Linux 3.17-rc2
[linux/fpc-iii.git] / arch / powerpc / kvm / e500_mmu_host.c
blob08f14bb57897ea530f8ebc128c6e5cf204eadcd9
1 /*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
34 #include "e500.h"
35 #include "timing.h"
36 #include "e500_mmu_host.h"
38 #include "trace_booke.h"
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
44 static inline unsigned int tlb1_max_shadow_size(void)
46 /* reserve one entry for magic page */
47 return host_tlb_params[1].entries - tlbcam_index - 1;
50 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
52 /* Mask off reserved bits. */
53 mas3 &= MAS3_ATTRIB_MASK;
55 #ifndef CONFIG_KVM_BOOKE_HV
56 if (!usermode) {
57 /* Guest is in supervisor mode,
58 * so we need to translate guest
59 * supervisor permissions into user permissions. */
60 mas3 &= ~E500_TLB_USER_PERM_MASK;
61 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
63 mas3 |= E500_TLB_SUPER_PERM_MASK;
64 #endif
65 return mas3;
69 * writing shadow tlb entry to host TLB
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
72 uint32_t mas0)
74 unsigned long flags;
76 local_irq_save(flags);
77 mtspr(SPRN_MAS0, mas0);
78 mtspr(SPRN_MAS1, stlbe->mas1);
79 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
80 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
81 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
82 #ifdef CONFIG_KVM_BOOKE_HV
83 mtspr(SPRN_MAS8, stlbe->mas8);
84 #endif
85 asm volatile("isync; tlbwe" : : : "memory");
87 #ifdef CONFIG_KVM_BOOKE_HV
88 /* Must clear mas8 for other host tlbwe's */
89 mtspr(SPRN_MAS8, 0);
90 isync();
91 #endif
92 local_irq_restore(flags);
94 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
95 stlbe->mas2, stlbe->mas7_3);
99 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
101 * We don't care about the address we're searching for, other than that it's
102 * in the right set and is not present in the TLB. Using a zero PID and a
103 * userspace address means we don't have to set and then restore MAS5, or
104 * calculate a proper MAS6 value.
106 static u32 get_host_mas0(unsigned long eaddr)
108 unsigned long flags;
109 u32 mas0;
110 u32 mas4;
112 local_irq_save(flags);
113 mtspr(SPRN_MAS6, 0);
114 mas4 = mfspr(SPRN_MAS4);
115 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
116 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
117 mas0 = mfspr(SPRN_MAS0);
118 mtspr(SPRN_MAS4, mas4);
119 local_irq_restore(flags);
121 return mas0;
124 /* sesel is for tlb1 only */
125 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
126 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
128 u32 mas0;
130 if (tlbsel == 0) {
131 mas0 = get_host_mas0(stlbe->mas2);
132 __write_host_tlbe(stlbe, mas0);
133 } else {
134 __write_host_tlbe(stlbe,
135 MAS0_TLBSEL(1) |
136 MAS0_ESEL(to_htlb1_esel(sesel)));
140 /* sesel is for tlb1 only */
141 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
142 struct kvm_book3e_206_tlb_entry *gtlbe,
143 struct kvm_book3e_206_tlb_entry *stlbe,
144 int stlbsel, int sesel)
146 int stid;
148 preempt_disable();
149 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
151 stlbe->mas1 |= MAS1_TID(stid);
152 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
153 preempt_enable();
156 #ifdef CONFIG_KVM_E500V2
157 /* XXX should be a hook in the gva2hpa translation */
158 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
160 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
161 struct kvm_book3e_206_tlb_entry magic;
162 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
163 unsigned int stid;
164 pfn_t pfn;
166 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
167 get_page(pfn_to_page(pfn));
169 preempt_disable();
170 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
172 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
173 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
174 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
175 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
176 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
177 magic.mas8 = 0;
179 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
180 preempt_enable();
182 #endif
184 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
185 int esel)
187 struct kvm_book3e_206_tlb_entry *gtlbe =
188 get_entry(vcpu_e500, tlbsel, esel);
189 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
191 /* Don't bother with unmapped entries */
192 if (!(ref->flags & E500_TLB_VALID)) {
193 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
194 "%s: flags %x\n", __func__, ref->flags);
195 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
198 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
199 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
200 int hw_tlb_indx;
201 unsigned long flags;
203 local_irq_save(flags);
204 while (tmp) {
205 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
206 mtspr(SPRN_MAS0,
207 MAS0_TLBSEL(1) |
208 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
209 mtspr(SPRN_MAS1, 0);
210 asm volatile("tlbwe");
211 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
212 tmp &= tmp - 1;
214 mb();
215 vcpu_e500->g2h_tlb1_map[esel] = 0;
216 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
217 local_irq_restore(flags);
220 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
222 * TLB1 entry is backed by 4k pages. This should happen
223 * rarely and is not worth optimizing. Invalidate everything.
