2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
36 #include "e500_mmu_host.h"
38 #include "trace_booke.h"
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42 static struct kvmppc_e500_tlb_params host_tlb_params
[E500_TLB_NUM
];
44 static inline unsigned int tlb1_max_shadow_size(void)
46 /* reserve one entry for magic page */
47 return host_tlb_params
[1].entries
- tlbcam_index
- 1;
50 static inline u32
e500_shadow_mas3_attrib(u32 mas3
, int usermode
)
52 /* Mask off reserved bits. */
53 mas3
&= MAS3_ATTRIB_MASK
;
55 #ifndef CONFIG_KVM_BOOKE_HV
57 /* Guest is in supervisor mode,
58 * so we need to translate guest
59 * supervisor permissions into user permissions. */
60 mas3
&= ~E500_TLB_USER_PERM_MASK
;
61 mas3
|= (mas3
& E500_TLB_SUPER_PERM_MASK
) << 1;
63 mas3
|= E500_TLB_SUPER_PERM_MASK
;
69 * writing shadow tlb entry to host TLB
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry
*stlbe
,
76 local_irq_save(flags
);
77 mtspr(SPRN_MAS0
, mas0
);
78 mtspr(SPRN_MAS1
, stlbe
->mas1
);
79 mtspr(SPRN_MAS2
, (unsigned long)stlbe
->mas2
);
80 mtspr(SPRN_MAS3
, (u32
)stlbe
->mas7_3
);
81 mtspr(SPRN_MAS7
, (u32
)(stlbe
->mas7_3
>> 32));
82 #ifdef CONFIG_KVM_BOOKE_HV
83 mtspr(SPRN_MAS8
, stlbe
->mas8
);
85 asm volatile("isync; tlbwe" : : : "memory");
87 #ifdef CONFIG_KVM_BOOKE_HV
88 /* Must clear mas8 for other host tlbwe's */
92 local_irq_restore(flags
);
94 trace_kvm_booke206_stlb_write(mas0
, stlbe
->mas8
, stlbe
->mas1
,
95 stlbe
->mas2
, stlbe
->mas7_3
);
99 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
101 * We don't care about the address we're searching for, other than that it's
102 * in the right set and is not present in the TLB. Using a zero PID and a
103 * userspace address means we don't have to set and then restore MAS5, or
104 * calculate a proper MAS6 value.
106 static u32
get_host_mas0(unsigned long eaddr
)
112 local_irq_save(flags
);
114 mas4
= mfspr(SPRN_MAS4
);
115 mtspr(SPRN_MAS4
, mas4
& ~MAS4_TLBSEL_MASK
);
116 asm volatile("tlbsx 0, %0" : : "b" (eaddr
& ~CONFIG_PAGE_OFFSET
));
117 mas0
= mfspr(SPRN_MAS0
);
118 mtspr(SPRN_MAS4
, mas4
);
119 local_irq_restore(flags
);
124 /* sesel is for tlb1 only */
125 static inline void write_host_tlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
126 int tlbsel
, int sesel
, struct kvm_book3e_206_tlb_entry
*stlbe
)
131 mas0
= get_host_mas0(stlbe
->mas2
);
132 __write_host_tlbe(stlbe
, mas0
);
134 __write_host_tlbe(stlbe
,
136 MAS0_ESEL(to_htlb1_esel(sesel
)));
140 /* sesel is for tlb1 only */
141 static void write_stlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
142 struct kvm_book3e_206_tlb_entry
*gtlbe
,
143 struct kvm_book3e_206_tlb_entry
*stlbe
,
144 int stlbsel
, int sesel
)
149 stid
= kvmppc_e500_get_tlb_stid(&vcpu_e500
->vcpu
, gtlbe
);
151 stlbe
->mas1
|= MAS1_TID(stid
);
152 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, stlbe
);
156 #ifdef CONFIG_KVM_E500V2
157 /* XXX should be a hook in the gva2hpa translation */
