a newly built inode to make sure they contain sane values and prevent
61 * possible vulnerabilities. Returns zero if the inode is all right and
62 * a non-zero error code if not.
64 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
67 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
69 if (inode
->i_size
> c
->max_inode_sz
) {
70 ubifs_err("inode is too large (%lld)",
71 (long long)inode
->i_size
);
75 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
76 ubifs_err("unknown compression type %d", ui
->compr_type
);
80 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
83 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
86 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
89 if (!ubifs_compr_present(ui
->compr_type
)) {
90 ubifs_warn("inode %lu uses '%s' compression, but it was not "
91 "compiled in", inode
->i_ino
,
92 ubifs_compr_name(ui
->compr_type
));
95 err
= dbg_check_dir_size(c
, inode
);
99 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
103 struct ubifs_ino_node
*ino
;
104 struct ubifs_info
*c
= sb
->s_fs_info
;
106 struct ubifs_inode
*ui
;
108 dbg_gen("inode %lu", inum
);
110 inode
= iget_locked(sb
, inum
);
112 return ERR_PTR(-ENOMEM
);
113 if (!(inode
->i_state
& I_NEW
))
115 ui
= ubifs_inode(inode
);
117 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
123 ino_key_init(c
, &key
, inode
->i_ino
);
125 err
= ubifs_tnc_lookup(c
, &key
, ino
);
129 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
130 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
131 inode
->i_uid
= le32_to_cpu(ino
->uid
);
132 inode
->i_gid
= le32_to_cpu(ino
->gid
);
133 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
134 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
135 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
136 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
137 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
138 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
139 inode
->i_mode
= le32_to_cpu(ino
->mode
);
140 inode
->i_size
= le64_to_cpu(ino
->size
);
142 ui
->data_len
= le32_to_cpu(ino
->data_len
);
143 ui
->flags
= le32_to_cpu(ino
->flags
);
144 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
145 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
146 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
147 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
148 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
149 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
151 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
153 err
= validate_inode(c
, inode
);
157 /* Disable read-ahead */
158 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
160 switch (inode
->i_mode
& S_IFMT
) {
162 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
163 inode
->i_op
= &ubifs_file_inode_operations
;
164 inode
->i_fop
= &ubifs_file_operations
;
166 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
171 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
172 ((char *)ui
->data
)[ui
->data_len
] = '\0';
173 } else if (ui
->data_len
!= 0) {
179 inode
->i_op
= &ubifs_dir_inode_operations
;
180 inode
->i_fop
= &ubifs_dir_operations
;
181 if (ui
->data_len
!= 0) {
187 inode
->i_op
= &ubifs_symlink_inode_operations
;
188 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
192 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
197 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
198 ((char *)ui
->data
)[ui
->data_len
] = '\0';
204 union ubifs_dev_desc
*dev
;
206 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
212 dev
= (union ubifs_dev_desc
*)ino
->data
;
213 if (ui
->data_len
== sizeof(dev
->new))
214 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
215 else if (ui
->data_len
== sizeof(dev
->huge
))
216 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
221 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
222 inode
->i_op
= &ubifs_file_inode_operations
;
223 init_special_inode(inode
, inode
->i_mode
, rdev
);
228 inode
->i_op
= &ubifs_file_inode_operations
;
229 init_special_inode(inode
, inode
->i_mode
, 0);
230 if (ui
->data_len
!= 0) {
241 ubifs_set_inode_flags(inode
);
242 unlock_new_inode(inode
);
246 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
247 dbg_dump_node(c
, ino
);
248 dbg_dump_inode(c
, inode
);
253 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
258 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
260 struct ubifs_inode
*ui
;
262 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
266 memset((void *)ui
+ sizeof(struct inode
), 0,
267 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
268 mutex_init(&ui
->ui_mutex
);
269 spin_lock_init(&ui
->ui_lock
);
270 return &ui
->vfs_inode
;
273 static void ubifs_destroy_inode(struct inode
*inode
)
275 struct ubifs_inode
*ui
= ubifs_inode(inode
);
278 kmem_cache_free(ubifs_inode_slab
, inode
);
282 * Note, Linux write-back code calls this without 'i_mutex'.
284 static int ubifs_write_inode(struct inode
*inode
, int wait
)
287 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
288 struct ubifs_inode
*ui
= ubifs_inode(inode
);
290 ubifs_assert(!ui
->xattr
);
291 if (is_bad_inode(inode
))
294 mutex_lock(&ui
->ui_mutex
);
296 * Due to races between write-back forced by budgeting
297 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
298 * have already been synchronized, do not do this again. This might
299 * also happen if it was synchronized in an VFS operation, e.g.
303 mutex_unlock(&ui
->ui_mutex
);
308 * As an optimization, do not write orphan inodes to the media just
309 * because this is not needed.
311 dbg_gen("inode %lu, mode %#x, nlink %u",
312 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
313 if (inode
->i_nlink
) {
314 err
= ubifs_jnl_write_inode(c
, inode
);
316 ubifs_err("can't write inode %lu, error %d",
321 mutex_unlock(&ui
->ui_mutex
);
322 ubifs_release_dirty_inode_budget(c
, ui
);
326 static void ubifs_delete_inode(struct inode
*inode
)
329 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
330 struct ubifs_inode
*ui
= ubifs_inode(inode
);
334 * Extended attribute inode deletions are fully handled in
335 * 'ubifs_removexattr()'. These inodes are special and have
336 * limited usage, so there is nothing to do here.
