Linux 4.9.237
[linux/fpc-iii.git] / drivers / hwmon / lm85.c
blob6ff773fcaefbece828fe3eb89f594fd71e532e13
1 /*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 #include <linux/util_macros.h>
39 /* Addresses to scan */
40 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
42 enum chips {
43 lm85,
44 adm1027, adt7463, adt7468,
45 emc6d100, emc6d102, emc6d103, emc6d103s
48 /* The LM85 registers */
50 #define LM85_REG_IN(nr) (0x20 + (nr))
51 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
52 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
54 #define LM85_REG_TEMP(nr) (0x25 + (nr))
55 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
56 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
58 /* Fan speeds are LSB, MSB (2 bytes) */
59 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
60 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
62 #define LM85_REG_PWM(nr) (0x30 + (nr))
64 #define LM85_REG_COMPANY 0x3e
65 #define LM85_REG_VERSTEP 0x3f
67 #define ADT7468_REG_CFG5 0x7c
68 #define ADT7468_OFF64 (1 << 0)
69 #define ADT7468_HFPWM (1 << 1)
70 #define IS_ADT7468_OFF64(data) \
71 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
72 #define IS_ADT7468_HFPWM(data) \
73 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
75 /* These are the recognized values for the above regs */
76 #define LM85_COMPANY_NATIONAL 0x01
77 #define LM85_COMPANY_ANALOG_DEV 0x41
78 #define LM85_COMPANY_SMSC 0x5c
79 #define LM85_VERSTEP_LM85C 0x60
80 #define LM85_VERSTEP_LM85B 0x62
81 #define LM85_VERSTEP_LM96000_1 0x68
82 #define LM85_VERSTEP_LM96000_2 0x69
83 #define LM85_VERSTEP_ADM1027 0x60
84 #define LM85_VERSTEP_ADT7463 0x62
85 #define LM85_VERSTEP_ADT7463C 0x6A
86 #define LM85_VERSTEP_ADT7468_1 0x71
87 #define LM85_VERSTEP_ADT7468_2 0x72
88 #define LM85_VERSTEP_EMC6D100_A0 0x60
89 #define LM85_VERSTEP_EMC6D100_A1 0x61
90 #define LM85_VERSTEP_EMC6D102 0x65
91 #define LM85_VERSTEP_EMC6D103_A0 0x68
92 #define LM85_VERSTEP_EMC6D103_A1 0x69
93 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
95 #define LM85_REG_CONFIG 0x40
97 #define LM85_REG_ALARM1 0x41
98 #define LM85_REG_ALARM2 0x42
100 #define LM85_REG_VID 0x43
102 /* Automated FAN control */
103 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
104 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
105 #define LM85_REG_AFAN_SPIKE1 0x62
106 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
107 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
108 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
109 #define LM85_REG_AFAN_HYST1 0x6d
110 #define LM85_REG_AFAN_HYST2 0x6e
112 #define ADM1027_REG_EXTEND_ADC1 0x76
113 #define ADM1027_REG_EXTEND_ADC2 0x77
115 #define EMC6D100_REG_ALARM3 0x7d
116 /* IN5, IN6 and IN7 */
117 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
118 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
119 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
120 #define EMC6D102_REG_EXTEND_ADC1 0x85
121 #define EMC6D102_REG_EXTEND_ADC2 0x86
122 #define EMC6D102_REG_EXTEND_ADC3 0x87
123 #define EMC6D102_REG_EXTEND_ADC4 0x88
126 * Conversions. Rounding and limit checking is only done on the TO_REG
127 * variants. Note that you should be a bit careful with which arguments
128 * these macros are called: arguments may be evaluated more than once.
131 /* IN are scaled according to built-in resistors */
132 static const int lm85_scaling[] = { /* .001 Volts */
133 2500, 2250, 3300, 5000, 12000,
134 3300, 1500, 1800 /*EMC6D100*/
136 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
138 #define INS_TO_REG(n, val) \
139 clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
141 #define INSEXT_FROM_REG(n, val, ext) \
142 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
144 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
146 /* FAN speed is measured using 90kHz clock */
147 static inline u16 FAN_TO_REG(unsigned long val)
149 if (!val)
150 return 0xffff;
151 return clamp_val(5400000 / val, 1, 0xfffe);
153 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
154 5400000 / (val))
156 /* Temperature is reported in .001 degC increments */
157 #define TEMP_TO_REG(val) \
158 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
159 #define TEMPEXT_FROM_REG(val, ext) \
160 SCALE(((val) << 4) + (ext), 16, 1000)
161 #define TEMP_FROM_REG(val) ((val) * 1000)
163 #define PWM_TO_REG(val) clamp_val(val, 0, 255)
164 #define PWM_FROM_REG(val) (val)
168 * ZONEs have the following parameters:
169 * Limit (low) temp, 1. degC
170 * Hysteresis (below limit), 1. degC (0-15)
171 * Range of speed control, .1 degC (2-80)
172 * Critical (high) temp, 1. degC
174 * FAN PWMs have the following parameters:
175 * Reference Zone, 1, 2, 3, etc.
176 * Spinup time, .05 sec
177 * PWM value at limit/low temp, 1 count
178 * PWM Frequency, 1. Hz
179 * PWM is Min or OFF below limit, flag
180 * Invert PWM output, flag
182 * Some chips filter the temp, others the fan.
