1 #ifndef _PARISC_PGTABLE_H
2 #define _PARISC_PGTABLE_H
4 #include <asm-generic/4level-fixup.h>
6 #include <asm/fixmap.h>
10 * we simulate an x86-style page table for the linux mm code
13 #include <linux/bitops.h>
14 #include <linux/spinlock.h>
15 #include <linux/mm_types.h>
16 #include <asm/processor.h>
17 #include <asm/cache.h>
19 extern spinlock_t pa_dbit_lock
;
22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
23 * memory. For the return value to be meaningful, ADDR must be >=
24 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
25 * require a hash-, or multi-level tree-lookup or something of that
26 * sort) but it guarantees to return TRUE only if accessing the page
27 * at that address does not cause an error. Note that there may be
28 * addresses for which kern_addr_valid() returns FALSE even though an
29 * access would not cause an error (e.g., this is typically true for
30 * memory mapped I/O regions.
32 * XXX Need to implement this for parisc.
34 #define kern_addr_valid(addr) (1)
36 /* Certain architectures need to do special things when PTEs
37 * within a page table are directly modified. Thus, the following
38 * hook is made available.
40 #define set_pte(pteptr, pteval) \
42 *(pteptr) = (pteval); \
45 extern void purge_tlb_entries(struct mm_struct
*, unsigned long);
47 #define set_pte_at(mm, addr, ptep, pteval) \
49 unsigned long flags; \
50 spin_lock_irqsave(&pa_dbit_lock, flags); \
51 set_pte(ptep, pteval); \
52 purge_tlb_entries(mm, addr); \
53 spin_unlock_irqrestore(&pa_dbit_lock, flags); \
56 #endif /* !__ASSEMBLY__ */
60 #define pte_ERROR(e) \
61 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
62 #define pmd_ERROR(e) \
63 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
64 #define pgd_ERROR(e) \
65 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
67 /* This is the size of the initially mapped kernel memory */
68 #define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */
69 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
71 #if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
73 #define PGD_ORDER 1 /* Number of pages per pgd */
74 #define PMD_ORDER 1 /* Number of pages per pmd */
75 #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
78 #define PGD_ORDER 1 /* Number of pages per pgd */
79 #define PGD_ALLOC_ORDER PGD_ORDER
82 /* Definitions for 3rd level (we use PLD here for Page Lower directory
83 * because PTE_SHIFT is used lower down to mean shift that has to be
84 * done to get usable bits out of the PTE) */
85 #define PLD_SHIFT PAGE_SHIFT
86 #define PLD_SIZE PAGE_SIZE
87 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
88 #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
90 /* Definitions for 2nd level */
91 #define pgtable_cache_init() do { } while (0)
93 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
94 #define PMD_SIZE (1UL << PMD_SHIFT)
95 #define PMD_MASK (~(PMD_SIZE-1))
97 #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
99 #define BITS_PER_PMD 0
101 #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
103 /* Definitions for 1st level */
104 #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
105 #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
106 #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
108 #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
110 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
111 #define PGDIR_MASK (~(PGDIR_SIZE-1))
112 #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
113 #define USER_PTRS_PER_PGD PTRS_PER_PGD
116 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
117 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
118 #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
120 #define MAX_ADDRBITS (BITS_PER_LONG)
121 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
122 #define SPACEID_SHIFT 0
125 /* This calculates the number of initial pages we need for the initial
127 #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
128 # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
130 # define PT_INITIAL (1) /* all initial PTEs fit into one page */
134 * pgd entries used up by user/kernel:
137 #define FIRST_USER_ADDRESS 0
139 /* NB: The tlb miss handlers make certain assumptions about the order */
140 /* of the following bits, so be careful (One example, bits 25-31 */
141 /* are moved together in one instruction). */
143 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
144 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
145 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
146 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
147 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
148 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
149 #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */
150 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
151 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
152 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
153 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
154 /* bit 21 was formerly the FLUSH bit but is now unused */
155 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
157 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
158 /* following macro is ok for both 32 and 64 bit. */
160 #define xlate_pabit(x) (31 - x)
162 /* this defines the shift to the usable bits in the PTE it is set so
163 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
165 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
167 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
168 #define PFN_PTE_SHIFT 12
171 /* this is how many bits may be used by the file functions */
172 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
174 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
175 #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
177 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
178 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
