2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
11 * License Terms: GNU General Public License v2
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #define MILLI_TO_MICRO 1000
37 #define FG_LSB_IN_MA 1627
38 #define QLSB_NANO_AMP_HOURS_X10 1129
39 #define INS_CURR_TIMEOUT (3 * HZ)
41 #define SEC_TO_SAMPLE(S) (S * 4)
43 #define NBR_AVG_SAMPLES 20
45 #define LOW_BAT_CHECK_INTERVAL (2 * HZ)
47 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
48 #define BATT_OK_MIN 2360 /* mV */
49 #define BATT_OK_INCREMENT 50 /* mV */
50 #define BATT_OK_MAX_NR_INCREMENTS 0xE
55 #define interpolate(x, x1, y1, x2, y2) \
56 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
58 #define to_ab8500_fg_device_info(x) container_of((x), \
59 struct ab8500_fg, fg_psy);
62 * struct ab8500_fg_interrupts - ab8500 fg interupts
63 * @name: name of the interrupt
64 * @isr function pointer to the isr
66 struct ab8500_fg_interrupts
{
68 irqreturn_t (*isr
)(int irq
, void *data
);
71 enum ab8500_fg_discharge_state
{
72 AB8500_FG_DISCHARGE_INIT
,
73 AB8500_FG_DISCHARGE_INITMEASURING
,
74 AB8500_FG_DISCHARGE_INIT_RECOVERY
,
75 AB8500_FG_DISCHARGE_RECOVERY
,
76 AB8500_FG_DISCHARGE_READOUT_INIT
,
77 AB8500_FG_DISCHARGE_READOUT
,
78 AB8500_FG_DISCHARGE_WAKEUP
,
81 static char *discharge_state
[] = {
83 "DISCHARGE_INITMEASURING",
84 "DISCHARGE_INIT_RECOVERY",
86 "DISCHARGE_READOUT_INIT",
91 enum ab8500_fg_charge_state
{
92 AB8500_FG_CHARGE_INIT
,
93 AB8500_FG_CHARGE_READOUT
,
96 static char *charge_state
[] = {
101 enum ab8500_fg_calibration_state
{
102 AB8500_FG_CALIB_INIT
,
103 AB8500_FG_CALIB_WAIT
,
107 struct ab8500_fg_avg_cap
{
109 int samples
[NBR_AVG_SAMPLES
];
110 __kernel_time_t time_stamps
[NBR_AVG_SAMPLES
];
116 struct ab8500_fg_battery_capacity
{
128 struct ab8500_fg_flags
{
140 bool batt_id_received
;
143 struct inst_curr_result_list
{
144 struct list_head list
;
149 * struct ab8500_fg - ab8500 FG device information
150 * @dev: Pointer to the structure device
151 * @node: a list of AB8500 FGs, hence prepared for reentrance
152 * @irq holds the CCEOC interrupt number
153 * @vbat: Battery voltage in mV
154 * @vbat_nom: Nominal battery voltage in mV
155 * @inst_curr: Instantenous battery current in mA
156 * @avg_curr: Average battery current in mA
157 * @bat_temp battery temperature
158 * @fg_samples: Number of samples used in the FG accumulation
159 * @accu_charge: Accumulated charge from the last conversion
160 * @recovery_cnt: Counter for recovery mode
161 * @high_curr_cnt: Counter for high current mode
162 * @init_cnt: Counter for init mode
163 * @recovery_needed: Indicate if recovery is needed
164 * @high_curr_mode: Indicate if we're in high current mode
165 * @init_capacity: Indicate if initial capacity measuring should be done
166 * @turn_off_fg: True if fg was off before current measurement
167 * @calib_state State during offset calibration
168 * @discharge_state: Current discharge state
169 * @charge_state: Current charge state
170 * @ab8500_fg_complete Completion struct used for the instant current reading
171 * @flags: Structure for information about events triggered
172 * @bat_cap: Structure for battery capacity specific parameters
173 * @avg_cap: Average capacity filter
174 * @parent: Pointer to the struct ab8500
175 * @gpadc: Pointer to the struct gpadc
176 * @bat: Pointer to the abx500_bm platform data
177 * @fg_psy: Structure that holds the FG specific battery properties
178 * @fg_wq: Work queue for running the FG algorithm
179 * @fg_periodic_work: Work to run the FG algorithm periodically
180 * @fg_low_bat_work: Work to check low bat condition
181 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
182 * @fg_work: Work to run the FG algorithm instantly
183 * @fg_acc_cur_work: Work to read the FG accumulator
184 * @fg_check_hw_failure_work: Work for checking HW state
185 * @cc_lock: Mutex for locking the CC
186 * @fg_kobject: Structure of type kobject
190 struct list_head node
;
202 bool recovery_needed
;
206 enum ab8500_fg_calibration_state calib_state
;
207 enum ab8500_fg_discharge_state discharge_state
;
208 enum ab8500_fg_charge_state charge_state
;
209 struct completion ab8500_fg_complete
;
210 struct ab8500_fg_flags flags
;
211 struct ab8500_fg_battery_capacity bat_cap
;
212 struct ab8500_fg_avg_cap avg_cap
;
213 struct ab8500
*parent
;
214 struct ab8500_gpadc
*gpadc
;
215 struct abx500_bm_data
*bat
;
216 struct power_supply fg_psy
;
217 struct workqueue_struct
*fg_wq
;
218 struct delayed_work fg_periodic_work
;
219 struct delayed_work fg_low_bat_work
;
220 struct delayed_work fg_reinit_work
;
221 struct work_struct fg_work
;
222 struct work_struct fg_acc_cur_work
;
223 struct delayed_work fg_check_hw_failure_work
;
224 struct mutex cc_lock
;
225 struct kobject fg_kobject
;
227 static LIST_HEAD(ab8500_fg_list
);
230 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
231 * (i.e. the first fuel gauge in the instance list)
233 struct ab8500_fg
*ab8500_fg_get(void)
235 struct ab8500_fg
*fg
;
237 if (list_empty(&ab8500_fg_list
))
240 fg
= list_first_entry(&ab8500_fg_list
, struct ab8500_fg
, node
);
244 /* Main battery properties */
245 static enum power_supply_property ab8500_fg_props
[] = {
246 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
247 POWER_SUPPLY_PROP_CURRENT_NOW
,
248 POWER_SUPPLY_PROP_CURRENT_AVG
,
249 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
250 POWER_SUPPLY_PROP_ENERGY_FULL
,
251 POWER_SUPPLY_PROP_ENERGY_NOW
,
252 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
253 POWER_SUPPLY_PROP_CHARGE_FULL
,
254 POWER_SUPPLY_PROP_CHARGE_NOW
,
255 POWER_SUPPLY_PROP_CAPACITY
,
256 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
260 * This array maps the raw hex value to lowbat voltage used by the AB8500
261 * Values taken from the UM0836
263 static int ab8500_fg_lowbat_voltage_map
[] = {
330 static u8
ab8500_volt_to_regval(int voltage
)
334 if (voltage
< ab8500_fg_lowbat_voltage_map
[0])
337 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
); i
++) {
338 if (voltage
< ab8500_fg_lowbat_voltage_map
[i
])
342 /* If not captured above, return index of last element */
343 return (u8
) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
) - 1;
347 * ab8500_fg_is_low_curr() - Low or high current mode
348 * @di: pointer to the ab8500_fg structure
349 * @curr: the current to base or our decision on
351 * Low current mode if the current consumption is below a certain threshold
353 static int ab8500_fg_is_low_curr(struct ab8500_fg
*di
, int curr
)
356 * We want to know if we're in low current mode
358 if (curr
> -di
->bat
->fg_params
->high_curr_threshold
)
365 * ab8500_fg_add_cap_sample() - Add capacity to average filter
366 * @di: pointer to the ab8500_fg structure
367 * @sample: the capacity in mAh to add to the filter
369 * A capacity is added to the filter and a new mean capacity is calculated and
372 static int ab8500_fg_add_cap_sample(struct ab8500_fg
*di
, int sample
)
375 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
380 avg
->sum
+= sample
- avg
->samples
[avg
->pos
];
381 avg
->samples
[avg
->pos
] = sample
;
382 avg
->time_stamps
[avg
->pos
] = ts
.tv_sec
;
385 if (avg
->pos
== NBR_AVG_SAMPLES
)
388 if (avg
->nbr_samples
< NBR_AVG_SAMPLES
)
392 * Check the time stamp for each sample. If too old,
393 * replace with latest sample
395 } while (ts
.tv_sec
- VALID_CAPACITY_SEC
> avg
->time_stamps
[avg
->pos
]);
397 avg
->avg
= avg
->sum
/ avg
->nbr_samples
;
403 * ab8500_fg_clear_cap_samples() - Clear average filter
404 * @di: pointer to the ab8500_fg structure
406 * The capacity filter is is reset to zero.