183 * Filter constant (or disabled) .1 seconds
186 /* These are the zone temperature range encodings in .001 degree C */
187 static const int lm85_range_map[] = {
188 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
189 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
192 static int RANGE_TO_REG(long range)
194 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
196 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
198 /* These are the PWM frequency encodings */
199 static const int lm85_freq_map[8] = { /* 1 Hz */
200 10, 15, 23, 30, 38, 47, 61, 94
202 static const int adm1027_freq_map[8] = { /* 1 Hz */
203 11, 15, 22, 29, 35, 44, 59, 88
205 #define FREQ_MAP_LEN 8
207 static int FREQ_TO_REG(const int *map,
208 unsigned int map_size, unsigned long freq)
210 return find_closest(freq, map, map_size);
213 static int FREQ_FROM_REG(const int *map, u8 reg)
215 return map[reg & 0x07];
219 * Since we can't use strings, I'm abusing these numbers
220 * to stand in for the following meanings:
221 * 1 -- PWM responds to Zone 1
222 * 2 -- PWM responds to Zone 2
223 * 3 -- PWM responds to Zone 3
224 * 23 -- PWM responds to the higher temp of Zone 2 or 3
225 * 123 -- PWM responds to highest of Zone 1, 2, or 3
226 * 0 -- PWM is always at 0% (ie, off)
227 * -1 -- PWM is always at 100%
228 * -2 -- PWM responds to manual control
231 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
232 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
234 static int ZONE_TO_REG(int zone)
236 int i;
238 for (i = 0; i <= 7; ++i)
239 if (zone == lm85_zone_map[i])
240 break;
241 if (i > 7) /* Not found. */
242 i = 3; /* Always 100% */
243 return i << 5;
246 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
247 #define HYST_FROM_REG(val) ((val) * 1000)
250 * Chip sampling rates
252 * Some sensors are not updated more frequently than once per second
253 * so it doesn't make sense to read them more often than that.
254 * We cache the results and return the saved data if the driver
255 * is called again before a second has elapsed.
257 * Also, there is significant configuration data for this chip
258 * given the automatic PWM fan control that is possible. There
259 * are about 47 bytes of config data to only 22 bytes of actual
260 * readings. So, we keep the config data up to date in the cache
261 * when it is written and only sample it once every 1 *minute*
263 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
264 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
267 * LM85 can automatically adjust fan speeds based on temperature
268 * This structure encapsulates an entire Zone config. There are
269 * three zones (one for each temperature input) on the lm85
271 struct lm85_zone {
272 s8 limit; /* Low temp limit */
273 u8 hyst; /* Low limit hysteresis. (0-15) */
274 u8 range; /* Temp range, encoded */
275 s8 critical; /* "All fans ON" temp limit */
276 u8 max_desired; /*
277 * Actual "max" temperature specified. Preserved
278 * to prevent "drift" as other autofan control
279 * values change.
283 struct lm85_autofan {
284 u8 config; /* Register value */
285 u8 min_pwm; /* Minimum PWM value, encoded */
286 u8 min_off; /* Min PWM or OFF below "limit", flag */
290 * For each registered chip, we need to keep some data in memory.
291 * The structure is dynamically allocated.
293 struct lm85_data {
294 struct i2c_client *client;
295 const struct attribute_group *groups[6];
296 const int *freq_map;
297 enum chips type;
299 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
301 struct mutex update_lock;
302 int valid; /* !=0 if following fields are valid */
303 unsigned long last_reading; /* In jiffies */
304 unsigned long last_config; /* In jiffies */
306 u8 in[8]; /* Register value */
307 u8 in_max[8]; /* Register value */
308 u8 in_min[8]; /* Register value */
309 s8 temp[3]; /* Register value */
310 s8 temp_min[3]; /* Register value */
311 s8 temp_max[3]; /* Register value */
312 u16 fan[4]; /* Register value */
313 u16 fan_min[4]; /* Register value */
314 u8 pwm[3]; /* Register value */
315 u8 pwm_freq[3]; /* Register encoding */
316 u8 temp_ext[3]; /* Decoded values */
317 u8 in_ext[8]; /* Decoded values */
318 u8 vid; /* Register value */
319 u8 vrm; /* VRM version */
320 u32 alarms; /* Register encoding, combined */
321 u8 cfg5; /* Config Register 5 on ADT7468 */
322 struct lm85_autofan autofan[3];
323 struct lm85_zone zone[3];
326 static int lm85_read_value(struct i2c_client *client, u8 reg)
328 int res;
330 /* What size location is it? */
331 switch (reg) {
332 case LM85_REG_FAN(0): /* Read WORD data */
333 case LM85_REG_FAN(1):
334 case LM85_REG_FAN(2):
335 case LM85_REG_FAN(3):
336 case LM85_REG_FAN_MIN(0):
337 case LM85_REG_FAN_MIN(1):
338 case LM85_REG_FAN_MIN(2):
339 case LM85_REG_FAN_MIN(3):
340 case LM85_REG_ALARM1: /* Read both bytes at once */
341 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
342 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
343 break;
344 default: /* Read BYTE data */
345 res = i2c_smbus_read_byte_data(client, reg);
346 break;
349 return res;
352 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
354 switch (reg) {
355 case LM85_REG_FAN(0): /* Write WORD data */
356 case LM85_REG_FAN(1):
357 case LM85_REG_FAN(2):
358 case LM85_REG_FAN(3):
359 case LM85_REG_FAN_MIN(0):
360 case LM85_REG_FAN_MIN(1):
361 case LM85_REG_FAN_MIN(2):
362 case LM85_REG_FAN_MIN(3):
363 /* NOTE: ALARM is read only, so not included here */
364 i2c_smbus_write_byte_data(client, reg, value & 0xff);
365 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
366 break;
367 default: /* Write BYTE data */
368 i2c_smbus_write_byte_data(client, reg, value);
369 break;
373 static struct lm85_data *lm85_update_device(struct device *dev)
375 struct lm85_data *data = dev_get_drvdata(dev);
376 struct i2c_client *client = data->client;
377 int i;
379 mutex_lock(&data->update_lock);
381 if (!data->valid ||
382 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
383 /* Things that change quickly */
384 dev_dbg(&client->dev, "Reading sensor values\n");
387 * Have to read extended bits first to "freeze" the
388 * more significant bits that are read later.
389 * There are 2 additional resolution bits per channel and we
390 * have room for 4, so we shift them to the left.