340 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
341 ubifs_assert(!atomic_read(&inode
->i_count
));
342 ubifs_assert(inode
->i_nlink
== 0);
344 truncate_inode_pages(&inode
->i_data
, 0);
345 if (is_bad_inode(inode
))
348 ui
->ui_size
= inode
->i_size
= 0;
349 err
= ubifs_jnl_delete_inode(c
, inode
);
352 * Worst case we have a lost orphan inode wasting space, so a
353 * simple error message is OK here.
355 ubifs_err("can't delete inode %lu, error %d",
360 ubifs_release_dirty_inode_budget(c
, ui
);
364 static void ubifs_dirty_inode(struct inode
*inode
)
366 struct ubifs_inode
*ui
= ubifs_inode(inode
);
368 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
371 dbg_gen("inode %lu", inode
->i_ino
);
375 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
377 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
378 unsigned long long free
;
379 __le32
*uuid
= (__le32
*)c
->uuid
;
381 free
= ubifs_get_free_space(c
);
382 dbg_gen("free space %lld bytes (%lld blocks)",
383 free
, free
>> UBIFS_BLOCK_SHIFT
);
385 buf
->f_type
= UBIFS_SUPER_MAGIC
;
386 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
387 buf
->f_blocks
= c
->block_cnt
;
388 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
389 if (free
> c
->report_rp_size
)
390 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
395 buf
->f_namelen
= UBIFS_MAX_NLEN
;
396 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
397 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
401 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
403 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
405 if (c
->mount_opts
.unmount_mode
== 2)
406 seq_printf(s
, ",fast_unmount");
407 else if (c
->mount_opts
.unmount_mode
== 1)
408 seq_printf(s
, ",norm_unmount");
410 if (c
->mount_opts
.bulk_read
== 2)
411 seq_printf(s
, ",bulk_read");
412 else if (c
->mount_opts
.bulk_read
== 1)
413 seq_printf(s
, ",no_bulk_read");
415 if (c
->mount_opts
.chk_data_crc
== 2)
416 seq_printf(s
, ",chk_data_crc");
417 else if (c
->mount_opts
.chk_data_crc
== 1)
418 seq_printf(s
, ",no_chk_data_crc");
423 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
425 struct ubifs_info
*c
= sb
->s_fs_info
;
430 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
431 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
436 /* Commit the journal unless it has too little data */
437 spin_lock(&c
->buds_lock
);
438 bud_bytes
= c
->bud_bytes
;
439 spin_unlock(&c
->buds_lock
);
440 if (bud_bytes
> c
->leb_size
) {
441 err
= ubifs_run_commit(c
);
448 * We ought to call sync for c->ubi but it does not have one. If it had
449 * it would in turn call mtd->sync, however mtd operations are
450 * synchronous anyway, so we don't lose any sleep here.
456 * init_constants_early - initialize UBIFS constants.
457 * @c: UBIFS file-system description object
459 * This function initialize UBIFS constants which do not need the superblock to
460 * be read. It also checks that the UBI volume satisfies basic UBIFS
461 * requirements. Returns zero in case of success and a negative error code in
464 static int init_constants_early(struct ubifs_info
*c
)
466 if (c
->vi
.corrupted
) {
467 ubifs_warn("UBI volume is corrupted - read-only mode");
472 ubifs_msg("read-only UBI device");
476 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
477 ubifs_msg("static UBI volume - read-only mode");
481 c
->leb_cnt
= c
->vi
.size
;
482 c
->leb_size
= c
->vi
.usable_leb_size
;
483 c
->half_leb_size
= c
->leb_size
/ 2;
484 c
->min_io_size
= c
->di
.min_io_size
;
485 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
487 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
488 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
489 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
493 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
494 ubifs_err("too few LEBs (%d), min. is %d",
495 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
499 if (!is_power_of_2(c
->min_io_size
)) {
500 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
505 * UBIFS aligns all node to 8-byte boundary, so to make function in
506 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
509 if (c
->min_io_size
< 8) {
514 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
515 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
518 * Initialize node length ranges which are mostly needed for node
521 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
522 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
523 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
524 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
525 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
526 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
528 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
529 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
530 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
531 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
532 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
533 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
534 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
535 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
536 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
537 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
538 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
540 * Minimum indexing node size is amended later when superblock is
541 * read and the key length is known.
543 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
545 * Maximum indexing node size is amended later when superblock is
546 * read and the fanout is known.
548 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
551 * Initialize dead and dark LEB space watermarks.
553 * Dead space is the space which cannot be used. Its watermark is
554 * equivalent to min. I/O unit or minimum node size if it is greater
555 * then min. I/O unit.
557 * Dark space is the space which might be used, or might not, depending
558 * on which node should be written to the LEB. Its watermark is
559 * equivalent to maximum UBIFS node size.
561 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
562 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
565 * Calculate how many bytes would be wasted at the end of LEB if it was
566 * fully filled with data nodes of maximum size. This is used in
567 * calculations when reporting free space.
569 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
571 /* Buffer size for bulk-reads */
572 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
573 if (c
->max_bu_buf_len
> c
->leb_size
)
574 c
->max_bu_buf_len
= c
->leb_size
;
579 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
580 * @c: UBIFS file-system description object
581 * @lnum: LEB the write-buffer was synchronized to
582 * @free: how many free bytes left in this LEB
583 * @pad: how many bytes were padded
585 * This is a callback function which is called by the I/O unit when the
586 * write-buffer is synchronized. We need this to correctly maintain space
587 * accounting in bud logical eraseblocks. This function returns zero in case of
588 * success and a negative error code in case of failure.