225 kvmppc_e500_tlbil_all(vcpu_e500);
226 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
230 * If TLB entry is still valid then it's a TLB0 entry, and thus
231 * backed by at most one host tlbe per shadow pid
233 if (ref->flags & E500_TLB_VALID)
234 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
236 /* Mark the TLB as not backed by the host anymore */
237 ref->flags = 0;
240 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
242 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
245 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
246 struct kvm_book3e_206_tlb_entry *gtlbe,
247 pfn_t pfn, unsigned int wimg)
249 ref->pfn = pfn;
250 ref->flags = E500_TLB_VALID;
252 /* Use guest supplied MAS2_G and MAS2_E */
253 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
255 /* Mark the page accessed */
256 kvm_set_pfn_accessed(pfn);
258 if (tlbe_is_writable(gtlbe))
259 kvm_set_pfn_dirty(pfn);
262 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
264 if (ref->flags & E500_TLB_VALID) {
265 /* FIXME: don't log bogus pfn for TLB1 */
266 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
267 ref->flags = 0;
271 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
273 if (vcpu_e500->g2h_tlb1_map)
274 memset(vcpu_e500->g2h_tlb1_map, 0,
275 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
276 if (vcpu_e500->h2g_tlb1_rmap)
277 memset(vcpu_e500->h2g_tlb1_rmap, 0,
278 sizeof(unsigned int) * host_tlb_params[1].entries);
281 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
283 int tlbsel;
284 int i;
286 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
287 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
288 struct tlbe_ref *ref =
289 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
290 kvmppc_e500_ref_release(ref);
295 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
297 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
298 kvmppc_e500_tlbil_all(vcpu_e500);
299 clear_tlb_privs(vcpu_e500);
300 clear_tlb1_bitmap(vcpu_e500);
303 /* TID must be supplied by the caller */
304 static void kvmppc_e500_setup_stlbe(
305 struct kvm_vcpu *vcpu,
306 struct kvm_book3e_206_tlb_entry *gtlbe,
307 int tsize, struct tlbe_ref *ref, u64 gvaddr,
308 struct kvm_book3e_206_tlb_entry *stlbe)
310 pfn_t pfn = ref->pfn;
311 u32 pr = vcpu->arch.shared->msr & MSR_PR;
313 BUG_ON(!(ref->flags & E500_TLB_VALID));
315 /* Force IPROT=0 for all guest mappings. */
316 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
317 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
318 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
319 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
321 #ifdef CONFIG_KVM_BOOKE_HV
322 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
323 #endif
326 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
327 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
328 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
329 struct tlbe_ref *ref)
331 struct kvm_memory_slot *slot;
332 unsigned long pfn = 0; /* silence GCC warning */
333 unsigned long hva;
334 int pfnmap = 0;
335 int tsize = BOOK3E_PAGESZ_4K;
336 int ret = 0;
337 unsigned long mmu_seq;
338 struct kvm *kvm = vcpu_e500->vcpu.kvm;
339 unsigned long tsize_pages = 0;
340 pte_t *ptep;
341 unsigned int wimg = 0;
342 pgd_t *pgdir;
344 /* used to check for invalidations in progress */
345 mmu_seq = kvm->mmu_notifier_seq;
346 smp_rmb();
349 * Translate guest physical to true physical, acquiring
350 * a page reference if it is normal, non-reserved memory.