392 if (data->type == adm1027 || data->type == adt7463 ||
393 data->type == adt7468) {
394 int ext1 = lm85_read_value(client,
395 ADM1027_REG_EXTEND_ADC1);
396 int ext2 = lm85_read_value(client,
397 ADM1027_REG_EXTEND_ADC2);
398 int val = (ext1 << 8) + ext2;
400 for (i = 0; i <= 4; i++)
401 data->in_ext[i] =
402 ((val >> (i * 2)) & 0x03) << 2;
404 for (i = 0; i <= 2; i++)
405 data->temp_ext[i] =
406 (val >> ((i + 4) * 2)) & 0x0c;
409 data->vid = lm85_read_value(client, LM85_REG_VID);
411 for (i = 0; i <= 3; ++i) {
412 data->in[i] =
413 lm85_read_value(client, LM85_REG_IN(i));
414 data->fan[i] =
415 lm85_read_value(client, LM85_REG_FAN(i));
418 if (!data->has_vid5)
419 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
421 if (data->type == adt7468)
422 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
424 for (i = 0; i <= 2; ++i) {
425 data->temp[i] =
426 lm85_read_value(client, LM85_REG_TEMP(i));
427 data->pwm[i] =
428 lm85_read_value(client, LM85_REG_PWM(i));
430 if (IS_ADT7468_OFF64(data))
431 data->temp[i] -= 64;
434 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
436 if (data->type == emc6d100) {
437 /* Three more voltage sensors */
438 for (i = 5; i <= 7; ++i) {
439 data->in[i] = lm85_read_value(client,
440 EMC6D100_REG_IN(i));
442 /* More alarm bits */
443 data->alarms |= lm85_read_value(client,
444 EMC6D100_REG_ALARM3) << 16;
445 } else if (data->type == emc6d102 || data->type == emc6d103 ||
446 data->type == emc6d103s) {
448 * Have to read LSB bits after the MSB ones because
449 * the reading of the MSB bits has frozen the
450 * LSBs (backward from the ADM1027).
452 int ext1 = lm85_read_value(client,
453 EMC6D102_REG_EXTEND_ADC1);
454 int ext2 = lm85_read_value(client,
455 EMC6D102_REG_EXTEND_ADC2);
456 int ext3 = lm85_read_value(client,
457 EMC6D102_REG_EXTEND_ADC3);
458 int ext4 = lm85_read_value(client,
459 EMC6D102_REG_EXTEND_ADC4);
460 data->in_ext[0] = ext3 & 0x0f;
461 data->in_ext[1] = ext4 & 0x0f;
462 data->in_ext[2] = ext4 >> 4;
463 data->in_ext[3] = ext3 >> 4;
464 data->in_ext[4] = ext2 >> 4;
466 data->temp_ext[0] = ext1 & 0x0f;
467 data->temp_ext[1] = ext2 & 0x0f;
468 data->temp_ext[2] = ext1 >> 4;
471 data->last_reading = jiffies;
472 } /* last_reading */
474 if (!data->valid ||
475 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
476 /* Things that don't change often */
477 dev_dbg(&client->dev, "Reading config values\n");
479 for (i = 0; i <= 3; ++i) {
480 data->in_min[i] =
481 lm85_read_value(client, LM85_REG_IN_MIN(i));
482 data->in_max[i] =
483 lm85_read_value(client, LM85_REG_IN_MAX(i));
484 data->fan_min[i] =
485 lm85_read_value(client, LM85_REG_FAN_MIN(i));
488 if (!data->has_vid5) {
489 data->in_min[4] = lm85_read_value(client,
490 LM85_REG_IN_MIN(4));
491 data->in_max[4] = lm85_read_value(client,
492 LM85_REG_IN_MAX(4));
495 if (data->type == emc6d100) {
496 for (i = 5; i <= 7; ++i) {
497 data->in_min[i] = lm85_read_value(client,
498 EMC6D100_REG_IN_MIN(i));
499 data->in_max[i] = lm85_read_value(client,
500 EMC6D100_REG_IN_MAX(i));
504 for (i = 0; i <= 2; ++i) {
505 int val;
507 data->temp_min[i] =
508 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
509 data->temp_max[i] =
510 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
512 data->autofan[i].config =
513 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
514 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
515 data->pwm_freq[i] = val & 0x07;
516 data->zone[i].range = val >> 4;
517 data->autofan[i].min_pwm =
518 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
519 data->zone[i].limit =
520 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
521 data->zone[i].critical =
522 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
524 if (IS_ADT7468_OFF64(data)) {
525 data->temp_min[i] -= 64;
526 data->temp_max[i] -= 64;
527 data->zone[i].limit -= 64;
528 data->zone[i].critical -= 64;
532 if (data->type != emc6d103s) {
533 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
534 data->autofan[0].min_off = (i & 0x20) != 0;
535 data->autofan[1].min_off = (i & 0x40) != 0;
536 data->autofan[2].min_off = (i & 0x80) != 0;
538 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
539 data->zone[0].hyst = i >> 4;
540 data->zone[1].hyst = i & 0x0f;
542 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
543 data->zone[2].hyst = i >> 4;
546 data->last_config = jiffies;
547 } /* last_config */
549 data->valid = 1;
551 mutex_unlock(&data->update_lock);
553 return data;
556 /* 4 Fans */
557 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
558 char *buf)
560 int nr = to_sensor_dev_attr(attr)->index;
561 struct lm85_data *data = lm85_update_device(dev);
562 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
565 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
566 char *buf)
568 int nr = to_sensor_dev_attr(attr)->index;
569 struct lm85_data *data = lm85_update_device(dev);
570 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
573 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
574 const char *buf, size_t count)
576 int nr = to_sensor_dev_attr(attr)->index;
577 struct lm85_data *data = dev_get_drvdata(dev);
578 struct i2c_client *client = data->client;
579 unsigned long val;
580 int err;
582 err = kstrtoul(buf, 10, &val);
583 if (err)
584 return err;
586 mutex_lock(&data->update_lock);
587 data->fan_min[nr] = FAN_TO_REG(val);
588 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
589 mutex_unlock(&data->update_lock);
590 return count;
593 #define show_fan_offset(offset) \
594 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
595 show_fan, NULL, offset - 1); \
596 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
597 show_fan_min, set_fan_min, offset - 1)
599 show_fan_offset(1);
600 show_fan_offset(2);
601 show_fan_offset(3);