590 * This function actually belongs to the journal, but we keep it here because
591 * we want to keep it static.
593 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
595 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
599 * init_constants_late - initialize UBIFS constants.
600 * @c: UBIFS file-system description object
602 * This is a helper function which initializes various UBIFS constants after
603 * the superblock has been read. It also checks various UBIFS parameters and
604 * makes sure they are all right. Returns zero in case of success and a
605 * negative error code in case of failure.
607 static int init_constants_late(struct ubifs_info
*c
)
612 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
613 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
614 c
->fanout
* sizeof(struct ubifs_zbranch
);
616 tmp
= ubifs_idx_node_sz(c
, 1);
617 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
618 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
620 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
621 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
622 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
624 /* Make sure LEB size is large enough to fit full commit */
625 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
626 tmp
= ALIGN(tmp
, c
->min_io_size
);
627 if (tmp
> c
->leb_size
) {
628 dbg_err("too small LEB size %d, at least %d needed",
634 * Make sure that the log is large enough to fit reference nodes for
635 * all buds plus one reserved LEB.
637 tmp64
= c
->max_bud_bytes
;
638 tmp
= do_div(tmp64
, c
->leb_size
);
639 c
->max_bud_cnt
= tmp64
+ !!tmp
;
640 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
643 if (c
->log_lebs
< tmp
) {
644 dbg_err("too small log %d LEBs, required min. %d LEBs",
650 * When budgeting we assume worst-case scenarios when the pages are not
651 * be compressed and direntries are of the maximum size.
653 * Note, data, which may be stored in inodes is budgeted separately, so
654 * it is not included into 'c->inode_budget'.
656 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
657 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
658 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
661 * When the amount of flash space used by buds becomes
662 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
663 * The writers are unblocked when the commit is finished. To avoid
664 * writers to be blocked UBIFS initiates background commit in advance,
665 * when number of bud bytes becomes above the limit defined below.
667 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
670 * Ensure minimum journal size. All the bytes in the journal heads are
671 * considered to be used, when calculating the current journal usage.
672 * Consequently, if the journal is too small, UBIFS will treat it as
675 tmp64
= (uint64_t)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
676 if (c
->bg_bud_bytes
< tmp64
)
677 c
->bg_bud_bytes
= tmp64
;
678 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
679 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
681 err
= ubifs_calc_lpt_geom(c
);
685 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
688 * Calculate total amount of FS blocks. This number is not used
689 * internally because it does not make much sense for UBIFS, but it is
690 * necessary to report something for the 'statfs()' call.
692 * Subtract the LEB reserved for GC, the LEB which is reserved for
693 * deletions, and assume only one journal head is available.
695 tmp64
= c
->main_lebs
- 2 - c
->jhead_cnt
+ 1;
696 tmp64
*= (uint64_t)c
->leb_size
- c
->leb_overhead
;
697 tmp64
= ubifs_reported_space(c
, tmp64
);
698 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
704 * take_gc_lnum - reserve GC LEB.
705 * @c: UBIFS file-system description object
707 * This function ensures that the LEB reserved for garbage collection is
708 * unmapped and is marked as "taken" in lprops. We also have to set free space
709 * to LEB size and dirty space to zero, because lprops may contain out-of-date
710 * information if the file-system was un-mounted before it has been committed.
711 * This function returns zero in case of success and a negative error code in
714 static int take_gc_lnum(struct ubifs_info
*c
)
718 if (c
->gc_lnum
== -1) {
719 ubifs_err("no LEB for GC");
723 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
727 /* And we have to tell lprops that this LEB is taken */
728 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
734 * alloc_wbufs - allocate write-buffers.
735 * @c: UBIFS file-system description object
737 * This helper function allocates and initializes UBIFS write-buffers. Returns
738 * zero in case of success and %-ENOMEM in case of failure.
740 static int alloc_wbufs(struct ubifs_info
*c
)
744 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
749 /* Initialize journal heads */
750 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
751 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
752 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
756 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
757 c
->jheads
[i
].wbuf
.jhead
= i
;
760 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
762 * Garbage Collector head likely contains long-term data and
763 * does not need to be synchronized by timer.
765 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
766 c
->jheads
[GCHD
].wbuf
.timeout
= 0;
772 * free_wbufs - free write-buffers.
773 * @c: UBIFS file-system description object
775 static void free_wbufs(struct ubifs_info
*c
)
780 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
781 kfree(c
->jheads
[i
].wbuf
.buf
);
782 kfree(c
->jheads
[i
].wbuf
.inodes
);
790 * free_orphans - free orphans.
791 * @c: UBIFS file-system description object
793 static void free_orphans(struct ubifs_info
*c
)
795 struct ubifs_orphan
*orph
;
797 while (c
->orph_dnext
) {
798 orph
= c
->orph_dnext
;
799 c
->orph_dnext
= orph
->dnext
;
800 list_del(&orph
->list
);
804 while (!list_empty(&c
->orph_list
)) {
805 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
806 list_del(&orph
->list
);
808 dbg_err("orphan list not empty at unmount");
816 * free_buds - free per-bud objects.