408 static void ab8500_fg_clear_cap_samples(struct ab8500_fg
*di
)
411 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
414 avg
->nbr_samples
= 0;
418 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
420 avg
->time_stamps
[i
] = 0;
425 * ab8500_fg_fill_cap_sample() - Fill average filter
426 * @di: pointer to the ab8500_fg structure
427 * @sample: the capacity in mAh to fill the filter with
429 * The capacity filter is filled with a capacity in mAh
431 static void ab8500_fg_fill_cap_sample(struct ab8500_fg
*di
, int sample
)
435 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
439 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
440 avg
->samples
[i
] = sample
;
441 avg
->time_stamps
[i
] = ts
.tv_sec
;
445 avg
->nbr_samples
= NBR_AVG_SAMPLES
;
446 avg
->sum
= sample
* NBR_AVG_SAMPLES
;
451 * ab8500_fg_coulomb_counter() - enable coulomb counter
452 * @di: pointer to the ab8500_fg structure
453 * @enable: enable/disable
455 * Enable/Disable coulomb counter.
456 * On failure returns negative value.
458 static int ab8500_fg_coulomb_counter(struct ab8500_fg
*di
, bool enable
)
461 mutex_lock(&di
->cc_lock
);
463 /* To be able to reprogram the number of samples, we have to
464 * first stop the CC and then enable it again */
465 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
466 AB8500_RTC_CC_CONF_REG
, 0x00);
470 /* Program the samples */
471 ret
= abx500_set_register_interruptible(di
->dev
,
472 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
478 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
479 AB8500_RTC_CC_CONF_REG
,
480 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
484 di
->flags
.fg_enabled
= true;
486 /* Clear any pending read requests */
487 ret
= abx500_set_register_interruptible(di
->dev
,
488 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
492 ret
= abx500_set_register_interruptible(di
->dev
,
493 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU_CTRL
, 0);
498 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
499 AB8500_RTC_CC_CONF_REG
, 0);
503 di
->flags
.fg_enabled
= false;
506 dev_dbg(di
->dev
, " CC enabled: %d Samples: %d\n",
507 enable
, di
->fg_samples
);
509 mutex_unlock(&di
->cc_lock
);
513 dev_err(di
->dev
, "%s Enabling coulomb counter failed\n", __func__
);
514 mutex_unlock(&di
->cc_lock
);
519 * ab8500_fg_inst_curr_start() - start battery instantaneous current
520 * @di: pointer to the ab8500_fg structure
522 * Returns 0 or error code
523 * Note: This is part "one" and has to be called before
524 * ab8500_fg_inst_curr_finalize()
526 int ab8500_fg_inst_curr_start(struct ab8500_fg
*di
)
531 mutex_lock(&di
->cc_lock
);
533 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
534 AB8500_RTC_CC_CONF_REG
, ®_val
);
538 if (!(reg_val
& CC_PWR_UP_ENA
)) {
539 dev_dbg(di
->dev
, "%s Enable FG\n", __func__
);
540 di
->turn_off_fg
= true;
542 /* Program the samples */
543 ret
= abx500_set_register_interruptible(di
->dev
,
544 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
550 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
551 AB8500_RTC_CC_CONF_REG
,
552 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
556 di
->turn_off_fg
= false;
560 INIT_COMPLETION(di
->ab8500_fg_complete
);
563 /* Note: cc_lock is still locked */
566 mutex_unlock(&di
->cc_lock
);
571 * ab8500_fg_inst_curr_done() - check if fg conversion is done
572 * @di: pointer to the ab8500_fg structure
574 * Returns 1 if conversion done, 0 if still waiting
576 int ab8500_fg_inst_curr_done(struct ab8500_fg
*di
)
578 return completion_done(&di
->ab8500_fg_complete
);
582 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
583 * @di: pointer to the ab8500_fg structure
584 * @res: battery instantenous current(on success)
586 * Returns 0 or an error code
587 * Note: This is part "two" and has to be called at earliest 250 ms
588 * after ab8500_fg_inst_curr_start()
590 int ab8500_fg_inst_curr_finalize(struct ab8500_fg
*di
, int *res
)
597 if (!completion_done(&di
->ab8500_fg_complete
)) {
598 timeout
= wait_for_completion_timeout(&di
->ab8500_fg_complete
,
600 dev_dbg(di
->dev
, "Finalize time: %d ms\n",
601 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
604 disable_irq(di
->irq
);
605 dev_err(di
->dev
, "completion timed out [%d]\n",
611 disable_irq(di
->irq
);
613 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
614 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
617 /* 100uS between read request and read is needed */
618 usleep_range(100, 100);
620 /* Read CC Sample conversion value Low and high */
621 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
622 AB8500_GASG_CC_SMPL_CNVL_REG
, &low
);
626 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
627 AB8500_GASG_CC_SMPL_CNVH_REG
, &high
);
632 * negative value for Discharging
633 * convert 2's compliment into decimal
636 val
= (low
| (high
<< 8) | 0xFFFFE000);
638 val
= (low
| (high
<< 8));
641 * Convert to unit value in mA
642 * Full scale input voltage is
643 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
644 * Given a 250ms conversion cycle time the LSB corresponds
645 * to 112.9 nAh. Convert to current by dividing by the conversion
646 * time in hours (250ms = 1 / (3600 * 4)h)
647 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
649 val
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36 * 4) /
650 (1000 * di
->bat
->fg_res
);
652 if (di
->turn_off_fg
) {
653 dev_dbg(di
->dev
, "%s Disable FG\n", __func__
);
655 /* Clear any pending read requests */
656 ret
= abx500_set_register_interruptible(di
->dev
,
657 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
662 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
663 AB8500_RTC_CC_CONF_REG
, 0);
667 mutex_unlock(&di
->cc_lock
);
672 mutex_unlock(&di
->cc_lock
);
677 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
678 * @di: pointer to the ab8500_fg structure
679 * @res: battery instantenous current(on success)
681 * Returns 0 else error code
683 int ab8500_fg_inst_curr_blocking(struct ab8500_fg
*di
)
688 ret
= ab8500_fg_inst_curr_start(di
);
690 dev_err(di
->dev
, "Failed to initialize fg_inst\n");
694 ret
= ab8500_fg_inst_curr_finalize(di
, &res
);
696 dev_err(di
->dev
, "Failed to finalize fg_inst\n");
704 * ab8500_fg_acc_cur_work() - average battery current
705 * @work: pointer to the work_struct structure
707 * Updated the average battery current obtained from the
710 static void ab8500_fg_acc_cur_work(struct work_struct
*work
)
716 struct ab8500_fg
*di
= container_of(work
,
717 struct ab8500_fg
, fg_acc_cur_work
);
719 mutex_lock(&di
->cc_lock
);
720 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
721 AB8500_GASG_CC_NCOV_ACCU_CTRL
, RD_NCONV_ACCU_REQ
);
725 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
726 AB8500_GASG_CC_NCOV_ACCU_LOW
, &low
);
730 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
731 AB8500_GASG_CC_NCOV_ACCU_MED
, &med
);
735 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
736 AB8500_GASG_CC_NCOV_ACCU_HIGH
, &high
);
740 /* Check for sign bit in case of negative value, 2's compliment */
742 val
= (low
| (med
<< 8) | (high
<< 16) | 0xFFE00000);
744 val
= (low
| (med
<< 8) | (high
<< 16));
748 * Given a 250ms conversion cycle time the LSB corresponds
750 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
752 di
->accu_charge
= (val
* QLSB_NANO_AMP_HOURS_X10
) /
753 (100 * di
->bat
->fg_res
);
756 * Convert to unit value in mA
757 * Full scale input voltage is
758 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
759 * Given a 250ms conversion cycle time the LSB corresponds
760 * to 112.9 nAh. Convert to current by dividing by the conversion
761 * time in hours (= samples / (3600 * 4)h)
762 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
764 di
->avg_curr
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36) /
765 (1000 * di
->bat
->fg_res
* (di
->fg_samples
/ 4));
767 di
->flags
.conv_done
= true;
769 mutex_unlock(&di
->cc_lock
);
771 queue_work(di
->fg_wq
, &di
->fg_work
);
776 "Failed to read or write gas gauge registers\n");
777 mutex_unlock(&di
->cc_lock
);
778 queue_work(di
->fg_wq
, &di
->fg_work
);
782 * ab8500_fg_bat_voltage() - get battery voltage
783 * @di: pointer to the ab8500_fg structure
785 * Returns battery voltage(on success) else error code
787 static int ab8500_fg_bat_voltage(struct ab8500_fg
*di
)
792 vbat
= ab8500_gpadc_convert(di
->gpadc
, MAIN_BAT_V
);
795 "%s gpadc conversion failed, using previous value\n",
805 * ab8500_fg_volt_to_capacity() - Voltage based capacity
806 * @di: pointer to the ab8500_fg structure
807 * @voltage: The voltage to convert to a capacity
809 * Returns battery capacity in per mille based on voltage
811 static int ab8500_fg_volt_to_capacity(struct ab8500_fg
*di
, int voltage
)
814 struct abx500_v_to_cap
*tbl
;
817 tbl
= di
->bat
->bat_type
[di
->bat
->batt_id
].v_to_cap_tbl
,
818 tbl_size
= di
->bat
->bat_type
[di
->bat
->batt_id
].n_v_cap_tbl_elements
;
820 for (i
= 0; i
< tbl_size
; ++i
) {
821 if (voltage
> tbl
[i
].voltage
)
825 if ((i
> 0) && (i
< tbl_size
)) {
826 cap
= interpolate(voltage
,
828 tbl
[i
].capacity
* 10,
830 tbl
[i
-1].capacity
* 10);
837 dev_dbg(di
->dev
, "%s Vbat: %d, Cap: %d per mille",
838 __func__
, voltage
, cap
);
844 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
845 * @di: pointer to the ab8500_fg structure
847 * Returns battery capacity based on battery voltage that is not compensated
848 * for the voltage drop due to the load
850 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg
*di
)
852 di
->vbat
= ab8500_fg_bat_voltage(di
);
853 return ab8500_fg_volt_to_capacity(di
, di
->vbat
);
857 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
858 * @di: pointer to the ab8500_fg structure
860 * Returns battery inner resistance added with the fuel gauge resistor value
861 * to get the total resistance in the whole link from gnd to bat+ node.
