2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
35 static int eeh_pe_aux_size
= 0;
36 static LIST_HEAD(eeh_phb_pe
);
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
42 * Set PE auxillary data size
44 void eeh_set_pe_aux_size(int size
)
49 eeh_pe_aux_size
= size
;
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
57 * Allocate PE instance dynamically.
59 static struct eeh_pe
*eeh_pe_alloc(struct pci_controller
*phb
, int type
)
64 alloc_size
= sizeof(struct eeh_pe
);
65 if (eeh_pe_aux_size
) {
66 alloc_size
= ALIGN(alloc_size
, cache_line_size());
67 alloc_size
+= eeh_pe_aux_size
;
71 pe
= kzalloc(alloc_size
, GFP_KERNEL
);
74 /* Initialize PHB PE */
77 INIT_LIST_HEAD(&pe
->child_list
);
78 INIT_LIST_HEAD(&pe
->child
);
79 INIT_LIST_HEAD(&pe
->edevs
);
81 pe
->data
= (void *)pe
+ ALIGN(sizeof(struct eeh_pe
),
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
93 int eeh_phb_pe_create(struct pci_controller
*phb
)
98 pe
= eeh_pe_alloc(phb
, EEH_PE_PHB
);
100 pr_err("%s: out of memory!\n", __func__
);
104 /* Put it into the list */
105 list_add_tail(&pe
->child
, &eeh_phb_pe
);
107 pr_debug("EEH: Add PE for PHB#%d\n", phb
->global_number
);
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
120 struct eeh_pe
*eeh_phb_pe_get(struct pci_controller
*phb
)
124 list_for_each_entry(pe
, &eeh_phb_pe
, child
) {
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
130 if ((pe
->type
& EEH_PE_PHB
) && pe
->phb
== phb
)
138 * eeh_pe_next - Retrieve the next PE in the tree
142 * The function is used to retrieve the next PE in the
145 static struct eeh_pe
*eeh_pe_next(struct eeh_pe
*pe
,
148 struct list_head
*next
= pe
->child_list
.next
;
150 if (next
== &pe
->child_list
) {
154 next
= pe
->child
.next
;
155 if (next
!= &pe
->parent
->child_list
)
161 return list_entry(next
, struct eeh_pe
, child
);
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
168 * @flag: extra parameter to callback
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
175 void *eeh_pe_traverse(struct eeh_pe
*root
,
176 eeh_traverse_func fn
, void *flag
)
181 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
198 void *eeh_pe_dev_traverse(struct eeh_pe
*root
,
199 eeh_traverse_func fn
, void *flag
)
202 struct eeh_dev
*edev
, *tmp
;
206 pr_warn("%s: Invalid PE %p\n",
211 /* Traverse root PE */
212 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
213 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
214 ret
= fn(edev
, flag
);
224 * __eeh_pe_get - Check the PE address
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
233 static void *__eeh_pe_get(void *data
, void *flag
)
235 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
236 struct eeh_dev
*edev
= (struct eeh_dev
*)flag
;
238 /* Unexpected PHB PE */
239 if (pe
->type
& EEH_PE_PHB
)
242 /* We prefer PE address */
243 if (edev
->pe_config_addr
&&
244 (edev
->pe_config_addr
== pe
->addr
))
247 /* Try BDF address */
248 if (edev
->config_addr
&&
249 (edev
->config_addr
== pe
->config_addr
))
256 * eeh_pe_get - Search PE based on the given address
259 * Search the corresponding PE based on the specified address which
260 * is included in the eeh device. The function is used to check if
261 * the associated PE has been created against the PE address. It's
262 * notable that the PE address has 2 format: traditional PE address
263 * which is composed of PCI bus/device/function number, or unified
266 struct eeh_pe
*eeh_pe_get(struct eeh_dev
*edev
)
268 struct eeh_pe
*root
= eeh_phb_pe_get(edev
->phb
);
271 pe
= eeh_pe_traverse(root
, __eeh_pe_get
, edev
);
277 * eeh_pe_get_parent - Retrieve the parent PE
280 * The whole PEs existing in the system are organized as hierarchy
281 * tree. The function is used to retrieve the parent PE according
282 * to the parent EEH device.