817 * @c: UBIFS file-system description object
819 static void free_buds(struct ubifs_info
*c
)
821 struct rb_node
*this = c
->buds
.rb_node
;
822 struct ubifs_bud
*bud
;
826 this = this->rb_left
;
827 else if (this->rb_right
)
828 this = this->rb_right
;
830 bud
= rb_entry(this, struct ubifs_bud
, rb
);
831 this = rb_parent(this);
833 if (this->rb_left
== &bud
->rb
)
834 this->rb_left
= NULL
;
836 this->rb_right
= NULL
;
844 * check_volume_empty - check if the UBI volume is empty.
845 * @c: UBIFS file-system description object
847 * This function checks if the UBIFS volume is empty by looking if its LEBs are
848 * mapped or not. The result of checking is stored in the @c->empty variable.
849 * Returns zero in case of success and a negative error code in case of
852 static int check_volume_empty(struct ubifs_info
*c
)
857 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
858 err
= ubi_is_mapped(c
->ubi
, lnum
);
859 if (unlikely(err
< 0))
873 * UBIFS mount options.
875 * Opt_fast_unmount: do not run a journal commit before un-mounting
876 * Opt_norm_unmount: run a journal commit before un-mounting
877 * Opt_bulk_read: enable bulk-reads
878 * Opt_no_bulk_read: disable bulk-reads
879 * Opt_chk_data_crc: check CRCs when reading data nodes
880 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
881 * Opt_err: just end of array marker
893 static const match_table_t tokens
= {
894 {Opt_fast_unmount
, "fast_unmount"},
895 {Opt_norm_unmount
, "norm_unmount"},
896 {Opt_bulk_read
, "bulk_read"},
897 {Opt_no_bulk_read
, "no_bulk_read"},
898 {Opt_chk_data_crc
, "chk_data_crc"},
899 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
904 * ubifs_parse_options - parse mount parameters.
905 * @c: UBIFS file-system description object
906 * @options: parameters to parse
907 * @is_remount: non-zero if this is FS re-mount
909 * This function parses UBIFS mount options and returns zero in case success
910 * and a negative error code in case of failure.
912 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
916 substring_t args
[MAX_OPT_ARGS
];
921 while ((p
= strsep(&options
, ","))) {
927 token
= match_token(p
, tokens
, args
);
929 case Opt_fast_unmount
:
930 c
->mount_opts
.unmount_mode
= 2;
933 case Opt_norm_unmount
:
934 c
->mount_opts
.unmount_mode
= 1;
938 c
->mount_opts
.bulk_read
= 2;
941 case Opt_no_bulk_read
:
942 c
->mount_opts
.bulk_read
= 1;
945 case Opt_chk_data_crc
:
946 c
->mount_opts
.chk_data_crc
= 2;
947 c
->no_chk_data_crc
= 0;
949 case Opt_no_chk_data_crc
:
950 c
->mount_opts
.chk_data_crc
= 1;
951 c
->no_chk_data_crc
= 1;
954 ubifs_err("unrecognized mount option \"%s\" "
955 "or missing value", p
);
964 * destroy_journal - destroy journal data structures.
965 * @c: UBIFS file-system description object
967 * This function destroys journal data structures including those that may have
968 * been created by recovery functions.
970 static void destroy_journal(struct ubifs_info
*c
)
972 while (!list_empty(&c
->unclean_leb_list
)) {
973 struct ubifs_unclean_leb
*ucleb
;
975 ucleb
= list_entry(c
->unclean_leb_list
.next
,
976 struct ubifs_unclean_leb
, list
);
977 list_del(&ucleb
->list
);
980 while (!list_empty(&c
->old_buds
)) {
981 struct ubifs_bud
*bud
;
983 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
984 list_del(&bud
->list
);
987 ubifs_destroy_idx_gc(c
);
988 ubifs_destroy_size_tree(c
);
994 * bu_init - initialize bulk-read information.
995 * @c: UBIFS file-system description object
997 static void bu_init(struct ubifs_info
*c
)
999 ubifs_assert(c
->bulk_read
== 1);
1002 return; /* Already initialized */
1005 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1007 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1008 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1012 /* Just disable bulk-read */
1013 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1014 "disabling it", c
->max_bu_buf_len
);
1015 c
->mount_opts
.bulk_read
= 1;
1022 * mount_ubifs - mount UBIFS file-system.
1023 * @c: UBIFS file-system description object
1025 * This function mounts UBIFS file system. Returns zero in case of success and
1026 * a negative error code in case of failure.
1028 * Note, the function does not de-allocate resources it it fails half way
1029 * through, and the caller has to do this instead.
1031 static int mount_ubifs(struct ubifs_info
*c
)
1033 struct super_block
*sb
= c
->vfs_sb
;
1034 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
1038 err
= init_constants_early(c
);
1042 #ifdef CONFIG_UBIFS_FS_DEBUG
1043 c
->dbg_buf
= vmalloc(c
->leb_size
);
1048 err
= check_volume_empty(c
);
1052 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
1054 * This UBI volume is empty, and read-only, or the file system
1055 * is mounted read-only - we cannot format it.
1057 ubifs_err("can't format empty UBI volume: read-only %s",
1058 c
->ro_media
? "UBI volume" : "mount");
1063 if (c
->ro_media
&& !mounted_read_only
) {
1064 ubifs_err("cannot mount read-write - read-only media");
1070 * The requirement for the buffer is that it should fit indexing B-tree
1071 * height amount of integers. We assume the height if the TNC tree will
1075 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1076 if (!c
->bottom_up_buf
)
1079 c
->sbuf
= vmalloc(c
->leb_size
);
1083 if (!mounted_read_only
) {
1084 c
->ileb_buf
= vmalloc(c
->leb_size
);
1089 if (c
->bulk_read
== 1)
1093 * We have to check all CRCs, even for data nodes, when we mount the FS
1094 * (specifically, when we are replaying).