179 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
180 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
181 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
182 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
183 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
184 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
185 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
186 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
187 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
188 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
189 #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT))
191 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
192 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
193 #define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
194 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
195 #define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
196 #define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
198 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
199 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
200 * for a few meta-information bits, so we shift the address to be
201 * able to effectively address 40/42/44-bits of physical address space
202 * depending on 4k/16k/64k PAGE_SIZE */
203 #define _PxD_PRESENT_BIT 31
204 #define _PxD_ATTACHED_BIT 30
205 #define _PxD_VALID_BIT 29
207 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
208 #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
209 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
210 #define PxD_FLAG_MASK (0xf)
211 #define PxD_FLAG_SHIFT (4)
212 #define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
216 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
217 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
218 /* Others seem to make this executable, I don't know if that's correct
219 or not. The stack is mapped this way though so this is necessary
220 in the short term - dhd@linuxcare.com, 2000-08-08 */
221 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
222 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
223 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
224 #define PAGE_COPY PAGE_EXECREAD
225 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
226 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
227 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
228 #define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
229 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
230 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
231 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
235 * We could have an execute only page using "gateway - promote to priv
236 * level 3", but that is kind of silly. So, the way things are defined
237 * now, we must always have read permission for pages with execute
238 * permission. For the fun of it we'll go ahead and support write only
243 #define __P000 PAGE_NONE
244 #define __P001 PAGE_READONLY
245 #define __P010 __P000 /* copy on write */
246 #define __P011 __P001 /* copy on write */
247 #define __P100 PAGE_EXECREAD
248 #define __P101 PAGE_EXECREAD
249 #define __P110 __P100 /* copy on write */
250 #define __P111 __P101 /* copy on write */
252 #define __S000 PAGE_NONE
253 #define __S001 PAGE_READONLY
254 #define __S010 PAGE_WRITEONLY
255 #define __S011 PAGE_SHARED
256 #define __S100 PAGE_EXECREAD
257 #define __S101 PAGE_EXECREAD
258 #define __S110 PAGE_RWX
259 #define __S111 PAGE_RWX
262 extern pgd_t swapper_pg_dir
[]; /* declared in init_task.c */
264 /* initial page tables for 0-8MB for kernel */
268 /* zero page used for uninitialized stuff */
270 extern unsigned long *empty_zero_page
;
273 * ZERO_PAGE is a global shared page that is always zero: used
274 * for zero-mapped memory areas etc..
277 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
279 #define pte_none(x) (pte_val(x) == 0)
280 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
281 #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
283 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
284 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
285 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
286 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
289 /* The first entry of the permanent pmd is not there if it contains
290 * the gateway marker */
291 #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
293 #define pmd_none(x) (!pmd_val(x))
295 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
296 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
297 static inline void pmd_clear(pmd_t
*pmd
) {
299 if (pmd_flag(*pmd
) & PxD_FLAG_ATTACHED
)
300 /* This is the entry pointing to the permanent pmd
301 * attached to the pgd; cannot clear it */
302 __pmd_val_set(*pmd
, PxD_FLAG_ATTACHED
);
305 __pmd_val_set(*pmd
, 0);
311 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
312 #define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd))
314 /* For 64 bit we have three level tables */
316 #define pgd_none(x) (!pgd_val(x))
317 #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
318 #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
319 static inline void pgd_clear(pgd_t
*pgd
) {
321 if(pgd_flag(*pgd
) & PxD_FLAG_ATTACHED
)
322 /* This is the permanent pmd attached to the pgd; cannot
326 __pgd_val_set(*pgd
, 0);
330 * The "pgd_xxx()" functions here are trivial for a folded two-level
331 * setup: the pgd is never bad, and a pmd always exists (as it's folded
332 * into the pgd entry)
334 static inline int pgd_none(pgd_t pgd
) { return 0; }
335 static inline int pgd_bad(pgd_t pgd
) { return 0; }
336 static inline int pgd_present(pgd_t pgd
) { return 1; }
337 static inline void pgd_clear(pgd_t
* pgdp
) { }
341 * The following only work if pte_present() is true.
342 * Undefined behaviour if not..