284 static struct eeh_pe
*eeh_pe_get_parent(struct eeh_dev
*edev
)
286 struct device_node
*dn
;
287 struct eeh_dev
*parent
;
290 * It might have the case for the indirect parent
291 * EEH device already having associated PE, but
292 * the direct parent EEH device doesn't have yet.
294 dn
= edev
->dn
->parent
;
296 /* We're poking out of PCI territory */
297 if (!PCI_DN(dn
)) return NULL
;
299 parent
= of_node_to_eeh_dev(dn
);
300 /* We're poking out of PCI territory */
301 if (!parent
) return NULL
;
313 * eeh_add_to_parent_pe - Add EEH device to parent PE
316 * Add EEH device to the parent PE. If the parent PE already
317 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
318 * we have to create new PE to hold the EEH device and the new
319 * PE will be linked to its parent PE as well.
321 int eeh_add_to_parent_pe(struct eeh_dev
*edev
)
323 struct eeh_pe
*pe
, *parent
;
326 * Search the PE has been existing or not according
327 * to the PE address. If that has been existing, the
328 * PE should be composed of PCI bus and its subordinate
331 pe
= eeh_pe_get(edev
);
332 if (pe
&& !(pe
->type
& EEH_PE_INVALID
)) {
333 if (!edev
->pe_config_addr
) {
334 pr_err("%s: PE with addr 0x%x already exists\n",
335 __func__
, edev
->config_addr
);
339 /* Mark the PE as type of PCI bus */
340 pe
->type
= EEH_PE_BUS
;
343 /* Put the edev to PE */
344 list_add_tail(&edev
->list
, &pe
->edevs
);
345 pr_debug("EEH: Add %s to Bus PE#%x\n",
346 edev
->dn
->full_name
, pe
->addr
);
349 } else if (pe
&& (pe
->type
& EEH_PE_INVALID
)) {
350 list_add_tail(&edev
->list
, &pe
->edevs
);
353 * We're running to here because of PCI hotplug caused by
354 * EEH recovery. We need clear EEH_PE_INVALID until the top.
358 if (!(parent
->type
& EEH_PE_INVALID
))
360 parent
->type
&= ~(EEH_PE_INVALID
| EEH_PE_KEEP
);
361 parent
= parent
->parent
;
363 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
364 edev
->dn
->full_name
, pe
->addr
, pe
->parent
->addr
);
369 /* Create a new EEH PE */
370 pe
= eeh_pe_alloc(edev
->phb
, EEH_PE_DEVICE
);
372 pr_err("%s: out of memory!\n", __func__
);
375 pe
->addr
= edev
->pe_config_addr
;
376 pe
->config_addr
= edev
->config_addr
;
379 * Put the new EEH PE into hierarchy tree. If the parent
380 * can't be found, the newly created PE will be attached
381 * to PHB directly. Otherwise, we have to associate the
382 * PE with its parent.
384 parent
= eeh_pe_get_parent(edev
);
386 parent
= eeh_phb_pe_get(edev
->phb
);
388 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
389 __func__
, edev
->phb
->global_number
);
398 * Put the newly created PE into the child list and
399 * link the EEH device accordingly.
401 list_add_tail(&pe
->child
, &parent
->child_list
);
402 list_add_tail(&edev
->list
, &pe
->edevs
);
404 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
405 edev
->dn
->full_name
, pe
->addr
, pe
->parent
->addr
);
411 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
414 * The PE hierarchy tree might be changed when doing PCI hotplug.
415 * Also, the PCI devices or buses could be removed from the system
416 * during EEH recovery. So we have to call the function remove the
417 * corresponding PE accordingly if necessary.
419 int eeh_rmv_from_parent_pe(struct eeh_dev
*edev
)
421 struct eeh_pe
*pe
, *parent
, *child
;
425 pr_debug("%s: No PE found for EEH device %s\n",
426 __func__
, edev
->dn
->full_name
);
430 /* Remove the EEH device */
433 list_del(&edev
->list
);
436 * Check if the parent PE includes any EEH devices.
437 * If not, we should delete that. Also, we should
438 * delete the parent PE if it doesn't have associated
439 * child PEs and EEH devices.