158 void kvmppc_map_magic(struct kvm_vcpu
*vcpu
)
160 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
161 struct kvm_book3e_206_tlb_entry magic
;
162 ulong shared_page
= ((ulong
)vcpu
->arch
.shared
) & PAGE_MASK
;
166 pfn
= (pfn_t
)virt_to_phys((void *)shared_page
) >> PAGE_SHIFT
;
167 get_page(pfn_to_page(pfn
));
170 stid
= kvmppc_e500_get_sid(vcpu_e500
, 0, 0, 0, 0);
172 magic
.mas1
= MAS1_VALID
| MAS1_TS
| MAS1_TID(stid
) |
173 MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
174 magic
.mas2
= vcpu
->arch
.magic_page_ea
| MAS2_M
;
175 magic
.mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
176 MAS3_SW
| MAS3_SR
| MAS3_UW
| MAS3_UR
;
179 __write_host_tlbe(&magic
, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index
));
184 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500
*vcpu_e500
, int tlbsel
,
187 struct kvm_book3e_206_tlb_entry
*gtlbe
=
188 get_entry(vcpu_e500
, tlbsel
, esel
);
189 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
].ref
;
191 /* Don't bother with unmapped entries */
192 if (!(ref
->flags
& E500_TLB_VALID
)) {
193 WARN(ref
->flags
& (E500_TLB_BITMAP
| E500_TLB_TLB0
),
194 "%s: flags %x\n", __func__
, ref
->flags
);
195 WARN_ON(tlbsel
== 1 && vcpu_e500
->g2h_tlb1_map
[esel
]);
198 if (tlbsel
== 1 && ref
->flags
& E500_TLB_BITMAP
) {
199 u64 tmp
= vcpu_e500
->g2h_tlb1_map
[esel
];
203 local_irq_save(flags
);
205 hw_tlb_indx
= __ilog2_u64(tmp
& -tmp
);
208 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx
)));
210 asm volatile("tlbwe");
211 vcpu_e500
->h2g_tlb1_rmap
[hw_tlb_indx
] = 0;
215 vcpu_e500
->g2h_tlb1_map
[esel
] = 0;
216 ref
->flags
&= ~(E500_TLB_BITMAP
| E500_TLB_VALID
);
217 local_irq_restore(flags
);
220 if (tlbsel
== 1 && ref
->flags
& E500_TLB_TLB0
) {
222 * TLB1 entry is backed by 4k pages. This should happen
223 * rarely and is not worth optimizing. Invalidate everything.
225 kvmppc_e500_tlbil_all(vcpu_e500
);
226 ref
->flags
&= ~(E500_TLB_TLB0
| E500_TLB_VALID
);
230 * If TLB entry is still valid then it's a TLB0 entry, and thus
231 * backed by at most one host tlbe per shadow pid
233 if (ref
->flags
& E500_TLB_VALID
)
234 kvmppc_e500_tlbil_one(vcpu_e500
, gtlbe
);
236 /* Mark the TLB as not backed by the host anymore */
240 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry
*tlbe
)
242 return tlbe
->mas7_3
& (MAS3_SW
|MAS3_UW
);
245 static inline void kvmppc_e500_ref_setup(struct tlbe_ref
*ref
,
246 struct kvm_book3e_206_tlb_entry
*gtlbe
,
247 pfn_t pfn
, unsigned int wimg
)
250 ref
->flags
= E500_TLB_VALID
;
252 /* Use guest supplied MAS2_G and MAS2_E */
253 ref
->flags
|= (gtlbe
->mas2
& MAS2_ATTRIB_MASK
) | wimg
;
255 /* Mark the page accessed */
256 kvm_set_pfn_accessed(pfn
);
258 if (tlbe_is_writable(gtlbe
))
259 kvm_set_pfn_dirty(pfn
);
262 static inline void kvmppc_e500_ref_release(struct tlbe_ref
*ref
)
264 if (ref
->flags
& E500_TLB_VALID
) {
265 /* FIXME: don't log bogus pfn for TLB1 */
266 trace_kvm_booke206_ref_release(ref
->pfn
, ref
->flags