1096 c
->always_chk_crc
= 1;
1098 err
= ubifs_read_superblock(c
);
1103 * Make sure the compressor which is set as the default on in the
1104 * superblock was actually compiled in.
1106 if (!ubifs_compr_present(c
->default_compr
)) {
1107 ubifs_warn("'%s' compressor is set by superblock, but not "
1108 "compiled in", ubifs_compr_name(c
->default_compr
));
1109 c
->default_compr
= UBIFS_COMPR_NONE
;
1112 dbg_failure_mode_registration(c
);
1114 err
= init_constants_late(c
);
1118 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1119 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1120 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1126 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1127 if (!mounted_read_only
) {
1128 err
= alloc_wbufs(c
);
1132 /* Create background thread */
1133 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1134 if (IS_ERR(c
->bgt
)) {
1135 err
= PTR_ERR(c
->bgt
);
1137 ubifs_err("cannot spawn \"%s\", error %d",
1141 wake_up_process(c
->bgt
);
1144 err
= ubifs_read_master(c
);
1148 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1149 ubifs_msg("recovery needed");
1150 c
->need_recovery
= 1;
1151 if (!mounted_read_only
) {
1152 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1156 } else if (!mounted_read_only
) {
1158 * Set the "dirty" flag so that if we reboot uncleanly we
1159 * will notice this immediately on the next mount.
1161 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1162 err
= ubifs_write_master(c
);
1167 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1171 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1175 err
= ubifs_replay_journal(c
);
1179 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1183 if (!mounted_read_only
) {
1186 /* Check for enough free space */
1187 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1188 ubifs_err("insufficient available space");
1193 /* Check for enough log space */
1194 lnum
= c
->lhead_lnum
+ 1;
1195 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1196 lnum
= UBIFS_LOG_LNUM
;
1197 if (lnum
== c
->ltail_lnum
) {
1198 err
= ubifs_consolidate_log(c
);
1203 if (c
->need_recovery
) {
1204 err
= ubifs_recover_size(c
);
1207 err
= ubifs_rcvry_gc_commit(c
);
1209 err
= take_gc_lnum(c
);
1213 err
= dbg_check_lprops(c
);
1216 } else if (c
->need_recovery
) {
1217 err
= ubifs_recover_size(c
);
1222 spin_lock(&ubifs_infos_lock
);
1223 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1224 spin_unlock(&ubifs_infos_lock
);
1226 if (c
->need_recovery
) {
1227 if (mounted_read_only
)
1228 ubifs_msg("recovery deferred");
1230 c
->need_recovery
= 0;
1231 ubifs_msg("recovery completed");
1235 err
= dbg_check_filesystem(c
);
1239 c
->always_chk_crc
= 0;
1241 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1242 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1243 if (mounted_read_only
)
1244 ubifs_msg("mounted read-only");
1245 x
= (long long)c
->main_lebs
* c
->leb_size
;
1246 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1247 "LEBs)", x
, x
>> 10, x
>> 20, c
->main_lebs
);
1248 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1249 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1250 "LEBs)", x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1251 ubifs_msg("media format: %d (latest is %d)",
1252 c
->fmt_version
, UBIFS_FORMAT_VERSION
);
1253 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1254 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1255 c
->report_rp_size
, c
->report_rp_size
>> 10);
1257 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1258 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1259 dbg_msg("LEB size: %d bytes (%d KiB)",
1260 c
->leb_size
, c
->leb_size
>> 10);
1261 dbg_msg("data journal heads: %d",
1262 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1263 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1264 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1265 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1266 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1267 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1268 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1269 dbg_msg("fast unmount: %d", c
->fast_unmount
);
1270 dbg_msg("big_lpt %d", c
->big_lpt
);
1271 dbg_msg("log LEBs: %d (%d - %d)",
1272 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1273 dbg_msg("LPT area LEBs: %d (%d - %d)",
1274 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1275 dbg_msg("orphan area LEBs: %d (%d - %d)",
1276 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1277 dbg_msg("main area LEBs: %d (%d - %d)",
1278 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1279 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1280 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1281 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1282 dbg_msg("key hash type: %d", c
->key_hash_type
);
1283 dbg_msg("tree fanout: %d", c
->fanout
);
1284 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1285 dbg_msg("first main LEB: %d", c
->main_first
);
1286 dbg_msg("dead watermark: %d", c
->dead_wm
);
1287 dbg_msg("dark watermark: %d", c
->dark_wm
);
1288 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1289 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1290 x
, x
>> 10, x
>> 20);
1291 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1292 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1293 c
->max_bud_bytes
>> 20);
1294 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1295 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1296 c
->bg_bud_bytes
>> 20);
1297 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1298 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1299 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1300 dbg_msg("commit number: %llu", c
->cmt_no
);
1305 spin_lock(&ubifs_infos_lock
);
1306 list_del(&c
->infos_list
);
1307 spin_unlock(&ubifs_infos_lock
);
1313 ubifs_lpt_free(c
, 0);
1316 kfree(c
->rcvrd_mst_node
);
1318 kthread_stop(c
->bgt
);
1324 dbg_failure_mode_deregistration(c
);
1329 kfree(c
->bottom_up_buf
);
1330 UBIFS_DBG(vfree(c
->dbg_buf
));
1335 * ubifs_umount - un-mount UBIFS file-system.