443 if (pe
->type
& EEH_PE_PHB
)
446 if (!(pe
->state
& EEH_PE_KEEP
)) {
447 if (list_empty(&pe
->edevs
) &&
448 list_empty(&pe
->child_list
)) {
449 list_del(&pe
->child
);
455 if (list_empty(&pe
->edevs
)) {
457 list_for_each_entry(child
, &pe
->child_list
, child
) {
458 if (!(child
->type
& EEH_PE_INVALID
)) {
465 pe
->type
|= EEH_PE_INVALID
;
478 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
481 * We have time stamp for each PE to trace its time of getting
482 * frozen in last hour. The function should be called to update
483 * the time stamp on first error of the specific PE. On the other
484 * handle, we needn't account for errors happened in last hour.
486 void eeh_pe_update_time_stamp(struct eeh_pe
*pe
)
488 struct timeval tstamp
;
492 if (pe
->freeze_count
<= 0) {
493 pe
->freeze_count
= 0;
494 do_gettimeofday(&pe
->tstamp
);
496 do_gettimeofday(&tstamp
);
497 if (tstamp
.tv_sec
- pe
->tstamp
.tv_sec
> 3600) {
499 pe
->freeze_count
= 0;
505 * __eeh_pe_state_mark - Mark the state for the PE
509 * The function is used to mark the indicated state for the given
510 * PE. Also, the associated PCI devices will be put into IO frozen
513 static void *__eeh_pe_state_mark(void *data
, void *flag
)
515 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
516 int state
= *((int *)flag
);
517 struct eeh_dev
*edev
, *tmp
;
518 struct pci_dev
*pdev
;
520 /* Keep the state of permanently removed PE intact */
521 if ((pe
->freeze_count
> EEH_MAX_ALLOWED_FREEZES
) &&
522 (state
& (EEH_PE_ISOLATED
| EEH_PE_RECOVERING
)))
527 /* Offline PCI devices if applicable */
528 if (state
!= EEH_PE_ISOLATED
)
531 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
532 pdev
= eeh_dev_to_pci_dev(edev
);
534 pdev
->error_state
= pci_channel_io_frozen
;
541 * eeh_pe_state_mark - Mark specified state for PE and its associated device
544 * EEH error affects the current PE and its child PEs. The function
545 * is used to mark appropriate state for the affected PEs and the
546 * associated devices.
548 void eeh_pe_state_mark(struct eeh_pe
*pe
, int state
)
550 eeh_pe_traverse(pe
, __eeh_pe_state_mark
, &state
);
553 static void *__eeh_pe_dev_mode_mark(void *data
, void *flag
)
555 struct eeh_dev
*edev
= data
;
556 int mode
= *((int *)flag
);
564 * eeh_pe_dev_state_mark - Mark state for all device under the PE
567 * Mark specific state for all child devices of the PE.
569 void eeh_pe_dev_mode_mark(struct eeh_pe
*pe
, int mode
)
571 eeh_pe_dev_traverse(pe
, __eeh_pe_dev_mode_mark
, &mode
);
575 * __eeh_pe_state_clear - Clear state for the PE
579 * The function is used to clear the indicated state from the
580 * given PE. Besides, we also clear the check count of the PE
583 static void *__eeh_pe_state_clear(void *data
, void *flag
)
585 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
586 int state
= *((int *)flag
);
588 /* Keep the state of permanently removed PE intact */
589 if ((pe
->freeze_count
> EEH_MAX_ALLOWED_FREEZES
) &&
590 (state
& EEH_PE_ISOLATED
))
595 /* Clear check count since last isolation */
596 if (state
& EEH_PE_ISOLATED
)
603 * eeh_pe_state_clear - Clear state for the PE and its children
605 * @state: state to be cleared
607 * When the PE and its children has been recovered from error,
608 * we need clear the error state for that. The function is used
611 void eeh_pe_state_clear(struct eeh_pe
*pe
, int state
)
613 eeh_pe_traverse(pe
, __eeh_pe_state_clear
, &state
);
617 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
618 * buses assigned explicitly by firmware, and we probably have
619 * lost that after reset. So we have to delay the check until
620 * the PCI-CFG registers have been restored for the parent
623 * Don't use normal PCI-CFG accessors, which probably has been
624 * blocked on normal path during the stage. So we need utilize
625 * eeh operations, which is always permitted.