863 static int ab8500_fg_battery_resistance(struct ab8500_fg
*di
)
866 struct batres_vs_temp
*tbl
;
869 tbl
= di
->bat
->bat_type
[di
->bat
->batt_id
].batres_tbl
;
870 tbl_size
= di
->bat
->bat_type
[di
->bat
->batt_id
].n_batres_tbl_elements
;
872 for (i
= 0; i
< tbl_size
; ++i
) {
873 if (di
->bat_temp
/ 10 > tbl
[i
].temp
)
877 if ((i
> 0) && (i
< tbl_size
)) {
878 resist
= interpolate(di
->bat_temp
/ 10,
884 resist
= tbl
[0].resist
;
886 resist
= tbl
[tbl_size
- 1].resist
;
889 dev_dbg(di
->dev
, "%s Temp: %d battery internal resistance: %d"
890 " fg resistance %d, total: %d (mOhm)\n",
891 __func__
, di
->bat_temp
, resist
, di
->bat
->fg_res
/ 10,
892 (di
->bat
->fg_res
/ 10) + resist
);
894 /* fg_res variable is in 0.1mOhm */
895 resist
+= di
->bat
->fg_res
/ 10;
901 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
902 * @di: pointer to the ab8500_fg structure
904 * Returns battery capacity based on battery voltage that is load compensated
905 * for the voltage drop
907 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg
*di
)
913 ab8500_fg_inst_curr_start(di
);
916 vbat
+= ab8500_fg_bat_voltage(di
);
919 } while (!ab8500_fg_inst_curr_done(di
));
921 ab8500_fg_inst_curr_finalize(di
, &di
->inst_curr
);
924 res
= ab8500_fg_battery_resistance(di
);
926 /* Use Ohms law to get the load compensated voltage */
927 vbat_comp
= di
->vbat
- (di
->inst_curr
* res
) / 1000;
929 dev_dbg(di
->dev
, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
930 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
931 __func__
, di
->vbat
, vbat_comp
, res
, di
->inst_curr
, i
);
933 return ab8500_fg_volt_to_capacity(di
, vbat_comp
);
937 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
938 * @di: pointer to the ab8500_fg structure
939 * @cap_mah: capacity in mAh
941 * Converts capacity in mAh to capacity in permille
943 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg
*di
, int cap_mah
)
945 return (cap_mah
* 1000) / di
->bat_cap
.max_mah_design
;
949 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
950 * @di: pointer to the ab8500_fg structure
951 * @cap_pm: capacity in permille
953 * Converts capacity in permille to capacity in mAh
955 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg
*di
, int cap_pm
)
957 return cap_pm
* di
->bat_cap
.max_mah_design
/ 1000;
961 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
962 * @di: pointer to the ab8500_fg structure
963 * @cap_mah: capacity in mAh
965 * Converts capacity in mAh to capacity in uWh
967 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg
*di
, int cap_mah
)
972 div_res
= ((u64
) cap_mah
) * ((u64
) di
->vbat_nom
);
973 div_rem
= do_div(div_res
, 1000);
975 /* Make sure to round upwards if necessary */
976 if (div_rem
>= 1000 / 2)
979 return (int) div_res
;
983 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
984 * @di: pointer to the ab8500_fg structure
986 * Return the capacity in mAh based on previous calculated capcity and the FG
987 * accumulator register value. The filter is filled with this capacity
989 static int ab8500_fg_calc_cap_charging(struct ab8500_fg
*di
)
991 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
996 /* Capacity should not be less than 0 */
997 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
998 di
->bat_cap
.mah
+= di
->accu_charge
;
1000 di
->bat_cap
.mah
= 0;
1002 * We force capacity to 100% once when the algorithm
1003 * reports that it's full.
1005 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
||
1006 di
->flags
.force_full
) {
1007 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1010 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1011 di
->bat_cap
.permille
=
1012 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1014 /* We need to update battery voltage and inst current when charging */
1015 di
->vbat
= ab8500_fg_bat_voltage(di
);
1016 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1018 return di
->bat_cap
.mah
;
1022 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1023 * @di: pointer to the ab8500_fg structure
1024 * @comp: if voltage should be load compensated before capacity calc
1026 * Return the capacity in mAh based on the battery voltage. The voltage can
1027 * either be load compensated or not. This value is added to the filter and a
1028 * new mean value is calculated and returned.
1030 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg
*di
, bool comp
)
1035 permille
= ab8500_fg_load_comp_volt_to_capacity(di
);
1037 permille
= ab8500_fg_uncomp_volt_to_capacity(di
);
1039 mah
= ab8500_fg_convert_permille_to_mah(di
, permille
);
1041 di
->bat_cap
.mah
= ab8500_fg_add_cap_sample(di
, mah
);
1042 di
->bat_cap
.permille
=
1043 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1045 return di
->bat_cap
.mah
;
1049 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1050 * @di: pointer to the ab8500_fg structure
1052 * Return the capacity in mAh based on previous calculated capcity and the FG
1053 * accumulator register value. This value is added to the filter and a
1054 * new mean value is calculated and returned.