602 show_fan_offset(4);
604 /* vid, vrm, alarms */
606 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
607 char *buf)
609 struct lm85_data *data = lm85_update_device(dev);
610 int vid;
612 if (data->has_vid5) {
613 /* 6-pin VID (VRM 10) */
614 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
615 } else {
616 /* 5-pin VID (VRM 9) */
617 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
620 return sprintf(buf, "%d\n", vid);
623 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
625 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
626 char *buf)
628 struct lm85_data *data = dev_get_drvdata(dev);
629 return sprintf(buf, "%ld\n", (long) data->vrm);
632 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
633 const char *buf, size_t count)
635 struct lm85_data *data = dev_get_drvdata(dev);
636 unsigned long val;
637 int err;
639 err = kstrtoul(buf, 10, &val);
640 if (err)
641 return err;
643 if (val > 255)
644 return -EINVAL;
646 data->vrm = val;
647 return count;
650 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
652 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
653 *attr, char *buf)
655 struct lm85_data *data = lm85_update_device(dev);
656 return sprintf(buf, "%u\n", data->alarms);
659 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
661 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
662 char *buf)
664 int nr = to_sensor_dev_attr(attr)->index;
665 struct lm85_data *data = lm85_update_device(dev);
666 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
669 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
670 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
671 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
672 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
673 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
674 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
675 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
676 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
677 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
678 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
679 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
680 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
681 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
682 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
683 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
684 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
685 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
687 /* pwm */
689 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
690 char *buf)
692 int nr = to_sensor_dev_attr(attr)->index;
693 struct lm85_data *data = lm85_update_device(dev);
694 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
697 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
698 const char *buf, size_t count)
700 int nr = to_sensor_dev_attr(attr)->index;
701 struct lm85_data *data = dev_get_drvdata(dev);
702 struct i2c_client *client = data->client;
703 unsigned long val;
704 int err;
706 err = kstrtoul(buf, 10, &val);
707 if (err)
708 return err;
710 mutex_lock(&data->update_lock);
711 data->pwm[nr] = PWM_TO_REG(val);
712 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
713 mutex_unlock(&data->update_lock);
714 return count;
717 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
718 *attr, char *buf)
720 int nr = to_sensor_dev_attr(attr)->index;
721 struct lm85_data *data = lm85_update_device(dev);
722 int pwm_zone, enable;
724 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
725 switch (pwm_zone) {
726 case -1: /* PWM is always at 100% */
727 enable = 0;
728 break;
729 case 0: /* PWM is always at 0% */
730 case -2: /* PWM responds to manual control */
731 enable = 1;
732 break;
733 default: /* PWM in automatic mode */
734 enable = 2;
736 return sprintf(buf, "%d\n", enable);
739 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
740 *attr, const char *buf, size_t count)
742 int nr = to_sensor_dev_attr(attr)->index;
743 struct lm85_data *data = dev_get_drvdata(dev);
744 struct i2c_client *client = data->client;
745 u8 config;
746 unsigned long val;
747 int err;
749 err = kstrtoul(buf, 10, &val);
750 if (err)
751 return err;
753 switch (val) {
754 case 0:
755 config = 3;
756 break;
757 case 1:
758 config = 7;
759 break;
760 case 2:
762 * Here we have to choose arbitrarily one of the 5 possible
763 * configurations; I go for the safest
765 config = 6;
766 break;
767 default:
768 return -EINVAL;
771 mutex_lock(&data->update_lock);
772 data->autofan[nr].config = lm85_read_value(client,
773 LM85_REG_AFAN_CONFIG(nr));
774 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
775 | (config << 5);
776 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
777 data->autofan[nr].config);
778 mutex_unlock(&data->update_lock);
779 return count;
782 static ssize_t show_pwm_freq(struct device *dev,
783 struct device_attribute *attr, char *buf)
785 int nr = to_sensor_dev_attr(attr)->index;
786 struct lm85_data *data = lm85_update_device(dev);
787 int freq;
789 if (IS_ADT7468_HFPWM(data))
790 freq = 22500;
791 else
792 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
794 return sprintf(buf, "%d\n", freq);
797 static ssize_t set_pwm_freq(struct device *dev,
798 struct device_attribute *attr, const char *buf, size_t count)
800 int nr = to_sensor_dev_attr(attr)->index;
801 struct lm85_data *data = dev_get_drvdata(dev);
802 struct i2c_client *client = data->client;
803 unsigned long val;
804 int err;
806 err = kstrtoul(buf, 10, &val);
807 if (err)
808 return err;
810 mutex_lock(&data->update_lock);
812 * The ADT7468 has a special high-frequency PWM output mode,
813 * where all PWM outputs are driven by a 22.5 kHz clock.
814 * This might confuse the user, but there's not much we can do.