627 static void eeh_bridge_check_link(struct eeh_dev
*edev
,
628 struct device_node
*dn
)
635 * We only check root port and downstream ports of
638 if (!(edev
->mode
& (EEH_DEV_ROOT_PORT
| EEH_DEV_DS_PORT
)))
641 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
642 __func__
, edev
->phb
->global_number
,
643 edev
->config_addr
>> 8,
644 PCI_SLOT(edev
->config_addr
& 0xFF),
645 PCI_FUNC(edev
->config_addr
& 0xFF));
647 /* Check slot status */
648 cap
= edev
->pcie_cap
;
649 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_SLTSTA
, 2, &val
);
650 if (!(val
& PCI_EXP_SLTSTA_PDS
)) {
651 pr_debug(" No card in the slot (0x%04x) !\n", val
);
655 /* Check power status if we have the capability */
656 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_SLTCAP
, 2, &val
);
657 if (val
& PCI_EXP_SLTCAP_PCP
) {
658 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_SLTCTL
, 2, &val
);
659 if (val
& PCI_EXP_SLTCTL_PCC
) {
660 pr_debug(" In power-off state, power it on ...\n");
661 val
&= ~(PCI_EXP_SLTCTL_PCC
| PCI_EXP_SLTCTL_PIC
);
662 val
|= (0x0100 & PCI_EXP_SLTCTL_PIC
);
663 eeh_ops
->write_config(dn
, cap
+ PCI_EXP_SLTCTL
, 2, val
);
669 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_LNKCTL
, 2, &val
);
670 val
&= ~PCI_EXP_LNKCTL_LD
;
671 eeh_ops
->write_config(dn
, cap
+ PCI_EXP_LNKCTL
, 2, val
);
674 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_LNKCAP
, 4, &val
);
675 if (!(val
& PCI_EXP_LNKCAP_DLLLARC
)) {
676 pr_debug(" No link reporting capability (0x%08x) \n", val
);
681 /* Wait the link is up until timeout (5s) */
683 while (timeout
< 5000) {
687 eeh_ops
->read_config(dn
, cap
+ PCI_EXP_LNKSTA
, 2, &val
);
688 if (val
& PCI_EXP_LNKSTA_DLLLA
)
692 if (val
& PCI_EXP_LNKSTA_DLLLA
)
693 pr_debug(" Link up (%s)\n",
694 (val
& PCI_EXP_LNKSTA_CLS_2_5GB
) ? "2.5GB" : "5GB");
696 pr_debug(" Link not ready (0x%04x)\n", val
);
699 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
700 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
702 static void eeh_restore_bridge_bars(struct eeh_dev
*edev
,
703 struct device_node
*dn
)
708 * Device BARs: 0x10 - 0x18
709 * Bus numbers and windows: 0x18 - 0x30
711 for (i
= 4; i
< 13; i
++)
712 eeh_ops
->write_config(dn
, i
*4, 4, edev
->config_space
[i
]);
714 eeh_ops
->write_config(dn
, 14*4, 4, edev
->config_space
[14]);
716 /* Cache line & Latency timer: 0xC 0xD */
717 eeh_ops
->write_config(dn
, PCI_CACHE_LINE_SIZE
, 1,
718 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
719 eeh_ops
->write_config(dn
, PCI_LATENCY_TIMER
, 1,
720 SAVED_BYTE(PCI_LATENCY_TIMER
));
721 /* Max latency, min grant, interrupt ping and line: 0x3C */
722 eeh_ops
->write_config(dn
, 15*4, 4, edev
->config_space
[15]);
724 /* PCI Command: 0x4 */
725 eeh_ops
->write_config(dn
, PCI_COMMAND
, 4, edev
->config_space
[1]);
727 /* Check the PCIe link is ready */
728 eeh_bridge_check_link(edev
, dn
);
731 static void eeh_restore_device_bars(struct eeh_dev
*edev
,
732 struct device_node
*dn
)
737 for (i
= 4; i
< 10; i
++)
738 eeh_ops
->write_config(dn
, i
*4, 4, edev
->config_space
[i
]);
739 /* 12 == Expansion ROM Address */
740 eeh_ops
->write_config(dn
, 12*4, 4, edev
->config_space
[12]);
742 eeh_ops
->write_config(dn
, PCI_CACHE_LINE_SIZE
, 1,