1056 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg
*di
)
1058 int permille_volt
, permille
;
1060 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1065 /* Capacity should not be less than 0 */
1066 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1067 di
->bat_cap
.mah
+= di
->accu_charge
;
1069 di
->bat_cap
.mah
= 0;
1071 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
)
1072 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1075 * Check against voltage based capacity. It can not be lower
1076 * than what the uncompensated voltage says
1078 permille
= ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1079 permille_volt
= ab8500_fg_uncomp_volt_to_capacity(di
);
1081 if (permille
< permille_volt
) {
1082 di
->bat_cap
.permille
= permille_volt
;
1083 di
->bat_cap
.mah
= ab8500_fg_convert_permille_to_mah(di
,
1084 di
->bat_cap
.permille
);
1086 dev_dbg(di
->dev
, "%s voltage based: perm %d perm_volt %d\n",
1091 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1093 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1094 di
->bat_cap
.permille
=
1095 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1098 return di
->bat_cap
.mah
;
1102 * ab8500_fg_capacity_level() - Get the battery capacity level
1103 * @di: pointer to the ab8500_fg structure
1105 * Get the battery capacity level based on the capacity in percent
1107 static int ab8500_fg_capacity_level(struct ab8500_fg
*di
)
1111 percent
= di
->bat_cap
.permille
/ 10;
1113 if (percent
<= di
->bat
->cap_levels
->critical
||
1115 ret
= POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
;
1116 else if (percent
<= di
->bat
->cap_levels
->low
)
1117 ret
= POWER_SUPPLY_CAPACITY_LEVEL_LOW
;
1118 else if (percent
<= di
->bat
->cap_levels
->normal
)
1119 ret
= POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
;
1120 else if (percent
<= di
->bat
->cap_levels
->high
)
1121 ret
= POWER_SUPPLY_CAPACITY_LEVEL_HIGH
;
1123 ret
= POWER_SUPPLY_CAPACITY_LEVEL_FULL
;
1129 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1130 * @di: pointer to the ab8500_fg structure
1131 * @init: capacity is allowed to go up in init mode
1133 * Check if capacity or capacity limit has changed and notify the system
1134 * about it using the power_supply framework
1136 static void ab8500_fg_check_capacity_limits(struct ab8500_fg
*di
, bool init
)
1138 bool changed
= false;
1140 di
->bat_cap
.level
= ab8500_fg_capacity_level(di
);
1142 if (di
->bat_cap
.level
!= di
->bat_cap
.prev_level
) {
1144 * We do not allow reported capacity level to go up
1145 * unless we're charging or if we're in init
1147 if (!(!di
->flags
.charging
&& di
->bat_cap
.level
>
1148 di
->bat_cap
.prev_level
) || init
) {
1149 dev_dbg(di
->dev
, "level changed from %d to %d\n",
1150 di
->bat_cap
.prev_level
,
1152 di
->bat_cap
.prev_level
= di
->bat_cap
.level
;
1155 dev_dbg(di
->dev
, "level not allowed to go up "
1156 "since no charger is connected: %d to %d\n",
1157 di
->bat_cap
.prev_level
,
1163 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1166 if (di
->flags
.low_bat
) {
1167 dev_dbg(di
->dev
, "Battery low, set capacity to 0\n");
1168 di
->bat_cap
.prev_percent
= 0;
1169 di
->bat_cap
.permille
= 0;
1170 di
->bat_cap
.prev_mah
= 0;
1171 di
->bat_cap
.mah
= 0;
1173 } else if (di
->flags
.fully_charged
) {
1175 * We report 100% if algorithm reported fully charged
1176 * unless capacity drops too much
1178 if (di
->flags
.force_full
) {
1179 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1180 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1181 } else if (!di
->flags
.force_full
&&
1182 di
->bat_cap
.prev_percent
!=
1183 (di
->bat_cap
.permille
) / 10 &&
1184 (di
->bat_cap
.permille
/ 10) <
1185 di
->bat
->fg_params
->maint_thres
) {
1187 "battery reported full "
1188 "but capacity dropping: %d\n",
1189 di
->bat_cap
.permille
/ 10);
1190 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1191 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1195 } else if (di
->bat_cap
.prev_percent
!= di
->bat_cap
.permille
/ 10) {
1196 if (di
->bat_cap
.permille
/ 10 == 0) {
1198 * We will not report 0% unless we've got
1199 * the LOW_BAT IRQ, no matter what the FG
1202 di
->bat_cap
.prev_percent
= 1;
1203 di
->bat_cap
.permille
= 1;
1204 di
->bat_cap
.prev_mah
= 1;
1205 di
->bat_cap
.mah
= 1;
1208 } else if (!(!di
->flags
.charging
&&
1209 (di
->bat_cap
.permille
/ 10) >
1210 di
->bat_cap
.prev_percent
) || init
) {
1212 * We do not allow reported capacity to go up
1213 * unless we're charging or if we're in init
1216 "capacity changed from %d to %d (%d)\n",
1217 di
->bat_cap
.prev_percent
,
1218 di
->bat_cap
.permille
/ 10,
1219 di
->bat_cap
.permille
);
1220 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1221 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1225 dev_dbg(di
->dev
, "capacity not allowed to go up since "
1226 "no charger is connected: %d to %d (%d)\n",
1227 di
->bat_cap
.prev_percent
,
1228 di
->bat_cap
.permille
/ 10,
1229 di
->bat_cap
.permille
);
1234 power_supply_changed(&di
->fg_psy
);
1235 if (di
->flags
.fully_charged
&& di
->flags
.force_full
) {
1236 dev_dbg(di
->dev
, "Battery full, notifying.\n");
1237 di
->flags
.force_full
= false;
1238 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_full");
1240 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_now");
1244 static void ab8500_fg_charge_state_to(struct ab8500_fg
*di
,
1245 enum ab8500_fg_charge_state new_state
)
1247 dev_dbg(di
->dev
, "Charge state from %d [%s] to %d [%s]\n",
1249 charge_state
[di
->charge_state
],
1251 charge_state
[new_state
]);
1253 di
->charge_state
= new_state
;
1256 static void ab8500_fg_discharge_state_to(struct ab8500_fg
*di
,
1257 enum ab8500_fg_discharge_state new_state
)
1259 dev_dbg(di
->dev
, "Disharge state from %d [%s] to %d [%s]\n",
1260 di
->discharge_state
,
1261 discharge_state
[di
->discharge_state
],
1263 discharge_state
[new_state
]);
1265 di
->discharge_state
= new_state
;
1269 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1270 * @di: pointer to the ab8500_fg structure
1272 * Battery capacity calculation state machine for when we're charging
1274 static void ab8500_fg_algorithm_charging(struct ab8500_fg
*di
)
1277 * If we change to discharge mode
1278 * we should start with recovery
1280 if (di
->discharge_state
!= AB8500_FG_DISCHARGE_INIT_RECOVERY
)
1281 ab8500_fg_discharge_state_to(di
,
1282 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1284 switch (di
->charge_state
) {
1285 case AB8500_FG_CHARGE_INIT
:
1286 di
->fg_samples
= SEC_TO_SAMPLE(
1287 di
->bat
->fg_params
->accu_charging
);
1289 ab8500_fg_coulomb_counter(di
, true);
1290 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_READOUT
);
1294 case AB8500_FG_CHARGE_READOUT
:
1296 * Read the FG and calculate the new capacity
1298 mutex_lock(&di
->cc_lock
);
1299 if (!di
->flags
.conv_done
) {
1300 /* Wasn't the CC IRQ that got us here */
1301 mutex_unlock(&di
->cc_lock
);
1302 dev_dbg(di
->dev
, "%s CC conv not done\n",
1307 di
->flags
.conv_done
= false;
1308 mutex_unlock(&di
->cc_lock
);
1310 ab8500_fg_calc_cap_charging(di
);
1318 /* Check capacity limits */
1319 ab8500_fg_check_capacity_limits(di
, false);
1322 static void force_capacity(struct ab8500_fg
*di
)
1326 ab8500_fg_clear_cap_samples(di
);
1327 cap
= di
->bat_cap
.user_mah
;
1328 if (cap
> di
->bat_cap
.max_mah_design
) {
1329 dev_dbg(di
->dev
, "Remaining cap %d can't be bigger than total"
1330 " %d\n", cap
, di
->bat_cap
.max_mah_design
);
1331 cap
= di
->bat_cap
.max_mah_design
;
1333 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.user_mah
);
1334 di
->bat_cap
.permille
= ab8500_fg_convert_mah_to_permille(di
, cap
);
1335 di
->bat_cap
.mah
= cap
;
1336 ab8500_fg_check_capacity_limits(di
, true);
1339 static bool check_sysfs_capacity(struct ab8500_fg
*di
)
1341 int cap
, lower
, upper
;
1344 cap
= di
->bat_cap
.user_mah
;
1346 cap_permille
= ab8500_fg_convert_mah_to_permille(di
,
1347 di
->bat_cap
.user_mah
);
1349 lower
= di
->bat_cap
.permille
- di
->bat
->fg_params
->user_cap_limit
* 10;
1350 upper
= di
->bat_cap
.permille
+ di
->bat
->fg_params
->user_cap_limit
* 10;
1354 /* 1000 is permille, -> 100 percent */
1358 dev_dbg(di
->dev
, "Capacity limits:"
1359 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1360 lower
, cap_permille
, upper
, cap
, di
->bat_cap
.mah
);
1362 /* If within limits, use the saved capacity and exit estimation...*/
1363 if (cap_permille
> lower
&& cap_permille
< upper
) {
1364 dev_dbg(di
->dev
, "OK! Using users cap %d uAh now\n", cap
);
1368 dev_dbg(di
->dev
, "Capacity from user out of limits, ignoring");
1373 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1374 * @di: pointer to the ab8500_fg structure
1376 * Battery capacity calculation state machine for when we're discharging
1378 static void ab8500_fg_algorithm_discharging(struct ab8500_fg
*di
)
1382 /* If we change to charge mode we should start with init */
1383 if (di
->charge_state
!= AB8500_FG_CHARGE_INIT
)
1384 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
1386 switch (di
->discharge_state
) {
1387 case AB8500_FG_DISCHARGE_INIT
:
1388 /* We use the FG IRQ to work on */
1390 di
->fg_samples
= SEC_TO_SAMPLE(di
->bat
->fg_params
->init_timer
);
1391 ab8500_fg_coulomb_counter(di
, true);
1392 ab8500_fg_discharge_state_to(di
,
1393 AB8500_FG_DISCHARGE_INITMEASURING
);
1395 /* Intentional fallthrough */
1396 case AB8500_FG_DISCHARGE_INITMEASURING
:
1398 * Discard a number of samples during startup.
1399 * After that, use compensated voltage for a few
1400 * samples to get an initial capacity.
1401 * Then go to READOUT
1403 sleep_time
= di
->bat
->fg_params
->init_timer
;
1405 /* Discard the first [x] seconds */
1407 di
->bat
->fg_params
->init_discard_time
) {
1408 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1410 ab8500_fg_check_capacity_limits(di
, true);
1413 di
->init_cnt
+= sleep_time
;
1414 if (di
->init_cnt
> di
->bat
->fg_params
->init_total_time
)
1415 ab8500_fg_discharge_state_to(di
,
1416 AB8500_FG_DISCHARGE_READOUT_INIT
);
1420 case AB8500_FG_DISCHARGE_INIT_RECOVERY
:
1421 di
->recovery_cnt
= 0;
1422 di
->recovery_needed
= true;
1423 ab8500_fg_discharge_state_to(di
,
1424 AB8500_FG_DISCHARGE_RECOVERY
);
1426 /* Intentional fallthrough */
1428 case AB8500_FG_DISCHARGE_RECOVERY
:
1429 sleep_time
= di
->bat
->fg_params
->recovery_sleep_timer
;
1432 * We should check the power consumption
1433 * If low, go to READOUT (after x min) or
1434 * RECOVERY_SLEEP if time left.