1336 * @c: UBIFS file-system description object
1338 * Note, this function is called to free allocated resourced when un-mounting,
1339 * as well as free resources when an error occurred while we were half way
1340 * through mounting (error path cleanup function). So it has to make sure the
1341 * resource was actually allocated before freeing it.
1343 static void ubifs_umount(struct ubifs_info
*c
)
1345 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1348 spin_lock(&ubifs_infos_lock
);
1349 list_del(&c
->infos_list
);
1350 spin_unlock(&ubifs_infos_lock
);
1353 kthread_stop(c
->bgt
);
1358 ubifs_lpt_free(c
, 0);
1361 kfree(c
->rcvrd_mst_node
);
1366 kfree(c
->bottom_up_buf
);
1367 UBIFS_DBG(vfree(c
->dbg_buf
));
1368 dbg_failure_mode_deregistration(c
);
1372 * ubifs_remount_rw - re-mount in read-write mode.
1373 * @c: UBIFS file-system description object
1375 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1376 * mode. This function allocates the needed resources and re-mounts UBIFS in
1379 static int ubifs_remount_rw(struct ubifs_info
*c
)
1386 mutex_lock(&c
->umount_mutex
);
1387 c
->remounting_rw
= 1;
1388 c
->always_chk_crc
= 1;
1390 /* Check for enough free space */
1391 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1392 ubifs_err("insufficient available space");
1397 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1398 struct ubifs_sb_node
*sup
;
1400 sup
= ubifs_read_sb_node(c
);
1405 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1406 err
= ubifs_write_sb_node(c
, sup
);
1411 if (c
->need_recovery
) {
1412 ubifs_msg("completing deferred recovery");
1413 err
= ubifs_write_rcvrd_mst_node(c
);
1416 err
= ubifs_recover_size(c
);
1419 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1422 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1427 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1428 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1429 err
= ubifs_write_master(c
);
1434 c
->ileb_buf
= vmalloc(c
->leb_size
);
1440 err
= ubifs_lpt_init(c
, 0, 1);
1444 err
= alloc_wbufs(c
);
1448 ubifs_create_buds_lists(c
);
1450 /* Create background thread */
1451 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1452 if (IS_ERR(c
->bgt
)) {
1453 err
= PTR_ERR(c
->bgt
);
1455 ubifs_err("cannot spawn \"%s\", error %d",
1459 wake_up_process(c
->bgt
);
1461 c
->orph_buf
= vmalloc(c
->leb_size
);
1467 /* Check for enough log space */
1468 lnum
= c
->lhead_lnum
+ 1;
1469 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1470 lnum
= UBIFS_LOG_LNUM
;
1471 if (lnum
== c
->ltail_lnum
) {
1472 err
= ubifs_consolidate_log(c
);
1477 if (c
->need_recovery
)
1478 err
= ubifs_rcvry_gc_commit(c
);
1480 err
= take_gc_lnum(c
);
1484 if (c
->need_recovery
) {
1485 c
->need_recovery
= 0;
1486 ubifs_msg("deferred recovery completed");
1489 dbg_gen("re-mounted read-write");
1490 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1491 c
->remounting_rw
= 0;
1492 c
->always_chk_crc
= 0;
1493 mutex_unlock(&c
->umount_mutex
);
1500 kthread_stop(c
->bgt
);
1506 ubifs_lpt_free(c
, 1);
1507 c
->remounting_rw
= 0;
1508 c
->always_chk_crc
= 0;
1509 mutex_unlock(&c
->umount_mutex
);
1514 * commit_on_unmount - commit the journal when un-mounting.
1515 * @c: UBIFS file-system description object
1517 * This function is called during un-mounting and re-mounting, and it commits
1518 * the journal unless the "fast unmount" mode is enabled. It also avoids
1519 * committing the journal if it contains too few data.
1521 static void commit_on_unmount(struct ubifs_info
*c
)
1523 if (!c
->fast_unmount
) {
1524 long long bud_bytes
;
1526 spin_lock(&c
->buds_lock
);
1527 bud_bytes
= c
->bud_bytes
;
1528 spin_unlock(&c
->buds_lock
);
1529 if (bud_bytes
> c
->leb_size
)
1530 ubifs_run_commit(c
);
1535 * ubifs_remount_ro - re-mount in read-only mode.
1536 * @c: UBIFS file-system description object
1538 * We rely on VFS to have stopped writing. Possibly the background thread could
1539 * be running a commit, however kthread_stop will wait in that case.
1541 static void ubifs_remount_ro(struct ubifs_info
*c
)
1545 ubifs_assert(!c
->need_recovery
);
1546 commit_on_unmount(c
);
1548 mutex_lock(&c
->umount_mutex
);
1550 kthread_stop(c
->bgt
);
1554 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1555 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1556 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1560 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1561 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1562 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1563 err
= ubifs_write_master(c
);
1565 ubifs_ro_mode(c
, err
);
1568 ubifs_destroy_idx_gc(c
);
1574 ubifs_lpt_free(c
, 1);
1575 mutex_unlock(&c
->umount_mutex
);
1578 static void ubifs_put_super(struct super_block
*sb
)
1581 struct ubifs_info
*c
= sb
->s_fs_info
;
1583 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1586 * The following asserts are only valid if there has not been a failure
1587 * of the media. For example, there will be dirty inodes if we failed
1588 * to write them back because of I/O errors.