344 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
345 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
346 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_WRITE
; }
347 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
348 static inline int pte_special(pte_t pte
) { return 0; }
350 static inline pte_t
pte_mkclean(pte_t pte
) { pte_val(pte
) &= ~_PAGE_DIRTY
; return pte
; }
351 static inline pte_t
pte_mkold(pte_t pte
) { pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
352 static inline pte_t
pte_wrprotect(pte_t pte
) { pte_val(pte
) &= ~_PAGE_WRITE
; return pte
; }
353 static inline pte_t
pte_mkdirty(pte_t pte
) { pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
354 static inline pte_t
pte_mkyoung(pte_t pte
) { pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
355 static inline pte_t
pte_mkwrite(pte_t pte
) { pte_val(pte
) |= _PAGE_WRITE
; return pte
; }
356 static inline pte_t
pte_mkspecial(pte_t pte
) { return pte
; }
359 * Conversion functions: convert a page and protection to a page entry,
360 * and a page entry and page directory to the page they refer to.
362 #define __mk_pte(addr,pgprot) \
366 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
371 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
373 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
)
376 pte_val(pte
) = (pfn
<< PFN_PTE_SHIFT
) | pgprot_val(pgprot
);
380 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
381 { pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
); return pte
; }
383 /* Permanent address of a page. On parisc we don't have highmem. */
385 #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
387 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
389 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd)))
391 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
392 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
394 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
396 /* to find an entry in a page-table-directory */
397 #define pgd_offset(mm, address) \
398 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
400 /* to find an entry in a kernel page-table-directory */
401 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
403 /* Find an entry in the second-level page table.. */
406 #define pmd_offset(dir,address) \
407 ((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
409 #define pmd_offset(dir,addr) ((pmd_t *) dir)
412 /* Find an entry in the third-level page table.. */
413 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
414 #define pte_offset_kernel(pmd, address) \
415 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
416 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
417 #define pte_unmap(pte) do { } while (0)
419 #define pte_unmap(pte) do { } while (0)
420 #define pte_unmap_nested(pte) do { } while (0)
422 extern void paging_init (void);
424 /* Used for deferring calls to flush_dcache_page() */
426 #define PG_dcache_dirty PG_arch_1
428 extern void update_mmu_cache(struct vm_area_struct
*, unsigned long, pte_t
*);
430 /* Encode and de-code a swap entry */
432 #define __swp_type(x) ((x).val & 0x1f)
433 #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
434 (((x).val >> 8) & ~0x7) )
435 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
436 ((offset & 0x7) << 6) | \
437 ((offset & ~0x7) << 8) })
438 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
439 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
441 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
446 if (!pte_young(*ptep
))
449 spin_lock_irqsave(&pa_dbit_lock
, flags
);
451 if (!pte_young(pte
)) {
452 spin_unlock_irqrestore(&pa_dbit_lock
, flags
);
455 set_pte(ptep
, pte_mkold(pte
));
456 purge_tlb_entries(vma
->vm_mm
, addr
);
457 spin_unlock_irqrestore(&pa_dbit_lock
, flags
);
462 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
467 spin_lock_irqsave(&pa_dbit_lock
, flags
);
469 pte_clear(mm
,addr
,ptep
);
470 purge_tlb_entries(mm
, addr
);
471 spin_unlock_irqrestore(&pa_dbit_lock
, flags
);
476 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
479 spin_lock_irqsave(&pa_dbit_lock
, flags
);
480 set_pte(ptep
, pte_wrprotect(*ptep
));
481 purge_tlb_entries(mm
, addr
);
482 spin_unlock_irqrestore(&pa_dbit_lock
, flags
);
485 #define pte_same(A,B) (pte_val(A) == pte_val(B))
487 #endif /* !__ASSEMBLY__ */
490 /* TLB page size encoding - see table 3-1 in parisc20.pdf */
491 #define _PAGE_SIZE_ENCODING_4K 0
492 #define _PAGE_SIZE_ENCODING_16K 1
493 #define _PAGE_SIZE_ENCODING_64K 2
494 #define _PAGE_SIZE_ENCODING_256K 3
495 #define _PAGE_SIZE_ENCODING_1M 4
496 #define _PAGE_SIZE_ENCODING_4M 5
497 #define _PAGE_SIZE_ENCODING_16M 6
498 #define _PAGE_SIZE_ENCODING_64M 7
500 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
501 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
502 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
503 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
504 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
505 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
509 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
511 /* We provide our own get_unmapped_area to provide cache coherency */
513 #define HAVE_ARCH_UNMAPPED_AREA
514 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
516 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
517 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
518 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
519 #define __HAVE_ARCH_PTE_SAME
520 #include <asm-generic/pgtable.h>
522 #endif /* _PARISC_PGTABLE_H */