);
271 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500
*vcpu_e500
)
273 if (vcpu_e500
->g2h_tlb1_map
)
274 memset(vcpu_e500
->g2h_tlb1_map
, 0,
275 sizeof(u64
) * vcpu_e500
->gtlb_params
[1].entries
);
276 if (vcpu_e500
->h2g_tlb1_rmap
)
277 memset(vcpu_e500
->h2g_tlb1_rmap
, 0,
278 sizeof(unsigned int) * host_tlb_params
[1].entries
);
281 static void clear_tlb_privs(struct kvmppc_vcpu_e500
*vcpu_e500
)
286 for (tlbsel
= 0; tlbsel
<= 1; tlbsel
++) {
287 for (i
= 0; i
< vcpu_e500
->gtlb_params
[tlbsel
].entries
; i
++) {
288 struct tlbe_ref
*ref
=
289 &vcpu_e500
->gtlb_priv
[tlbsel
][i
].ref
;
290 kvmppc_e500_ref_release(ref
);
295 void kvmppc_core_flush_tlb(struct kvm_vcpu
*vcpu
)
297 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
298 kvmppc_e500_tlbil_all(vcpu_e500
);
299 clear_tlb_privs(vcpu_e500
);
300 clear_tlb1_bitmap(vcpu_e500
);
303 /* TID must be supplied by the caller */
304 static void kvmppc_e500_setup_stlbe(
305 struct kvm_vcpu
*vcpu
,
306 struct kvm_book3e_206_tlb_entry
*gtlbe
,
307 int tsize
, struct tlbe_ref
*ref
, u64 gvaddr
,
308 struct kvm_book3e_206_tlb_entry
*stlbe
)
310 pfn_t pfn
= ref
->pfn
;
311 u32 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
313 BUG_ON(!(ref
->flags
& E500_TLB_VALID
));
315 /* Force IPROT=0 for all guest mappings. */
316 stlbe
->mas1
= MAS1_TSIZE(tsize
) | get_tlb_sts(gtlbe
) | MAS1_VALID
;
317 stlbe
->mas2
= (gvaddr
& MAS2_EPN
) | (ref
->flags
& E500_TLB_MAS2_ATTR
);
318 stlbe
->mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
319 e500_shadow_mas3_attrib(gtlbe
->mas7_3
, pr
);
321 #ifdef CONFIG_KVM_BOOKE_HV
322 stlbe
->mas8
= MAS8_TGS
| vcpu
->kvm
->arch
.lpid
;
326 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
327 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
328 int tlbsel
, struct kvm_book3e_206_tlb_entry
*stlbe
,
329 struct tlbe_ref
*ref
)
331 struct kvm_memory_slot
*slot
;
332 unsigned long pfn
= 0; /* silence GCC warning */
335 int tsize
= BOOK3E_PAGESZ_4K
;
337 unsigned long mmu_seq
;
338 struct kvm
*kvm
= vcpu_e500
->vcpu
.kvm
;
339 unsigned long tsize_pages
= 0;
341 unsigned int wimg
= 0;
344 /* used to check for invalidations in progress */
345 mmu_seq
= kvm
->mmu_notifier_seq
;
349 * Translate guest physical to true physical, acquiring
350 * a page reference if it is normal, non-reserved memory.
352 * gfn_to_memslot() must succeed because otherwise we wouldn't
353 * have gotten this far. Eventually we should just pass the slot
354 * pointer through from the first lookup.
356 slot
= gfn_to_memslot(vcpu_e500
->vcpu
.kvm
, gfn
);
357 hva
= gfn_to_hva_memslot(slot
, gfn
);
360 struct vm_area_struct
*vma
;
361 down_read(¤t
->mm
->mmap_sem
);
363 vma
= find_vma(current
->mm
, hva
);
364 if (vma
&& hva
>= vma
->vm_start
&&
365 (vma
->vm_flags
& VM_PFNMAP
)) {
367 * This VMA is a physically contiguous region (e.g.
368 * /dev/mem) that bypasses normal Linux page
369 * management. Find the overlap between the
370 * vma and the memslot.