1590 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1591 ubifs_assert(c
->budg_idx_growth
== 0);
1592 ubifs_assert(c
->budg_dd_growth
== 0);
1593 ubifs_assert(c
->budg_data_growth
== 0);
1596 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1597 * and file system un-mount. Namely, it prevents the shrinker from
1598 * picking this superblock for shrinking - it will be just skipped if
1599 * the mutex is locked.
1601 mutex_lock(&c
->umount_mutex
);
1602 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1604 * First of all kill the background thread to make sure it does
1605 * not interfere with un-mounting and freeing resources.
1608 kthread_stop(c
->bgt
);
1612 /* Synchronize write-buffers */
1614 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1615 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1616 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1620 * On fatal errors c->ro_media is set to 1, in which case we do
1621 * not write the master node.
1625 * We are being cleanly unmounted which means the
1626 * orphans were killed - indicate this in the master
1627 * node. Also save the reserved GC LEB number.
1631 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1632 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1633 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1634 err
= ubifs_write_master(c
);
1637 * Recovery will attempt to fix the master area
1638 * next mount, so we just print a message and
1639 * continue to unmount normally.
1641 ubifs_err("failed to write master node, "
1647 bdi_destroy(&c
->bdi
);
1648 ubi_close_volume(c
->ubi
);
1649 mutex_unlock(&c
->umount_mutex
);
1653 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1656 struct ubifs_info
*c
= sb
->s_fs_info
;
1658 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1660 err
= ubifs_parse_options(c
, data
, 1);
1662 ubifs_err("invalid or unknown remount parameter");
1666 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1667 err
= ubifs_remount_rw(c
);
1670 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
))
1671 ubifs_remount_ro(c
);
1673 if (c
->bulk_read
== 1)
1676 dbg_gen("disable bulk-read");
1684 struct super_operations ubifs_super_operations
= {
1685 .alloc_inode
= ubifs_alloc_inode
,
1686 .destroy_inode
= ubifs_destroy_inode
,
1687 .put_super
= ubifs_put_super
,
1688 .write_inode
= ubifs_write_inode
,
1689 .delete_inode
= ubifs_delete_inode
,
1690 .statfs
= ubifs_statfs
,
1691 .dirty_inode
= ubifs_dirty_inode
,
1692 .remount_fs
= ubifs_remount_fs
,
1693 .show_options
= ubifs_show_options
,
1694 .sync_fs
= ubifs_sync_fs
,
1698 * open_ubi - parse UBI device name string and open the UBI device.
1699 * @name: UBI volume name
1700 * @mode: UBI volume open mode
1702 * There are several ways to specify UBI volumes when mounting UBIFS:
1703 * o ubiX_Y - UBI device number X, volume Y;
1704 * o ubiY - UBI device number 0, volume Y;
1705 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1706 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1708 * Alternative '!' separator may be used instead of ':' (because some shells
1709 * like busybox may interpret ':' as an NFS host name separator). This function
1710 * returns ubi volume object in case of success and a negative error code in
1713 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1718 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1719 return ERR_PTR(-EINVAL
);
1721 /* ubi:NAME method */
1722 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1723 return ubi_open_volume_nm(0, name
+ 4, mode
);
1725 if (!isdigit(name
[3]))
1726 return ERR_PTR(-EINVAL
);
1728 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1731 if (*endptr
== '\0')
1732 return ubi_open_volume(0, dev
, mode
);
1735 if (*endptr
== '_' && isdigit(endptr
[1])) {
1736 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1737 if (*endptr
!= '\0')
1738 return ERR_PTR(-EINVAL
);
1739 return ubi_open_volume(dev
, vol
, mode
);
1742 /* ubiX:NAME method */
1743 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1744 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1746 return ERR_PTR(-EINVAL
);
1749 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1751 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1752 struct ubifs_info
*c
;
1756 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1760 spin_lock_init(&c
->cnt_lock
);
1761 spin_lock_init(&c
->cs_lock
);
1762 spin_lock_init(&c
->buds_lock
);
1763 spin_lock_init(&c
->space_lock
);
1764 spin_lock_init(&c
->orphan_lock
);
1765 init_rwsem(&c
->commit_sem
);
1766 mutex_init(&c
->lp_mutex
);
1767 mutex_init(&c
->tnc_mutex
);
1768 mutex_init(&c
->log_mutex
);
1769 mutex_init(&c
->mst_mutex
);
1770 mutex_init(&c
->umount_mutex
);
1771 mutex_init(&c
->bu_mutex
);
1772 init_waitqueue_head(&c
->cmt_wq
);
1774 c
->old_idx
= RB_ROOT
;
1775 c
->size_tree
= RB_ROOT
;
1776 c
->orph_tree
= RB_ROOT
;
1777 INIT_LIST_HEAD(&c
->infos_list
);
1778 INIT_LIST_HEAD(&c
->idx_gc
);
1779 INIT_LIST_HEAD(&c
->replay_list
);
1780 INIT_LIST_HEAD(&c
->replay_buds
);
1781 INIT_LIST_HEAD(&c
->uncat_list
);
1782 INIT_LIST_HEAD(&c
->empty_list
);
1783 INIT_LIST_HEAD(&c
->freeable_list
);
1784 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1785 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1786 INIT_LIST_HEAD(&c
->old_buds
);
1787 INIT_LIST_HEAD(&c
->orph_list
);
1788 INIT_LIST_HEAD(&c
->orph_new
);
1790 c
->highest_inum
= UBIFS_FIRST_INO
;
1791 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1793 ubi_get_volume_info(ubi
, &c
->vi
);
1794 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1796 /* Re-open the UBI device in read-write mode */
1797 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1798 if (IS_ERR(c
->ubi
)) {
1799 err
= PTR_ERR(c
->ubi
);
1804 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1805 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1806 * which means the user would have to wait not just for their own I/O
1807 * but the read-ahead I/O as well i.e. completely pointless.