1435 * If high, go to READOUT
1437 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1439 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1440 if (di
->recovery_cnt
>
1441 di
->bat
->fg_params
->recovery_total_time
) {
1442 di
->fg_samples
= SEC_TO_SAMPLE(
1443 di
->bat
->fg_params
->accu_high_curr
);
1444 ab8500_fg_coulomb_counter(di
, true);
1445 ab8500_fg_discharge_state_to(di
,
1446 AB8500_FG_DISCHARGE_READOUT
);
1447 di
->recovery_needed
= false;
1449 queue_delayed_work(di
->fg_wq
,
1450 &di
->fg_periodic_work
,
1453 di
->recovery_cnt
+= sleep_time
;
1455 di
->fg_samples
= SEC_TO_SAMPLE(
1456 di
->bat
->fg_params
->accu_high_curr
);
1457 ab8500_fg_coulomb_counter(di
, true);
1458 ab8500_fg_discharge_state_to(di
,
1459 AB8500_FG_DISCHARGE_READOUT
);
1463 case AB8500_FG_DISCHARGE_READOUT_INIT
:
1464 di
->fg_samples
= SEC_TO_SAMPLE(
1465 di
->bat
->fg_params
->accu_high_curr
);
1466 ab8500_fg_coulomb_counter(di
, true);
1467 ab8500_fg_discharge_state_to(di
,
1468 AB8500_FG_DISCHARGE_READOUT
);
1471 case AB8500_FG_DISCHARGE_READOUT
:
1472 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1474 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1475 /* Detect mode change */
1476 if (di
->high_curr_mode
) {
1477 di
->high_curr_mode
= false;
1478 di
->high_curr_cnt
= 0;
1481 if (di
->recovery_needed
) {
1482 ab8500_fg_discharge_state_to(di
,
1483 AB8500_FG_DISCHARGE_RECOVERY
);
1485 queue_delayed_work(di
->fg_wq
,
1486 &di
->fg_periodic_work
, 0);
1491 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1493 mutex_lock(&di
->cc_lock
);
1494 if (!di
->flags
.conv_done
) {
1495 /* Wasn't the CC IRQ that got us here */
1496 mutex_unlock(&di
->cc_lock
);
1497 dev_dbg(di
->dev
, "%s CC conv not done\n",
1502 di
->flags
.conv_done
= false;
1503 mutex_unlock(&di
->cc_lock
);
1505 /* Detect mode change */
1506 if (!di
->high_curr_mode
) {
1507 di
->high_curr_mode
= true;
1508 di
->high_curr_cnt
= 0;
1511 di
->high_curr_cnt
+=
1512 di
->bat
->fg_params
->accu_high_curr
;
1513 if (di
->high_curr_cnt
>
1514 di
->bat
->fg_params
->high_curr_time
)
1515 di
->recovery_needed
= true;
1517 ab8500_fg_calc_cap_discharge_fg(di
);
1520 ab8500_fg_check_capacity_limits(di
, false);
1524 case AB8500_FG_DISCHARGE_WAKEUP
:
1525 ab8500_fg_coulomb_counter(di
, true);
1526 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1528 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1530 di
->fg_samples
= SEC_TO_SAMPLE(
1531 di
->bat
->fg_params
->accu_high_curr
);
1532 ab8500_fg_coulomb_counter(di
, true);
1533 ab8500_fg_discharge_state_to(di
,
1534 AB8500_FG_DISCHARGE_READOUT
);
1536 ab8500_fg_check_capacity_limits(di
, false);
1546 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1547 * @di: pointer to the ab8500_fg structure
1550 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg
*di
)
1554 switch (di
->calib_state
) {
1555 case AB8500_FG_CALIB_INIT
:
1556 dev_dbg(di
->dev
, "Calibration ongoing...\n");
1558 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1559 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1560 CC_INT_CAL_N_AVG_MASK
, CC_INT_CAL_SAMPLES_8
);
1564 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1565 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1566 CC_INTAVGOFFSET_ENA
, CC_INTAVGOFFSET_ENA
);
1569 di
->calib_state
= AB8500_FG_CALIB_WAIT
;
1571 case AB8500_FG_CALIB_END
:
1572 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1573 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1574 CC_MUXOFFSET
, CC_MUXOFFSET
);
1577 di
->flags
.calibrate
= false;
1578 dev_dbg(di
->dev
, "Calibration done...\n");
1579 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1581 case AB8500_FG_CALIB_WAIT
:
1582 dev_dbg(di
->dev
, "Calibration WFI\n");
1588 /* Something went wrong, don't calibrate then */
1589 dev_err(di
->dev
, "failed to calibrate the CC\n");
1590 di
->flags
.calibrate
= false;
1591 di
->calib_state
= AB8500_FG_CALIB_INIT
;
1592 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1596 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1597 * @di: pointer to the ab8500_fg structure
1599 * Entry point for the battery capacity calculation state machine
1601 static void ab8500_fg_algorithm(struct ab8500_fg
*di
)
1603 if (di
->flags
.calibrate
)
1604 ab8500_fg_algorithm_calibrate(di
);
1606 if (di
->flags
.charging
)
1607 ab8500_fg_algorithm_charging(di
);
1609 ab8500_fg_algorithm_discharging(di
);
1612 dev_dbg(di
->dev
, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1613 "%d %d %d %d %d %d %d\n",
1614 di
->bat_cap
.max_mah_design
,
1616 di
->bat_cap
.permille
,
1618 di
->bat_cap
.prev_mah
,
1619 di
->bat_cap
.prev_percent
,
1620 di
->bat_cap
.prev_level
,
1627 di
->discharge_state
,
1629 di
->recovery_needed
);
1633 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1634 * @work: pointer to the work_struct structure
1636 * Work queue function for periodic work
1638 static void ab8500_fg_periodic_work(struct work_struct
*work
)
1640 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1641 fg_periodic_work
.work
);
1643 if (di
->init_capacity
) {
1644 /* A dummy read that will return 0 */
1645 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1646 /* Get an initial capacity calculation */
1647 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1648 ab8500_fg_check_capacity_limits(di
, true);
1649 di
->init_capacity
= false;
1651 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1652 } else if (di
->flags
.user_cap
) {
1653 if (check_sysfs_capacity(di
)) {
1654 ab8500_fg_check_capacity_limits(di
, true);
1655 if (di
->flags
.charging
)
1656 ab8500_fg_charge_state_to(di
,
1657 AB8500_FG_CHARGE_INIT
);
1659 ab8500_fg_discharge_state_to(di
,
1660 AB8500_FG_DISCHARGE_READOUT_INIT
);
1662 di
->flags
.user_cap
= false;
1663 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1665 ab8500_fg_algorithm(di
);
1670 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1671 * @work: pointer to the work_struct structure
1673 * Work queue function for checking the OVV_BAT condition
1675 static void ab8500_fg_check_hw_failure_work(struct work_struct
*work
)
1680 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1681 fg_check_hw_failure_work
.work
);
1684 * If we have had a battery over-voltage situation,
1685 * check ovv-bit to see if it should be reset.
1687 if (di
->flags
.bat_ovv
) {
1688 ret
= abx500_get_register_interruptible(di
->dev
,
1689 AB8500_CHARGER
, AB8500_CH_STAT_REG
,
1692 dev_err(di
->dev
, "%s ab8500 read failed\n", __func__
);
1695 if ((reg_value
& BATT_OVV
) != BATT_OVV
) {
1696 dev_dbg(di
->dev
, "Battery recovered from OVV\n");
1697 di
->flags
.bat_ovv
= false;
1698 power_supply_changed(&di
->fg_psy
);
1702 /* Not yet recovered from ovv, reschedule this test */
1703 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
,
1709 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1710 * @work: pointer to the work_struct structure
1712 * Work queue function for checking the LOW_BAT condition
1714 static void ab8500_fg_low_bat_work(struct work_struct
*work
)
1718 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1719 fg_low_bat_work
.work
);
1721 vbat
= ab8500_fg_bat_voltage(di
);
1723 /* Check if LOW_BAT still fulfilled */
1724 if (vbat
< di
->bat
->fg_params
->lowbat_threshold
) {
1725 di
->flags
.low_bat
= true;
1726 dev_warn(di
->dev
, "Battery voltage still LOW\n");
1729 * We need to re-schedule this check to be able to detect
1730 * if the voltage increases again during charging
1732 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1733 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1735 di
->flags
.low_bat
= false;
1736 dev_warn(di
->dev
, "Battery voltage OK again\n");
1739 /* This is needed to dispatch LOW_BAT */
1740 ab8500_fg_check_capacity_limits(di
, false);
1742 /* Set this flag to check if LOW_BAT IRQ still occurs */
1743 di
->flags
.low_bat_delay
= false;
1747 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1748 * to the target voltage.