816 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
817 data->cfg5 &= ~ADT7468_HFPWM;
818 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
819 } else { /* Low freq. mode */
820 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
821 FREQ_MAP_LEN, val);
822 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
823 (data->zone[nr].range << 4)
824 | data->pwm_freq[nr]);
825 if (data->type == adt7468) {
826 data->cfg5 |= ADT7468_HFPWM;
827 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
830 mutex_unlock(&data->update_lock);
831 return count;
834 #define show_pwm_reg(offset) \
835 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
836 show_pwm, set_pwm, offset - 1); \
837 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
838 show_pwm_enable, set_pwm_enable, offset - 1); \
839 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
840 show_pwm_freq, set_pwm_freq, offset - 1)
842 show_pwm_reg(1);
843 show_pwm_reg(2);
844 show_pwm_reg(3);
846 /* Voltages */
848 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
849 char *buf)
851 int nr = to_sensor_dev_attr(attr)->index;
852 struct lm85_data *data = lm85_update_device(dev);
853 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
854 data->in_ext[nr]));
857 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
858 char *buf)
860 int nr = to_sensor_dev_attr(attr)->index;
861 struct lm85_data *data = lm85_update_device(dev);
862 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
865 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
866 const char *buf, size_t count)
868 int nr = to_sensor_dev_attr(attr)->index;
869 struct lm85_data *data = dev_get_drvdata(dev);
870 struct i2c_client *client = data->client;
871 long val;
872 int err;
874 err = kstrtol(buf, 10, &val);
875 if (err)
876 return err;
878 mutex_lock(&data->update_lock);
879 data->in_min[nr] = INS_TO_REG(nr, val);
880 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
881 mutex_unlock(&data->update_lock);
882 return count;
885 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
886 char *buf)
888 int nr = to_sensor_dev_attr(attr)->index;
889 struct lm85_data *data = lm85_update_device(dev);
890 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
893 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
894 const char *buf, size_t count)
896 int nr = to_sensor_dev_attr(attr)->index;
897 struct lm85_data *data = dev_get_drvdata(dev);
898 struct i2c_client *client = data->client;
899 long val;
900 int err;
902 err = kstrtol(buf, 10, &val);
903 if (err)
904 return err;
906 mutex_lock(&data->update_lock);
907 data->in_max[nr] = INS_TO_REG(nr, val);
908 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
909 mutex_unlock(&data->update_lock);
910 return count;
913 #define show_in_reg(offset) \
914 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
915 show_in, NULL, offset); \
916 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
917 show_in_min, set_in_min, offset); \
918 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
919 show_in_max, set_in_max, offset)
921 show_in_reg(0);
922 show_in_reg(1);
923 show_in_reg(2);
924 show_in_reg(3);
925 show_in_reg(4);
926 show_in_reg(5);
927 show_in_reg(6);
928 show_in_reg(7);
930 /* Temps */
932 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
933 char *buf)
935 int nr = to_sensor_dev_attr(attr)->index;
936 struct lm85_data *data = lm85_update_device(dev);
937 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
938 data->temp_ext[nr]));
941 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
942 char *buf)
944 int nr = to_sensor_dev_attr(attr)->index;
945 struct lm85_data *data = lm85_update_device(dev);
946 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
949 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
950 const char *buf, size_t count)
952 int nr = to_sensor_dev_attr(attr)->index;
953 struct lm85_data *data = dev_get_drvdata(dev);
954 struct i2c_client *client = data->client;
955 long val;
956 int err;
958 err = kstrtol(buf, 10, &val);
959 if (err)
960 return err;
962 if (IS_ADT7468_OFF64(data))
963 val += 64;
965 mutex_lock(&data->update_lock);
966 data->temp_min[nr] = TEMP_TO_REG(val);
967 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
968 mutex_unlock(&data->update_lock);
969 return count;
972 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
973 char *buf)
975 int nr = to_sensor_dev_attr(attr)->index;
976 struct lm85_data *data = lm85_update_device(dev);
977 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
980 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
981 const char *buf, size_t count)
983 int nr = to_sensor_dev_attr(attr)->index;
984 struct lm85_data *data = dev_get_drvdata(dev);
985 struct i2c_client *client = data->client;
986 long val;
987 int err;
989 err = kstrtol(buf, 10, &val);
990 if (err)
991 return err;
993 if (IS_ADT7468_OFF64(data))
994 val += 64;
996 mutex_lock(&data->update_lock);
997 data->temp_max[nr] = TEMP_TO_REG(val);
998 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
999 mutex_unlock(&data->update_lock);
1000 return count;
1003 #define show_temp_reg(offset) \
1004 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
1005 show_temp, NULL, offset - 1); \
1006 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
1007 show_temp_min, set_temp_min, offset - 1); \
1008 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
1009 show_temp_max, set_temp_max, offset - 1);
1011 show_temp_reg(1);
1012 show_temp_reg(2);
1013 show_temp_reg(3);
1016 /* Automatic PWM control */
1018 static ssize_t show_pwm_auto_channels(struct device *dev,
1019 struct device_attribute *attr, char *buf)
1021 int nr = to_sensor_dev_attr(attr)->index;
1022 struct lm85_data *data = lm85_update_device(dev);
1023 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1026 static ssize_t set_pwm_auto_channels(struct device *dev,
1027 struct device_attribute *attr, const char *buf, size_t count)
1029 int nr = to_sensor_dev_attr(attr)->index;
1030 struct lm85_data *data = dev_get_drvdata(dev);
1031 struct i2c_client *client = data->client;
1032 long val;
1033 int err;
1035 err = kstrtol(buf, 10, &val);
1036 if (err)
1037 return err;
1039 mutex_lock(&data->update_lock);
1040 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1041 | ZONE_TO_REG(val);
1042 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1043 data->autofan[nr].config);
1044 mutex_unlock(&data->update_lock);
1045 return count;
1048 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1049 struct device_attribute *attr, char *buf)
1051 int nr = to_sensor_dev_attr(attr)->index;
1052 struct lm85_data *data = lm85_update_device(dev);