1809 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1811 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1812 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1813 err
= bdi_init(&c
->bdi
);
1817 err
= ubifs_parse_options(c
, data
, 0);
1824 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1825 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1826 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1827 sb
->s_dev
= c
->vi
.cdev
;
1828 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1829 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1830 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1831 sb
->s_op
= &ubifs_super_operations
;
1833 mutex_lock(&c
->umount_mutex
);
1834 err
= mount_ubifs(c
);
1836 ubifs_assert(err
< 0);
1840 /* Read the root inode */
1841 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
1843 err
= PTR_ERR(root
);
1847 sb
->s_root
= d_alloc_root(root
);
1851 mutex_unlock(&c
->umount_mutex
);
1860 mutex_unlock(&c
->umount_mutex
);
1862 bdi_destroy(&c
->bdi
);
1864 ubi_close_volume(c
->ubi
);
1870 static int sb_test(struct super_block
*sb
, void *data
)
1874 return sb
->s_dev
== *dev
;
1877 static int sb_set(struct super_block
*sb
, void *data
)
1885 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
1886 const char *name
, void *data
, struct vfsmount
*mnt
)
1888 struct ubi_volume_desc
*ubi
;
1889 struct ubi_volume_info vi
;
1890 struct super_block
*sb
;
1893 dbg_gen("name %s, flags %#x", name
, flags
);
1896 * Get UBI device number and volume ID. Mount it read-only so far
1897 * because this might be a new mount point, and UBI allows only one
1898 * read-write user at a time.
1900 ubi
= open_ubi(name
, UBI_READONLY
);
1902 ubifs_err("cannot open \"%s\", error %d",
1903 name
, (int)PTR_ERR(ubi
));
1904 return PTR_ERR(ubi
);
1906 ubi_get_volume_info(ubi
, &vi
);
1908 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
1910 sb
= sget(fs_type
, &sb_test
, &sb_set
, &vi
.cdev
);
1917 /* A new mount point for already mounted UBIFS */
1918 dbg_gen("this ubi volume is already mounted");
1919 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
1924 sb
->s_flags
= flags
;
1926 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1929 sb
->s_fs_info
= ubi
;
1930 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1933 /* We do not support atime */
1934 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
1937 /* 'fill_super()' opens ubi again so we must close it here */
1938 ubi_close_volume(ubi
);
1940 return simple_set_mnt(mnt
, sb
);
1943 up_write(&sb
->s_umount
);
1944 deactivate_super(sb
);
1946 ubi_close_volume(ubi
);
1950 static void ubifs_kill_sb(struct super_block
*sb
)
1952 struct ubifs_info
*c
= sb
->s_fs_info
;
1955 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1956 * in order to be outside BKL.
1958 if (sb
->s_root
&& !(sb
->s_flags
& MS_RDONLY
))
1959 commit_on_unmount(c
);
1960 /* The un-mount routine is actually done in put_super() */
1961 generic_shutdown_super(sb
);
1964 static struct file_system_type ubifs_fs_type
= {
1966 .owner
= THIS_MODULE
,
1967 .get_sb
= ubifs_get_sb
,
1968 .kill_sb
= ubifs_kill_sb
1972 * Inode slab cache constructor.
1974 static void inode_slab_ctor(void *obj
)
1976 struct ubifs_inode
*ui
= obj
;
1977 inode_init_once(&ui
->vfs_inode
);
1980 static int __init
ubifs_init(void)
1984 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
1986 /* Make sure node sizes are 8-byte aligned */
1987 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
1988 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
1989 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
1990 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
1991 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
1992 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
1993 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
1994 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
1995 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
1996 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
1997 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
1999 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2000 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2001 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2002 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2003 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2004 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2006 /* Check min. node size */
2007 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2008 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2009 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2010 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2012 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2013 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2014 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2015 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2017 /* Defined node sizes */
2018 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2019 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2020 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2021 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2024 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2025 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2027 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2028 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2029 " at least 4096 bytes",
2030 (unsigned int)PAGE_CACHE_SIZE
);
2034 err
= register_filesystem(&ubifs_fs_type
);
2036 ubifs_err("cannot register file system, error %d", err
);
2041 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2042 sizeof(struct ubifs_inode
), 0,
2043 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2045 if (!ubifs_inode_slab
)
2048 register_shrinker(&ubifs_shrinker_info
);
2050 err
= ubifs_compressors_init();
2057 unregister_shrinker(&ubifs_shrinker_info
);
2058 kmem_cache_destroy(ubifs_inode_slab
);
2060 unregister_filesystem(&ubifs_fs_type
);
2063 /* late_initcall to let compressors initialize first */
2064 late_initcall(ubifs_init
);
2066 static void __exit
ubifs_exit(void)
2068 ubifs_assert(list_empty(&ubifs_infos
));
2069 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2071 ubifs_compressors_exit();
2072 unregister_shrinker(&ubifs_shrinker_info
);
2073 kmem_cache_destroy(ubifs_inode_slab
);
2074 unregister_filesystem(&ubifs_fs_type
);
2076 module_exit(ubifs_exit
);
2078 MODULE_LICENSE("GPL");
2079 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2080 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2081 MODULE_DESCRIPTION("UBIFS - UBI File System");