373 unsigned long start
, end
;
374 unsigned long slot_start
, slot_end
;
378 start
= vma
->vm_pgoff
;
380 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
);
382 pfn
= start
+ ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
384 slot_start
= pfn
- (gfn
- slot
->base_gfn
);
385 slot_end
= slot_start
+ slot
->npages
;
387 if (start
< slot_start
)
392 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
396 * e500 doesn't implement the lowest tsize bit,
399 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
402 * Now find the largest tsize (up to what the guest
403 * requested) that will cover gfn, stay within the
404 * range, and for which gfn and pfn are mutually
408 for (; tsize
> BOOK3E_PAGESZ_4K
; tsize
-= 2) {
409 unsigned long gfn_start
, gfn_end
;
410 tsize_pages
= 1 << (tsize
- 2);
412 gfn_start
= gfn
& ~(tsize_pages
- 1);
413 gfn_end
= gfn_start
+ tsize_pages
;
415 if (gfn_start
+ pfn
- gfn
< start
)
417 if (gfn_end
+ pfn
- gfn
> end
)
419 if ((gfn
& (tsize_pages
- 1)) !=
420 (pfn
& (tsize_pages
- 1)))
423 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
424 pfn
&= ~(tsize_pages
- 1);
427 } else if (vma
&& hva
>= vma
->vm_start
&&
428 (vma
->vm_flags
& VM_HUGETLB
)) {
429 unsigned long psize
= vma_kernel_pagesize(vma
);
431 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
435 * Take the largest page size that satisfies both host
438 tsize
= min(__ilog2(psize
) - 10, tsize
);
441 * e500 doesn't implement the lowest tsize bit,
444 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
447 up_read(¤t
->mm
->mmap_sem
);
450 if (likely(!pfnmap
)) {
451 tsize_pages
= 1 << (tsize
+ 10 - PAGE_SHIFT
);
452 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
453 if (is_error_noslot_pfn(pfn
)) {
454 if (printk_ratelimit())
455 pr_err("%s: real page not found for gfn %lx\n",
456 __func__
, (long)gfn
);
460 /* Align guest and physical address to page map boundaries */
461 pfn
&= ~(tsize_pages
- 1);
462 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
465 spin_lock(&kvm
->mmu_lock
);
466 if (mmu_notifier_retry(kvm
, mmu_seq
)) {
472 pgdir
= vcpu_e500
->vcpu
.arch
.pgdir
;
473 ptep
= lookup_linux_ptep(pgdir
, hva
, &tsize_pages
);
474 if (pte_present(*ptep
))
475 wimg
= (*ptep
>> PTE_WIMGE_SHIFT
) & MAS2_WIMGE_MASK
;
477 if (printk_ratelimit())
478 pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
479 __func__
, (long)gfn
, pfn
);
483 kvmppc_e500_ref_setup(ref
, gtlbe
, pfn
, wimg
);
485 kvmppc_e500_setup_stlbe(&vcpu_e500
->vcpu
, gtlbe
, tsize
,
488 /* Clear i-cache for new pages */
489 kvmppc_mmu_flush_icache(pfn
);
492 spin_unlock(&kvm
->mmu_lock
);
494 /* Drop refcount on page, so that mmu notifiers can clear it */
495 kvm_release_pfn_clean(pfn
);
500 /* XXX only map the one-one case, for now use TLB0 */
501 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500
*vcpu_e500
, int esel
,
502 struct kvm_book3e_206_tlb_entry
*stlbe
)
504 struct kvm_book3e_206_tlb_entry
*gtlbe
;
505 struct tlbe_ref
*ref
;
510 gtlbe
= get_entry(vcpu_e500
, 0, esel
);
511 ref
= &vcpu_e500
->gtlb_priv
[0][esel
].ref
;
513 r
= kvmppc_e500_shadow_map(vcpu_e500
, get_tlb_eaddr(gtlbe
),
514 get_tlb_raddr(gtlbe
) >> PAGE_SHIFT
,
515 gtlbe
, 0, stlbe
, ref
);
519 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, stlbsel