352 * gfn_to_memslot() must succeed because otherwise we wouldn't
353 * have gotten this far. Eventually we should just pass the slot
354 * pointer through from the first lookup.
356 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
357 hva = gfn_to_hva_memslot(slot, gfn);
359 if (tlbsel == 1) {
360 struct vm_area_struct *vma;
361 down_read(&current->mm->mmap_sem);
363 vma = find_vma(current->mm, hva);
364 if (vma && hva >= vma->vm_start &&
365 (vma->vm_flags & VM_PFNMAP)) {
367 * This VMA is a physically contiguous region (e.g.
368 * /dev/mem) that bypasses normal Linux page
369 * management. Find the overlap between the
370 * vma and the memslot.
373 unsigned long start, end;
374 unsigned long slot_start, slot_end;
376 pfnmap = 1;
378 start = vma->vm_pgoff;
379 end = start +
380 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
382 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
384 slot_start = pfn - (gfn - slot->base_gfn);
385 slot_end = slot_start + slot->npages;
387 if (start < slot_start)
388 start = slot_start;
389 if (end > slot_end)
390 end = slot_end;
392 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
393 MAS1_TSIZE_SHIFT;
396 * e500 doesn't implement the lowest tsize bit,
397 * or 1K pages.
399 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
402 * Now find the largest tsize (up to what the guest
403 * requested) that will cover gfn, stay within the
404 * range, and for which gfn and pfn are mutually
405 * aligned.
408 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
409 unsigned long gfn_start, gfn_end;
410 tsize_pages = 1 << (tsize - 2);
412 gfn_start = gfn & ~(tsize_pages - 1);
413 gfn_end = gfn_start + tsize_pages;
415 if (gfn_start + pfn - gfn < start)
416 continue;
417 if (gfn_end + pfn - gfn > end)
418 continue;
419 if ((gfn & (tsize_pages - 1)) !=
420 (pfn & (tsize_pages - 1)))
421 continue;
423 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
424 pfn &= ~(tsize_pages - 1);
425 break;
427 } else if (vma && hva >= vma->vm_start &&
428 (vma->vm_flags & VM_HUGETLB)) {
429 unsigned long psize = vma_kernel_pagesize(vma);
431 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
432 MAS1_TSIZE_SHIFT;
435 * Take the largest page size that satisfies both host
436 * and guest mapping
438 tsize = min(__ilog2(psize) - 10, tsize);
441 * e500 doesn't implement the lowest tsize bit,
442 * or 1K pages.