1053 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1056 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1057 struct device_attribute *attr, const char *buf, size_t count)
1059 int nr = to_sensor_dev_attr(attr)->index;
1060 struct lm85_data *data = dev_get_drvdata(dev);
1061 struct i2c_client *client = data->client;
1062 unsigned long val;
1063 int err;
1065 err = kstrtoul(buf, 10, &val);
1066 if (err)
1067 return err;
1069 mutex_lock(&data->update_lock);
1070 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1071 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1072 data->autofan[nr].min_pwm);
1073 mutex_unlock(&data->update_lock);
1074 return count;
1077 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1078 struct device_attribute *attr, char *buf)
1080 int nr = to_sensor_dev_attr(attr)->index;
1081 struct lm85_data *data = lm85_update_device(dev);
1082 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1085 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1086 struct device_attribute *attr, const char *buf, size_t count)
1088 int nr = to_sensor_dev_attr(attr)->index;
1089 struct lm85_data *data = dev_get_drvdata(dev);
1090 struct i2c_client *client = data->client;
1091 u8 tmp;
1092 long val;
1093 int err;
1095 err = kstrtol(buf, 10, &val);
1096 if (err)
1097 return err;
1099 mutex_lock(&data->update_lock);
1100 data->autofan[nr].min_off = val;
1101 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1102 tmp &= ~(0x20 << nr);
1103 if (data->autofan[nr].min_off)
1104 tmp |= 0x20 << nr;
1105 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1106 mutex_unlock(&data->update_lock);
1107 return count;
1110 #define pwm_auto(offset) \
1111 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
1112 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
1113 set_pwm_auto_channels, offset - 1); \
1114 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
1115 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
1116 set_pwm_auto_pwm_min, offset - 1); \
1117 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
1118 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
1119 set_pwm_auto_pwm_minctl, offset - 1)
1121 pwm_auto(1);
1122 pwm_auto(2);
1123 pwm_auto(3);
1125 /* Temperature settings for automatic PWM control */
1127 static ssize_t show_temp_auto_temp_off(struct device *dev,
1128 struct device_attribute *attr, char *buf)
1130 int nr = to_sensor_dev_attr(attr)->index;
1131 struct lm85_data *data = lm85_update_device(dev);
1132 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1133 HYST_FROM_REG(data->zone[nr].hyst));
1136 static ssize_t set_temp_auto_temp_off(struct device *dev,
1137 struct device_attribute *attr, const char *buf, size_t count)
1139 int nr = to_sensor_dev_attr(attr)->index;
1140 struct lm85_data *data = dev_get_drvdata(dev);
1141 struct i2c_client *client = data->client;
1142 int min;
1143 long val;
1144 int err;
1146 err = kstrtol(buf, 10, &val);
1147 if (err)
1148 return err;
1150 mutex_lock(&data->update_lock);
1151 min = TEMP_FROM_REG(data->zone[nr].limit);
1152 data->zone[nr].hyst = HYST_TO_REG(min - val);
1153 if (nr == 0 || nr == 1) {
1154 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1155 (data->zone[0].hyst << 4)
1156 | data->zone[1].hyst);
1157 } else {
1158 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1159 (data->zone[2].hyst << 4));
1161 mutex_unlock(&data->update_lock);
1162 return count;
1165 static ssize_t show_temp_auto_temp_min(struct device *dev,
1166 struct device_attribute *attr, char *buf)
1168 int nr = to_sensor_dev_attr(attr)->index;
1169 struct lm85_data *data = lm85_update_device(dev);
1170 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1173 static ssize_t set_temp_auto_temp_min(struct device *dev,
1174 struct device_attribute *attr, const char *buf, size_t count)
1176 int nr = to_sensor_dev_attr(attr)->index;
1177 struct lm85_data *data = dev_get_drvdata(dev);
1178 struct i2c_client *client = data->client;
1179 long val;
1180 int err;
1182 err = kstrtol(buf, 10, &val);
1183 if (err)
1184 return err;
1186 mutex_lock(&data->update_lock);
1187 data->zone[nr].limit = TEMP_TO_REG(val);
1188 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1189 data->zone[nr].limit);
1191 /* Update temp_auto_max and temp_auto_range */
1192 data->zone[nr].range = RANGE_TO_REG(
1193 TEMP_FROM_REG(data->zone[nr].max_desired) -
1194 TEMP_FROM_REG(data->zone[nr].limit));
1195 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1196 ((data->zone[nr].range & 0x0f) << 4)
1197 | (data->pwm_freq[nr] & 0x07));
1199 mutex_unlock(&data->update_lock);
1200 return count;
1203 static ssize_t show_temp_auto_temp_max(struct device *dev,
1204 struct device_attribute *attr, char *buf)
1206 int nr = to_sensor_dev_attr(attr)->index;
1207 struct lm85_data *data = lm85_update_device(dev);
1208 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1209 RANGE_FROM_REG(data->zone[nr].range));
1212 static ssize_t set_temp_auto_temp_max(struct device *dev,
1213 struct device_attribute *attr, const char *buf, size_t count)
1215 int nr = to_sensor_dev_attr(attr)->index;
1216 struct lm85_data *data = dev_get_drvdata(dev);
1217 struct i2c_client *client = data->client;
1218 int min;
1219 long val;
1220 int err;
1222 err = kstrtol(buf, 10, &val);
1223 if (err)
1224 return err;
1226 mutex_lock(&data->update_lock);
1227 min = TEMP_FROM_REG(data->zone[nr].limit);
1228 data->zone[nr].max_desired = TEMP_TO_REG(val);
1229 data->zone[nr].range = RANGE_TO_REG(
1230 val - min);
1231 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1232 ((data->zone[nr].range & 0x0f) << 4)
1233 | (data->pwm_freq[nr] & 0x07));
1234 mutex_unlock(&data->update_lock);
1235 return count;
1238 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1239 struct device_attribute *attr, char *buf)
1241 int nr = to_sensor_dev_attr(attr)->index;
1242 struct lm85_data *data = lm85_update_device(dev);
1243 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1246 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1247 struct device_attribute *attr, const char *buf, size_t count)
1249 int nr = to_sensor_dev_attr(attr)->index;
1250 struct lm85_data *data = dev_get_drvdata(dev);
1251 struct i2c_client *client = data->client;
1252 long val;
1253 int err;
1255 err = kstrtol(buf, 10, &val);
1256 if (err)
1257 return err;
1259 mutex_lock(&data->update_lock);
1260 data->zone[nr].critical = TEMP_TO_REG(val);
1261 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1262 data->zone[nr].critical);
1263 mutex_unlock(&data->update_lock);
1264 return count;
1267 #define temp_auto(offset) \
1268 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1269 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1270 set_temp_auto_temp_off, offset - 1); \