, sesel
);
524 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500
*vcpu_e500
,
525 struct tlbe_ref
*ref
,
528 unsigned int sesel
= vcpu_e500
->host_tlb1_nv
++;
530 if (unlikely(vcpu_e500
->host_tlb1_nv
>= tlb1_max_shadow_size()))
531 vcpu_e500
->host_tlb1_nv
= 0;
533 if (vcpu_e500
->h2g_tlb1_rmap
[sesel
]) {
534 unsigned int idx
= vcpu_e500
->h2g_tlb1_rmap
[sesel
] - 1;
535 vcpu_e500
->g2h_tlb1_map
[idx
] &= ~(1ULL << sesel
);
538 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_BITMAP
;
539 vcpu_e500
->g2h_tlb1_map
[esel
] |= (u64
)1 << sesel
;
540 vcpu_e500
->h2g_tlb1_rmap
[sesel
] = esel
+ 1;
541 WARN_ON(!(ref
->flags
& E500_TLB_VALID
));
546 /* Caller must ensure that the specified guest TLB entry is safe to insert into
548 /* For both one-one and one-to-many */
549 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
550 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
551 struct kvm_book3e_206_tlb_entry
*stlbe
, int esel
)
553 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[1][esel
].ref
;
557 r
= kvmppc_e500_shadow_map(vcpu_e500
, gvaddr
, gfn
, gtlbe
, 1, stlbe
,
562 /* Use TLB0 when we can only map a page with 4k */
563 if (get_tlb_tsize(stlbe
) == BOOK3E_PAGESZ_4K
) {
564 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_TLB0
;
565 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 0, 0);
569 /* Otherwise map into TLB1 */
570 sesel
= kvmppc_e500_tlb1_map_tlb1(vcpu_e500
, ref
, esel
);
571 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 1, sesel
);
576 void kvmppc_mmu_map(struct kvm_vcpu
*vcpu
, u64 eaddr
, gpa_t gpaddr
,
579 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
580 struct tlbe_priv
*priv
;
581 struct kvm_book3e_206_tlb_entry
*gtlbe
, stlbe
;
582 int tlbsel
= tlbsel_of(index
);
583 int esel
= esel_of(index
);
585 gtlbe
= get_entry(vcpu_e500
, tlbsel
, esel
);
589 priv
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
];
591 /* Triggers after clear_tlb_privs or on initial mapping */
592 if (!(priv
->ref
.flags
& E500_TLB_VALID
)) {
593 kvmppc_e500_tlb0_map(vcpu_e500
, esel
, &stlbe
);
595 kvmppc_e500_setup_stlbe(vcpu
, gtlbe
, BOOK3E_PAGESZ_4K
,
596 &priv
->ref
, eaddr
, &stlbe
);
597 write_stlbe(vcpu_e500
, gtlbe
, &stlbe
, 0, 0);
602 gfn_t gfn
= gpaddr
>> PAGE_SHIFT
;
603 kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
, gfn
, gtlbe
, &stlbe
,
614 #ifdef CONFIG_KVM_BOOKE_HV
615 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
622 u32 mas1
, mas2
, mas3
;
625 unsigned int addr_space
, psize_shift
;
629 /* Search TLB for guest pc to get the real address */
630 geaddr
= kvmppc_get_pc(vcpu
);
632 addr_space
= (vcpu
->arch
.shared
->msr
& MSR_IS
) >> MSR_IR_LG
;
634 local_irq_save(flags
);
635 mtspr(SPRN_MAS6
, (vcpu
->arch
.pid
<< MAS6_SPID_SHIFT
) | addr_space
);
636 mtspr(SPRN_MAS5
, MAS5_SGS
| vcpu
->kvm
->arch
.lpid
);
637 asm volatile("tlbsx 0, %[geaddr]\n" : :
638 [geaddr
] "r" (geaddr
));
641 mas1
= mfspr(SPRN_MAS1
);
642 mas2
= mfspr(SPRN_MAS2
);
643 mas3
= mfspr(SPRN_MAS3
);
645 mas7_mas3
= mfspr(SPRN_MAS7_MAS3
);
647 mas7_mas3
= ((u64
)mfspr(SPRN_MAS7
) << 32) | mas3
;
649 local_irq_restore(flags
);
652 * If the TLB entry for guest pc was evicted, return to the guest.
653 * There are high chances to find a valid TLB entry next time.