1749 * @di: pointer to the ab8500_fg structure
1750 * @target target voltage
1752 * Returns bit pattern closest to the target voltage
1753 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1756 static int ab8500_fg_battok_calc(struct ab8500_fg
*di
, int target
)
1758 if (target
> BATT_OK_MIN
+
1759 (BATT_OK_INCREMENT
* BATT_OK_MAX_NR_INCREMENTS
))
1760 return BATT_OK_MAX_NR_INCREMENTS
;
1761 if (target
< BATT_OK_MIN
)
1763 return (target
- BATT_OK_MIN
) / BATT_OK_INCREMENT
;
1767 * ab8500_fg_battok_init_hw_register - init battok levels
1768 * @di: pointer to the ab8500_fg structure
1772 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg
*di
)
1782 sel0
= di
->bat
->fg_params
->battok_falling_th_sel0
;
1783 sel1
= di
->bat
->fg_params
->battok_raising_th_sel1
;
1785 cbp_sel0
= ab8500_fg_battok_calc(di
, sel0
);
1786 cbp_sel1
= ab8500_fg_battok_calc(di
, sel1
);
1788 selected
= BATT_OK_MIN
+ cbp_sel0
* BATT_OK_INCREMENT
;
1790 if (selected
!= sel0
)
1791 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1792 sel0
, selected
, cbp_sel0
);
1794 selected
= BATT_OK_MIN
+ cbp_sel1
* BATT_OK_INCREMENT
;
1796 if (selected
!= sel1
)
1797 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1798 sel1
, selected
, cbp_sel1
);
1800 new_val
= cbp_sel0
| (cbp_sel1
<< 4);
1802 dev_dbg(di
->dev
, "using: %x %d %d\n", new_val
, cbp_sel0
, cbp_sel1
);
1803 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_SYS_CTRL2_BLOCK
,
1804 AB8500_BATT_OK_REG
, new_val
);
1809 * ab8500_fg_instant_work() - Run the FG state machine instantly
1810 * @work: pointer to the work_struct structure
1812 * Work queue function for instant work
1814 static void ab8500_fg_instant_work(struct work_struct
*work
)
1816 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
, fg_work
);
1818 ab8500_fg_algorithm(di
);
1822 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1823 * @irq: interrupt number
1824 * @_di: pointer to the ab8500_fg structure
1826 * Returns IRQ status(IRQ_HANDLED)
1828 static irqreturn_t
ab8500_fg_cc_data_end_handler(int irq
, void *_di
)
1830 struct ab8500_fg
*di
= _di
;
1831 complete(&di
->ab8500_fg_complete
);
1836 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1837 * @irq: interrupt number
1838 * @_di: pointer to the ab8500_fg structure
1840 * Returns IRQ status(IRQ_HANDLED)
1842 static irqreturn_t
ab8500_fg_cc_int_calib_handler(int irq
, void *_di
)
1844 struct ab8500_fg
*di
= _di
;
1845 di
->calib_state
= AB8500_FG_CALIB_END
;
1846 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1851 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1852 * @irq: interrupt number
1853 * @_di: pointer to the ab8500_fg structure
1855 * Returns IRQ status(IRQ_HANDLED)
1857 static irqreturn_t
ab8500_fg_cc_convend_handler(int irq
, void *_di
)
1859 struct ab8500_fg
*di
= _di
;
1861 queue_work(di
->fg_wq
, &di
->fg_acc_cur_work
);
1867 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1868 * @irq: interrupt number
1869 * @_di: pointer to the ab8500_fg structure
1871 * Returns IRQ status(IRQ_HANDLED)
1873 static irqreturn_t
ab8500_fg_batt_ovv_handler(int irq
, void *_di
)
1875 struct ab8500_fg
*di
= _di
;
1877 dev_dbg(di
->dev
, "Battery OVV\n");
1878 di
->flags
.bat_ovv
= true;
1879 power_supply_changed(&di
->fg_psy
);
1881 /* Schedule a new HW failure check */
1882 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
, 0);
1888 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1889 * @irq: interrupt number
1890 * @_di: pointer to the ab8500_fg structure
1892 * Returns IRQ status(IRQ_HANDLED)
1894 static irqreturn_t
ab8500_fg_lowbatf_handler(int irq
, void *_di
)
1896 struct ab8500_fg
*di
= _di
;
1898 if (!di
->flags
.low_bat_delay
) {
1899 dev_warn(di
->dev
, "Battery voltage is below LOW threshold\n");
1900 di
->flags
.low_bat_delay
= true;
1902 * Start a timer to check LOW_BAT again after some time
1903 * This is done to avoid shutdown on single voltage dips
1905 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1906 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1912 * ab8500_fg_get_property() - get the fg properties
1913 * @psy: pointer to the power_supply structure
1914 * @psp: pointer to the power_supply_property structure
1915 * @val: pointer to the power_supply_propval union
1917 * This function gets called when an application tries to get the
1918 * fg properties by reading the sysfs files.
1919 * voltage_now: battery voltage
1920 * current_now: battery instant current
1921 * current_avg: battery average current
1922 * charge_full_design: capacity where battery is considered full
1923 * charge_now: battery capacity in nAh
1924 * capacity: capacity in percent
1925 * capacity_level: capacity level
1927 * Returns error code in case of failure else 0 on success
1929 static int ab8500_fg_get_property(struct power_supply
*psy
,
1930 enum power_supply_property psp
,
1931 union power_supply_propval
*val
)
1933 struct ab8500_fg
*di
;
1935 di
= to_ab8500_fg_device_info(psy
);
1938 * If battery is identified as unknown and charging of unknown
1939 * batteries is disabled, we always report 100% capacity and
1940 * capacity level UNKNOWN, since we can't calculate
1941 * remaining capacity
1945 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
1946 if (di
->flags
.bat_ovv
)
1947 val
->intval
= BATT_OVV_VALUE
* 1000;
1949 val
->intval
= di
->vbat
* 1000;
1951 case POWER_SUPPLY_PROP_CURRENT_NOW
:
1952 val
->intval
= di
->inst_curr
* 1000;
1954 case POWER_SUPPLY_PROP_CURRENT_AVG
:
1955 val
->intval
= di
->avg_curr
* 1000;
1957 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
1958 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1959 di
->bat_cap
.max_mah_design
);
1961 case POWER_SUPPLY_PROP_ENERGY_FULL
:
1962 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1963 di
->bat_cap
.max_mah
);
1965 case POWER_SUPPLY_PROP_ENERGY_NOW
:
1966 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1967 di
->flags
.batt_id_received
)
1968 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1969 di
->bat_cap
.max_mah
);
1971 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1972 di
->bat_cap
.prev_mah
);
1974 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
1975 val
->intval
= di
->bat_cap
.max_mah_design
;
1977 case POWER_SUPPLY_PROP_CHARGE_FULL
:
1978 val
->intval
= di
->bat_cap
.max_mah
;
1980 case POWER_SUPPLY_PROP_CHARGE_NOW
:
1981 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1982 di
->flags
.batt_id_received
)
1983 val
->intval
= di
->bat_cap
.max_mah
;
1985 val
->intval
= di
->bat_cap
.prev_mah
;
1987 case POWER_SUPPLY_PROP_CAPACITY
:
1988 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1989 di
->flags
.batt_id_received
)
1992 val
->intval
= di
->bat_cap
.prev_percent
;
1994 case POWER_SUPPLY_PROP_CAPACITY_LEVEL
:
1995 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1996 di
->flags
.batt_id_received
)
1997 val
->intval
= POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
;
1999 val
->intval
= di
->bat_cap
.prev_level
;
2007 static int ab8500_fg_get_ext_psy_data(struct device
*dev
, void *data
)
2009 struct power_supply
*psy
;
2010 struct power_supply
*ext
;
2011 struct ab8500_fg
*di
;
2012 union power_supply_propval ret
;
2014 bool psy_found
= false;
2016 psy
= (struct power_supply
*)data
;
2017 ext
= dev_get_drvdata(dev
);
2018 di
= to_ab8500_fg_device_info(psy
);
2021 * For all psy where the name of your driver
2022 * appears in any supplied_to
2024 for (i
= 0; i
< ext
->num_supplicants
; i
++) {
2025 if (!strcmp(ext
->supplied_to
[i
], psy
->name
))
2032 /* Go through all properties for the psy */