444 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
447 up_read(&current->mm->mmap_sem);
450 if (likely(!pfnmap)) {
451 tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
452 pfn = gfn_to_pfn_memslot(slot, gfn);
453 if (is_error_noslot_pfn(pfn)) {
454 if (printk_ratelimit())
455 pr_err("%s: real page not found for gfn %lx\n",
456 __func__, (long)gfn);
457 return -EINVAL;
460 /* Align guest and physical address to page map boundaries */
461 pfn &= ~(tsize_pages - 1);
462 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
465 spin_lock(&kvm->mmu_lock);
466 if (mmu_notifier_retry(kvm, mmu_seq)) {
467 ret = -EAGAIN;
468 goto out;
472 pgdir = vcpu_e500->vcpu.arch.pgdir;
473 ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages);
474 if (pte_present(*ptep))
475 wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK;
476 else {
477 if (printk_ratelimit())
478 pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
479 __func__, (long)gfn, pfn);
480 ret = -EINVAL;
481 goto out;
483 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
485 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
486 ref, gvaddr, stlbe);
488 /* Clear i-cache for new pages */
489 kvmppc_mmu_flush_icache(pfn);
491 out:
492 spin_unlock(&kvm->mmu_lock);
494 /* Drop refcount on page, so that mmu notifiers can clear it */
495 kvm_release_pfn_clean(pfn);
497 return ret;
500 /* XXX only map the one-one case, for now use TLB0 */
501 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
502 struct kvm_book3e_206_tlb_entry *stlbe)
504 struct kvm_book3e_206_tlb_entry *gtlbe;
505 struct tlbe_ref *ref;
506 int stlbsel = 0;
507 int sesel = 0;
508 int r;
510 gtlbe = get_entry(vcpu_e500, 0, esel);
511 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
513 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
514 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
515 gtlbe, 0, stlbe, ref);
516 if (r)
517 return r;
519 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
521 return 0;
524 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
525 struct tlbe_ref *ref,
526 int esel)
528 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
530 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
531 vcpu_e500->host_tlb1_nv = 0;
533 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
534 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
535 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
538 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
539 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
540 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
541 WARN_ON(!(ref->flags & E500_TLB_VALID));
543 return sesel;
546 /* Caller must ensure that the specified guest TLB entry is safe to insert into
547 * the shadow TLB. */
548 /* For both one-one and one-to-many */
549 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
550 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
551 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
553 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
554 int sesel;
555 int r;
557 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
558 ref);
559 if (r)
560 return r;
562 /* Use TLB0 when we can only map a page with 4k */
563 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
564 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
565 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
566 return 0;
569 /* Otherwise map into TLB1 */
570 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
571 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
573 return 0;
576 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
577 unsigned int index)
579 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
580 struct tlbe_priv *priv;
581 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
582 int tlbsel = tlbsel_of(index);
583 int esel = esel_of(index);
585 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
587 switch (tlbsel) {
588 case 0:
589 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
591 /* Triggers after clear_tlb_privs or on initial mapping */
592 if (!(priv->ref.flags & E500_TLB_VALID)) {
593 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
594 } else {
595 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
596 &priv->ref, eaddr, &stlbe);
597 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
599 break;
601 case 1: {
602 gfn_t gfn = gpaddr >> PAGE_SHIFT;
603 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
604 esel);
605 break;
608 default:
609 BUG();
610 break;
614 #ifdef CONFIG_KVM_BOOKE_HV
615 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
616 u32 *instr)
618 gva_t geaddr;
619 hpa_t addr;
620 hfn_t pfn;
621 hva_t eaddr;
622 u32 mas1, mas2, mas3;
623 u64 mas7_mas3;
624 struct page *page;
625 unsigned int addr_space, psize_shift;
626 bool pr;
627 unsigned long flags;
629 /* Search TLB for guest pc to get the real address */
630 geaddr = kvmppc_get_pc(vcpu);
632 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
634 local_irq_save(flags);
635 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
636 mtspr(SPRN_MAS5, MAS5_SGS | vcpu->kvm->arch.lpid);
637 asm volatile("tlbsx 0, %[geaddr]\n" : :
638 [geaddr] "r" (geaddr));
639 mtspr(SPRN_MAS5, 0);
640 mtspr(SPRN_MAS8, 0);
641 mas1 = mfspr(SPRN_MAS1);
642 mas2 = mfspr(SPRN_MAS2);
643 mas3 = mfspr(SPRN_MAS3);
644 #ifdef CONFIG_64BIT
645 mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
646 #else
647 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
648 #endif
649 local_irq_restore(flags);
652 * If the TLB entry for guest pc was evicted, return to the guest.
653 * There are high chances to find a valid TLB entry next time.