1271 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1272 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1273 set_temp_auto_temp_min, offset - 1); \
1274 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1275 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1276 set_temp_auto_temp_max, offset - 1); \
1277 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1278 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1279 set_temp_auto_temp_crit, offset - 1);
1281 temp_auto(1);
1282 temp_auto(2);
1283 temp_auto(3);
1285 static struct attribute *lm85_attributes[] = {
1286 &sensor_dev_attr_fan1_input.dev_attr.attr,
1287 &sensor_dev_attr_fan2_input.dev_attr.attr,
1288 &sensor_dev_attr_fan3_input.dev_attr.attr,
1289 &sensor_dev_attr_fan4_input.dev_attr.attr,
1290 &sensor_dev_attr_fan1_min.dev_attr.attr,
1291 &sensor_dev_attr_fan2_min.dev_attr.attr,
1292 &sensor_dev_attr_fan3_min.dev_attr.attr,
1293 &sensor_dev_attr_fan4_min.dev_attr.attr,
1294 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1295 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1296 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1297 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299 &sensor_dev_attr_pwm1.dev_attr.attr,
1300 &sensor_dev_attr_pwm2.dev_attr.attr,
1301 &sensor_dev_attr_pwm3.dev_attr.attr,
1302 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1303 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1304 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1305 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1306 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1307 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309 &sensor_dev_attr_in0_input.dev_attr.attr,
1310 &sensor_dev_attr_in1_input.dev_attr.attr,
1311 &sensor_dev_attr_in2_input.dev_attr.attr,
1312 &sensor_dev_attr_in3_input.dev_attr.attr,
1313 &sensor_dev_attr_in0_min.dev_attr.attr,
1314 &sensor_dev_attr_in1_min.dev_attr.attr,
1315 &sensor_dev_attr_in2_min.dev_attr.attr,
1316 &sensor_dev_attr_in3_min.dev_attr.attr,
1317 &sensor_dev_attr_in0_max.dev_attr.attr,
1318 &sensor_dev_attr_in1_max.dev_attr.attr,
1319 &sensor_dev_attr_in2_max.dev_attr.attr,
1320 &sensor_dev_attr_in3_max.dev_attr.attr,
1321 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1322 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1323 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1324 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1326 &sensor_dev_attr_temp1_input.dev_attr.attr,
1327 &sensor_dev_attr_temp2_input.dev_attr.attr,
1328 &sensor_dev_attr_temp3_input.dev_attr.attr,
1329 &sensor_dev_attr_temp1_min.dev_attr.attr,
1330 &sensor_dev_attr_temp2_min.dev_attr.attr,
1331 &sensor_dev_attr_temp3_min.dev_attr.attr,
1332 &sensor_dev_attr_temp1_max.dev_attr.attr,
1333 &sensor_dev_attr_temp2_max.dev_attr.attr,
1334 &sensor_dev_attr_temp3_max.dev_attr.attr,
1335 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1336 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1337 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1338 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1339 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1341 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1342 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1343 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1344 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1345 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1346 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1349 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1350 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1351 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1352 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1353 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1354 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1355 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1356 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358 &dev_attr_vrm.attr,
1359 &dev_attr_cpu0_vid.attr,
1360 &dev_attr_alarms.attr,
1361 NULL
1364 static const struct attribute_group lm85_group = {
1365 .attrs = lm85_attributes,
1368 static struct attribute *lm85_attributes_minctl[] = {
1369 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1370 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1371 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1372 NULL
1375 static const struct attribute_group lm85_group_minctl = {
1376 .attrs = lm85_attributes_minctl,
1379 static struct attribute *lm85_attributes_temp_off[] = {
1380 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1381 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1382 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1383 NULL
1386 static const struct attribute_group lm85_group_temp_off = {
1387 .attrs = lm85_attributes_temp_off,
1390 static struct attribute *lm85_attributes_in4[] = {
1391 &sensor_dev_attr_in4_input.dev_attr.attr,
1392 &sensor_dev_attr_in4_min.dev_attr.attr,
1393 &sensor_dev_attr_in4_max.dev_attr.attr,
1394 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1395 NULL
1398 static const struct attribute_group lm85_group_in4 = {
1399 .attrs = lm85_attributes_in4,
1402 static struct attribute *lm85_attributes_in567[] = {
1403 &sensor_dev_attr_in5_input.dev_attr.attr,
1404 &sensor_dev_attr_in6_input.dev_attr.attr,
1405 &sensor_dev_attr_in7_input.dev_attr.attr,
1406 &sensor_dev_attr_in5_min.dev_attr.attr,
1407 &sensor_dev_attr_in6_min.dev_attr.attr,
1408 &sensor_dev_attr_in7_min.dev_attr.attr,
1409 &sensor_dev_attr_in5_max.dev_attr.attr,
1410 &sensor_dev_attr_in6_max.dev_attr.attr,
1411 &sensor_dev_attr_in7_max.dev_attr.attr,
1412 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1413 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1414 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1415 NULL
1418 static const struct attribute_group lm85_group_in567 = {
1419 .attrs = lm85_attributes_in567,
1422 static void lm85_init_client(struct i2c_client *client)
1424 int value;
1426 /* Start monitoring if needed */
1427 value = lm85_read_value(client, LM85_REG_CONFIG);
1428 if (!(value & 0x01)) {
1429 dev_info(&client->dev, "Starting monitoring\n");
1430 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1433 /* Warn about unusual configuration bits */
1434 if (value & 0x02)
1435 dev_warn(&client->dev, "Device configuration is locked\n");
1436 if (!(value & 0x04))
1437 dev_warn(&client->dev, "Device is not ready\n");
1440 static int lm85_is_fake(struct i2c_client *client)
1443 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1444 * emulate the former except that it has no hardware monitoring function
1445 * so the readings are always 0.