743 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
744 eeh_ops
->write_config(dn
, PCI_LATENCY_TIMER
, 1,
745 SAVED_BYTE(PCI_LATENCY_TIMER
));
747 /* max latency, min grant, interrupt pin and line */
748 eeh_ops
->write_config(dn
, 15*4, 4, edev
->config_space
[15]);
751 * Restore PERR & SERR bits, some devices require it,
752 * don't touch the other command bits
754 eeh_ops
->read_config(dn
, PCI_COMMAND
, 4, &cmd
);
755 if (edev
->config_space
[1] & PCI_COMMAND_PARITY
)
756 cmd
|= PCI_COMMAND_PARITY
;
758 cmd
&= ~PCI_COMMAND_PARITY
;
759 if (edev
->config_space
[1] & PCI_COMMAND_SERR
)
760 cmd
|= PCI_COMMAND_SERR
;
762 cmd
&= ~PCI_COMMAND_SERR
;
763 eeh_ops
->write_config(dn
, PCI_COMMAND
, 4, cmd
);
767 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
771 * Loads the PCI configuration space base address registers,
772 * the expansion ROM base address, the latency timer, and etc.
773 * from the saved values in the device node.
775 static void *eeh_restore_one_device_bars(void *data
, void *flag
)
777 struct eeh_dev
*edev
= (struct eeh_dev
*)data
;
778 struct device_node
*dn
= eeh_dev_to_of_node(edev
);
780 /* Do special restore for bridges */
781 if (edev
->mode
& EEH_DEV_BRIDGE
)
782 eeh_restore_bridge_bars(edev
, dn
);
784 eeh_restore_device_bars(edev
, dn
);
786 if (eeh_ops
->restore_config
)
787 eeh_ops
->restore_config(dn
);
793 * eeh_pe_restore_bars - Restore the PCI config space info
796 * This routine performs a recursive walk to the children
797 * of this device as well.
799 void eeh_pe_restore_bars(struct eeh_pe
*pe
)
802 * We needn't take the EEH lock since eeh_pe_dev_traverse()
805 eeh_pe_dev_traverse(pe
, eeh_restore_one_device_bars
, NULL
);
809 * eeh_pe_loc_get - Retrieve location code binding to the given PE
812 * Retrieve the location code of the given PE. If the primary PE bus
813 * is root bus, we will grab location code from PHB device tree node
814 * or root port. Otherwise, the upstream bridge's device tree node
815 * of the primary PE bus will be checked for the location code.
817 const char *eeh_pe_loc_get(struct eeh_pe
*pe
)
819 struct pci_bus
*bus
= eeh_pe_bus_get(pe
);
820 struct device_node
*dn
= pci_bus_to_OF_node(bus
);
821 const char *loc
= NULL
;
826 /* PHB PE or root PE ? */
827 if (pci_is_root_bus(bus
)) {
828 loc
= of_get_property(dn
, "ibm,loc-code", NULL
);
830 loc
= of_get_property(dn
, "ibm,io-base-loc-code", NULL
);
834 /* Check the root port */
840 loc
= of_get_property(dn
, "ibm,loc-code", NULL
);
842 loc
= of_get_property(dn
, "ibm,slot-location-code", NULL
);
845 return loc
? loc
: "N/A";
849 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
852 * Retrieve the PCI bus according to the given PE. Basically,
853 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
854 * primary PCI bus will be retrieved. The parent bus will be
855 * returned for BUS PE. However, we don't have associated PCI
858 struct pci_bus
*eeh_pe_bus_get(struct eeh_pe
*pe
)
860 struct pci_bus
*bus
= NULL
;
861 struct eeh_dev
*edev
;
862 struct pci_dev
*pdev
;
864 if (pe
->type
& EEH_PE_PHB
) {
866 } else if (pe
->type
& EEH_PE_BUS
||
867 pe
->type
& EEH_PE_DEVICE
) {
873 edev
= list_first_entry(&pe
->edevs
, struct eeh_dev
, list
);
874 pdev
= eeh_dev_to_pci_dev(edev
);