2033 for (j
= 0; j
< ext
->num_properties
; j
++) {
2034 enum power_supply_property prop
;
2035 prop
= ext
->properties
[j
];
2037 if (ext
->get_property(ext
, prop
, &ret
))
2041 case POWER_SUPPLY_PROP_STATUS
:
2042 switch (ext
->type
) {
2043 case POWER_SUPPLY_TYPE_BATTERY
:
2044 switch (ret
.intval
) {
2045 case POWER_SUPPLY_STATUS_UNKNOWN
:
2046 case POWER_SUPPLY_STATUS_DISCHARGING
:
2047 case POWER_SUPPLY_STATUS_NOT_CHARGING
:
2048 if (!di
->flags
.charging
)
2050 di
->flags
.charging
= false;
2051 di
->flags
.fully_charged
= false;
2052 queue_work(di
->fg_wq
, &di
->fg_work
);
2054 case POWER_SUPPLY_STATUS_FULL
:
2055 if (di
->flags
.fully_charged
)
2057 di
->flags
.fully_charged
= true;
2058 di
->flags
.force_full
= true;
2059 /* Save current capacity as maximum */
2060 di
->bat_cap
.max_mah
= di
->bat_cap
.mah
;
2061 queue_work(di
->fg_wq
, &di
->fg_work
);
2063 case POWER_SUPPLY_STATUS_CHARGING
:
2064 if (di
->flags
.charging
)
2066 di
->flags
.charging
= true;
2067 di
->flags
.fully_charged
= false;
2068 queue_work(di
->fg_wq
, &di
->fg_work
);
2075 case POWER_SUPPLY_PROP_TECHNOLOGY
:
2076 switch (ext
->type
) {
2077 case POWER_SUPPLY_TYPE_BATTERY
:
2078 if (!di
->flags
.batt_id_received
) {
2079 const struct abx500_battery_type
*b
;
2081 b
= &(di
->bat
->bat_type
[di
->bat
->batt_id
]);
2083 di
->flags
.batt_id_received
= true;
2085 di
->bat_cap
.max_mah_design
=
2087 b
->charge_full_design
;
2089 di
->bat_cap
.max_mah
=
2090 di
->bat_cap
.max_mah_design
;
2092 di
->vbat_nom
= b
->nominal_voltage
;
2096 di
->flags
.batt_unknown
= false;
2098 di
->flags
.batt_unknown
= true;
2104 case POWER_SUPPLY_PROP_TEMP
:
2105 switch (ext
->type
) {
2106 case POWER_SUPPLY_TYPE_BATTERY
:
2107 if (di
->flags
.batt_id_received
)
2108 di
->bat_temp
= ret
.intval
;
2122 * ab8500_fg_init_hw_registers() - Set up FG related registers
2123 * @di: pointer to the ab8500_fg structure
2125 * Set up battery OVV, low battery voltage registers
2127 static int ab8500_fg_init_hw_registers(struct ab8500_fg
*di
)
2131 /* Set VBAT OVV threshold */
2132 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2138 dev_err(di
->dev
, "failed to set BATT_OVV\n");
2142 /* Enable VBAT OVV detection */
2143 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2149 dev_err(di
->dev
, "failed to enable BATT_OVV\n");
2153 /* Low Battery Voltage */
2154 ret
= abx500_set_register_interruptible(di
->dev
,
2155 AB8500_SYS_CTRL2_BLOCK
,
2157 ab8500_volt_to_regval(
2158 di
->bat
->fg_params
->lowbat_threshold
) << 1 |
2161 dev_err(di
->dev
, "%s write failed\n", __func__
);
2165 /* Battery OK threshold */
2166 ret
= ab8500_fg_battok_init_hw_register(di
);
2168 dev_err(di
->dev
, "BattOk init write failed.\n");
2176 * ab8500_fg_external_power_changed() - callback for power supply changes
2177 * @psy: pointer to the structure power_supply
2179 * This function is the entry point of the pointer external_power_changed
2180 * of the structure power_supply.
2181 * This function gets executed when there is a change in any external power
2182 * supply that this driver needs to be notified of.
2184 static void ab8500_fg_external_power_changed(struct power_supply
*psy
)
2186 struct ab8500_fg
*di
= to_ab8500_fg_device_info(psy
);
2188 class_for_each_device(power_supply_class
, NULL
,
2189 &di
->fg_psy
, ab8500_fg_get_ext_psy_data
);
2193 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2194 * @work: pointer to the work_struct structure
2196 * Used to reset the current battery capacity to be able to
2197 * retrigger a new voltage base capacity calculation. For
2198 * test and verification purpose.
2200 static void ab8500_fg_reinit_work(struct work_struct
*work
)
2202 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
2203 fg_reinit_work
.work
);
2205 if (di
->flags
.calibrate
== false) {
2206 dev_dbg(di
->dev
, "Resetting FG state machine to init.\n");
2207 ab8500_fg_clear_cap_samples(di
);
2208 ab8500_fg_calc_cap_discharge_voltage(di
, true);
2209 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2210 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2211 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2214 dev_err(di
->dev
, "Residual offset calibration ongoing "
2216 /* Wait one second until next try*/
2217 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
,
2223 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2225 * This function can be used to force the FG algorithm to recalculate a new
2226 * voltage based battery capacity.
2228 void ab8500_fg_reinit(void)
2230 struct ab8500_fg
*di
= ab8500_fg_get();
2231 /* User won't be notified if a null pointer returned. */
2233 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
, 0);
2236 /* Exposure to the sysfs interface */
2238 struct ab8500_fg_sysfs_entry
{
2239 struct attribute attr
;
2240 ssize_t (*show
)(struct ab8500_fg
*, char *);
2241 ssize_t (*store
)(struct ab8500_fg
*, const char *, size_t);
2244 static ssize_t
charge_full_show(struct ab8500_fg
*di
, char *buf
)
2246 return sprintf(buf
, "%d\n", di
->bat_cap
.max_mah
);
2249 static ssize_t
charge_full_store(struct ab8500_fg
*di
, const char *buf
,
2252 unsigned long charge_full
;
2253 ssize_t ret
= -EINVAL
;
2255 ret
= strict_strtoul(buf
, 10, &charge_full
);
2257 dev_dbg(di
->dev
, "Ret %zd charge_full %lu", ret
, charge_full
);
2260 di
->bat_cap
.max_mah
= (int) charge_full
;
2266 static ssize_t
charge_now_show(struct ab8500_fg
*di
, char *buf
)
2268 return sprintf(buf
, "%d\n", di
->bat_cap
.prev_mah
);
2271 static ssize_t
charge_now_store(struct ab8500_fg
*di
, const char *buf
,
2274 unsigned long charge_now
;
2277 ret
= strict_strtoul(buf
, 10, &charge_now
);
2279 dev_dbg(di
->dev
, "Ret %zd charge_now %lu was %d",
2280 ret
, charge_now
, di
->bat_cap
.prev_mah
);
2283 di
->bat_cap
.user_mah
= (int) charge_now
;
2284 di
->flags
.user_cap
= true;
2286 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2291 static struct ab8500_fg_sysfs_entry charge_full_attr
=
2292 __ATTR(charge_full
, 0644, charge_full_show
, charge_full_store
);
2294 static struct ab8500_fg_sysfs_entry charge_now_attr
=
2295 __ATTR(charge_now
, 0644, charge_now_show
, charge_now_store
);
2298 ab8500_fg_show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
2300 struct ab8500_fg_sysfs_entry
*entry
;
2301 struct ab8500_fg
*di
;
2303 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2304 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2309 return entry
->show(di
, buf
);
2312 ab8500_fg_store(struct kobject
*kobj
, struct attribute
*attr
, const char *buf
,
2315 struct ab8500_fg_sysfs_entry
*entry
;
2316 struct ab8500_fg
*di
;
2318 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2319 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2324 return entry
->store(di
, buf
, count
);
2327 static const struct sysfs_ops ab8500_fg_sysfs_ops
= {
2328 .show
= ab8500_fg_show
,
2329 .store
= ab8500_fg_store
,
2332 static struct attribute
*ab8500_fg_attrs
[] = {
2333 &charge_full_attr
.attr
,
2334 &charge_now_attr
.attr
,
2338 static struct kobj_type ab8500_fg_ktype
= {
2339 .sysfs_ops
= &ab8500_fg_sysfs_ops
,
2340 .default_attrs
= ab8500_fg_attrs
,
2344 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2345 * @di: pointer to the struct ab8500_chargalg
2347 * This function removes the entry in sysfs.
2349 static void ab8500_fg_sysfs_exit(struct ab8500_fg
*di
)
2351 kobject_del(&di
->fg_kobject
);
2355 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2356 * @di: pointer to the struct ab8500_chargalg
2358 * This function adds an entry in sysfs.