655 if (!(mas1
& MAS1_VALID
))
656 return EMULATE_AGAIN
;
659 * Another thread may rewrite the TLB entry in parallel, don't
660 * execute from the address if the execute permission is not set
662 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
663 if (unlikely((pr
&& !(mas3
& MAS3_UX
)) ||
664 (!pr
&& !(mas3
& MAS3_SX
)))) {
666 "%s: Instuction emulation from guest addres %08lx without execute permission\n",
668 return EMULATE_AGAIN
;
672 * The real address will be mapped by a cacheable, memory coherent,
673 * write-back page. Check for mismatches when LRAT is used.
675 if (has_feature(vcpu
, VCPU_FTR_MMU_V2
) &&
676 unlikely((mas2
& MAS2_I
) || (mas2
& MAS2_W
) || !(mas2
& MAS2_M
))) {
678 "%s: Instuction emulation from guest addres %08lx mismatches storage attributes\n",
680 return EMULATE_AGAIN
;
684 psize_shift
= MAS1_GET_TSIZE(mas1
) + 10;
685 addr
= (mas7_mas3
& (~0ULL << psize_shift
)) |
686 (geaddr
& ((1ULL << psize_shift
) - 1ULL));
687 pfn
= addr
>> PAGE_SHIFT
;
689 /* Guard against emulation from devices area */
690 if (unlikely(!page_is_ram(pfn
))) {
691 pr_err_ratelimited("%s: Instruction emulation from non-RAM host addres %08llx is not supported\n",
693 return EMULATE_AGAIN
;
696 /* Map a page and get guest's instruction */
697 page
= pfn_to_page(pfn
);
698 eaddr
= (unsigned long)kmap_atomic(page
);
699 *instr
= *(u32
*)(eaddr
| (unsigned long)(addr
& ~PAGE_MASK
));
700 kunmap_atomic((u32
*)eaddr
);
705 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
708 return EMULATE_AGAIN
;
712 /************* MMU Notifiers *************/
714 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
716 trace_kvm_unmap_hva(hva
);
719 * Flush all shadow tlb entries everywhere. This is slow, but
720 * we are 100% sure that we catch the to be unmapped page
722 kvm_flush_remote_tlbs(kvm
);
727 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
729 /* kvm_unmap_hva flushes everything anyways */
730 kvm_unmap_hva(kvm
, start
);
735 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
737 /* XXX could be more clever ;) */
741 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
743 /* XXX could be more clever ;) */
747 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
749 /* The page will get remapped properly on its next fault */
750 kvm_unmap_hva(kvm
, hva
);
753 /*****************************************/
755 int e500_mmu_host_init(struct kvmppc_vcpu_e500
*vcpu_e500
)
757 host_tlb_params
[0].entries
= mfspr(SPRN_TLB0CFG
) & TLBnCFG_N_ENTRY
;
758 host_tlb_params
[1].entries
= mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
;
761 * This should never happen on real e500 hardware, but is
762 * architecturally possible -- e.g. in some weird nested
763 * virtualization case.
765 if (host_tlb_params
[0].entries
== 0 ||
766 host_tlb_params
[1].entries
== 0) {
767 pr_err("%s: need to know host tlb size\n", __func__
);
771 host_tlb_params
[0].ways
= (mfspr(SPRN_TLB0CFG
) & TLBnCFG_ASSOC
) >>
773 host_tlb_params
[1].ways
= host_tlb_params
[1].entries
;
775 if (!is_power_of_2(host_tlb_params
[0].entries
) ||
776 !is_power_of_2(host_tlb_params
[0].ways
) ||
777 host_tlb_params
[0].entries
< host_tlb_params
[0].ways
||
778 host_tlb_params
[0].ways
== 0) {
779 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
780 __func__
, host_tlb_params
[0].entries
,
781 host_tlb_params
[0].ways
);
785 host_tlb_params
[0].sets
=
786 host_tlb_params
[0].entries
/ host_tlb_params
[0].ways
;
787 host_tlb_params
[1].sets
= 1;
789 vcpu_e500
->h2g_tlb1_rmap
= kzalloc(sizeof(unsigned int) *
790 host_tlb_params
[1].entries
,
792 if (!vcpu_e500
->h2g_tlb1_rmap
)
798 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500
*vcpu_e500
)
800 kfree(vcpu_e500
->h2g_tlb1_rmap
);