655 if (!(mas1 & MAS1_VALID))
656 return EMULATE_AGAIN;
659 * Another thread may rewrite the TLB entry in parallel, don't
660 * execute from the address if the execute permission is not set
662 pr = vcpu->arch.shared->msr & MSR_PR;
663 if (unlikely((pr && !(mas3 & MAS3_UX)) ||
664 (!pr && !(mas3 & MAS3_SX)))) {
665 pr_err_ratelimited(
666 "%s: Instuction emulation from guest addres %08lx without execute permission\n",
667 __func__, geaddr);
668 return EMULATE_AGAIN;
672 * The real address will be mapped by a cacheable, memory coherent,
673 * write-back page. Check for mismatches when LRAT is used.
675 if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
676 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
677 pr_err_ratelimited(
678 "%s: Instuction emulation from guest addres %08lx mismatches storage attributes\n",
679 __func__, geaddr);
680 return EMULATE_AGAIN;
683 /* Get pfn */
684 psize_shift = MAS1_GET_TSIZE(mas1) + 10;
685 addr = (mas7_mas3 & (~0ULL << psize_shift)) |
686 (geaddr & ((1ULL << psize_shift) - 1ULL));
687 pfn = addr >> PAGE_SHIFT;
689 /* Guard against emulation from devices area */
690 if (unlikely(!page_is_ram(pfn))) {
691 pr_err_ratelimited("%s: Instruction emulation from non-RAM host addres %08llx is not supported\n",
692 __func__, addr);
693 return EMULATE_AGAIN;
696 /* Map a page and get guest's instruction */
697 page = pfn_to_page(pfn);
698 eaddr = (unsigned long)kmap_atomic(page);
699 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
700 kunmap_atomic((u32 *)eaddr);
702 return EMULATE_DONE;
704 #else
705 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
706 u32 *instr)
708 return EMULATE_AGAIN;
710 #endif
712 /************* MMU Notifiers *************/
714 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
716 trace_kvm_unmap_hva(hva);
719 * Flush all shadow tlb entries everywhere. This is slow, but
720 * we are 100% sure that we catch the to be unmapped page
722 kvm_flush_remote_tlbs(kvm);
724 return 0;
727 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
729 /* kvm_unmap_hva flushes everything anyways */
730 kvm_unmap_hva(kvm, start);
732 return 0;
735 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
737 /* XXX could be more clever ;) */
738 return 0;
741 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
743 /* XXX could be more clever ;) */
744 return 0;
747 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
749 /* The page will get remapped properly on its next fault */
750 kvm_unmap_hva(kvm, hva);
753 /*****************************************/
755 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
757 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
758 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
761 * This should never happen on real e500 hardware, but is
762 * architecturally possible -- e.g. in some weird nested
763 * virtualization case.
765 if (host_tlb_params[0].entries == 0 ||
766 host_tlb_params[1].entries == 0) {
767 pr_err("%s: need to know host tlb size\n", __func__);
768 return -ENODEV;
771 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
772 TLBnCFG_ASSOC_SHIFT;
773 host_tlb_params[1].ways = host_tlb_params[1].entries;
775 if (!is_power_of_2(host_tlb_params[0].entries) ||
776 !is_power_of_2(host_tlb_params[0].ways) ||
777 host_tlb_params[0].entries < host_tlb_params[0].ways ||
778 host_tlb_params[0].ways == 0) {
779 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
780 __func__, host_tlb_params[0].entries,
781 host_tlb_params[0].ways);
782 return -ENODEV;
785 host_tlb_params[0].sets =
786 host_tlb_params[0].entries / host_tlb_params[0].ways;
787 host_tlb_params[1].sets = 1;
789 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
790 host_tlb_params[1].entries,
791 GFP_KERNEL);
792 if (!vcpu_e500->h2g_tlb1_rmap)
793 return -EINVAL;
795 return 0;
798 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
800 kfree(vcpu_e500->h2g_tlb1_rmap);