2359 * Returns error code in case of failure else 0(on success)
2361 static int ab8500_fg_sysfs_init(struct ab8500_fg
*di
)
2365 ret
= kobject_init_and_add(&di
->fg_kobject
,
2369 dev_err(di
->dev
, "failed to create sysfs entry\n");
2373 /* Exposure to the sysfs interface <<END>> */
2375 #if defined(CONFIG_PM)
2376 static int ab8500_fg_resume(struct platform_device
*pdev
)
2378 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2381 * Change state if we're not charging. If we're charging we will wake
2384 if (!di
->flags
.charging
) {
2385 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_WAKEUP
);
2386 queue_work(di
->fg_wq
, &di
->fg_work
);
2392 static int ab8500_fg_suspend(struct platform_device
*pdev
,
2395 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2397 flush_delayed_work(&di
->fg_periodic_work
);
2400 * If the FG is enabled we will disable it before going to suspend
2401 * only if we're not charging
2403 if (di
->flags
.fg_enabled
&& !di
->flags
.charging
)
2404 ab8500_fg_coulomb_counter(di
, false);
2409 #define ab8500_fg_suspend NULL
2410 #define ab8500_fg_resume NULL
2413 static int ab8500_fg_remove(struct platform_device
*pdev
)
2416 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2418 list_del(&di
->node
);
2420 /* Disable coulomb counter */
2421 ret
= ab8500_fg_coulomb_counter(di
, false);
2423 dev_err(di
->dev
, "failed to disable coulomb counter\n");
2425 destroy_workqueue(di
->fg_wq
);
2426 ab8500_fg_sysfs_exit(di
);
2428 flush_scheduled_work();
2429 power_supply_unregister(&di
->fg_psy
);
2430 platform_set_drvdata(pdev
, NULL
);
2434 /* ab8500 fg driver interrupts and their respective isr */
2435 static struct ab8500_fg_interrupts ab8500_fg_irq
[] = {
2436 {"NCONV_ACCU", ab8500_fg_cc_convend_handler
},
2437 {"BATT_OVV", ab8500_fg_batt_ovv_handler
},
2438 {"LOW_BAT_F", ab8500_fg_lowbatf_handler
},
2439 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler
},
2440 {"CCEOC", ab8500_fg_cc_data_end_handler
},
2443 static char *supply_interface
[] = {
2448 static int ab8500_fg_probe(struct platform_device
*pdev
)
2450 struct device_node
*np
= pdev
->dev
.of_node
;
2451 struct ab8500_fg
*di
;
2455 di
= devm_kzalloc(&pdev
->dev
, sizeof(*di
), GFP_KERNEL
);
2457 dev_err(&pdev
->dev
, "%s no mem for ab8500_fg\n", __func__
);
2460 di
->bat
= pdev
->mfd_cell
->platform_data
;
2463 ret
= bmdevs_of_probe(&pdev
->dev
, np
, &di
->bat
);
2466 "failed to get battery information\n");
2470 dev_err(&pdev
->dev
, "missing dt node for ab8500_fg\n");
2474 dev_info(&pdev
->dev
, "falling back to legacy platform data\n");
2477 mutex_init(&di
->cc_lock
);
2479 /* get parent data */
2480 di
->dev
= &pdev
->dev
;
2481 di
->parent
= dev_get_drvdata(pdev
->dev
.parent
);
2482 di
->gpadc
= ab8500_gpadc_get("ab8500-gpadc.0");
2484 di
->fg_psy
.name
= "ab8500_fg";
2485 di
->fg_psy
.type
= POWER_SUPPLY_TYPE_BATTERY
;
2486 di
->fg_psy
.properties
= ab8500_fg_props
;
2487 di
->fg_psy
.num_properties
= ARRAY_SIZE(ab8500_fg_props
);
2488 di
->fg_psy
.get_property
= ab8500_fg_get_property
;
2489 di
->fg_psy
.supplied_to
= supply_interface
;
2490 di
->fg_psy
.num_supplicants
= ARRAY_SIZE(supply_interface
),
2491 di
->fg_psy
.external_power_changed
= ab8500_fg_external_power_changed
;
2493 di
->bat_cap
.max_mah_design
= MILLI_TO_MICRO
*
2494 di
->bat
->bat_type
[di
->bat
->batt_id
].charge_full_design
;
2496 di
->bat_cap
.max_mah
= di
->bat_cap
.max_mah_design
;
2498 di
->vbat_nom
= di
->bat
->bat_type
[di
->bat
->batt_id
].nominal_voltage
;
2500 di
->init_capacity
= true;
2502 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2503 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2505 /* Create a work queue for running the FG algorithm */
2506 di
->fg_wq
= create_singlethread_workqueue("ab8500_fg_wq");
2507 if (di
->fg_wq
== NULL
) {
2508 dev_err(di
->dev
, "failed to create work queue\n");
2512 /* Init work for running the fg algorithm instantly */
2513 INIT_WORK(&di
->fg_work
, ab8500_fg_instant_work
);
2515 /* Init work for getting the battery accumulated current */
2516 INIT_WORK(&di
->fg_acc_cur_work
, ab8500_fg_acc_cur_work
);
2518 /* Init work for reinitialising the fg algorithm */
2519 INIT_DEFERRABLE_WORK(&di
->fg_reinit_work
,
2520 ab8500_fg_reinit_work
);
2522 /* Work delayed Queue to run the state machine */
2523 INIT_DEFERRABLE_WORK(&di
->fg_periodic_work
,
2524 ab8500_fg_periodic_work
);
2526 /* Work to check low battery condition */
2527 INIT_DEFERRABLE_WORK(&di
->fg_low_bat_work
,
2528 ab8500_fg_low_bat_work
);
2530 /* Init work for HW failure check */
2531 INIT_DEFERRABLE_WORK(&di
->fg_check_hw_failure_work
,
2532 ab8500_fg_check_hw_failure_work
);
2534 /* Initialize OVV, and other registers */
2535 ret
= ab8500_fg_init_hw_registers(di
);
2537 dev_err(di
->dev
, "failed to initialize registers\n");
2538 goto free_inst_curr_wq
;
2541 /* Consider battery unknown until we're informed otherwise */
2542 di
->flags
.batt_unknown
= true;
2543 di
->flags
.batt_id_received
= false;
2545 /* Register FG power supply class */
2546 ret
= power_supply_register(di
->dev
, &di
->fg_psy
);
2548 dev_err(di
->dev
, "failed to register FG psy\n");
2549 goto free_inst_curr_wq
;
2552 di
->fg_samples
= SEC_TO_SAMPLE(di
->bat
->fg_params
->init_timer
);
2553 ab8500_fg_coulomb_counter(di
, true);
2555 /* Initialize completion used to notify completion of inst current */
2556 init_completion(&di
->ab8500_fg_complete
);
2558 /* Register interrupts */
2559 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq
); i
++) {
2560 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
2561 ret
= request_threaded_irq(irq
, NULL
, ab8500_fg_irq
[i
].isr
,
2562 IRQF_SHARED
| IRQF_NO_SUSPEND
,
2563 ab8500_fg_irq
[i
].name
, di
);
2566 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n"
2567 , ab8500_fg_irq
[i
].name
, irq
, ret
);
2570 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
2571 ab8500_fg_irq
[i
].name
, irq
, ret
);
2573 di
->irq
= platform_get_irq_byname(pdev
, "CCEOC");
2574 disable_irq(di
->irq
);
2576 platform_set_drvdata(pdev
, di
);
2578 ret
= ab8500_fg_sysfs_init(di
);
2580 dev_err(di
->dev
, "failed to create sysfs entry\n");
2584 /* Calibrate the fg first time */
2585 di
->flags
.calibrate
= true;
2586 di
->calib_state
= AB8500_FG_CALIB_INIT
;
2588 /* Use room temp as default value until we get an update from driver. */
2591 /* Run the FG algorithm */
2592 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2594 list_add_tail(&di
->node
, &ab8500_fg_list
);
2599 power_supply_unregister(&di
->fg_psy
);
2601 /* We also have to free all successfully registered irqs */
2602 for (i
= i
- 1; i
>= 0; i
--) {
2603 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
2607 destroy_workqueue(di
->fg_wq
);
2611 static const struct of_device_id ab8500_fg_match
[] = {
2612 { .compatible
= "stericsson,ab8500-fg", },
2616 static struct platform_driver ab8500_fg_driver
= {
2617 .probe
= ab8500_fg_probe
,
2618 .remove
= ab8500_fg_remove
,
2619 .suspend
= ab8500_fg_suspend
,
2620 .resume
= ab8500_fg_resume
,
2622 .name
= "ab8500-fg",
2623 .owner
= THIS_MODULE
,
2624 .of_match_table
= ab8500_fg_match
,
2628 static int __init
ab8500_fg_init(void)
2630 return platform_driver_register(&ab8500_fg_driver
);
2633 static void __exit
ab8500_fg_exit(void)
2635 platform_driver_unregister(&ab8500_fg_driver
);
2638 subsys_initcall_sync(ab8500_fg_init
);
2639 module_exit(ab8500_fg_exit
);
2641 MODULE_LICENSE("GPL v2");
2642 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2643 MODULE_ALIAS("platform:ab8500-fg");
2644 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");