1447 int i;
1448 u8 in_temp, fan;
1450 for (i = 0; i < 8; i++) {
1451 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1452 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1453 if (in_temp != 0x00 || fan != 0xff)
1454 return 0;
1457 return 1;
1460 /* Return 0 if detection is successful, -ENODEV otherwise */
1461 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463 struct i2c_adapter *adapter = client->adapter;
1464 int address = client->addr;
1465 const char *type_name = NULL;
1466 int company, verstep;
1468 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1469 /* We need to be able to do byte I/O */
1470 return -ENODEV;
1473 /* Determine the chip type */
1474 company = lm85_read_value(client, LM85_REG_COMPANY);
1475 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477 dev_dbg(&adapter->dev,
1478 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1479 address, company, verstep);
1481 if (company == LM85_COMPANY_NATIONAL) {
1482 switch (verstep) {
1483 case LM85_VERSTEP_LM85C:
1484 type_name = "lm85c";
1485 break;
1486 case LM85_VERSTEP_LM85B:
1487 type_name = "lm85b";
1488 break;
1489 case LM85_VERSTEP_LM96000_1:
1490 case LM85_VERSTEP_LM96000_2:
1491 /* Check for Winbond WPCD377I */
1492 if (lm85_is_fake(client)) {
1493 dev_dbg(&adapter->dev,
1494 "Found Winbond WPCD377I, ignoring\n");
1495 return -ENODEV;
1497 type_name = "lm85";
1498 break;
1500 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1501 switch (verstep) {
1502 case LM85_VERSTEP_ADM1027:
1503 type_name = "adm1027";
1504 break;
1505 case LM85_VERSTEP_ADT7463:
1506 case LM85_VERSTEP_ADT7463C:
1507 type_name = "adt7463";
1508 break;
1509 case LM85_VERSTEP_ADT7468_1:
1510 case LM85_VERSTEP_ADT7468_2:
1511 type_name = "adt7468";
1512 break;
1514 } else if (company == LM85_COMPANY_SMSC) {
1515 switch (verstep) {
1516 case LM85_VERSTEP_EMC6D100_A0:
1517 case LM85_VERSTEP_EMC6D100_A1:
1518 /* Note: we can't tell a '100 from a '101 */
1519 type_name = "emc6d100";
1520 break;
1521 case LM85_VERSTEP_EMC6D102:
1522 type_name = "emc6d102";
1523 break;
1524 case LM85_VERSTEP_EMC6D103_A0:
1525 case LM85_VERSTEP_EMC6D103_A1:
1526 type_name = "emc6d103";
1527 break;
1528 case LM85_VERSTEP_EMC6D103S:
1529 type_name = "emc6d103s";
1530 break;
1534 if (!type_name)
1535 return -ENODEV;
1537 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539 return 0;
1542 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1544 struct device *dev = &client->dev;
1545 struct device *hwmon_dev;
1546 struct lm85_data *data;
1547 int idx = 0;
1549 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1550 if (!data)
1551 return -ENOMEM;
1553 data->client = client;
1554 data->type = id->driver_data;
1555 mutex_init(&data->update_lock);
1557 /* Fill in the chip specific driver values */
1558 switch (data->type) {
1559 case adm1027:
1560 case adt7463:
1561 case adt7468:
1562 case emc6d100:
1563 case emc6d102:
1564 case emc6d103:
1565 case emc6d103s:
1566 data->freq_map = adm1027_freq_map;
1567 break;
1568 default:
1569 data->freq_map = lm85_freq_map;
1572 /* Set the VRM version */
1573 data->vrm = vid_which_vrm();
1575 /* Initialize the LM85 chip */
1576 lm85_init_client(client);
1578 /* sysfs hooks */
1579 data->groups[idx++] = &lm85_group;
1581 /* minctl and temp_off exist on all chips except emc6d103s */
1582 if (data->type != emc6d103s) {
1583 data->groups[idx++] = &lm85_group_minctl;
1584 data->groups[idx++] = &lm85_group_temp_off;
1588 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1589 * as a sixth digital VID input rather than an analog input.
1591 if (data->type == adt7463 || data->type == adt7468) {
1592 u8 vid = lm85_read_value(client, LM85_REG_VID);
1593 if (vid & 0x80)
1594 data->has_vid5 = true;
1597 if (!data->has_vid5)
1598 data->groups[idx++] = &lm85_group_in4;
1600 /* The EMC6D100 has 3 additional voltage inputs */
1601 if (data->type == emc6d100)
1602 data->groups[idx++] = &lm85_group_in567;
1604 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1605 data, data->groups);
1606 return PTR_ERR_OR_ZERO(hwmon_dev);
1609 static const struct i2c_device_id lm85_id[] = {
1610 { "adm1027", adm1027 },
1611 { "adt7463", adt7463 },
1612 { "adt7468", adt7468 },
1613 { "lm85", lm85 },
1614 { "lm85b", lm85 },
1615 { "lm85c", lm85 },
1616 { "emc6d100", emc6d100 },
1617 { "emc6d101", emc6d100 },
1618 { "emc6d102", emc6d102 },
1619 { "emc6d103", emc6d103 },
1620 { "emc6d103s", emc6d103s },
1623 MODULE_DEVICE_TABLE(i2c, lm85_id);
1625 static struct i2c_driver lm85_driver = {
1626 .class = I2C_CLASS_HWMON,
1627 .driver = {
1628 .name = "lm85",
1630 .probe = lm85_probe,
1631 .id_table = lm85_id,
1632 .detect = lm85_detect,
1633 .address_list = normal_i2c,
1636 module_i2c_driver(lm85_driver);
1638 MODULE_LICENSE("GPL");
1639 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1640 "Margit Schubert-While <margitsw@t-online.de>, "
1641 "Justin Thiessen <jthiessen@penguincomputing.com>");
1642 MODULE_DESCRIPTION("LM85-B, LM85-C driver");